Modular forms in high-energy physics

Francis Brown All Souls College, Oxford

> Abel Symposium 27th May 2016

I. Particle physics

Collision of beam particles

Test the laws of physics by analysing particle tracks.

General framework describing fundamental forces and particles.

The blue line (background) requires calculating a huge number of Feynman amplitudes.

II. Graphs and Numbers

Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$\Psi_G \in \mathbb{Z}[\alpha_e, e \in E(G)]$$

is a sum over spanning trees T of G

$$\Psi_{\mathcal{G}} = \sum_{\mathcal{T} \subset \mathcal{G}} \prod_{e \notin \mathcal{T}} \alpha_{e}$$

Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$\Psi_{G} \in \mathbb{Z}[\alpha_{e}, e \in E(G)]$$

is a sum over spanning trees T of G

$$\Psi_{\mathcal{G}} = \sum_{\mathcal{T} \subset \mathcal{G}} \prod_{e \notin \mathcal{T}} \alpha_{e}$$

A tree $T \subset G$ is spanning if $V_T = V_G$.

$$\Psi_G = ?$$

$$\Psi_G = \alpha_3 \alpha_4$$

$$\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4$$

$$\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3}$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3}$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3}$$

In general, Ψ_G is homogeneous of degree h_G ('loop number').

$$\deg \Psi_G = h_G \qquad \qquad N_G = \# E(G)$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3}$$

In general, Ψ_G is homogeneous of degree h_G ('loop number').

$$\deg \Psi_G = h_G \qquad \qquad N_G = \# E(G)$$

Physically relevant graphs have vertices of degree ≤ 4 . ('G in ϕ^{4} ').

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_{\sigma} \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}$$

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_{\sigma} \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}$$

where

$$\Omega_{\mathcal{G}} = \sum_{i=1}^{N_{\mathcal{G}}} (-1)^{i} \alpha_{i} d\alpha_{1} \wedge \ldots \wedge \widehat{d\alpha_{i}} \wedge \ldots d\alpha_{N_{\mathcal{G}}}$$

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_{\sigma} \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}$$

where

$$\Omega_{G} = \sum_{i=1}^{N_{G}} (-1)^{i} \alpha_{i} d\alpha_{1} \wedge \ldots \wedge \widehat{d\alpha}_{i} \wedge \ldots d\alpha_{N_{G}}$$

$$\sigma = \{ (\alpha_1 : \ldots : \alpha_{N_G}) \in \mathbb{P}^{N_G - 1}(\mathbb{R}) \text{ such that } \alpha_i \ge 0 \}$$

We obtain a map

 $I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$

We obtain a map

$$I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$$

We obtain a map

$$I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$$

$$\Psi_{G} = \alpha_1 + \alpha_2$$

We obtain a map

$$I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$$

Example:

$$\Psi_{G} = \alpha_1 + \alpha_2$$

Compute the integral on the chart $\alpha_2 = 1$:

$$I_{G} = \int_{\sigma} \frac{\alpha_{2} d\alpha_{1} - \alpha_{1} d\alpha_{2}}{(\alpha_{1} + \alpha_{2})^{2}} = \int_{\alpha_{1} \geq 0} \frac{d\alpha_{1}}{(\alpha_{1} + 1)^{2}} = 1$$

The Zoo

 $I_G: 6\zeta(3)$

 $20\zeta(5)$

 $36\zeta(3)^2$

N_{3,5}

The Zoo

 $I_G:$ $6\zeta(3)$ $20\zeta(5)$ $36\zeta(3)^2$ $N_{3,5}$

$$N_{3,5} = \frac{27}{5}\zeta(5,3) + \frac{45}{4}\zeta(5)\zeta(3) - \frac{261}{20}\zeta(8)$$

The Zoo

$$N_{3,5} = \frac{27}{5}\zeta(5,3) + \frac{45}{4}\zeta(5)\zeta(3) - \frac{261}{20}\zeta(8)$$

Multiple Zeta Values, defined for $n_1, \ldots, n_{r-1} \ge 1$, and $n_r \ge 2$:

$$\zeta(n_1,\ldots,n_r)=\sum_{1\leq k_1< k_2<\ldots< k_r}\frac{1}{k_1^{n_1}\ldots k_r^{n_r}} \in \mathbb{R}$$

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Known to be true for some infinite classes of graphs.
Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Known to be true for some infinite classes of graphs.

