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|. Particle physics



LHC

3/35



Collision of beam particles

Test the laws of physics by analysing particle tracks.
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Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.

. \\
Feynman amplitude is a complex probability assigned to G.
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Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.

Feynman
graphs

Feynman amplitude is a complex probability assigned to G.
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The blue line (background) requires calculating a huge number of
Feynman amplitudes.
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ll. Graphs and Numbers



Graph polynomials (Kirchhoff 1847)

Let G = (Vg, Eg) be a connected graph. The graph polynomial
Vi € Z|ae, e € E(G)]

is a sum over spanning trees T of G
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Graph polynomials (Kirchhoff 1847)

Let G = (Vg, Eg) be a connected graph. The graph polynomial
Vi € Z|ae, e € E(G)]

is a sum over spanning trees T of G

A tree T C G is spanning if VT = V.

8/35



Example

9/35



Example

\UG = Q304
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Example
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Example

Ve = azou+ apoq + a1oq + agas + ajas

In general, W is homogeneous of degree hg (‘loop number').

deg\UG:hG NG:#E(G)
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Example

Ve = azou+ apoq + a1oq + agas + ajas

In general, W is homogeneous of degree hg (‘loop number').

deg\UG:hG NG:#E(G)

Physically relevant graphs have vertices of degree < 4. (‘G in ¢*").
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Feynman integrals

For convergence, assume
e Ng =2hg
o N, >2h, forallyC G.
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Feynman integrals

For convergence, assume
e Ng =2hg
o N, >2h, forallyC G.

The residue is the convergent integral
Qg
Ig = / — S R
o V5

Ng
Q¢ = Z(—l)ia;dal Ao Ndap ... daNG
i=1

where
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Feynman integrals

For convergence, assume
e Ng =2hg
o N, >2h, forallyC G.

The residue is the convergent integral

Q¢
le = | 57 e R
o=/ w

where
Ng

Q¢ = Z(—l)ia;dal VARRAN (754,‘ A ... dapg
i=1

o={(ar:...:apn.) € PNe—1(R) such that a; > 0}
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Graphs and numbers

We obtain a map

I : {convergent graphs in ¢*} — R
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Graphs and numbers

We obtain a map
I : {convergent graphs in ¢*} — R

Example:

Veg=a1+a

Compute the integral on the chart ap = 1:

| _/agdal —aqdas _/ dag 1
¢ o (a1+m)? Juso(a+1)2
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The Zoo

20¢(5 36¢(3
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The Zoo

20¢(5 36¢(3

Nss = 32((5,3) + £¢(5)¢(3) — 25¢(8)
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The Zoo

I : 6¢(3) 20¢(5 36¢(3 N3 5
N3s = 3((5,3) + £¢(5)¢(3) — 2¢(8)

Multiple Zeta Values, defined for ny,...,n,_1 > 1, and n, > 2:

1
¢(m,....nr) = > o g ER
r

1<ki<kp<..<k, L °°°
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Main problem

Folklore conjecture 90's
The numbers /g are Q-linear combinations of multiple zeta values. ’
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Main problem

Folklore conjecture 90's
The numbers /g are Q-linear combinations of multiple zeta values. ’

Known to be true for some infinite classes of graphs.

Closed formula known for only one infinite family:

Zs X ((2/‘1 — 3)

In general, very hard to compute the integrals even numerically
because they are highly singular.
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Properties |

@ Contraction-Deletion:

Ve =aeVe\e+ VYgye
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@ Contraction-Deletion:

Ve =aeVe\e+ VYgye

@ Partial factorisation:

WG = \UV\UG/V + R’y,G

2 v G/vy

Vi = (a3 + as)(a1 + a2) + azay
——— N — ~——

v, Ve/y Ry.6
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Properties |
@ Contraction-Deletion:

Ve =aeVe\e+ VYgye

@ Partial factorisation:

WG = \UV\UG/V + R’y,G

2 v G/vy

Vi = (a3 + as)(a1 + a2) + azay

v, Ve/y Ry.6

Determines W essentially uniquely.
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Properties |l

@ The graph polynomial is a determinant
Ve = det(Lg)

where L is the reduced graph Laplacian matrix.
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Properties |l

@ The graph polynomial is a determinant
Ve = det(Lg)
where L is the reduced graph Laplacian matrix.

@ Many identities between /5. For example:

D0

I, I, = g6 -

and planar duals, completion (Fourier transform), . ..
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lIl. Point-counting
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Points over finite fields

Let fi,...,fy € Z[x1,...,xn]. Let X denote the algebraic variety
(affine scheme over Z) defined by
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Points over finite fields

Let fi,...,fy € Z[x1,...,xn]. Let X denote the algebraic variety
(affine scheme over Z) defined by

For every prime power g = p®, let

[X]q = ﬁX(Fq) .

[X] : {prime powers} — N

For example,

(X]p =8{(x1,...,xn) : xi € Fp, fi(x1,...,xy) =0 mod p for all i}
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Some general results

Serre: if [X]p, = [Y], for a set of primes p of density 1, then
[X]pe = [Y]pe

for all e > 1, provided p > pg sufficiently large.
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Some general results

Serre: if [X]p, = [Y], for a set of primes p of density 1, then
[X]pe = [Y]pe

for all e > 1, provided p > pg sufficiently large.

