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Abstract. Let G be a real reductive Lie group and H a closed reduc-
tive subgroup of G. We investigate the deformation of standard compact
quotients of G/H, that is, of quotients of G/H by discrete groups Γ that
are uniform lattices in some closed reductive subgroup L of G acting
properly and cocompactly on G/H. For L of real rank 1, we prove that
after a small deformation in G, such a group Γ keeps acting properly
discontinuously and cocompactly on G/H. More generally, we prove
that the properness of the action of any convex cocompact subgroup
of L on G/H is preserved under small deformations, and we extend this
result to reductive homogeneous spaces G/H over any local field. As
an application, we obtain compact quotients of SO(2n, 2)/U(n, 1) by
Zariski-dense discrete subgroups of SO(2n, 2) acting properly discontin-
uously.

1. Introduction

Let G be a real reductive linear Lie group and H a closed reductive sub-
group of G. We are interested in the compact quotients of G/H by discrete
subgroups Γ of G. We ask that the action of Γ on G/H be properly dis-
continuous in order for the quotient Γ\G/H to be Hausdorff. This imposes
strong restrictions on Γ when H is noncompact. For instance, if rankR(G) =
rankR(H), then all discrete subgroups of G acting properly discontinuously
on G/H are finite: this is the Calabi–Markus phenomenon [Ko1]. Usu-
ally the action of Γ on G/H is also required to be free, so that Γ\G/H be
a manifold, but this is not very restrictive: if Γ acts properly discontinu-
ously and cocompactly on G/H, then it is finitely generated, hence virtually
torsion-free by Selberg’s lemma [Sel]; thus Γ\G/H has a finite cover that is a
manifold. Manifolds of the form Γ\G/H are sometimes called Clifford–Klein
forms of G/H.

In this paper we investigate the deformation of compact Clifford–Klein
forms Γ\G/H (which we simply call compact quotients) in the important
case when Γ is standard, that is, when Γ is a uniform lattice in some closed
reductive subgroup L of G acting properly and cocompactly on G/H. Most
of our results hold for reductive homogeneous spaces over any local field, but
in this introduction we first consider the real case.

1.1. Deformation of compact quotients in the real case. Let G be
a real reductive linear Lie group and H a closed reductive subgroup of G.
In all known examples, if G/H admits a compact quotient, then there is
a closed reductive subgroup L of G that acts properly and cocompactly
on G/H. For instance, L = U(n, 1) acts properly and transitively on the
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(2n + 1)-dimensional anti-de Sitter space G/H = SO(2n, 2)/SO(2n, 1) (see
Section 6). Any torsion-free uniform lattice Γ of such a group L acts properly
discontinuously, freely, and cocompactly on G/H; we will say that the corre-
sponding compact quotient Γ\G/H is standard. Note that L always admits
torsion-free uniform lattices by [Bo1]. Kobayashi and Yoshino conjectured
that any reductive homogeneous space G/H admitting compact quotients
admits standard ones ([KY], Conj. 3.3.10); this conjecture remains open.

Of course, nonstandard compact quotients may also exist: this is the case
for instance for G/H = (G0 × G0)/∆G0 where G0 is locally isomorphic to
SO(n, 1) or SU(n, 1) and ∆G0 is the diagonal of G0 × G0 (see [Ghy], [Gol],
[Ko3], [Sal]). But in general we know only standard examples.

In order to construct nonstandard compact quotients ofG/H, it is natural,
given a reductive subgroup L of G acting properly and cocompactly on G/H,
to slightly deform torsion-free uniform lattices Γ of L in G and to see whether
their action on G/H remains properly discontinuous, free, and cocompact.
When L has real rank≥ 2 and Γ is irreducible, this is always the case: indeed,
it then follows from Margulis’s superrigidity theorem ([Mar], Cor. IX.5.9)
that Γ is locally rigid in G, i.e. that all small deformations of Γ in G are
obtained by conjugation. In this paper we prove that the action of Γ remains
properly discontinuous, free, and cocompact when L has real rank 1 as well.

Theorem 1.1. Let G be a real reductive linear Lie group, H and L two
closed reductive subgroups of G. Assume that rankR(L) = 1 and that L acts
properly and cocompactly on G/H. For any torsion-free uniform lattice Γ
of L, there is a neighborhood U ⊂ Hom(Γ, G) of the natural inclusion such
that if ϕ ∈ U , then ϕ is injective, ϕ(Γ) is discrete in G, and ϕ(Γ) acts
properly discontinuously and cocompactly on G/H.

We denote by Hom(Γ, G) the set of group homomorphisms from Γ to G,
endowed with the compact-open topology. In the real case, the fact that
ϕ(Γ) remains discrete in G for ϕ ∈ Hom(Γ, G) close to the natural inclusion
is a general result of Guichard ([Gui], Th. 2).

The study of small deformations of properly discontinuous actions on real
homogeneous spaces was initiated by Kobayashi [Ko3]. Theorem 1.1 impro-
ves [Ko3], Th. 2.4, which focused on homomorphisms of the form γ 7→ γψ(γ),
where ψ : Γ→ ZG(L) is a homomorphism with values in the centralizer of L
in G.

By [KY], Cor. 3.3.7, here are some triples (G,H,L) that Theorem 1.1
applies to:

(1) (SO(2n, 2), SO(2n, 1),U(n, 1)) for n ≥ 1,
(2) (SO(2n, 2),U(n, 1),SO(2n, 1)) for n ≥ 1,
(3) (U(2n, 2),Sp(n, 1),U(2n, 1)) for n ≥ 1,
(4) (SO(8, 8), SO(8, 7),Spin(8, 1)),
(5) (SO(8,C),SO(7,C), Spin(7, 1)),
(6) (SO∗(8),U(1, 3),Spin(6, 1)),
(7) (SO∗(8),Spin(6, 1),U(1, 3)),
(8) (SO∗(8),SO∗(6)× SO∗(2), Spin(6, 1)),
(9) (SO(4, 4),Spin(4, 3),SO(4, 1)),
(10) (SO(4, 3),G2(2),SO(4, 1)).
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As mentioned above, we wish to deform standard compact quotients of
G/H into nonstandard ones, which are in some sense more generic. The best
that we may hope for is to obtain Zariski-dense discrete subgroups ofG acting
properly discontinuously, freely, and cocompactly on G/H. Of course, even
when L has real rank 1, nontrivial deformations in G of uniform lattices Γ
of L do not always exist. For instance, if L is semisimple, noncompact, with
no quasisimple factor locally isomorphic to SO(n, 1) or SU(n, 1), then the
first cohomology group H1(Γ, g) vanishes by [Rag], Th. 1, and so Γ is locally
rigid in G by [Wei]. (Here g denotes the Lie algebra of G.)

For (G,H,L) = (SO(2n, 2),SO(2n, 1),U(n, 1)) with n ≥ 2, uniform lat-
tices Γ of L are not locally rigid in G, but a small deformation of Γ will
never provide a Zariski-dense subgroup of G. Indeed, by [Rag] and [Wei]
there is a neighborhood of the natural inclusion in Hom(Γ, G) whose ele-
ments are all homomorphisms of the form γ 7→ γψ(γ), up to conjugation,
where ψ : Γ → SO(2n, 2) is a homomorphism with values in the center
of U(n, 1).

On the other hand, for (G,H,L) = (SO(2n, 2),U(n, 1), SO(2n, 1)) with
n ≥ 1, there do exist small Zariski-dense deformations inG of certain uniform
lattices of L (see Section 6): such deformations can be obtained by a bending
construction due to Johnson and Millson [JM]. Theorem 1.1 therefore implies
the following.

Corollary 1.2. For any n ≥ 1, there are Zariski-dense discrete subgroups
of SO(2n, 2) acting properly discontinuously, freely, and cocompactly on
SO(2n, 2)/U(n, 1).

Note that by [KY], Prop. 3.2.7, the homogeneous space SO(2n, 2)/U(n, 1)
is a pseudo-Riemannian symmetric space of signature (2n, n2 − 1).

The existence of compact quotients of reductive homogeneous spaces G/H
by Zariski-dense discrete subgroups of G was known so far only when H is
compact or when G/H = (G0 ×G0)/∆G0 for certain groups G0.

1.2. Deformation of properly discontinuous actions over a general
local field. We prove that the properness of the action is preserved under
small deformations not only for real groups, but more generally for algebraic
groups over any local field k. By a local field we mean R, C, a finite extension
of Qp, or the field Fq((t)) of formal Laurent series over a finite field Fq.
Moreover we relax the assumption that Γ is a torsion-free uniform lattice
of L, in the following way.

Theorem 1.3. Let k be a local field, G the set of k-points of a reductive
algebraic k-group G, and H (resp. L) the set of k-points of a closed reductive
subgroup H (resp. L) of G. Assume that rankk(L) = 1 and that L acts
properly on G/H. If k = R or C, let Γ be a torsion-free convex cocompact
subgroup of L; if k is non-Archimedean, let Γ be any torsion-free finitely
generated discrete subgroup of L. There is a neighborhood U ⊂ Hom(Γ, G) of
the natural inclusion such that if ϕ ∈ U , then ϕ is injective, ϕ(Γ) is discrete
in G, and ϕ(Γ) acts properly discontinuously on G/H.

Recall that for k = R or C, a discrete subgroup of L is called convex
cocompact if it acts cocompactly on the convex hull of its limit set in the
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symmetric space of L, this convex hull being nonempty. Convex cocompact
groups include uniform lattices, but also discrete groups of infinite covol-
ume such as Schottky groups. For non-Archimedean k, every torsion-free
finitely generated discrete subgroup of L satisfies an analogue of the con-
vex cocompactness property in the Bruhat–Tits tree of L (see the proof of
Proposition 4.1).

For k = R or C, Theorem 1.1 follows from Theorem 1.3 and from a co-
homological argument due to Kobayashi (see Section 5.4). This argument,
which does not transpose to the non-Archimedean case, implies that the
action of Γ on G/H remains cocompact whenever it remains properly dis-
continuous and the deformation is injective.

Note that in characteristic zero, every finitely generated subgroup of L is
virtually torsion-free by Selberg’s lemma ([Sel], Lem. 8), hence the “torsion-
free” assumption in Theorem 1.3 may easily be removed in this case.

1.3. Translation in terms of a Cartan projection. Let k be a local field
and G the set of k-points of a connected reductive algebraic k-group. Fix
a Cartan projection µ : G → E+ of G, where E+ is a closed convex cone
in a real finite-dimensional vector space E (see Section 2). For any closed
subgroup H of G, the properness criterion of Benoist ([Ben], Cor. 5.2) and
Kobayashi ([Ko2], Th. 1.1) translates the properness of the action on G/H
of a subgroup Γ of G in terms of µ. Using this criterion (see Section 5.4),
Theorem 1.3 is a consequence of the following result, where we fix a norm ‖·‖
on E.

Theorem 1.4. Let k be a local field, G the set of k-points of a connected
reductive algebraic k-group G, and L the set of k-points of a closed reductive
subgroup L of G of k-rank 1. If k = R or C, let Γ be a torsion-free convex
cocompact subgroup of L; if k is non-Archimedean, let Γ be any torsion-
free finitely generated discrete subgroup of L. For any ε > 0, there is a
neighborhood Uε ⊂ Hom(Γ, G) of the natural inclusion such that∥∥µ(ϕ(γ))− µ(γ)

∥∥ ≤ ε‖µ(γ)‖
for all ϕ ∈ Uε and all γ ∈ Γ.

1.4. Ideas of proofs. The core of the paper is the proof of Theorem 1.4.
We start by recalling, in Section 2, that certain linear forms ` on E are
connected to representations (V, ρ) of G by relations of the form

`(µ(g)) = log ‖ρ(g)‖V
for all g ∈ G, where ‖ · ‖V is the operator norm on End(V ) with respect
to some fixed norm on V . We are thus led to bound ratios of the form
‖ρ(ϕ(γ))‖V /‖ρ(γ)‖V for γ ∈ Γ r {1}, where ϕ ∈ Hom(Γ, G) is close to the
natural inclusion of Γ in G.