Closed formula known for only one infinite family:

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Known to be true for some infinite classes of graphs.

Closed formula known for only one infinite family:

In general, very hard to compute the integrals even numerically because they are highly singular.

Contraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathbf{e}} \Psi_{\mathcal{G} \setminus \mathbf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathbf{e}}$$

O Contraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathsf{e}} \Psi_{\mathcal{G} \setminus \mathsf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathsf{e}}$$

2 Partial factorisation:

$$\Psi_{G} = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

Ontraction-Deletion:

$$\Psi_{G} = \alpha_{e} \Psi_{G \setminus e} + \Psi_{G /\!\!/ e}$$

2 Partial factorisation:

$$\Psi_G = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

Ontraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathsf{e}} \Psi_{\mathcal{G} \setminus \mathsf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathsf{e}}$$

2 Partial factorisation:

$$\Psi_{G} = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

$$\Psi_{G} = \underbrace{(\alpha_{3} + \alpha_{4})}_{\Psi_{\gamma}} \underbrace{(\alpha_{1} + \alpha_{2})}_{\Psi_{G/\gamma}} + \underbrace{\alpha_{3}\alpha_{4}}_{R_{\gamma,G}}$$

Ontraction-Deletion:

$$\Psi_{G} = \alpha_{e} \Psi_{G \setminus e} + \Psi_{G /\!\!/ e}$$

2 Partial factorisation:

$$\Psi_{G} = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

$$\Psi_{G} = \underbrace{(\alpha_{3} + \alpha_{4})}_{\Psi_{\gamma}} \underbrace{(\alpha_{1} + \alpha_{2})}_{\Psi_{G/\gamma}} + \underbrace{\alpha_{3}\alpha_{4}}_{R_{\gamma,G}}$$

Determines Ψ_G essentially uniquely.

• The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

• The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

• Many identities between I_G . For example:

• The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

• Many identities between I_G . For example:

 $I_{G_1}I_{G_2} = I_{G_1:G_2}$.

and planar duals, completion (Fourier transform), ...

III. Point-counting

Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N]$. Let X denote the algebraic variety (affine scheme over Z) defined by

$$f_1=\ldots=f_n=0.$$

Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N]$. Let X denote the algebraic variety (affine scheme over \mathbb{Z}) defined by

$$f_1=\ldots=f_n=0$$
.

For every prime power $q = p^e$, let

$$[X]_q = \sharp X(\mathbb{F}_q)$$
.

Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N]$. Let X denote the algebraic variety (affine scheme over \mathbb{Z}) defined by

$$f_1=\ldots=f_n=0$$
.

For every prime power $q = p^e$, let

$$[X]_q = \sharp X(\mathbb{F}_q)$$
.

 $[X] : {\text{prime powers}} \to \mathbb{N}$

Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N]$. Let X denote the algebraic variety (affine scheme over \mathbb{Z}) defined by

$$f_1=\ldots=f_n=0$$
.

For every prime power $q = p^e$, let

$$[X]_q = \sharp X(\mathbb{F}_q)$$
.

 $[X] : {\text{prime powers}} \to \mathbb{N}$

For example,

$$[X]_p = \sharp\{(x_1, \dots, x_N) : x_i \in \mathbb{F}_p, f_i(x_1, \dots, x_N) \equiv 0 \mod p \text{ for all } i\}$$

Serre: if $[X]_p = [Y]_p$ for a set of primes p of density 1, then

$$[X]_{p^e} = [Y]_{p^e}$$

for all $e \ge 1$, provided $p \ge p_0$ sufficiently large.