Grothendieck-Lefschetz trace formula:

[X]g =Y _(~1)'Tr(F : H{(X5,, Q)

1

Dwork, Deligne.
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Graph hypersurfaces

Graph hypersurface:
Xg C:Z&NG

zero locus of the graph polynomial Ws. Highly singular.
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Graph hypersurfaces

Graph hypersurface:
Xg C:Z&NG

zero locus of the graph polynomial Ws. Highly singular.

[Glg = [Xclg = t{(aa,...,an),a; € Fg : Wg(ae) =0} .

Example:

€1

Ve=a1+a , [Glg=q
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SETES

D

I | [Glq
6((3) |a°—q°—¢°
20¢(5) | q" +3¢°> — 6q* + 4¢> — ¢
36¢(3)? | ¢° +4q" —7¢° +3¢°
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Examples

D

s ‘ [Glq
6¢3) [°— ¢ —¢°
20¢(5) | 9" +3¢° — 64" + 49> — ¢°
36¢(3)* | ¢° + 49" — 79° +3¢°

Notice that
[G]q =0 mod q2
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SETES

D

I | [Glq
6¢(3) |¢°—q°—¢°
20¢(5) | q" +3¢°> — 6q* + 4¢> — ¢
36¢(3)? | ¢° +4q" —7¢° +3¢°

Notice that
[Glg=0 mod ¢

Question: is [X¢]q always a polynomial in g7
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Philosophy

Mixed Motives
over Q
?7?

I-adic Galois reps

Period integrals
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Philosophy

Mixed Motives
over Q
?7?

I-adic Galois reps

Period integrals

The periods detect extensions, but the trace of Frobenius only
depends on the semi-simplification M** of a motive M.

There exists abelian category of mixed Tate motives over number
fields (Levine, using Beilinson-Soulé vanishing via Borel).

B
Iterated extensions Mixed Tate )
of cyclotomic TRIES VEr 7 Multiple Zeta Values
character dR

Their point-counting functions are polynomials in q.
21/35
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Stembridge (1998): True for all graphs G with Ng < 12.
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Stembridge (1998): True for all graphs G with Ng < 12.

Belkale, Brosnan (2003): The function [G]q is of general type.

Given any X, there exist graphs Gi, ... Gi such that

k

rlXlg=)_rlGlq

i=1

where r; € Z[q] are polynomials in g. Uses Mnév universality.

The graphs G; have vertices of huge degrees. But physics demands
that the vertices be of degree at most 4.
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IV. Modularity



Point counts over [F, modulo p

Consider the quantities
[X]p mod p

for all primes p.
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Point counts over [F, modulo p

Consider the quantities
[X]p mod p
for all primes p. They define an element

(X]p mod p), € FoxFzxFsx...

Suppose X defined by one polynomial f(xi, ..., xy).
Q Ifdegf =N,

[X]p = (coeff. of (xi...xy)P"1in FP71) mod p

@ (Chevalley-Warning theorem). If degree f < N then
[X]p=0 mod p

24/35



c-invariants of graphs
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For G one of our graphs, [G], =0 mod p?. Define
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c-invariants of graphs

For G one of our graphs, [G], =0 mod p?. Define

Co(p) = L2 mod p

If [G]q € Z[q] polynomial then cg(p) is its coefficient k of ¢°
taken modulo all primes. Therefore

cG = (k (mod 2), k (mod 3), k (mod 5),...)
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c-invariants of graphs

For G one of our graphs, [G], =0 mod p?. Define

Co(p) = L2 mod p

If [G]q € Z[q] polynomial then cg(p) is its coefficient k of ¢°

taken modulo all primes. Therefore
cG = (k (mod 2), k (mod 3), k (mod 5),...)

Call such a sequence constant.

25/35



c-invariant examples

6¢(3) 20¢(5) 36((3)°
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c-invariant examples

e

Graph ‘ (G, ‘ cG
6¢(3) | p°—p’—p° —1 mod p
20¢(5) | p" +3p> —6p*+4p> —p* | =1 mod p
36¢(3)? | p° +4p” — 7p° +3p° 0 modp

26 /35



c-invariant examples

e

Graph | (G, | cG
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The c¢ invariant contains the relevant information about /¢.
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c-invariant examples

e

Graph | (G, | cG
6¢(3) | p°—p’—p° —1 mod p
20¢(5) | p" +3p° —6p* +4p> —p? | =1 mod p
36¢(3)? | p° +4p” — 7p° +3p° 0 modp

The c¢ invariant contains the relevant information about /¢.

Conjecture: If Ig = Ig then cg = cgr.

26 /35



Modular graphs (w/ O. Schnetz, 2012)

For each of the two (convergent, ¢*) graphs:
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Modular graphs (w/ O. Schnetz, 2012)

For each of the two (convergent, ¢*) graphs:

cg(p)=ap, modp

ap are Fourier coeffs. of modular form of weight 3, level 7:
Z apz" = z H (1-z"(1- 27"))3
n>1
= z-322 452" 72" 3284+ ...