In order to bound these ratios we look at the dynamics of G acting on
the projective space P(V ), notably the dynamics of elements g ∈ G that
are proximal in P(V ). By definition, such elements admit an attracting
fixed point and a repelling projective hyperplane in P(V ). In Section 3 we
consider products z1k2z2 . . . knzn of proximal elements zi having a common
attracting fixed point x+

0 and a common repelling hyperplane X−0 , with
isometries ki such that ki ·x+

0 remains bounded away from X−0 . We describe
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the contraction properties of z1k2z2 . . . knzn on P(V ) rX−0 in terms of the
contraction properties of the zi.

In Section 4 we see how such dynamical considerations apply to the ele-
ments γ ∈ Γ and their images ϕ(γ) under a small deformation ϕ ∈ Hom(Γ, G).
We use Guichard’s idea [Gui] of writing every element γ ∈ Γ as a product
γ0 . . . γn of elements of a fixed finite subset F of Γ, where the norms ‖µ(γi)‖
and ‖µ(γiγi+1)− µ(γi)− µ(γi+1)‖ are controlled for all i.

In Section 5 we combine the results of Sections 3 and 4 by carefully
choosing the finite subset F of Γ in order to get a sharp control of the ra-
tios ‖ρ(ϕ(γ))‖V /‖ρ(γ)‖V , or equivalently of `(µ(ϕ(γ))−µ(γ)) for γ ∈ Γr{1}.
From this we deduce Theorem 1.4.

At the end of Section 5 we explain how Theorems 1.1 and 1.3 follow from
Theorem 1.4. Finally, in Section 6 we establish Corollary 1.2 by relating
Theorem 1.1 to Johnson and Millson’s bending construction.

Acknowledgements. I warmly thank Yves Benoist and Olivier Guichard
for fruitful discussion.

2. Cartan projections, maximal parabolic subgroups, and
representations

Throughout the paper, k denotes a local field, i.e. R, C, a finite extension
of Qp, or the field Fq((t)) of formal Laurent series over a finite field Fq. If
k = R or C, we denote by | · | the usual absolute value on k. If k is non-
Archimedean, we denote by O the ring of integers of k, by q the cardinal
of its residue field, by π a uniformizer, by ω the (additive) valuation on k

such that ω(π) = 1, and by | · | = q−ω(·) the corresponding (multiplicative)
absolute value. If G is an algebraic group, we denote by G the set of its
k-points and by g its Lie algebra.

In this section, we recall a few well-known facts on connected reductive
algebraic k-groups and their Cartan projections.

2.1. Weyl chambers. Fix a connected reductive algebraic k-group G. The
derived group D(G) is semisimple, the identity component Z(G)◦ of the
center of G is a torus, which is trivial if G is semisimple, and G is the
almost product of D(G) and Z(G)◦. Recall that the k-split tori of G are
all conjugate over k. Fix such a torus A and let N (resp. Z) denote its
normalizer (resp. centralizer) in G. The groups X(A) of k-characters and
Y (A) of k-cocharacters of A are free Z-modules whose rank is by definition
the k-rank of G, and there is a perfect pairing

〈· , ·〉 : X(A)× Y (A) −→ Z

given by 〈χ, ψ〉 = χ ◦ ψ ∈ Hom(Gm,Gm) ' Z. This pairing extends to a
nondegenerate bilinear form 〈·, ·〉 : (X(A)⊗Z R)× (Y (A)⊗Z R)→ R.

Note that A is the almost product of (A∩D(G))◦ and (A∩Z(G))◦, hence
X(A)⊗ZR is the direct sum ofX((A∩D(G))◦)⊗ZR andX((A∩Z(G))◦)⊗ZR.
The set Φ = Φ(A,G) of restricted roots of A in G, i.e. the set of nontriv-
ial weights of A in the adjoint representation of G, is a root system of
X((A ∩D(G))◦) ⊗Z R. For α ∈ Φ, let α̌ be the corresponding coroot: by
definition, 〈α, α̌〉 = 2 and sα : x 7→ x − 〈x, α̌〉α is the unique reflection of
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X(A)⊗Z R such that sα(α) = −α and sα(Φ) = Φ. The group W = N/Z is
finite and identifies with the Weyl group of Φ, generated by the reflections sα.

Similarly, E = Y (A)⊗ZR is the direct sum of ED = Y ((A∩D(G))◦)⊗ZR
and EZ = Y ((A∩Z(G))◦)⊗Z R. The group W = N/Z acts trivially on EZ
and identifies with the Weyl group of the root system Φ̌ = {α̌, α ∈ Φ}
of ED, generated by the reflections sα̌ : y 7→ y − 〈α, y〉 α̌. We refer to [BoT]
and [Se1], Chap. V, for proofs and more detail.

If k is non-Archimedean, set A◦ = A; if k = R or C, set

A◦ =
{
a ∈ A , χ(a) ∈ ]0,+∞[ ∀χ ∈ X(A)

}
.

Choose a basis ∆ of Φ and let
A+ =

{
a ∈ A◦, |α(a)| ≥ 1 ∀α ∈ ∆

}(
resp. E+ =

{
y ∈ E, 〈α, y〉 ≥ 0 ∀α ∈ ∆

})
denote the corresponding closed positive Weyl chamber in A◦ (resp. in E).
The set E+ is a closed convex cone in the real vector space E. If k = R
or C, then E+ identifies with logA+ ⊂ a.

2.2. Cartan decompositions and Cartan projections. If k = R or C,
there is a maximal compact subgroupK of G such that the Cartan decompo-
sition G = KA+K holds: for any g ∈ G, there are elements kg, `g ∈ K and
a unique ag ∈ A+ such that g = kgag`g ([Hel], Chap. 9, Th. 1.1). Setting
µ(g) = log ag defines a map µ : G → E+ ' logA+, which is continuous,
proper, and surjective. It is called the Cartan projection with respect to the
Cartan decomposition G = KA+K.

If k is non-Archimedean, let Res : X(Z) → X(A) denote the restriction
homomorphism, where X(Z) is the group of k-characters of Z. There is a
unique group homomorphism ν : Z → E such that

〈Res(χ), ν(z)〉 = −ω(χ(z))

for all χ ∈ X(Z) and z ∈ Z. Let Z+ ⊂ Z denote the inverse image of E+

under ν. There is a maximal compact subgroup K of G such that the
Cartan decomposition G = KZ+K holds: for any g ∈ G, there are elements
kg, `g ∈ K and zg ∈ Z+ such that g = kgzg`g, and ν(zg) is uniquely defined.
Setting µ(g) = ν(zg) defines a map µ : G → E+, which is continuous and
proper, and whose image µ(G) is the intersection of E+ with a lattice of E. It
is called the Cartan projection with respect to the Cartan decompositionG =
KZ+K. For proofs and more detail we refer to the original articles [BT1]
and [BT2]; the reader may also find [Rou] a useful reference.

Note that for non-Archimedean k, the decomposition G = KA+K does
not hold in general. To unify notation, for k = R or C as well, we will denote
by Z+ the set of elements z ∈ Z such that |χ(z)| ≥ 1 for all χ ∈ X(Z)
satisfying |χ(a)| ≥ 1 for all a ∈ A+.

2.3. A geometric interpretation. If k = R or C, letX = G/K denote the
Riemannian symmetric space of G. If k is non-Archimedean, let X denote
the Bruhat–Tits building of G: it is a metric space on which G acts properly
by isometries with a compact fundamental domain (see [BT1] or [Rou]);
when rankk(G) = 1, it is a bipartite simplicial tree (see [Se2], § II.1, for G =
SL2(k)). In both cases (Archimedean or not), the group K is the stabilizer
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of some point x0 ∈ X, and there is a W -invariant Euclidean norm ‖ · ‖ on E
such that ‖µ(z)‖ = d(x0, z · x0) for all z ∈ Z, where d is the metric on X.
Since G acts on X by isometries and K fixes x0,

(2.1) ‖µ(g)‖ = d(x0, g · x0)

for all g ∈ G. In particular,

(2.2) ‖µ(gg′)‖ ≤ ‖µ(g)‖+ ‖µ(g′)‖
for all g, g′ ∈ G. In fact, the following stronger inequalities hold (see for
instance [Ka1], Lem. 2.3): for all g, g′ ∈ G,

(2.3)
{
‖µ(gg′)− µ(g′)‖ ≤ ‖µ(g)‖,
‖µ(gg′)− µ(g)‖ ≤ ‖µ(g′)‖.

The following observation will be useful in Section 5.1.

Remark 2.1. If µ′ : G→ E′+ is another Cartan projection, then there exist
a linear isomorphism i : E′ → E mapping E′+ to E+ and a constant C > 0
such that

‖i ◦ µ′(g)− µ(g)‖ ≤ C
for all g ∈ G.

Indeed, let µ′ : G→ E′+ be the Cartan projection associated with a Cartan
decomposition G = K ′A′+K ′ or G = K ′Z ′+K ′, where K ′ is a maximal com-
pact subgroup of G and A′ a maximal k-split torus of G with centralizer Z′.
By [BoT], Th. 4.21, we have A′ = g0Ag

−1
0 for some g0 ∈ G. The map

X(A′) → X(A) sending χ to χ(g0 · g−1
0 ) identifies the set Φ′ of restricted

roots of A′ in G with Φ; the inverse image of ∆ is the basis ∆′ of Φ′ defin-
ing A′+. The map Y (A′) → Y (A) sending ψ to g−1

0 ψg0 induces a linear
isomorphism i between E′ = Y (A′) ⊗Z R and E = Y (A) ⊗Z R, such that
i(E′+) = E+. By construction,

i ◦ µ′
(
k′(g0zg

−1
0 )`′

)
= i ◦ µ′(g0zg

−1
0 ) = µ(z)

for all k′, `′ ∈ K ′ and z ∈ Z. By (2.3), this implies

‖i ◦ µ′(g)− µ(g)‖ ≤ ‖µ(g0)‖+ ‖µ(g−1
0 )‖+ 2 max

k′∈K′
‖µ(k′)‖

for all g ∈ G.

2.4. Maximal parabolic subgroups. For α ∈ Φ, let Uα denote the cor-
responding unipotent subgroup of G, with Lie algebra uα = gα⊕ g2α, where

giα =
{
X ∈ g, Ad(a)(X) = α(a)iX ∀a ∈ A

}
for i = 1, 2. For any subset θ of ∆, let Pθ denote the corresponding standard
parabolic subgroup of G, with Lie algebra

pθ = z⊕
( ⊕
β∈Φ+

uβ

)
⊕
( ⊕
β∈N(∆rθ)∩Φ

u−β

)
,

where Φ+ ⊂ Φ is the set of positive roots and N(∆ r θ) the set of linear
combinations of elements of ∆ r θ with nonnegative integer coefficients.
Every parabolic k-subgroup P of G is conjugate over k to a unique standard
one. In particular, the maximal proper parabolic k-subgroups of G are the
conjugates of the groups Pα = P{α}, where α ∈ ∆.
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Fix α ∈ ∆. Since Pα is its own normalizer in G, the flag variety G/Pα

parametrizes the set of parabolic k-subgroups that are conjugate to Pα. It is
a projective variety, defined over k. Let N−α denote the unipotent subgroup
of G generated by the groups U−β for β ∈ (α+ N∆) ∩ Φ, with Lie algebra

n−α =
⊕

β∈(α+N∆)∩Φ

u−β.

The variety G/Pα is the disjoint union of its subvarieties N−αwPα, where
w ∈W ; the “big cell” N−αPα is the only one with codimension zero. We refer
to [BoT] for proofs and more detail.

2.5. Representations of G. For α ∈ ∆, let ωα ∈ X(A) denote the cor-
responding fundamental weight: by definition, 〈ωα, α̌〉 = 1 and 〈ωα, β̌〉 = 0
for all β ∈ ∆ r α. By [Tit], Th. 7.2, there is an irreducible k-representation
(ρα, Vα) of G whose highest weight χα is a positive multiple of ωα and
whose highest weight space x+

α is a line. The point x+
α ∈ P(Vα) is the unique

fixed point of Pα in P(Vα). The map from G/Pα to P(Vα) sending gPα

to ρα(g)(x+
α ) is a closed immersion. We denote the set of restricted weights

of (ρα, Vα) by Λα and, for every λ ∈ Λα, the weight space of λ by (Vα)λ.
If k = R (resp. if k = C), then the weight spaces are orthogonal with

respect to some K-invariant Euclidean (resp. Hermitian) norm ‖ · ‖α on Vα.
The corresponding operator norm ‖ · ‖α on End(Vα) satisfies

(2.4) ‖ρα(g)‖α = e〈χα,µ(g)〉

for all g ∈ G. If k is non-Archimedean, then there is a K-invariant ultra-
metric norm ‖ · ‖α on Vα such that∥∥∥∥ ∑

λ∈Λα

vλ

∥∥∥∥
α

= max
λ∈Λα

‖vλ‖α

for all (vλ) ∈
∏
λ∈Λα

(Vα)λ and such that the restriction of ρα(z) to (Vα)λ
is a dilation of factor q〈λ,ν(z)〉 for all z ∈ Z and all λ ∈ Λα ([Qui], Th. 6.1).
The corresponding operator norm ‖ · ‖α on End(Vα) satisfies

(2.5) ‖ρα(g)‖α = q〈χα,µ(g)〉

for all g ∈ G.