Serre: if $[X]_p = [Y]_p$ for a set of primes p of density 1, then

$$[X]_{p^e} = [Y]_{p^e}$$

for all $e \ge 1$, provided $p \ge p_0$ sufficiently large.

Grothendieck-Lefschetz trace formula:

$$[X]_q = \sum_i (-1)^i \operatorname{Tr}(F : H^i_c(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell))$$

Dwork, Deligne.

Graph hypersurfaces

Graph hypersurface:

$$X_G \subset \mathbb{A}^{N_G}$$

zero locus of the graph polynomial $\Psi_{\textit{G}}.$ Highly singular.

Graph hypersurfaces

Graph hypersurface:

$$X_G \subset \mathbb{A}^{N_G}$$

zero locus of the graph polynomial $\Psi_{\textit{G}}.$ Highly singular.

$$[G]_q = [X_G]_q = \sharp\{(\alpha_1, \ldots, \alpha_N), \alpha_i \in \mathbb{F}_q : \Psi_G(\alpha_e) = 0\}.$$

Graph hypersurfaces

Graph hypersurface:

$$X_G \subset \mathbb{A}^{N_G}$$

zero locus of the graph polynomial $\Psi_{\textit{G}}.$ Highly singular.

$$[G]_q = [X_G]_q = \sharp\{(\alpha_1, \ldots, \alpha_N), \alpha_i \in \mathbb{F}_q : \Psi_G(\alpha_e) = 0\}.$$

Example:

Examples

Examples

Notice that

$$[G]_q \equiv 0 \mod q^2$$

Examples

Notice that

$$[G]_q \equiv 0 \mod q^2$$

Question: is $[X_G]_q$ always a polynomial in q?

There exists abelian category of mixed *Tate* motives over number fields (Levine, using Beilinson-Soulé vanishing via Borel).

There exists abelian category of mixed *Tate* motives over number fields (Levine, using Beilinson-Soulé vanishing via Borel).

There exists abelian category of mixed *Tate* motives over number fields (Levine, using Beilinson-Soulé vanishing via Borel).

Their point-counting functions are polynomials in q.

Results

Belkale, Brosnan (2003): The function $[G]_q$ is of general type.

Belkale, Brosnan (2003): The function $[G]_q$ is of general type.

Given any X, there exist graphs G_1, \ldots, G_k such that

$$r_0[X]_q = \sum_{i=1}^k r_i [G_i]_q$$

where $r_i \in \mathbb{Z}[q]$ are polynomials in q. Uses Mnëv universality.

Belkale, Brosnan (2003): The function $[G]_q$ is of general type.

Given any X, there exist graphs G_1, \ldots, G_k such that

$$r_0[X]_q = \sum_{i=1}^k r_i [G_i]_q$$

where $r_i \in \mathbb{Z}[q]$ are polynomials in q. Uses Mnëv universality.

The graphs G_i have vertices of huge degrees. But physics demands that the vertices be of degree at most 4.

IV. Modularity

Point counts over \mathbb{F}_p modulo p

Consider the quantities

 $[X]_p \mod p$

for all primes p.

Point counts over \mathbb{F}_p modulo p

Consider the quantities

 $[X]_p \mod p$

for all primes p. They define an element

 $([X]_p \mod p)_p \in \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \dots$
Point counts over \mathbb{F}_p modulo p

Consider the quantities

 $[X]_p \mod p$

for all primes p. They define an element

 $([X]_p \mod p)_p \in \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \dots$

Suppose X defined by one polynomial $f(x_1, \ldots, x_N)$.

Consider the quantities

 $[X]_p \mod p$

for all primes p. They define an element

 $([X]_{p} \mod p)_{p} \in \mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{F}_{5} \times \dots$

Suppose X defined by one polynomial $f(x_1, \ldots, x_N)$.

