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Why massless φ4
4 theory?

Universal: changing the theory will only affect

numerators of integrals - hence the particular

linear combinations of basic amplitudes which

occur, not the amplitudes themselves.

φ4
4 gives interesting scalar quantities indepen-

dent of renormalization scheme. But many re-

sults will also hold for more general kinematics.

The parametric representation enables us to

apply methods from algebraic geometry (mo-

tivic philosophy), and leads to new insights.

Goals

1. A qualitative understanding of the nature

of the numbers which occur as Feynman

amplitudes and their relation to topology.

2. Practical tools for the exact (symbolic) com-

putation of Feynman amplitudes.
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Reminders on Parametric Feynman integrals

Work in RD. Scalar Feynman integral of graph

G with edges E and vertices V is

∫

RD

∏

e∈E

dDke

k2
e + m2

e

∏

v∈V

δ(
∑

pE)

Apply the Schwinger trick

1

x
=

∫ ∞

0
e−αxdx

by introducing auxilliary parameters αe, for each

edge. This converts the product into a sum:

∏

e∈EI

dDke

k2
e + m2

e
=
∫ ∞

0
e−
∑

e αe(k2
e+m2

e)
∏

e
dαe

Next use the Gauss integral
∫

R
e−πx2

dx = 1

and do all the momentum integrations by com-

pleting the square in the ke.
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After integrating out overall logarithmic diver-

gence, and omitting Γ factors: the general un-

renormalized parametric Feynman integral is:

∫ ∞

0

Ψ
−(ℓ+1)D/2
G

(ΨG

∑

e∈E

m2
eαe −ΦG)−ℓD/2

δ(
∑

e∈E

αe − 1)

where ℓ is the loop number, and the graph

polynomial or first Symanzik is:

ΨG =
∑

T⊂G

∏

e/∈ET

αe

which is a sum over all spanning trees of G,

and the second Symanzik is a sum over all cut

spanning trees S:

ΦG =
∑

S

∏

e/∈S

αe(q
S)2

where qS is the moment flow through the cut.

Important point: the integrand is completely

algebraic (polynomial). Amplitudes belong to

algebraic geometry (“periods of motives”).
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We only consider the case of graphs in massless

φ4
4 with trivial momentum dependence. In this

case, there is a single momentum scale q:

ΦG(q) = q2ΦG(αe)

and factors out. Let G̃ be the ‘closed-up graph’

obtained by joining the two external legs.

Example: Master 2-loop 2-point function.

4

3

6
2

1

5

45

1 2

3

Amplitude (in Mom) is

I
G̃

log
(
q2/µ2

)

where the coefficient (residue) is

I
G̃

=
∫ ∞

0

dα1 . . . dα6

Ψ2
G̃

δ(
∑

αe − 1)

and Ψ
G̃

= α1α2α4 + . . . + α4α5α6
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From now on consider the closed up graph

(now denoted G). To ensure convergence, as-

sume that G is overall logarithmically divergent

but free of subdivergences (a primitive graph):

• ℓ = 2|EG|

• ℓγ < 2|Eγ| for all strict subgraphs γ ⊂ G.

In this case the residue can be simply written

IG =

∫ ∏
e dαe

Ψ2
G

δ(
∑

αe − 1)

which converges absolutely. By a change of

variables, this can be written

IG =

∫

[0,∞]N−1

dα1 . . . dαN−1

Ψ2
G

∣∣∣
αN=1

for some choice of edge N .

Main point: Changing the theory, or raising

propagators to 1+niε, only affects the numer-

ator of the integral. The underlying geometry

comes from the denominator.



The zoo

Broadhurst-Kreimer: All (numerically) computed

IG are multiple zeta values. All graphs with

ℓ ≤ 6 known, some cases at ℓ = 7 unknown.

6ζ(3) 20ζ(5) 36ζ(3)2

27
5 ζ(5,3)+45

4 ζ(5)ζ(3)−261
20 ζ(8)

Expected weight is 2ℓ− 3. But last two exam-

ples have weight 2ℓ− 4. This is weight drop.
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Each graph encodes many master integrals and

give scheme-independent contributions to β.

Schnetz extended computations (see ‘census’).

Mixture of Gegenbauer + accelerated conver-

gence + lattice reduction algorithms.

Questions:

Do all primitive log-divergent graphs in φ4

theory give multiple zeta values?

Can we predict weight-drop?