2.6. The example of GLn. Let G = GLn for some integer n ≥ 2. It
is the almost product of its derived group D(G) = SLn and of its center
Z(G), which is the group of invertible scalar matrices. The full group A of
invertible diagonal matrices is a maximal k-split torus of G, which is its own
centralizer, i.e. Z = A. The corresponding root system Φ is the set of linear
forms εi − εj , 1 ≤ i 6= j ≤ n, where

εi
(
diag(a1, . . . , an)

)
= ai.

The roots εi−εi+1, for 1 ≤ i ≤ n−1, form a basis ∆ of Φ. If k is Archimedean
(resp. non-Archimedean), the corresponding positive Weyl chamber is

A+ =
{

diag(a1, . . . , an) ∈ A, ai ∈ ]0,+∞[ ∀i and a1 ≥ . . . ≥ an
}(

resp. A+ =
{

diag(a1, . . . , an) ∈ A, |a1| ≥ . . . ≥ |an|
})
.
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Set K = O(n) (resp. K = U(n), resp. K = GLn(O)) if k = R (resp. if k = C,
resp. if k is non-Archimedean). The Cartan decomposition G = KA+K
holds. If k = R (resp. if k = C) it follows from the polar decomposition
in GLn(R) (resp. in GLn(C)) and from the reduction of symmetric (resp.
Hermitian) matrices. If k is non-Archimedean, it follows from the structure
theorem for finitely generated modules over a principal ideal domain. The
real vector space E = Rn, the subspaces

ED =
{

(y1, . . . , yn) ∈ E, y1 + . . .+ yn = 0
}

and EZ = R · (1, . . . , 1), and the closed convex cone

E+ =
{

(y1, . . . , yn) ∈ E, y1 ≥ . . . ≥ yn
}

do not depend on k. Let µ : G → E+ denote the Cartan projection with
respect to the Cartan decomposition G = KA+K. If k = R or C, then
µ(g) = (1

2 log ti)1≤i≤n where ti is the ith eigenvalue of tgg. If k is non-
Archimedean and if m is any integer such that πmg ∈ Mn(O), then µ(g) =
(ω(tm,i)−m)1≤i≤n where tm,i is the ith invariant factor of πmg.

Fix a simple root α = εi0 − εi0+1 ∈ ∆. The parabolic group Pα is defined
by the vanishing of the (i, j)-matrix entries for 1 ≤ j ≤ i0 < i ≤ n. The
flag variety G/Pα is the Grassmannian G(i0, n) of i0-dimensional subspaces
of the affine space An. The Lie algebra n−α is defined by the vanishing of
the (i, j)-matrix entries for 1 ≤ i ≤ i0 and for i0 + 1 ≤ i, j ≤ n. The
decomposition of G/Pα as a disjoint union of subvarieties N−αwPα, where
w ∈ W , is the decomposition of the Grassmannian G(i0, n) into Schubert
cells. The representation (ρα, Vα) is the natural representation of GLn in
the wedge product Λi0An. Its highest weight is the fundamental weight

ωα = ε1 + . . .+ εi0

associated with α. The embedding of the Grassmannian G(i0, n) into the
projective space P(Vα) = P(Λi0An) is the Plücker embedding.

3. Dynamics in projective spaces

In this section we look at the dynamics of certain endomorphisms of
k-vector spaces V in the corresponding projective spaces P(V ), where k
is a local field. In Section 3.1 we start by recalling the notion of proximal-
ity. We then consider products of the form z1k2z2 . . . knzn, where the zi are
proximal elements with a common attracting fixed point x+

0 ∈ P(V ) and a
common repelling hyperplane X−0 ⊂ P(V ), and the ki are isometries with
ki · x+

0 bounded away from X−0 . We estimate the norm of such a product
in terms of the norms of the zi. In Section 3.2 we consider a connected
reductive algebraic k-group G and apply the result of Section 3.1 to the
representations (Vα, ρα) introduced in Section 2.5. From (2.4) and (2.5) we
get an upper bound for |〈χα, µ(g1 . . . gn)−µ(g1)− . . .−µ(gn)〉| for elements
g1, . . . , gn ∈ G satisfying certain contractivity and transversality conditions.

3.1. Proximality in projective spaces and norm estimates. Let k
be a local field and V a finite-dimensional vector space over k. If k is
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non-Archimedean, we fix a basis (v1, . . . , vn) of V and endow V with the
norm ‖ · ‖V defined by ∥∥∥∥ ∑

1≤j≤n
tj vj

∥∥∥∥
V

= sup
1≤j≤n

|tj | ;

if k = R or C, we endow V with any norm ‖ ·‖V . We keep the notation ‖ ·‖V
for the corresponding operator norm on End(V ). We endow the projective
space P(V ) with the metric d defined by

d(x1, x2) = inf
{
‖v′1 − v′2‖V , v

′
i ∈ xi and ‖v′i‖V = 1 ∀i = 1, 2

}
.

Recall that an element g ∈ End(V )r{0} is called proximal if it has a unique
eigenvalue of maximal absolute value and if this eigenvalue has multiplicity 1.
(The eigenvalues of g belong to a finite extension kg of k and we consider
the unique extension to kg of the absolute value | · | on k.) If g is proximal,
then its maximal eigenvalue belongs to k; we denote by x+

g ∈ P(V ) the cor-
responding eigenline and by X−g the image in P(V ) of the unique g-invariant
complementary subspace of x+

g in V . Note that g acts on P(V ) by contract-
ing P(V ) rX−g towards x+

g . For ε > 0, we will say that g is ε-proximal if it
satisfies the two following additional conditions:

(1) d(x+
g , X

−
g ) ≥ 2ε,

(2) for any x ∈ P(V ), if d(x,X−g ) ≥ ε, then d(g · x, x+
g ) ≤ ε.

We will need the following lemma.

Lemma 3.1. Let X−0 be a projective hyperplane of P(V ), let x+
0 ∈ P(V )rX−0 ,

and let ε > 0 such that d(x+
0 , X

−
0 ) ≥ 2ε. There exists rε > 0 with the follow-

ing property: for any isometries k2, . . . , kn ∈ End(V ) with d(ki·x+
0 , X

−
0 ) ≥ 2ε,

and any ε-proximal endomorphisms z1, . . . , zn ∈ End(V ) such that
• x+

zi = x+
0 ,

• X−zi = X−0 ,
• the restriction of zi to the line x+

0 is a dilation of factor ‖zi‖V ,
we have

e−(n−1) rε ·
n∏
i=1

‖zi‖V ≤ ‖z1k2z2 . . . knzn‖V ≤
n∏
i=1

‖zi‖V .

Proof. The right-hand inequality follows from the submultiplicativity of the
operator norm ‖ · ‖V and from the fact that ki is an isometry of V for all i.
Let us prove the left-hand inequality. Let v0 ∈ V r{0} satisfy x+

0 = kv0 and
let V0 be the hyperplane of V such that X−0 = P(V0). Set

bε = {x ∈ P(V ), d(x, x+
0 ) ≤ ε}

and Bε = {x ∈ P(V ), d(x,X−0 ) ≥ ε}.
Note that the map sending v ∈ V to the element t ∈ k such that v ∈ tv0 +V0

is continuous and that the set of unitary vectors v ∈ V with kv ∈ Bε is
compact, hence there exists rε > 0 such that any v ∈ V r {0} with kv ∈ Bε
belongs to tv0 + V0 for some t ∈ k with

(3.1) e−
rε
2 ‖v‖ ≤ |t| ≤ e

rε
2 ‖v‖.
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For 1 ≤ j ≤ n, set
hj = zjkj+1zj+1 . . . knzn ∈ End(V ).

We claim that hj ·Bε ⊂ bε and

(3.2) ‖hj · v0‖V ≥ e−(n−j) rε ·
n∏
i=j

‖zi‖V

for all j. This follows from an easy descending induction on j. Indeed, for
all i we have ki ·bε ⊂ Bε since ki is an isometry of V and d(ki ·x+

0 , X
−
0 ) ≥ 2ε,

and zi ·Bε ⊂ bε since zi is ε-proximal with x+
zi = x+

0 and X−zi = X−0 . By (3.1),
we have kj+1hj+1 · v0 ∈ tjv0 + V0 for some tj ∈ k with

|tj | ≥ e−
rε
2 ‖kj+1hj+1 · v0‖V = e−

rε
2 ‖hj+1 · v0‖V .

Using the inductive assumption, we obtain

|tj | ≥ e−(n−j− 1
2

) rε ·
n∏

i=j+1

‖zi‖V .

By hypothesis, zj preserves V0 and induces on the line x+
0 a dilation of

factor ‖zj‖V , hence hj · v0 = zjkj+1hj+1 · v0 ∈ t′jv0 +V0 for some t′j ∈ k with

|t′j | = ‖zj‖V |tj | ≥ e−(n−j− 1
2

) rε ·
n∏
i=j

‖zi‖V .

Inequality (3.2) follows, using (3.1) again. �

3.2. Cartan projection along the fundamental weights. Lemma 3.1
implies the following result.

Proposition 3.2. Let k be a local field and G the set of k-points of a con-
nected reductive algebraic k-group G. Let G = KA+K or G = KZ+K be a
Cartan decomposition and µ : G→ E+ the corresponding Cartan projection.
Fix α ∈ ∆ and let Cα be a compact subset of N−α . There exist rα, Rα > 0
such that if g1, . . . , gn ∈ G satisfy 〈α, µ(gi)〉 ≥ Rα and gi = kgizgi`gi for
some kgi , `gi ∈ K and zgi ∈ Z+ with `gikgi+1 ∈ CαPα for all i, then∣∣∣∣〈χα, µ(g1 . . . gn)−

n∑
i=1

µ(gi)
〉∣∣∣∣ ≤ nrα.

We keep the notation of Section 2. In particular, given a simple root
α ∈ ∆, we denote by N−α (resp. by Pα) the unipotent (resp. parabolic)
subgroup of G introduced in Section 2.4, and by χα the highest weight of
the representation (Vα, ρα) introduced in Section 2.5. We endow Vα with a
norm ‖ · ‖α as in Section 2.5, and P(Vα) with a metric d as in Section 3.1.
Proposition 3.2 follows from Lemma 3.1, from (2.4) and (2.5), and from the
following lemma.

Lemma 3.3. Let x+
α ∈ P(Vα) be the highest weight line (Vα)χα and let X−α be

the image in P(Vα) of the sum of the weight spaces (Vα)λ for λ ∈ Λαr{χα}.
(1) Given ε > 0 with d(x+

α , X
−
α ) ≥ 2ε, there exists Rα > 0 such that for

any z ∈ Z+ with 〈α, µ(z)〉 ≥ Rα, the element ρα(z) is ε-proximal
in P(Vα) with x+

ρα(z) = x+
α and X−ρα(z) = X−α .
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(2) We have ρα(N−α )(x+
α ) ∩X−α = ∅.

Proof. (1) It is sufficient to see that every restricted weight of (ρα, Vα)
except χα belongs to χα−α−N∆. Consider the subgroup Wα of W
generated by the reflections sβ : x 7→ x − 〈x, β̌〉β for β ∈ ∆ r {α}.
It fixes χα since χα is a multiple of ωα and 〈ωα, β̌〉 = 0 for all
β ∈ ∆ r {α}. It is the Weyl group of the root subsystem of Φ
generated by ∆ r {α}, hence the “longest” element w of Wα ex-
changes N(∆ r {α}) and −N(∆ r {α}). Thus for every weight
λ ∈ χα − N(∆ r {α}) we have w · λ ∈ χα + N∆, which implies
that λ = χα.