• If deg
$$f = N$$
,
 $[X]_p \equiv (\text{coeff. of } (x_1 \dots x_N)^{p-1} \text{ in } f^{p-1}) \mod p$

Consider the quantities

 $[X]_p \mod p$

for all primes p. They define an element

 $([X]_{p} \mod p)_{p} \in \mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{F}_{5} \times \dots$

Suppose X defined by one polynomial $f(x_1, \ldots, x_N)$.

• If deg
$$f = N$$
,

$$[X]_p \equiv (\text{coeff. of } (x_1 \dots x_N)^{p-1} \text{ in } f^{p-1}) \mod p$$

2 (Chevalley-Warning theorem). If degree f < N then

$$[X]_p \equiv 0 \mod p$$

c-invariants of graphs

c-invariants of graphs

For G one of our graphs, $[G]_p \equiv 0 \mod p^2$. Define

$$c_G(p) := rac{[G]_p}{p^2} \mod p$$

For G one of our graphs, $[G]_p \equiv 0 \mod p^2$. Define

$$c_G(p) := rac{[G]_p}{p^2} \mod p$$

If $[G]_q \in \mathbb{Z}[q]$ polynomial then $c_G(p)$ is its coefficient k of q^2 taken modulo all primes. Therefore

$$c_G = (k \pmod{2}, k \pmod{3}, k \pmod{5}, \ldots)$$

For G one of our graphs, $[G]_p \equiv 0 \mod p^2$. Define

$$c_G(p) := rac{[G]_p}{p^2} \mod p$$

If $[G]_q \in \mathbb{Z}[q]$ polynomial then $c_G(p)$ is its coefficient k of q^2 taken modulo all primes. Therefore

$$c_G = (k \pmod{2}, k \pmod{3}, k \pmod{5}, \ldots)$$

Call such a sequence constant.

The c_G invariant contains the relevant information about I_G .

The c_G invariant contains the relevant information about I_G . Conjecture: If $I_G = I_{G'}$ then $c_G = c_{G'}$.

For each of the two (convergent, ϕ^4) graphs:

For each of the two (convergent, ϕ^4) graphs:

 $c_G(p) \equiv a_p \mod p$

For each of the two (convergent, ϕ^4) graphs:

 $c_G(p) \equiv a_p \mod p$

 a_p are Fourier coeffs. of modular form of weight 3, level 7:

For each of the two (convergent, ϕ^4) graphs:

 $c_G(p) \equiv a_p \mod p$

 a_p are Fourier coeffs. of modular form of weight 3, level 7:

$$\sum a_n z^n = z \prod_{n \ge 1} \left((1 - z^n) (1 - z^{7n}) \right)^3$$
$$= z - 3z^2 + 5z^4 - 7z^7 - 3z^8 + \dots$$

.

 $\Psi_{\textit{G}}$ of degree 8 in 16 variables, and 3785 terms.

 Ψ_{G} of degree 8 in 16 variables, and 3785 terms.

• Find a polynomial f with deg $f = \#\{\text{variables of } f\}$ s.t.

 $c_G(p) \equiv -[f]_p \mod p$

 $\Psi_{\textit{G}}$ of degree 8 in 16 variables, and 3785 terms.

• Find a polynomial f with deg $f = \#\{\text{variables of } f\}$ s.t.

$$c_G(p) \equiv -[f]_p \mod p$$

Eliminate variables in the right order from f to reduce the dimension. Uses Chevalley-Warning, combinatorics of G,...

 $\Psi_{\textit{G}}$ of degree 8 in 16 variables, and 3785 terms.

• Find a polynomial f with deg $f = \sharp$ {variables of f} s.t.

$$c_G(p) \equiv -[f]_p \mod p$$

Eliminate variables in the right order from f to reduce the dimension. Uses Chevalley-Warning, combinatorics of G,...

Opshot:

$$c_G(p) \equiv [F]_p \mod p$$

where F is of degree 4 in 4 variables:

 $\Psi_{\textit{G}}$ of degree 8 in 16 variables, and 3785 terms.