27/35



W of degree 8 in 16 variables, and 3785 terms.
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W of degree 8 in 16 variables, and 3785 terms.

@ Find a polynomial f with deg f = #{variables of 7} s.t.

cg(p) = —[f]p mod p

@ Eliminate variables in the right order from f to reduce the
dimension. Uses Chevalley-Warning, combinatorics of G,...

© Upshot:
cg(p) =[Flp mod p

where F is of degree 4 in 4 variables:
F = b(a+ c)(ac + bd) — ad(b+ c)(c + d)

The zero locus of F defines a singular K3 surface.
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Modularity in dimensions 2 and 3

@ Singular K3 surfaces (maximal Picard rank 20) over Q are
modular. Modular forms of weight 3 with CM by Q(v/—d),
and rational coefficients. Follows from Livné (1995),
modularity of two-dimensional CM Galois representations.
Elkies and Schiitt: they all arise in this way (2013).
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Modularity in dimensions 2 and 3

@ Singular K3 surfaces (maximal Picard rank 20) over Q are
modular. Modular forms of weight 3 with CM by Q(v/—d),
and rational coefficients. Follows from Livné (1995),
modularity of two-dimensional CM Galois representations.
Elkies and Schiitt: they all arise in this way (2013).

e Rigid Calabi-Yau three-folds over Q are modular (...,
Gouvéa-Yui (2010)). Uses proof of Serre's modularity
conjecture by Khare and Wintenberger.
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V. Questions
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More modular counter-examples in ¢* (O. Schnetz)

weight | 2 3 4 5 6 7 8
11

level

14
15

17 [12) 8 11 6 11 6
19 15 9 2 |7 15 7
20 15 10 15 8 15 8
21 16 12 15 9 16 8
24 19 [13y 19 [10]w 19 9
26 20 ; 20 10 20 10

26 20 [17]w 20 10 20 12

The subscript is the first loop order it occurs.
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More modular counter-examples in ¢* (O. Schnetz)

weight | 2 3 4 5 6 7 8
11

level

14
15

17 [12) 8 11 6 11 6
19 15 9 2 |7 15 7
20 15 10 15 8 15 8
21 16 12 15 9 16 8
24 19 [13y 19 [10]w 19 9
26 20 ; 20 10 20 10

26 20 [17]w 20 10 20 12

The subscript is the first loop order it occurs.
Adam Logan (2016) has proved three more entries.

No modular forms of weight 27
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What does this mean for Feynman amplitudes?
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What does this mean for Feynman amplitudes?

The point-counting function depends on
Mo = Y (—1)'Hi(X6: Q)
i=0

The period integral depends on a piece of

—_—~—

Mine = HY"H(PN-1\Xg, D\(D N X;))

where X is the graph hypersurface (Bloch-Esnault-Kreimer).
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What does this mean for Feynman amplitudes?

The point-counting function depends on

Myt = Z(_l)iHé(yG; Q)

i=0

The period integral depends on a piece of

—_—~—

Mine = HY"H(PN-1\Xg, D\(D N X;))

where X is the graph hypersurface (Bloch-Esnault-Kreimer).

No obvious relation between M,; and M;,;!

32/35



Failure of the conjecture
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Failure of the conjecture

One can show that the ‘modular’ piece of Mp; actually arises in
precisely the piece of M;,; detected by the integral (Doryn).
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Failure of the conjecture

One can show that the ‘modular’ piece of Mp; actually arises in
precisely the piece of M;,; detected by the integral (Doryn).

Grothendieck’s period conjecture
=

for modular G, I is transcendental over the ring of MZV's.

The folklore conjecture would be false. )

Amplitudes are much more complicated than expected.
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What numbers should we expect for these graphs?

Pure Pure Hodge Mixed Mixed
motive periods type motives periods
Q(—n) (2im)" (p, p) Mixed Tate ¢(n), n>2

over 7 ¢(ny,y...yny)
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What numbers should we expect for these graphs?

Pure Pure Hodge Mixed Mixed
motive periods type motives periods
Q(—n) (2im)" (p, p) Mixed Tate ¢(n), n>2

over 7 ¢(ny,y...yny)
M¢ L(f,n) (k,0) Mixed Modular | L(f,n), n> wt(f)
0 < n< wt(f) ®(0, k) 777 777

How do we construct realisations of motives of mixed modular
type? What are their period integrals?
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Which numbers and functions for quantum field theory?

The numbers and functions generated by a single space:

P1\{0,1,00} g Grothendieck, Deligne,

‘ ' lhara, Drinfeld, ...
/ Iterated integrals

Multiple zeta values

’ Polylogarithms ‘

generate all amplitudes up to a certain number of loops, and
infinite families of amplitudes in N = 4 SYM, ¢4, QCD, QED, ...

Modular examples beyond this regime (e.g. also with masses)

What are the geometric objects which describe QFT in general?
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