(2) For n ∈ N−α , the identity element 1 ∈ G belongs to the closure of the
conjugacy class {znz−1, z ∈ Z}, hence x+

α belongs to the closure of
the orbit ρα(Zn)(x+

α ) in P(Vα). But X−α is closed in P(Vα), stable
under Z, and does not contain x+

α . �

Proof of Proposition 3.2. The point x+
α ∈ P(Vα) is fixed by Pα. Moreover,

ρα(N−α )(x+
α ) ∩X−α = ∅ by Lemma 3.3, hence there exists ε > 0 such that

d
(
ρα(CαPα)(x+

α ), X−α
)
≥ 2ε.

Let rε > 0 be given by Lemma 3.1 with respect to this ε and to (V,X−0 , x
+
0 ) =

(Vα, X
−
α , x

+
α ), and let rα = rε/ log q, where q = e if k is Archimedean and

q is the cardinal of the residue field of O otherwise. Let Rα > 0 be given
by Lemma 3.3. We claim that rα and Rα satisfy the conclusions of Proposi-
tion 3.2. Indeed, let g1, . . . , gn ∈ G satisfy 〈α, µ(gi)〉 ≥ Rα and gi = kgizgi`gi
for some kgi , `gi ∈ K and zgi ∈ Z+ with `gikgi+1 ∈ CαPα for all i. By
Lemma 3.3, the element ρα(zgi) is ε-proximal in P(Vα) with x+

ρα(zgi )
= x+

α

and X−ρα(zgi )
= X−α . Moreover, the restriction of ρα(zgi) to the line x+

α is a
dilation of factor ‖ρα(zgi)‖α. By Lemma 3.1,

q−nrα ·
n∏
i=1

‖ρα(zgi)‖α ≤ ‖ρα(g1 . . . gn)‖α ≤
n∏
i=1

‖ρα(zgi)‖α.

Using (2.4) and (2.5), we get〈
χα,

n∑
i=1

µ(gi)
〉
− nrα ≤ 〈χα, µ(g1 . . . gn)〉 ≤

〈
χα,

n∑
i=1

µ(gi)
〉
. �

4. Transverse products

In this section we explain how, under the assumptions of Theorem 1.4,
Proposition 3.2 applies to the elements γ ∈ Γ and their images ϕ(γ) under a
small deformation ϕ ∈ Hom(Γ, G). We use Guichard’s idea [Gui] of writing
every element γ ∈ Γ as a “transverse product” γ0 . . . γn of elements of a fixed
finite subset F of Γ. The terminology “transverse product” is explained in
Section 4.2.
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4.1. Transversality in L. Let k be a local field and L a connected reductive
algebraic k-group of k-rank 1. Fix a Cartan decomposition L = KLA

+
LKL

or L = KLZ
+
LKL, where KL is a maximal compact subgroup of L and AL

a maximal k-split torus of L, with centralizer ZL in L. Let µL : L → E+
L

denote the corresponding Cartan projection, where EL = Y (AL)⊗ZR. Since
L has k-rank 1, the vector space EL is a line, and any isomorphism from EL
to R gives a Cartan projection µRL : L→ R.

If L has semisimple k-rank 1, then µRL takes only nonnegative or only
nonpositive values. We denote by αL the indivisible positive restricted root
of AL in L, by PL = PαL the proper parabolic subgroup of L associated
with αL, and by N−L = U−αL the unipotent subgroup associated with −αL.

If L has semisimple k-rank 0, then AL is central in L, hence ZL = L.
In this case µRL is a group homomorphism from L to R, thus taking both
positive and negative values. We set PL = ZL = L and N−L = {1}.

For the reader’s convenience, we give a proof of the following result, which
is due to Guichard in the real semisimple case ([Gui], Lem. 7 & 9). We
consider the more general situation of a reductive algebraic group over a
local field.

Proposition 4.1 (Guichard). Let k be a local field, L the set of k-points of
a connected reductive algebraic k-group L of k-rank 1, and µRL : L → R a
Cartan projection. If k = R or C, let Γ be a convex cocompact subgroup of L;
if k is non-Archimedean, let Γ be any finitely generated discrete subgroup
of L. There exist D > 0 and a compact subset CL of N−L such that for
R ≥ 2D, any γ ∈ Γ may be written as γ = γ0 . . . γn for some γ0, . . . , γn ∈ Γ
satisfying the following conditions:

(1) |µRL(γ0)| ≤ R+D and R−D ≤ |µRL(γi)| ≤ R+D for all 1 ≤ i ≤ n,
(2) if γi = kγizγi`γi for some kγi , `γi ∈ KL and zγi ∈ Z+

L , then
`γikγi+1 ∈ CLPL for all 1 ≤ i ≤ n− 1,

(3) µRL(γ1), . . . , µRL(γn) all have the same sign as µRL(γ) if n ≥ 2.

To prove Proposition 4.1 we use the following lemma, which translates
Condition (2) in terms of µRL.

Lemma 4.2. Under the assumptions of Proposition 4.1, there exists D0 ≥ 0
with the following property: given any D ≥ D0, there is a compact subset CL
of N−L such that for k ∈ KL, if

|µRL(z1kz2)| ≥ |µRL(z1)|+ |µRL(z2)| −D
for some z1, z2 ∈ Z+

L with |µRL(z1)|, |µRL(z2)| ≥ D, then k ∈ CLPL.

Note that Lemma 4.2 is meaningful only when L has semisimple k-rank 1.
In this case, Proposition 3.2 implies some kind of converse to Lemma 4.2:
for any compact subset CL of N−L , there exists D ≥ 0 such that for all
k ∈ KL ∩ CLPL and all z1, z2 ∈ Z+,

|µRL(z1kz2)| ≥ |µRL(z1)|+ |µRL(z2)| −D.

Proof of Lemma 4.2. We may assume that L has semisimple k-rank 1. Then
L/PL is the disjoint union of N−L ·PL and {w ·PL}, where w denotes the non-
trivial element of the (restricted) Weyl group of L. It is therefore sufficient
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to prove the existence of a neighborhood U of w · PL in L/PL such that for
all k ∈ KL with k · PL ∈ U and all z1, z2 ∈ Z+

L with |µRL(z1)|, |µRL(z2)| ≥ D,

|µRL(z1kz2)| < |µRL(z1)|+ |µRL(z2)| −D.

Let XL denote either the Riemannian symmetric space or the Bruhat–Tits
tree of L, depending on whether k is Archimedean or not. Let x0 be
the point of XL whose stabilizer is KL. By (2.1), we may assume that
|µRL(g)| = d(x0, g · x0) for all g ∈ L, where d is the metric on XL. The
spaceXL is Gromov-hyperbolic and we may identify L/PL with the boundary
at infinity ∂XL of XL, i.e. with the set of equivalence classes [R] of geodesic
rays R : [0,+∞[→ XL for the equivalence relation “to stay at bounded dis-
tance”. The point PL ∈ L/PL (resp. w·PL ∈ L/PL) corresponds to the equiv-
alence class [R+] (resp. [R−]) of the geodesic ray R+ : [0,+∞[→ XL (resp.
R− : [0,+∞[→ XL) whose image is the convex hull of Z+

L · x0 (resp.
(w · Z+

L ) · x0). By the “shadow lemma” (see [Bou], Lem. 1.6.2, for instance),
there is a constant D0 > 0 such that the open sets

Ut =
{

[R] ∈ ∂XL, R(0) = x0 and d
(
R(t),R−(t)

)
< D0

}
,

for t ∈ [0,+∞[, form a basis of neighborhoods of [R−] in ∂XL. Fix D ≥ D0.
For all k ∈ KL and z1, z2 ∈ Z+

L with t1 := |µRL(z1)| ≥ D and t2 := |µRL(z2)| ≥ D,
we have

|µRL(z1kz2)| = d(x0, z1kz2 · x0)

= d(z−1
1 · x0, kz2 · x0)

= d
(
R−(t1), k · R+(t2)

)
≤ d

(
R−(t1),R−(D)

)
+ d
(
R−(D), k · R+(D)

)
+ d
(
k · R+(D), k · R+(t2)

)
= t1 −D + d

(
R−(D), k · R+(D)

)
+ t2 −D

= |µRL(z1)|+ |µRL(z2)| − 2D + d
(
R−(D), k · R+(D)

)
.

Therefore, if [k · R+] ∈ UD then |µRL(z1kz2)| < |µRL(z1)|+ |µRL(z2)| −D. This
completes the proof of Lemma 4.2. �

Proof of Proposition 4.1. As in the proof of Lemma 4.2, let XL denote either
the Riemannian symmetric space or the Bruhat–Tits tree of L, depending on
whether k is Archimedean or not. Let x0 be the point of XL whose stabilizer
is KL. By (2.1), we may assume that |µRL(g)| = d(x0, g · x0) for all g ∈ L,
where d is the metric on XL. We note that there exists a closed Γ-invariant
convex subset X ′L 6= ∅ of XL on which Γ acts cocompactly: indeed, if k = R
or C this is the convex cocompactness assumption; if k is non-Archimedean
it follows from [Bas], Prop. 7.9. Fix a compact fundamental domain D of X ′L
for the action of Γ and a point x′0 in the interior of D. Let dD be the diameter
of D and D0 the constant given by Lemma 4.2. Let

D = max
(
D0, 6 dD + 6 d(x0, x

′
0)
)
≥ D0

and let CL be the corresponding compact subset of N−L given by Lemma 4.2.
We claim that D and CL satisfy the conclusions of Proposition 4.1. Indeed,
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let R ≥ 2D. Fix γ ∈ Γ and let I be the geodesic segment of X ′L with
endpoints x′0 and γ−1 · x′0. Let n ∈ N such that

nR ≤ d(x′0, γ
−1 · x′0) < (n+ 1)R.

For all 1 ≤ i ≤ n, let x′i ∈ I satisfy d(x′i, x
′
0) = iR. We have x′i ∈ λi · D for

some λi ∈ Γ. Let γ0 = γλn ∈ Γ and γi = λ−1
n−i+1λn−i ∈ Γ for i ≥ 1 (where

λ0 = 1), so that γ = γ0 . . . γn. For all 1 ≤ i ≤ n,∣∣|µRL(γi)| − d(x′n−i, x
′
n−i+1)

∣∣ =
∣∣d(λn−i · x0, λn−i+1 · x0)− d(x′n−i, x

′
n−i+1)

∣∣
≤ d(λn−i · x0, λn−i · x′0) + d(λn−i · x′0, x′n−i)

+ d(x′n−i+1, λn−i+1 · x′0) + d(λn−i+1 · x′0, λn−i+1 · x0)

≤ 2 dD + 2 d(x0, x
′
0).

Since d(x′n−i, x
′
n−i+1) = R, we have

∣∣|µRL(γi)| −R
∣∣ ≤ 2 dD + 2 d(x0, x

′
0) ≤ D.

Similarly, ∣∣|µRL(γ0)| − d(x′n, γ
−1 · x′0)

∣∣ ≤ 2 dD + 2 d(x0, x
′
0),

hence |µRL(γ0)| ≤ R + 2 dD + 2 d(x0, x
′
0) ≤ R + D. For 1 ≤ i ≤ n − 1, the

same reasoning shows that

|µRL(γiγi+1)| ≥ d(xn−i−1, xn−i+1)− 2 dD − 2 d(x0, x
′
0)

= 2R− 2 dD − 2 d(x0, x
′
0)

≥ |µRL(γi)|+ |µRL(γi+1)| − 6 dD − 6 d(x0, x
′
0)

≥ |µRL(γi)|+ |µRL(γi+1)| −D.(4.1)

Choose Cartan decompositions γi = kγizγi`γi for all i, where kγi , `γi ∈ KL

and zγi ∈ Z+
L . By Lemma 4.2, we have `γikγi+1 ∈ CLPL for all 1 ≤ i ≤ n−1.

We claim that µRL(γ1), . . . , µRL(γn) ∈ R all have the same sign. Indeed, we
may assume that L has semisimple k-rank 0, in which case
µRL : L → R is a group homomorphism. If µRL(γi) and µRL(γi+1) had dif-
ferent signs for some 1 ≤ i ≤ n− 1, then (4.1) would imply that

min
(
|µRL(γi)|, |µRL(γi+1)|

)
≤ D

2
,

which would contradict the fact that

|µRL(γi)|, |µRL(γi+1)| ≥ R− 2 dD − 2 d(x0, x
′
0)

≥ D − 2 dD − 2 d(x0, x
′
0) >

D

2
.