• Find a polynomial f with deg $f = \#\{\text{variables of } f\}$ s.t.

$$c_G(p) \equiv -[f]_p \mod p$$

Eliminate variables in the right order from f to reduce the dimension. Uses Chevalley-Warning, combinatorics of G,...

```
Opshot:
```

$$c_G(p) \equiv [F]_p \mod p$$

where F is of degree 4 in 4 variables:

$$F = b(a+c)(ac+bd) - ad(b+c)(c+d)$$

The zero locus of F defines a singular K_3 surface.

Singular K3 surfaces (maximal Picard rank 20) over Q are modular. Modular forms of weight 3 with CM by Q(√-d), and rational coefficients. Follows from Livné (1995), modularity of two-dimensional CM Galois representations. Elkies and Schütt: they all arise in this way (2013).

- Singular K3 surfaces (maximal Picard rank 20) over Q are modular. Modular forms of weight 3 with CM by Q(√-d), and rational coefficients. Follows from Livné (1995), modularity of two-dimensional CM Galois representations. Elkies and Schütt: they all arise in this way (2013).
- Rigid Calabi-Yau three-folds over Q are modular (..., Gouvêa-Yui (2010)). Uses proof of Serre's modularity conjecture by Khare and Wintenberger.

V. Questions

More modular counter-examples in ϕ^4 (O. Schnetz)

weight	2	3	4	5	6	7	8
level	11	<mark>7</mark> 8	5 ₈	4 ₉	3 ₈	3 ₉	2 10
	14	<mark>8</mark> 8	6 ₉	7	4 ₉	7	3
	15	11	7 10	8	5	8	5 ₁₀
	17	12 ₉	8	11	6	11	6
	19	15	9	12	7 ₉	15	7
	20	15	10	15	8	15	8
	21	16	12	15	9	16	8
	24	19	13 9	19	10 10	19	9
	26	20	÷	20	10	20	10
	26	20	17 ₁₀	20	10	20	12

The subscript is the first loop order it occurs.

More modular counter-examples in ϕ^4 (O. Schnetz)

weight	2	3	4	5	6	7	8
level	11	<mark>7</mark> 8	5 ₈	4 ₉	3 ₈	3 ₉	2 10
	14	<mark>8</mark> 8	6 ₉	7	4 ₉	7	3
	15	11	7 10	8	5	8	5 ₁₀
	17	12 ₉	8	11	6	11	6
	19	15	9	12	7 ₉	15	7
	20	15	10	15	8	15	8
	21	16	12	15	9	16	8
	24	19	13 9	19	10 10	19	9
	26	20	÷	20	10	20	10
	26	20	17 ₁₀	20	10	20	12

The subscript is the first loop order it occurs.

Adam Logan (2016) has proved three more entries.

More modular counter-examples in ϕ^4 (O. Schnetz)

weight	2	3	4	5	6	7	8
level	11	<mark>7</mark> 8	5 ₈	4 ₉	3 ₈	3 ₉	2 10
	14	<mark>8</mark> 8	6 ₉	7	4 ₉	7	3
	15	11	7 10	8	5	8	5 ₁₀
	17	12 ₉	8	11	6	11	6
	19	15	9	12	7 ₉	15	7
	20	15	10	15	8	15	8
	21	16	12	15	9	16	8
	24	19	<mark>13</mark> 9	19	10 10	19	9
	26	20	<u> </u>	20	10	20	10
	26	20	17 ₁₀	20	10	20	12

The subscript is the first loop order it occurs.

Adam Logan (2016) has proved three more entries. No modular forms of weight 2?

What does this mean for Feynman amplitudes?

What does this mean for Feynman amplitudes?