Why do these strange linear combinations of

MZV’s appear?

Methods for exact symbolic computation?



More on Graph polynomials

External edges play no role. Choose orienta-
tion of G; let EG be the (edge x vertex) inci-
dence matrix of G, after deleting any vertex.

MG =




α1
. . . EG

αeG

−TEG 0




Then ΨG = detMG.

Example:

v1 v2

v3

e1

e3 e2

v1 v2 v3

e1 −1 1 0
e2 0 1 −1
e3 −1 0 1

Delete the v3 column:

MG =




α1 0 0 −1 1
0 α2 0 0 1
0 0 α3 −1 0
1 0 1 0 0
−1 −1 0 0 0




We have ΨG = det(MG) = α1 + α2 + α3.
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We need to generalise: define, for any subsets

of edges I, J, K of G such that |I| = |J |,

Ψ
I,J
G,K = detMG(I, J)

∣∣∣∣
αk=0,k∈K

were MG(I, J) denotes the matrix MG with rows

I and columns J removed. We call Ψ
I,J
G,K the

Dodgson polynomials of G.

The key to computing the Feynman integrals

is to exploit the many identities between the

polynomials Ψ
I,J
G,K. We have:

• The contraction-deletion formula:

Ψ
I,J
G,K = Ψ

Ie,Je
G,K αe + Ψ

I,J
G,Ke

We have Ψ
Ie,Je
G,K = ±Ψ

I,J
G\e,K

(deletion of e),

and Ψ
I,J
G,Ke = ±Ψ

I,J
G/e,K

(contraction of e).
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• General determinantal identities such as:

Ψ
I,J
G,KabxΨ

Iax,Jbx
G,K −Ψ

Ix,Jx
G,KabΨ

Ia,Jb
G,Kx = Ψ

Ia,Jx
G,KbΨ

Ix,Jb
G,Ka

or Plücker-type identities such as:

Ψ
ij,kl
G,K −Ψ

ik,jl
G,K + Ψ

il,jk
G,K = 0

• Graph-specific identities. If, for example,

K contains a loop, then Ψ
I,J
G,K = 0, and

many more complicated examples.

So there is a kind of dictionary:

Topology of G ←→ Relations amongst Ψ
I,J
G,K

The calculus of graph-type polynomials has

consequences for amplitudes that is very far

from being fully exploited at present.
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Method for computing amplitudes

Compute the Feynman integral in parametric

form by integrating out one variable at a time.

IG =

∫

[0,∞]N−1

dα1 . . . dαN−1

Ψ2
G

∣∣∣∣
αN=1

In more general situations the numerator will

be a polynomial in αi (or even logαi) and does

not affect the method significantly.

By the contraction-deletion formula, we can

write Ψ = Ψ1,1α1 + Ψ1. Therefore

IG =

∫ ∞

0

dα1 . . . dαN−1

Ψ2

can be written
∫ ∞

0

dα1 . . . dαN−1

(Ψ1,1α1 + Ψ1)
2

=

∫ ∞

0

dα2 . . . dαN−1

Ψ1,1Ψ1
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By contraction-deletion, the polynomials Ψ1,1

and Ψ1 are linear in the next variable, α2:

Ψ1,1 = Ψ12,12α2 + Ψ
1,1
2 ,

Ψ1 = Ψ
2,2
1 α2 + Ψ12

We can write the previous integral
∫ 1

Ψ1,1Ψ1
as

∫ ∞

0

dα2 . . . dαN−1

(Ψ12,12α2 + Ψ
1,1
2 )(Ψ

2,2
1 α2 + Ψ12)

Decompose into partial fractions and integrate

out α2. This leaves an integrand of the form

logΨ
1,1
2 + logΨ

2,2
1 − logΨ12,12 − logΨ12

Ψ
1,1
2 Ψ

2,2
1 −Ψ12,12Ψ12

At this point, we should be stuck since the de-

nominator is quadratic in every variable. Mirac-

ulously, there is an identity due to Dodgson:

Ψ
1,1
2 Ψ

2,2
1 −Ψ12,12Ψ12 = (Ψ1,2)2
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So after two integrations we have
∫ dα1dα2

Ψ2

=
logΨ

1,1
2 + logΨ

2,2
1 − logΨ12,12 − logΨ12

(Ψ1,2)2

We can then write Ψ1,2 = Ψ13,23α3+Ψ
1,2
3 and

keep integrating out variables. . .