Thus µRL(γ1), . . . , µRL(γn) all have the same sign. If n ≥ 2, then∣∣µRL(γ)− µRL(γ1 . . . γn)
∣∣ ≤ |µRL(γ0)|
≤ R+ 2 dD + 2 d(x0, x

′
0)

≤ n
(
R− 2 dD − 2 d(x0, x

′
0)
)

≤
n∑
i=1

|µRL(γi)| = |µRL(γ1 . . . γn)|,

hence the sign of µRL(γ1 . . . γn) is the same as that of µRL(γ), and so is that
of µRL(γ1), . . . , µRL(γn). �
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4.2. Interpretation in the boundary at infinity of XL. We now briefly
explain the terminology “transverse product”; this paragraph is not needed
in the rest of the paper. As before, let XL denote either the Riemannian
symmetric space or the Bruhat–Tits tree of L, depending on whether k is
Archimedean or not. Let x0 be the point of XL whose stabilizer is KL.
By (2.1), we may assume that |µRL(g)| = d(x0, g · x0) for all g ∈ L, where d
is the metric on XL. We endow the boundary at infinity ∂XL of XL with a
KL-invariant metric d∞. For any g ∈ L we write g = kgzg`g with kg, `g ∈ KL

and zg ∈ Z+
L .

Assume that L has semisimple k-rank 1. Then ∂XL naturally identifies
with L/PL = N−L · PL t {w · PL}, where w is the nontrivial element of the
Weyl group of L. Condition (2) of Proposition 4.1 expresses that for all
1 ≤ i ≤ n− 1 the distance between kγi+1 ·PL ∈ ∂XL and `−1

γi ·wPL ∈ ∂XL is
bounded away from 0. We now make the following observation (for a more
precise statement in the non-Archimedean case, see [Ka2], Lem. 3.2).

Lemma 4.3. For any ε > 0, there is a constant Rε > 0 such that all
hyperbolic elements g ∈ L with d(x0, g · x0) ≥ Rε satisfy

d∞(kg · PL, ζ+
g ) ≤ ε and d∞(`−1

g · wPL, ζ−g ) ≤ ε,

where ζ+
g (resp. ζ−g ) is the attracting (resp. repelling) fixed point of g in ∂XL.

Recall that an element g ∈ L is said to be hyperbolic if it has both an
attracting fixed point and a repelling fixed point in ∂XL; equivalently, g
preserves a geodesic line Ag in XL and acts on it by a nontrivial translation.

Proof. For t > 0, let xt ∈ XL be the point in the convex hull of Z+
L · x0 such

that d(x0, xt) = t, let

Ht = {x ∈ XL, d(x, xt) ≤ d(x, x0)},

and let Ht be the closure of Ht in the compactification XL = XLt∂XL. We
note that Ht′ ⊂ Ht for all t′ ≥ t > 0 and that

⋂
t>0 Ht = {PL}, hence for

any ε > 0 there is a constant Rε > 0 such that if t ≥ Rε, then d(ζ, PL) ≤ ε
for all ζ ∈ Ht ∩ ∂XL.

Let g ∈ L be a hyperbolic element. We first assume that g has a Cartan
decomposition of the form g = zg`g with zg ∈ Z+

L and `g ∈ KL. Then
g · x0 = xt, where t = d(x0, g · x0). We claim that ζ+

g ∈ Ht. Indeed, if y is
the orthogonal projection of x0 to Ag, then

d(y, xt) = d(y, g · x0) = d(g−1 · y, x0) > d(y, x0)

and
d(g · y, xt) = d(g · y, g · x0) = d(y, x0) < d(g · y, x0),

hence y ∈ Ag r Ht and g · y ∈ Ht ∩ Ag. This implies that Ht ∩ Ag is a
geodesic ray with endpoint ζ+

g at infinity, hence ζ+
g ∈ Ht. Therefore, for any

ε > 0, if t = d(x0, g ·x0) ≥ Rε, then d∞(ζ+
g , PL) ≤ ε. In the general case, we

write g = kgzg`g with kg, `g ∈ KL and zg ∈ Z+
L . Since d∞ is KL-invariant,

d∞(kg · PL, ζ+
g ) = d∞(PL, ζ

+
g′ ),
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where g′ = k−1
g gkg = zg(`gkg) ∈ Z+

LKL. As we have just seen, this distance
is ≤ ε whenever d(x0, g

′ · x0) = d(x0, g · x0) ≥ Rε. To obtain the second
inequality, we write the Cartan decomposition

g−1 = (`−1
g n)(n−1z−1

g n)(n−1k−1
g ),

where n ∈ KL is any element in the normalizer but not in the centralizer
of AL. Since n−1z−1

g n ∈ Z+
L , for any ε > 0 we have

d∞(`−1
g n · PL, ζ+

g−1) = d∞(`−1
g · wPL, ζ−g ) ≤ ε

whenever d(x0, g
−1 · x0) = d(x0, g · x0) ≥ Rε. �

Let Γ be a discrete subgroup of L as in Proposition 4.1, and assume that
it is torsion-free. Then all nontrivial elements of Γ are hyperbolic. With
the notation of Proposition 4.1, let ε = d∞(CL · PL, wPL)/3 > 0, and let
Rε be the corresponding constant given by Lemma 4.3. For R ≥ Rε + 2D,
Conditions (1) and (2) imply that

(4.2) d∞(ζ+
γi , ζ

−
γi+1

) ≥ ε

for all 1 ≤ i ≤ n− 1. In other words, “the attracting direction of γi in XL is
transverse to the repelling direction of γi+1”.

If L has semisimple k-rank 0, then XL is a line and Conditions (1) and (3)
imply that all elements γi, 1 ≤ i ≤ n, have a common attracting point and
a common repelling point in ∂XL; in particular, (4.2) is still satisfied for
ε = d∞(ζ, ζ ′) > 0, where ∂XL = {ζ, ζ ′}.

4.3. Transversality in G. Let k be a local field, G a connected reductive
algebraic k-group, and L a closed connected reductive subgroup of G of
k-rank 1. Fix a Cartan decomposition L = KLA

+
LKL or L = KLZ

+
LKL,

where KL is a maximal compact subgroup of L and AL a maximal k-split
torus of L, with centralizer ZL in L. We can find a maximal k-split torus A
of G containing AL, together with a maximal compact subgroup K of G
containing KL, such that G = KAK or G = KZK: this was proved by
Mostow [Mos] and Karpelevich [Kar] in the Archimedean case, and follows
from the work of Landvogt [Lan] in the non-Archimedean case. An appropri-
ate choice of a basis ∆ of the restricted root system Φ of A in G then defines
subsets A+ of A and Z+ of Z, as in Section 2.2, such that A+

L ∩A+ is non-
compact and G = KA+K or G = KZ+K. The following lemma provides a
link between Propositions 3.2 and 4.1. We use the notation of Sections 2.4
and 4.1.

Lemma 4.4. If the restriction of α ∈ ∆ to AL is nontrivial, then PL ⊂ Pα
and N−L ⊂ N−α Pα.
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Proof. Fix α ∈ ∆ whose restriction to AL is nontrivial, and let a ∈ A+
L ∩A+

be such that |α(a)| > 1. Note that g = n−α ⊕ pα and pα = p∅ ⊕ n−αc , where

n−α =
⊕

β∈(α+N∆)∩Φ

u−β,

p∅ = z⊕
⊕
β∈Φ+

uβ,

and n−αc =
⊕

β∈N(∆r{α})∩Φ

u−β

are all direct sums of eigenspaces of Ad(a), with eigenvalues of absolute
value < 1 on n−α and ≥ 1 on p∅. Since pL is a sum of eigenspaces of Ad(a) for
eigenvalues of absolute value ≥ 1, we have pL ⊂ pα. Given that PL and Pα

are connected, this implies that PL ⊂ Pα. Since n−L is a sum of eigenspaces
of Ad(a) for eigenvalues of absolute value < 1, we have n−L ⊂ n−α ⊕n−αc . Note
that [n−α , n

−
αc ] ⊂ n−α , hence N−α is normalized by the group N−αc generated by

the groups U−β for β ∈ N(∆ r {α}) ∩ Φ. This implies that

N−L ⊂ N−α N
−
αc ⊂ N−α Pα. �

5. Cartan projection and deformation

The goal of this section is to prove Theorem 1.4, from which we deduce
Theorems 1.1 and 1.3. Using Propositions 3.2 and 4.1, we establish the
following result.

Proposition 5.1. Let k be a local field, G the set of k-points of a connected
reductive algebraic k-group G, and L the set of k-points of a closed reductive
subgroup L of G of k-rank 1. Fix a Cartan projection µ : G → E+ and a
norm ‖·‖ on E. If k = R or C, let Γ be a convex cocompact subgroup of L; if
k is non-Archimedean, let Γ be any finitely generated discrete subgroup of L.
Then for any ε > 0, there exist a finite subset Fε of Γ and a neighborhood
Uε ⊂ Hom(Γ, G) of the natural inclusion such that any γ ∈ Γ may be written
as γ = γ0 . . . γn for some γ0, . . . , γn ∈ Fε with

(i) n ≤ ε ‖µ(γ)‖,
(ii) ‖µ(ϕ(γi))− µ(γi)‖ ≤ 1 for all ϕ ∈ Uε and 0 ≤ i ≤ n,
(iii) for all ϕ ∈ Uε,∥∥∥µ(ϕ(γ))−

n∑
i=0

µ(ϕ(γi))
∥∥∥ ≤ ε‖µ(γ)‖.

Let us briefly explain how Proposition 5.1 implies Theorem 1.4. Let ε > 0
and let Fε and Uε be given by Proposition 5.1. For any η > 0, the set

Uε,η =
{
ϕ ∈ Uε, ‖µ(ϕ(g))− µ(g)‖ ≤ η ∀g ∈ Fε

}
is a neighborhood of the natural inclusion in Hom(Γ, G). Conditions (i),
(ii), (iii) and the triangular inequality imply that

‖µ(ϕ(γ))− µ(γ)‖ ≤ 3ε‖µ(γ)‖+ η
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for all ϕ ∈ Uε,η and γ ∈ Γ. Since Γ is discrete in G and µ is a proper map,
the set Γ∩K of elements γ ∈ Γ such that µ(γ) = 0 is a finite subgroup of Γ
and

r := inf
{
‖µ(γ)‖, γ ∈ Γ and µ(γ) 6= 0

}
> 0.

Let η = εr. For all ϕ ∈ Uε,η and all γ ∈ Γ with µ(γ) 6= 0,

(5.1) ‖µ(ϕ(γ))− µ(γ)‖ ≤ 4ε‖µ(γ)‖.
If Γ is torsion-free, then Γ ∩ K = {1} and (5.1) holds for all γ ∈ Γ. This
implies Theorem 1.4.

Before we give the proof of Proposition 5.1 (in Section 5.3), let us first
introduce some notation and make preliminary remarks.

5.1. Norms on E and its subspaces. By (2.3), in order to prove Propo-
sition 5.1 we may assume that L is connected. Fix a Cartan decomposition
L = KLA

+
LKL or L = KLZ

+
LKL, with corresponding Cartan projection

µL : L → E+
L . As in Section 4.3, we can find a Cartan decomposition

G = KA+K or G = KZ+K such that KL ⊂ K and AL ⊂ A, with A+
L ∩A+

noncompact. By Remark 2.1, we may assume that µ : G→ E+ is the Cartan
projection associated with this Cartan decomposition of G. We now use the
notation of Section 2. Since all norms on E are equivalent, we may assume
that ‖ · ‖ is the W -invariant Euclidean norm introduced in Section 2.3.