The point-counting function depends on

$$M_{pt} = \sum_{i=0}^{N-1} (-1)^i H_c^i(\overline{X}_G; \mathbb{Q}_\ell)$$

The point-counting function depends on

$$M_{pt} = \sum_{i=0}^{N-1} (-1)^i H_c^i(\overline{X}_G; \mathbb{Q}_\ell)$$

The period integral depends on a piece of

$$M_{int} = H^{N-1}(\widetilde{\mathbb{P}^{N-1}\setminus X_G}, D\setminus (\widetilde{(D\cap X_G)}))$$

where X_G is the graph hypersurface (Bloch-Esnault-Kreimer).

The point-counting function depends on

$$M_{pt} = \sum_{i=0}^{N-1} (-1)^i H_c^i(\overline{X}_G; \mathbb{Q}_\ell)$$

The period integral depends on a piece of

$$M_{int} = H^{N-1}(\widetilde{\mathbb{P}^{N-1}\setminus X_G}, D\setminus (\widetilde{(D\cap X_G)}))$$

where X_G is the graph hypersurface (Bloch-Esnault-Kreimer).

No obvious relation between M_{pt} and M_{int} !

Failure of the conjecture

One can show that the 'modular' piece of M_{pt} actually arises in precisely the piece of M_{int} detected by the integral (Doryn).

One can show that the 'modular' piece of M_{pt} actually arises in precisely the piece of M_{int} detected by the integral (Doryn).

Grothendieck's period conjecture

for modular G, I_G is transcendental over the ring of MZV's.

One can show that the 'modular' piece of M_{pt} actually arises in precisely the piece of M_{int} detected by the integral (Doryn).

Grothendieck's period conjecture

for modular G, I_G is transcendental over the ring of MZV's.

The folklore conjecture would be false.

Amplitudes are much more complicated than expected.

Pure	Pure	Hodge	Mixed	Mixed
motive	periods	type	motives	periods
$\mathbb{Q}(-n)$	$(2i\pi)^n$	(<i>p</i> , <i>p</i>)	Mixed Tate	$\zeta(n), \ n \geq 2$
			over $\mathbb Z$	$\zeta(n_1,\ldots,n_r)$

Pure	Pure	Hodge	Mixed	Mixed
motive	periods	type	motives	periods
$\mathbb{Q}(-n)$	$(2i\pi)^n$	(<i>p</i> , <i>p</i>)	Mixed Tate	$\zeta(n), \ n \geq 2$
			over $\mathbb Z$	$\zeta(n_1,\ldots,n_r)$
M _f	L(f, n)	(<i>k</i> ,0)	Mixed Modular	$L(f, n), n \ge wt(f)$
	0 < n < wt(f)	⊕(0, <i>k</i>)	?????	?????
Pure	Pure	Hodge	Mixed	Mixed
------------------	---------------	-------------------------	------------------	-------------------------
motive	periods	type	motives	periods
$\mathbb{Q}(-n)$	$(2i\pi)^n$	(<i>p</i> , <i>p</i>)	Mixed Tate	$\zeta(n), \ n \geq 2$
			over $\mathbb Z$	$\zeta(n_1,\ldots,n_r)$
M _f	L(f, n)	(<i>k</i> ,0)	Mixed Modular	$L(f, n), n \ge wt(f)$
	0 < n < wt(f)	⊕(0, <i>k</i>)	?????	?????

How do we construct realisations of motives of mixed modular type? What are their period integrals?

The numbers and functions generated by a single space:

The numbers and functions generated by a single space:

The numbers and functions generated by a single space:

The numbers and functions generated by a single space:

generate all amplitudes up to a certain number of loops, and infinite families of amplitudes in N = 4 SYM, ϕ^4 , QCD, QED, ...

The numbers and functions generated by a single space:

generate all amplitudes up to a certain number of loops, and infinite families of amplitudes in N = 4 SYM, ϕ^4 , QCD, QED, ...

Modular examples beyond this regime (e.g. also with masses)

The numbers and functions generated by a single space:

generate all amplitudes up to a certain number of loops, and infinite families of amplitudes in N = 4 SYM, ϕ^4 , QCD, QED, ...

Modular examples beyond this regime (e.g. also with masses) What are the geometric objects which describe QFT in general?