As long as we can find a Schwinger coordinate

αi in which all the terms in the integrand are

linear, then we can always perform the next in-

tegration. This requires choosing a good order

on the edges of G.

In this case, the integral is expressible as mul-

tiple polylogarithms:

Lin1,...,nr(x1, . . . , xr) =
∑

1≤k1<...<kr

x
k1
1 . . . xkr

r

k
n1
1 . . . knr

r

typically evaluated at arguments Ψ
I,J
G,K. When

this process terminates, the Feynman integral

is expressed as values of multiple polylogarithms

evaluated at 1 (or roots of unity).
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When and why it works

• Can predict in advance when the integra-

tion will go through. Just compute the

discriminant loci for each integration step:

S0 = {ΨG} (1)

S1 = {Ψ
1,1
G ,ΨG,1} (2)

S2 = {Ψ
12,12
G ,Ψ

1,1
G,2,Ψ

2,2
G,1,ΨG,12,Ψ

1,2
G }(3)

...

The singularities Si are resultants of pairs

of polynomials in the previous stage Si−1.

Integration works when elements of Si are

linear in the next integration variable αi+1.

• This also holds if we have external mo-

menta or masses. At the end we obtain

polylogarithms in the kinematic variables.

• Do not need to compute with actual func-

tions : the calculation is purely algebraic

by replacing functions with symbols.
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“Symbols”

(Highly simplified version of K.T. Chen’s the-

ory of iterated integrals ∼ 70’s).

Let M be a smooth manifold, and ω1, . . . , ωn

closed 1-forms on M . A symbol is a linear

combination of multilinear elements

ξ =
∑

I=(i1,...,in)

cI[ωi1| . . . |ωin]

which satisfy the integrability condition
∑

I=(i1,...,in)

cI ωi1⊗ . . .⊗(ωik∧ωik+1
)⊗ . . .⊗ωin = 0

for all k = 1, . . . , n − 1. Given a base point

x ∈M , we get a (multivalued) function

F(z) =

∫ z

x
ξ

by iterated integration. A version of Chen’s

π1-de Rham theorem gives isomorphism

{Symbols} −→ {homotopy invariant iterated

integrals on M}
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Example: If M = C\{0,1}, we get an isomor-

phism between symbols in dx
x and dx

1−x and gen-

eralized multiple polylogarithms.

However, for general M , it is not enough to

consider only closed forms ωi (general defini-

tion of symbol is more complicated).

In any case, by Chen’s theorem we can work

with the symbols instead of the functions. Dif-

ferential operations on integrals are replaced

with algebraic manipulations on symbols:

truncation of a letter ←→ differentiation

affixing a letter ←→ integration

deconcatentation coproduct ←→ monodromy

We get effective algebraic algorithms for the

manipulation of certain families of multivalued

functions (in progress with C. Bogner).
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Results

By computing the sets Si we can prove for all

graphs with low loop orders (ℓ ≤ 6) that IG is

a multiple zeta value.

We can write down some non-trivial infinite

families of graphs for which the sets Si consist

entirely of Dodgson polynomials, and hence

these give multiple zeta values too.

Each stage of integration is expressible as a

symbol in the differential forms df/f , where

f ∈ Si. So for graphs with kinematic param-

eters, one can write down an Ansatz for the

amplitude as a function of external momenta.

But for a general G, linearity of Si will fail...
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Denominator reduction

Now try to identify the worst contribution to

the singularities Si to try to find non-linear ob-
structions to integration method.

If k ≥ 5, at the kth stage of integration, the
answer is a symbol over a single denominator :

∑
cI[ωi1| . . . |ωik−2

]

Dk

The denominators Dk can be computed easily:

D5 = ±det

(
Ψ

12,34
5 Ψ125,345

Ψ
13,24
5 Ψ135,245

)

If αk+1 is the next integration variable, and

Dk = (Aαk+1 + B)(Cαk+1 + D)

factorizes (very often does), then

Dk+1 = ±(AD −BC) .

The denominator reduction is the sequence

D5, D6, . . . , Dn up to the point n where Dn van-
ishes, or no longer factorizes.
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A graph G is denominator reducible if there

exists an ordering on its edges, so that the

denominators Dn exist for all n. All graphs

with < 8 loops are denominator reducible.