We naturally see EL as a line in E. If L has semisimple k-rank 1, then
E+
L is a half-line in E+; we set L+ = L. If L has semisimple k-rank 0, then

E+
L = EL is a line in E; we choose a half-line E++

L in E+
L ∩ E+ and set

L+ = {g ∈ L, µL(g) ∈ E++
L }. By composing µL with some isomorphism

from EL to R, we get a Cartan projection µRL : L→ R such that

µRL(g) = ‖µ(g)‖ ≥ 0

for all g ∈ L+. We note that for all g ∈ LrL+ we have g−1 ∈ L+. Moreover,
the opposition involution ι : µ(G) → µ(G), which maps µ(g) to µ(g−1) for
all g ∈ G, is an isometry with respect to ‖ · ‖; indeed, ι(µ(g)) = w · (−µ(g))
where w is the “longest” element of the Weyl group W . Therefore we only
need to prove Proposition 5.1 for elements γ ∈ Γ that belong to L+.

For any subspace E′ of E we define a seminorm | · |E′ on E by

|y|E′ = ‖ prE′(y)‖,
where prE′ : E → E′ is the orthogonal projection onto E′. We will use the
three seminorms | · |E∆L

, | · |EZ , and | · |E∆L
⊕EZ , where EZ is the subspace

of E introduced in Section 2.1 and E∆L
the subspace defined as follows. For

every α ∈ ∆ there is a constant tα ≥ 0 such that

(5.2) 〈α, µ(g)〉 = tα µ
R
L(g)

for all g ∈ L+. We let ∆L = {α ∈ ∆, tα > 0} denote the set of simple roots
of A in G whose restriction to AL is nontrivial and define

E∆L
=
{
y ∈ ED, 〈β, y〉 = 0 ∀β ∈ ∆ r ∆L

}
.

Note that EL ⊂ E∆L
⊕EZ . We also observe that E∆L

and EZ are orthogonal
with respect to the Euclidean norm ‖ · ‖. Indeed, ‖ · ‖ is W -invariant, the
group W is generated by the reflections sα̌, and for all α ∈ Φ we have
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sα̌(α̌) = −α̌ and sα̌(y) = y for all y ∈ EZ , hence EZ is orthogonal to
ED =

⊕
α∈∆ Rα̌. Therefore

(5.3) |y|2E∆L
⊕EZ = |y|2E∆L

+ |y|2EZ
for all y ∈ E.

For α ∈ ∆, let χα denote the highest weight of the representation (ρα, Vα)
of G introduced in Section 2.5. Recall that 〈χα, α̌〉 6= 0 and 〈χα, β̌〉 = 0 for
all β ∈ ∆ r {α}.

Remark 5.2. The set {〈χα, ·〉, α ∈ ∆L} is a basis of the dual of E∆L
.

Indeed, since dimE∆L
= #∆L, it is sufficient to see that the elements 〈χα, ·〉,

for α ∈ ∆L, are linearly independent as linear forms on E∆L
. By definition

of E∆L
, it is sufficient to see that

(5.4) span{χα, α ∈ ∆L} ∩ span(∆ r ∆L) = {0}.
Let (·, ·) be any W -invariant scalar product on X(A) ⊗Z R. For all β ∈ ∆
and x ∈ X(A)⊗Z R,

sβ(x) = x− 〈x, β̌〉β = x− 2(x, β)

(β, β)
β,

hence (χα, β) = (β,β)
2 · 〈χα, β̌〉 = 0 for all α 6= β in ∆, which implies (5.4).

By Remark 5.2, the function y 7−→
∑

α∈∆L
|〈χα, y〉| is a norm on E∆L

.
Since all norms on E∆L

are equivalent, there is a constant c ≥ 1 such that

(5.5) c−1 ·
∑
α∈∆L

|〈χα, y〉| ≤ |y|E∆L
≤ c ·

∑
α∈∆L

|〈χα, y〉|

for all y ∈ E.

5.2. Norm of the projection onto E∆L
. The main step in the proof of

Proposition 5.1 consists of the following proposition, which gives an upper
bound for the seminorm | · |E∆L

.

Proposition 5.3. Under the assumptions of Proposition 5.1, for any δ > 0
there exist a finite subset F ′δ of Γ and a neighborhood U ′δ ⊂ Hom(Γ, G) of the
natural inclusion such that any γ ∈ Γ ∩ L+ may be written as γ = γ0 . . . γn
for some γ0, . . . , γn ∈ F ′δ with

(1) n ≤ δ
∑n

i=1 ‖µ(γi)‖,
(2)

∑n
i=1 ‖µ(γi)‖ = ‖

∑n
i=1 µ(γi)‖,

(3) ‖µ(ϕ(γi))− µ(γi)‖ ≤ 1 for all ϕ ∈ U ′δ and 0 ≤ i ≤ n,
(4) for all ϕ ∈ U ′δ,∣∣∣µ(ϕ(γ1 . . . γn))−

n∑
i=1

µ(ϕ(γi))
∣∣∣
E∆L

≤ δ
( n∑
i=1

‖µ(γi)‖
)
.

To prove Proposition 5.3, we use Propositions 3.2 and 4.1, together with
Lemma 4.4.

Proof. Let D > 0 be the constant and CL the compact subset of N−L given
by Proposition 4.1. By Lemma 4.4, for any α ∈ ∆L, the set CL is contained
in Int(Cα)Pα for some compact subset Cα of N−α , where Int(Cα) denotes the
interior of Cα. After replacing Cα by some larger compact subset of N−α , we
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may assume that it is preserved under conjugation by K∩Z. Let rα, Rα > 0
be the constants given by Proposition 3.2 with respect to Cα. Fix δ > 0 and
choose R ≥ 2D large enough so that 1

R−D ≤ δ and tα(R−D)− 1 ≥ Rα for
all α ∈ ∆L, where tα is defined by (5.2). Let F ′δ be the set of elements γ ∈ Γ

such that |µRL(γ)| ≤ R+D, and F ′′δ the subset of elements γ ∈ F ′δ such that
|µRL(γ)| ≥ R − D. Note that F ′δ et F ′′δ are finite since µRL is a proper map
and Γ is discrete in L. For every γ ∈ F ′δ we choose a Cartan decomposition
γ = kγzγ`γ , where kγ , `γ ∈ KL and zγ ∈ Z+

L . Let U ′δ be the set of elements
ϕ ∈ Hom(Γ, G) satisfying the following two conditions:

• ‖µ(ϕ(γ)) − µ(γ)‖ ≤ 1 and |〈α, µ(ϕ(γ)) − µ(γ)〉| ≤ 1 for all γ ∈ F ′δ
and all α ∈ ∆L,
• for every γ ∈ F ′′δ we can write ϕ(γ) = kϕ(γ)zϕ(γ)`ϕ(γ) for some kϕ(γ),
`ϕ(γ) ∈ K and zϕ(γ) ∈ Z+ so that `ϕ(γ)kϕ(γ′) ∈ CαPα for all γ, γ′ ∈ F ′′δ
with `γkγ′ ∈ CLPL and all α ∈ ∆L.

We note that U ′δ is a neighborhood of the natural inclusion in Hom(Γ, G).
Indeed, if k = R or C, this follows from the fact that if g = kgag`g = k′gag`

′
g

with kg, `g, k′g, `′g ∈ K and ag ∈ A+, then k′g ∈ kg(K∩Z) and `′g ∈ (K∩Z)`g
([Hel], Chap. 9, Cor. 1.2). If k is non-Archimedean, it follows from the fact
that K is a neighborhood of 1 in G, which implies that if g = kgzg`g, where
kg, `g ∈ K and zg ∈ Z+, then any g′ ∈ G sufficiently close to g belongs to
gK and Kg and admits the Cartan decompositions g′ = kgzg(`gg

−1g′) and
g′ = (g′g−1kg)zg`g.

We claim that F ′δ and U ′δ satisfy the conclusions of Proposition 5.3. Indeed,
let γ ∈ Γ ∩ L+. By Proposition 4.1, we may write γ = γ0 . . . γn for some
γ0 ∈ F ′δ and γ1, . . . , γn ∈ F ′′δ such that

• `γikγi+1 ∈ CLPL for all 1 ≤ i ≤ n− 1,
• µRL(γ1), . . . , µRL(γn) are all ≥ 0 if n ≥ 2.

This last condition implies that µ(γ1), . . . , µ(γn) all belong to the same half-
line in E+, hence Condition (2) is satisfied. Moreover, since γ1, . . . , γn ∈ F ′′δ ,
we have

n ≤ 1

R−D

n∑
i=1

|µRL(γi)| ≤ δ
n∑
i=1

‖µ(γi)‖,

i.e. Condition (1) is satisfied. To prove Condition (4), we may assume that
n ≥ 2. Let ϕ ∈ U ′δ. According to (5.5), in order to prove Condition (4) it is
sufficient to bound ∣∣∣∣〈χα, µ(ϕ(γ1 . . . γn))−

n∑
i=1

µ(ϕ(γi))
〉∣∣∣∣

for all α ∈ ∆L. Since n ≥ 2, we have µRL(γi) ≥ 0 for all 1 ≤ i ≤ n, i.e.
γi ∈ L+. By definition of U ′δ and tα we obtain

〈α, µ(ϕ(γi))〉 ≥ 〈α, µ(γi)〉 − 1

≥ tα µ
R
L(γi)− 1

≥ tα(R−D)− 1 ≥ Rα

for all α ∈ ∆L. Moreover, by definition of U ′δ we can write ϕ(γi) = kϕ(γi)zϕ(γi)`ϕ(γi)

for some kϕ(γi), `ϕ(γi) ∈ K and zϕ(γi) ∈ Z+ so that `ϕ(γi)kϕ(γi+1) ∈ CαPα for
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all 1 ≤ i ≤ n− 1. Proposition 3.2 thus implies that∣∣∣∣〈χα, µ(ϕ(γ1 . . . γn))−
n∑
i=1

µ(ϕ(γi))
〉∣∣∣∣ ≤ nrα

≤ rα
R−D

n∑
i=1

‖µ(γi)‖.

By (5.5), this implies Condition (4) whenever∑
α∈∆L

c rα
R−D

≤ δ ,

which holds for R large enough. �

5.3. Proof of Proposition 5.1. Proposition 5.1 follows from Proposition 5.3
and from the following general observation.

Lemma 5.4. Let (E, ‖ · ‖) be a Euclidean space and E′ a subspace of E.
For any y ∈ E, let |y|E′ = ‖prE′(y)‖, where prE′ : E → E′ is the orthogonal
projection onto E′. For any ε > 0, there exists δ > 0 such that for any
y, y′ ∈ E satisfying

• y′ ∈ E′,
• |y − y′|E′ ≤ 2δ ‖y′‖,
• ‖y‖ ≤ (1 + δ) ‖y′‖,

we have ‖y − y′‖ ≤ ε
8 ‖y

′‖.

Proof. By the Cauchy–Schwarz inequality, |y − y′|E′ ≤ 2δ ‖y′‖ implies
〈y, y′〉 ≥ (1 − 2δ) ‖y′‖2, where 〈·, ·〉 denotes the scalar product associated
with ‖ · ‖. Therefore, we only need to observe that for y′1 ∈ E with ‖y′1‖ = 1,
the diameter of the set{

y1 ∈ E, 1− 2δ ≤ 〈y1, y
′
1〉 ≤ ‖y1‖ ≤ 1 + δ

}
tends to 0 with δ, independently of y′1. �

Proof of Proposition 5.1. Fix ε ∈]0, 1]. Let δ ∈]0, ε8 ] satisfy the conclusions
of Lemma 5.4, let F ′δ and U ′δ be given by Proposition 5.3, and let

C ′δ = max
g∈F ′δ
‖µ(g)‖+ 1.

We claim that we may take

Fε = F ′δ ∪ F ′
−1
δ ∪

{
g ∈ Γ, ‖µ(g)‖ <

6C ′δ
ε

}
and

Uε =
{
ϕ ∈ U ′δ, ‖µ(ϕ(g))− µ(g)‖ ≤ 1 ∀g ∈ Fε

}
.

Indeed, let us prove that any γ ∈ Γ may be written as γ = γ0 . . . γn for
some γ0, . . . , γn ∈ Fε satisfying Conditions (i), (ii), (iii) of Proposition 5.1.
We first note that we may restrict to elements γ such that ‖µ(γ)‖ ≥ 6C′δ

ε .
Furthermore, as we already noticed in Section 5.1, since g−1 ∈ L+ for all
g ∈ LrL+ and since the opposition involution is an isometry, we may restrict
to elements γ that belong to L+. Let γ ∈ Γ ∩ L+ such that ‖µ(γ)‖ ≥ 6C′δ

ε .
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By Proposition 5.3, we may write γ = γ0 . . . γn for some γ0, . . . , γn ∈ F ′δ such
that

(1) n ≤ δ
∑n

i=1 ‖µ(γi)‖,
(2)

∑n
i=1 ‖µ(γi)‖ = ‖

∑n
i=1 µ(γi)‖,

(3) ‖µ(ϕ(γi))− µ(γi)‖ ≤ 1 for all ϕ ∈ U ′δ and 0 ≤ i ≤ n,
(4) for all ϕ ∈ U ′δ,∣∣∣µ(ϕ(γ1 . . . γn))−

n∑
i=1

µ(ϕ(γi))
∣∣∣
E∆L

≤ δ
( n∑
i=1

‖µ(γi)‖
)
.

We note that

prEZ (µ(gg′)) = prEZ (µ(g)) + prEZ (µ(g′))

for all g, g′ ∈ G, hence∣∣∣µ(ϕ(γ1 . . . γn))−
n∑
i=1

µ(ϕ(γi))
∣∣∣
EZ

= 0.

By (5.3), Condition (4) remains true after replacing | · |E∆L
by | · |E∆L

⊕EZ .
Now Conditions (1), (2), (3), and (4), together with (2.2) and the triangular
inequality, imply that for all ϕ ∈ U ′δ,∣∣∣µ(ϕ(γ1 . . . γn))−

n∑
i=1

µ(γi)
∣∣∣
E∆L

⊕EZ

≤
∣∣∣µ(ϕ(γ1 . . . γn))−

n∑
i=1

µ(ϕ(γi))
∣∣∣
E∆L

⊕EZ
+

n∑
i=1

‖µ(ϕ(γi))− µ(γi)‖

≤ 2δ
( n∑
i=1

‖µ(γi)‖
)

= 2δ
∥∥∥ n∑
i=1

µ(γi)
∥∥∥

and

‖µ(ϕ(γ1 . . . γn))‖ ≤
n∑
i=1

‖µ(ϕ(γi))‖

≤
n∑
i=1

‖µ(γi)‖+

n∑
i=1

‖µ(ϕ(γi))− µ(γi)‖

≤ (1 + δ)
( n∑
i=1

‖µ(γi)‖
)

= (1 + δ)
∥∥∥ n∑
i=1

µ(γi)
∥∥∥.

Therefore, for ϕ ∈ U ′δ, Lemma 5.4 applies to

(E′, y, y′) =
(
E∆L

⊕ EZ , µ
(
ϕ(γ1 . . . γn)

)
,

n∑
i=1

µ(γi)
)
,

yielding

(5.6)
∥∥∥µ(ϕ(γ1 . . . γn))−

n∑
i=1

µ(γi)
∥∥∥ ≤ ε

8

∥∥∥ n∑
i=1

µ(γi)
∥∥∥
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for all ϕ ∈ U ′δ. Moreover, Conditions (1), (2), (3), together with the trian-
gular inequality, imply that∥∥∥( n∑

i=1

µ(ϕ(γi))
)
−
( n∑
i=1

µ(γi)
)∥∥∥ ≤ δ

( n∑
i=1

‖µ(γi)‖
)
≤ ε

8

∥∥∥ n∑
i=1

µ(γi)
∥∥∥,

hence ∥∥∥µ(ϕ(γ1 . . . γn))−
n∑
i=1

µ(ϕ(γi))
∥∥∥ ≤ ε

4

∥∥∥ n∑
i=1

µ(γi)
∥∥∥

for all ϕ ∈ U ′δ. Since∥∥µ(ϕ(γ))− µ(ϕ(γ1 . . . γn))
∥∥ ≤ ‖µ(ϕ(γ0))‖ ≤ ‖µ(γ0)‖+ 1 ≤ C ′δ,

the triangular inequality yields∥∥∥µ(ϕ(γ))−
n∑
i=1

µ(ϕ(γi))
∥∥∥ ≤ ε

4

∥∥∥ n∑
i=1

µ(γi)
∥∥∥+ C ′δ.

In particular, taking ϕ to be the natural inclusion of Γ in G, we obtain

(5.7)
∥∥∥ n∑
i=1

µ(γi)
∥∥∥ ≤ 1

1− ε
4

(
‖µ(γ)‖+ C ′δ

)
≤ 2

(
‖µ(γ)‖+ C ′δ

)
,

hence ∥∥∥µ(ϕ(γ))−
n∑
i=0

µ(ϕ(γi))
∥∥∥ ≤ ε

2
‖µ(γ)‖+ 3C ′δ ≤ ε ‖µ(γ)‖

for all ϕ ∈ U ′δ, where we use the fact that ‖µ(γ)‖ ≥ 6C′δ
ε . Finally, Conditions

(1) and (2), together with (5.7), imply that

n ≤ 2δ
(
‖µ(γ)‖+ C ′δ

)
≤ ε ‖µ(γ)‖,

where we use the fact that ‖µ(γ)‖ ≥ 6C′δ
ε and δ ≤ ε

4 ≤ 1. This completes the
proof of the claim, hence of Proposition 5.1. �

5.4. Properness and deformation. Let us now briefly explain how to
deduce Theorems 1.1 and 1.3 from Theorem 1.4.

Theorem 1.3 follows from Theorem 1.4 and from the properness criterion
of Benoist ([Ben], Cor. 5.2) and Kobayashi ([Ko2], Th. 1.1). Under the
assumptions of Theorem 1.3, this criterion states that a closed subgroup Γ
of G acts properly on G/H if and only if the set µ(Γ)∩(µ(H)+C) is bounded
for any compact subset C of E. This condition means that the set µ(Γ) “goes
away from µ(H) at infinity”.

Proof of Theorem 1.3. We may assume that G, H, and L are all connected.
Let G = KA+K or G = KZ+K be a Cartan decomposition of G, and let
µ : G → E+ be the corresponding Cartan projection. Endow E with a
W -invariant norm ‖ · ‖ as in Section 2.3. We claim that µ(L) is at finite
Hausdorff distance from a union UL of two half-lines in E+. Indeed, let
L = KLA

+
LKL or L = KLZ

+
LKL be a Cartan decomposition of L, with

corresponding Cartan projection µL : L → E+
L . As in Section 4.3, we can

find a Cartan decomposition G = K ′A′+K ′ or G = K ′Z ′+K ′ of G such that
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KL ⊂ K ′ and AL ⊂ A′. If µ′ : G→ E′+ denotes the corresponding Cartan
projection, then EL is naturally seen as a line in E′ and

µ′(g) = E′
+ ∩ (W ′ · µ′L(g))

for all g ∈ L, where W ′ is the Weyl group of the restricted root system
of A′ in G; therefore µ′(L) is contained in the union of two half-lines in E′+.
By Remark 2.1, µ(L) is at finite Hausdorff distance from a union UL of
two half-lines in E+. Similarly, µ(H) is at finite Hausdorff distance from a
finite union UH of subspaces of E intersected with E+. By the properness
criterion, UL ∩ UH = {0}, hence there are constants ε, C > 0 such that

d(µ(g), µ(H)) ≥ 2ε ‖µ(g)‖ − C

for all g ∈ L. By Theorem 1.4, there is a neighborhood Uε ⊂ Hom(Γ, G) of
the natural inclusion such that

‖µ(ϕ(γ))− µ(γ)‖ ≤ ε ‖µ(γ)‖

for all ϕ ∈ Uε and γ ∈ Γ. Fix ϕ ∈ Uε. For all γ ∈ Γ,

d(µ(ϕ(γ)), µ(H)) ≥ d(µ(γ), µ(H))− ‖µ(ϕ(γ))− µ(γ)‖
≥ ε ‖µ(γ)‖ − C.

Therefore, using the fact that Γ is discrete in G and µ is a proper map, we
obtain that µ(ϕ(Γ)) ∩ (µ(H) + C) is finite for any compact subset C of E.
By the properness criterion, this implies that ϕ(Γ) acts properly on G/H.
It also implies that ϕ(Γ) is discrete in G and that the kernel of ϕ is finite.
Since Γ is torsion-free, ϕ is injective. �

Proof of Theorem 1.1. We may assume that G, H, and L are connected.
By results of Chevalley ([Che], Chap. 2, Th. 14 & 15), G is the identity
component (for the real topology) of the set of R-points of some connected
reductive algebraic R-group G and H (resp. L) is the identity component of
the set of R-points of some closed connected reductive subgroup H (resp. L)
of G. By Theorem 1.3, there is a neighborhood U ⊂ Hom(Γ, G) of the
natural inclusion such that if ϕ ∈ U , then ϕ is injective, ϕ(Γ) is discrete
in G, and ϕ(Γ) acts properly discontinuously on G/H. Since ϕ is injective,
ϕ(Γ) has the same cohomological dimension as Γ. We conclude by using
the following fact, due to Kobayashi ([Ko1], Cor. 5.5): when a torsion-free
discrete subgroup of G acts properly discontinuously on G/H, it acts cocom-
pactly on G/H if and only if its cohomological dimension is d(G) − d(H),
where d(G) (resp. d(H)) denotes the dimension of the Riemannian symmet-
ric space of G (resp. of H). (We define Riemannian symmetric spaces as in
Section 2.3.) �

6. Application to the compact quotients of SO(2n, 2)/U(n, 1)

Fix an integer n ≥ 1. Note that U(n, 1) naturally embeds into SO(2n, 2)
by identifying the Hermitian form |z1|2 + . . .+ |zn|2 − |zn+1|2 on Cn+1 with
the quadratic form x2

1 + . . . + x2
2n − x2

2n+1 − x2
2n+2 on R2n+2. As Kulkarni

[Kul] pointed out, the group U(n, 1), seen as a subgroup of SO(2n, 2), acts
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transitively on the anti-de Sitter space

AdS2n+1 =
{

(x1, . . . , x2n+2) ∈ R2n+2, x2
1 + . . .+ x2

2n − x2
2n+1 − x2

2n+2 = −1
}

' SO(2n, 2)/SO(2n, 1).

The stabilizer of (0, . . . , 0, 1) is the compact subgroup U(n), hence AdS2n+1

identifies with U(n, 1)/U(n) and the action of U(n, 1) on SO(2n, 2)/SO(2n, 1)
is proper. By duality, the action of SO(2n, 1) on SO(2n, 2)/U(n, 1) is proper
and transitive. In particular, any torsion-free uniform lattice Γ of SO(2n, 1)
provides a standard compact quotient Γ\SO(2n, 2)/U(n, 1) of SO(2n, 2)/U(n, 1).

Corollary 1.2 follows from Theorem 1.1 and from the existence of small
Zariski-dense deformations of certain uniform lattices of SO(m, 1) into
SO(m, 2). For m = 2, such deformations can be obtained by making the
following observation: the identity component SO(2, 2)◦ of SO(2, 2) (for the
real topology) admits a two-fold covering by SL2(R) × SL2(R) (induced by
the action of SL2(R)× SL2(R) on M2(R) ' R4 by left and right multiplica-
tion, which preserves the determinant) and the preimage of SO(1, 2)◦ is the
diagonal of SL2(R)× SL2(R). Therefore it is sufficient to prove that for any
uniform lattice Γ0 of SL2(R) and any neighborhood U ⊂ Hom(Γ0,SL2(R))
of the natural inclusion, there is an element ϕ ∈ U such that the group
Γϕ0 = {(γ, ϕ(γ)), γ ∈ Γ0} is Zariski-dense in SL2(R)×SL2(R). This is a con-
sequence of the following remark, which easily follows from the simplicity of
PSL2(R) and from Goursat’s lemma, applied to the Zariski closure of Γϕ0 .

Remark 6.1. Any subgroup of PSL2(R) × PSL2(R) whose projection to
each factor of PSL2(R) × PSL2(R) is surjective is either conjugate to the
diagonal of PSL2(R)× PSL2(R) or equal to PSL2(R)× PSL2(R).

For m ≥ 3, small Zariski-dense deformations of certain uniform lattices
of SO(m, 1) into SO(m, 2) can be obtained by a bending construction due to
Johnson and Millson. This construction was originally introduced in [JM] for
deformations into SO(m+1, 1) or PGLm+1(R). For the reader’s convenience,
we shall describe it for deformations into SO(m, 2), and check Zariski density
in this case.

From now on we use Gothic letters to denote the Lie algebras of real Lie
groups (e.g. g for G).

6.1. Uniform arithmetic lattices of SO(m, 1). Fix m ≥ 3. The uniform
lattices of SO(m, 1) considered by Johnson and Millson are obtained in the
following classical way. Fix a square-free integer r ≥ 2 and identify SO(m, 1)
with the special orthogonal group of the quadratic form

x2
1 + . . .+ x2

m −
√
rx2

m+1

on Rm+1. Let Or denote the ring of integers of the quadratic field Q(
√
r).

The group Γ = SO(m, 1) ∩ Mm+1(Or) is a uniform lattice in SO(m, 1)
(see [Bo1] for instance). For any ideal I of Or, the congruence subgroup
Γ∩(1+Mm+1(I)) has finite index in Γ, hence is a uniform lattice in SO(m, 1).
By [MR], after replacing Γ by such a congruence subgroup, we may assume
that it is torsion-free. Then M = Γ\Hm is a m-dimensional compact hyper-
bolic manifold whose fundamental group identifies with Γ. By [JM], Lem. 7.1
& Th. 7.2, after possibly replacing Γ again by some congruence subgroup, we
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may assume that N = Γ0\Hm−1 is a connected, orientable, totally geodesic
hypersurface of M , where

Γ0 = Γ ∩ SO(m− 1, 1)

and where

Hm−1 '
{

(x2, . . . , xm+1) ∈ Rm, x2
2+. . .+x2

m−
√
rx2

m+1 = −1 and xm+1 > 0
}

is embedded in

Hm '
{

(x1, . . . , xm+1) ∈ Rm+1, x2
1+. . .+x2

m−
√
rx2

m+1 = −1 and xm+1 > 0
}

in the natural way. We now embed SO(m, 1) into SO(m, 2). Since the cen-
tralizer of Γ0 in SO(m, 2) contains a subgroup isomorphic to SO(1, 1) ' R∗,
the idea of the bending construction is to deform Γ “along this centralizer”,
as we shall now explain.

6.2. Deformations in the separating case. Assume that N separatesM
into two components M1 and M2, and let Γ1 (resp. Γ2) denote the funda-
mental group of M1 (resp. of M2). By van Kampen’s theorem, Γ is the
amalgamated product Γ1 ∗Γ0 Γ2. Fix an element Y ∈ so(m, 2) r so(m, 1)
that belongs to the Lie algebra of the centralizer of Γ0 in SO(m, 2). Follow-
ing Johnson and Millson, we consider the deformations of Γ in SO(m, 2) that
are given, for t ∈ R, by

ϕt(γ) =

{
γ for γ ∈ Γ1,

etY γe−tY for γ ∈ Γ2.

Note that ϕt : Γ → SO(m, 2) is well-defined since etY centralizes Γ0. We
now check Zariski density.

Lemma 6.2. For t 6= 0 small enough, ϕt(Γ) is Zariski-dense in SO(m, 2).

We need the following remark.

Remark 6.3. For m ≥ 3, the only Lie subalgebra of so(m, 2) that strictly
contains so(m, 1) is so(m, 2).

Indeed, so(m, 2) decomposes uniquely into a direct sum so(m, 1) ⊕ Rm+1

of irreducible SO(m, 1)-modules, where SO(m, 1) acts on so(m, 1) (resp.
on Rm+1) by the adjoint (resp. natural) action.

Proof of Lemma 6.2. Since SO(m, 2) is Zariski-connected, it is sufficient to
prove that for t 6= 0 small enough, the Zariski closure ϕt(Γ) of ϕt(Γ) in
SO(m, 2) has Lie algebra so(m, 2).

By [JM], Lem. 5.9, the groups Γ1 and Γ2 are Zariski-dense in SO(m, 1). By
[JM], Cor. 5.3, and [Se2], § I.5.2, Cor. 1, they naturally embed into Γ. There-
fore ϕt(Γ) contains both SO(m, 1) and etY SO(m, 1)e−tY , and the Lie algebra
of ϕt(Γ) contains both so(m, 1) and the Lie algebra of etY SO(m, 1)e−tY . By
Remark 6.3, in order to prove that ϕt(Γ) is Zariski-dense in SO(m, 2), it is
sufficient to prove that the Lie algebra of etY SO(m, 1)e−tY is not so(m, 1).

But if the Lie algebra of etY SO(m, 1)e−tY were so(m, 1), then we would
have etY SO(m, 1)◦etY = SO(m, 1)◦; in other words, etY would belong to
the normalizer NSO(m,2)(SO(m, 1)◦) of the identity component SO(m, 1)◦

of SO(m, 1). Recall that the exponential map induces a diffeomorphism



28 FANNY KASSEL

between a neighborhood U of 0 in so(m, 2) and a neighborhood V of 1
in SO(m, 2), and this diffeomorphism itself induces a one-to-one correspon-
dence between U∩nso(m,2)(so(m, 1)) and V∩NSO(m,2)(SO(m, 1)◦). Therefore,
if we had etY ∈ NSO(m,2)(SO(m, 1)◦) for some t 6= 0 small enough, then we
would have

Y ∈ nso(m,2)(so(m, 1)) =
{
X ∈ so(m, 2), ad(X)(so(m, 1)) = so(m, 1)

}
.

But Remark 6.3 implies that nso(m,2)(so(m, 1)) is equal to so(m, 1), since
it contains so(m, 1) and is different from so(m, 2). Thus we would have
Y ∈ so(m, 1), which would contradict our choice of Y . �

6.3. Deformations in the nonseparating case. We now assume that
S = M rN is connected. Let j1 : Γ0 → π1(S) and j2 : Γ0 → π1(S) denote
the inclusions in π1(S) of the fundamental groups of the two sides of N . The
group Γ is a HNN extension of π1(S), i.e. it is generated by π1(S) and by
some element ν ∈ Γ such that

ν j1(γ) ν−1 = j2(γ)

for all γ ∈ Γ0. Fix an element Y ∈ so(m, 2) r so(m, 1) that belongs to the
Lie algebra of the centralizer of j1(Γ0) in SO(m, 2). Following Johnson and
Millson, we consider the deformations of Γ in SO(m, 2) that are given, for
t ∈ R, by {

ϕt(γ) = γ for γ ∈ π1(S),
ϕt(ν) = νetY .

Note that ϕt : Γ→ SO(m, 2) is well-defined since etY centralizes j1(Γ0).

Lemma 6.4. For t 6= 0 small enough, ϕt(Γ) is Zariski-dense in SO(m, 2).

Proof. Let ϕt(Γ) denote the Zariski closure of ϕt(Γ) in SO(m, 2). By [JM],
Lem. 5.9, the group π1(S) is Zariski-dense in SO(m, 1), hence ϕt(Γ) contains
both SO(m, 1) and νetY . But ν ∈ SO(m, 1), hence etY ∈ ϕt(Γ). Therefore
ϕt(Γ) contains both SO(m, 1) and etY SO(m, 1)e−tY , and we may conclude
as in the proof of Lemma 6.2. �

References

[Bas] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993),
p. 3–47.

[Ben] Y. Benoist, Actions propres sur les espaces homogènes réductifs, Ann. Math. 144
(1996), p. 315–347.

[Bo1] A. Borel, Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963),
p. 111–122.

[Bo2] A. Borel, Linear algebraic groups, Second edition, Graduate Texts in Mathe-
matics 126, Springer-Verlag, New York, 1991.

[BoT] A. Borel, J. Tits, Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27
(1965), p. 55–150.

[Bou] M. Bourdon, Structure conforme au bord et flot géodésique d’un CAT (−1)-
espace, Enseign. Math. 41 (1995), p. 63–102.

[BT1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local : I. Données radicielles
valuées, Publ. Math. Inst. Hautes Études Sci. 41 (1972), p. 5–251.



DEFORMATION OF PROPER ACTIONS ON REDUCTIVE HOMOGENEOUS SPACES 29

[BT2] F. Bruhat, J. Tits, Groupes réductifs sur un corps local : II. Schémas en
groupes. Existence d’une donnée radicielle valuée, Publ. Math. Inst. Hautes Études
Sci. 60 (1984), p. 5–184.

[Che] C. Chevalley, Théorie des groupes de Lie : II. Groupes algébriques, Actualités
Sci. Ind. 1152, Hermann & Cie, Paris, 1951.

[Ghy] É. Ghys, Déformations des structures complexes sur les espaces homogènes
de SL2(C), J. Reine Angew. Math. 468 (1995), p. 113–138.

[Gol] W. M. Goldman, Nonstandard Lorentz space forms, J. Differ. Geom. 21 (1985),
p. 301–308.

[Gui] O. Guichard, Groupes plongés quasi-isométriquement dans un groupe de Lie,
Math. Ann. 330 (2004), p. 331–351.

[Hel] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Corrected
reprint of the 1978 original, Graduate Studies in Mathematics 34, American Math-
ematical Society, Providence, RI, 2001.

[JM] D. Johnson, J. J. Millson, Deformation spaces associated to compact hyperbolic
manifolds, in Discrete groups in geometry and analysis, p. 48–106, Prog. Math. 67,
Birkhäuser, Boston, MA, 1987.

[Kar] F. I. Karpelevich, Surfaces of transitivity of semisimple groups of motions of a
symmetric space, Soviet Math. Dokl. 93 (1953), p. 401–404.

[Ka1] F. Kassel, Proper actions on corank-one reductive homogeneous spaces, J. Lie
Theory 18 (2008), p. 961–978.

[Ka2] F. Kassel, Quotients compacts des groupes ultramétriques de rang un, Ann. Inst.
Fourier 60 (2010), p. 1741–1786.

[Ko1] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math.
Ann. 285 (1989), p. 249–263.

[Ko2] T. Kobayashi, Criterion for proper actions on homogeneous spaces of reductive
groups, J. Lie Theory 6 (1996), p. 147–163.

[Ko3] T. Kobayashi, Deformation of compact Clifford–Klein forms of indefinite-
Riemannian homogeneous manifolds, Math. Ann. 310 (1998), p. 394–408.

[KY] T. Kobayashi, T. Yoshino, Compact Clifford–Klein forms of symmetric spaces
— revisited, Pure and Applied Mathematics Quaterly 1 (2005), p. 591–653.

[Kul] R. S. Kulkarni, Proper actions and pseudo-Riemannian space forms, Adv.
Math. 40 (1981), p. 10–51.

[Lan] E. Landvogt, Some functorial properties of the Bruhat–Tits building, J. Reine
Angew. Math. 518 (2000), p. 213–241.

[Mar] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) 17, Springer-Verlag, Berlin, 1991.

[MR] J. J. Millson, M. S. Raghunathan, Geometric construction of cohomology
for arithmetic groups I, in Geometry and analysis, p. 103–123, Indian Acad. Sci.,
Bangalore, 1980.

[Mos] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem.
Amer. Math. Soc. 14 (1955), p. 31–54.

[Qui] J.-F. Quint, Cônes limites des sous-groupes discrets des groupes réductifs sur un
corps local, Transform. Groups 7 (2002), p. 247–266.

[Rag] M. S. Raghunathan, On the first cohomology of discrete subgroups of semisimple
Lie groups, Amer. J. Math. 87 (1965), p. 103–139.

[Rou] G. Rousseau, Euclidean buildings, in Nonpositive curvature geometries, discrete
groups and rigidity, Proceedings of the 2004 Grenoble summer school, Séminaires
et Congrès 18, Société Mathématique de France, Paris, 2009.

[Sal] F. Salein, Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier 50
(2000), p. 257–284.

[Sel] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces,
in Collected papers, vol. 1, p. 475–492, Springer-Verlag, Berlin, 1989.



30 FANNY KASSEL

[Se1] J.-P. Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, New York,
1966.

[Se2] J.-P. Serre, Arbres, amalgames, SL(2), Astérisque 46, Société Mathématique de
France, Paris, 1977.

[Tit] J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps
quelconque, J. Reine Angew. Math. 247 (1971), p. 196–220.

[Wei] A. Weil, Remarks on the cohomology of groups, Ann. Math. 80 (1964), p. 149–
157.

CNRS - Laboratoire Paul Painlevé, Université Lille 1, Cité Scientifique,
59655 Villeneuve d’Ascq Cedex, France

E-mail address: fanny.kassel@math.univ-lille1.fr