The denominator reduction is a microscope to

analyse qualitative features of the Feynman in-

tegral IG at higher loop orders.

Example: Weight-drop.

If a denominator Dn vanishes, then the graph

has weight-drop. Conversely, all known weight-

drops in φ4 have a vanishing Dn.

Using this, with Karen Yeats, we obtained com-

binatorial criteria for graphs to have weight-

drop (2-vertex reducible graphs, or graphs ob-

tained from these by splitting triangles).
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Point-counting

Let q = pn prime power. G any graph, ΨG

its graph polynomial. Idea (Kontsevich) is to

count the number of solutions to the equation

ΨG(α1, . . . , αN) = 0

where αi ∈ Fq, the finite field with q elements.

We get a function [G]q

[G] : {prime powers q} −→ N

Examples: Consider the 3,4,5 loop graphs for

6ζ(3), 20ζ(5), 36ζ(3)2 we had earlier.

[G3] = q2(q3 + q − 1)

[G4] = q2(q5 + 3q3 − 6q2 + 4q − 1)

[G5] = q5(q4 + 4 q2 − 7q + 3)

The functions [G] are polynomials in q.

Notice already that G5, the weight-drop graph,

has vanishing coefficient of q2.
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The theory of mixed Tate motives suggests

that “IG is a multiple zeta value” should be

(loosely) related to “[G] is polynomial”. In

fact, this relation is a posteriori rather good.

Analogue of conjecture that IG are MZVs:

Conjecture 1. (Kontsevich ’97) For any graph

G, the function [G] is a polynomial in q.

Stembridge showed this to be true for all graphs

with ≤ 12 edges. But Belkale-Brosnan proved

this is false: the functions [G] can be very gen-

eral. No explicit counter-examples, unphysical

(would have huge numbers of edges).

With O. Schnetz, we proved Kontsevich’s con-

jecture is true for some infinite classes of graphs:

Theorem 2.All graphs with ‘vertex-width ≤ 3’

have polynomial point counts.
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c2 invariants (with O. Schnetz)

Observation: the point-count is divisible by q2

[G]q ≡ 0 mod q2 .

Thus we can define

c2(G)q = q−2[G]q mod q

The invariant c2(G) maps any prime power q to

a number in Z/qZ. When [G] is a polynomial,

c2(G) is just the coefficient of q2.

The c2(G) contains all the essential info:

Conjecture 3. If G1, G2 two graphs whose residues

are equal: IG1
= IG2

, then c2(G1) = c2(G2).

and is very easy to compute:

Theorem 4. c2(G)q ≡ (−1)n[Dn]q mod q

Just count points on one of the denominator

polynomials Dn! From this we deduce that

c2(G) has very good combinatorial properties.



Weight-drop can also be read off the c2-invariant:

it corresponds to c2(G) = 0.

To falsify the conjecture it suffices to find graphs

G for which c2(G) is non-constant.

To simplify further, restrict to counting points

over Fp with p prime. Let ap = p−2[G]p and

ap = ap mod p its reduction mod p. Define

c̃2(G) = (a2, a3, a5, . . .) ∈ F2 × F3 × · · ·

Enough to exhibit G with non-constant ap. Even

with just 6 primes, every graph G gives an ele-

ment (a2, . . . , a13) in a large set F2× . . .× F13.

Probability of a false positive is ∼ 0.0033%.

Huge gain in computational difficulty compared

to the original Feynman integral. It suffices to

take the final polynomial Dn of the denomina-

tor reduction, and count points of Dn = 0 over

finite fields Fp for small p.
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Counter-examples (with O. Schnetz)

Theorem 5. The following 8-loop graph has
c̃2(G) = (a2, a3, a5, . . .) where an are the Fourier
coefficients of the modular form

∑
anzn =

(
η(z)η(z7)

)3

of weight 3 and level 7, where

η(z) = z1/24
∏

n≥1

(1− zn).

15

16

9

7

6 81

2

3

13

4

14

11

10

12
5

(In this case we know ap for all primes p). The
theorem implies [G] is very far from polynomial
in q, and hence IG is probably not an MZV.
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...as if that wasn’t bad enough...

consider the following planar graph at 9 loops:

18

1

2

3
4

5

6
7

8

9

10
11

12

13
14

15

16

17

It is also modular, with the same modular form

as in the previous theorem.

Furthermore, its vertex width = 4.
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More modular forms in φ4 (with O. Schnetz)

Up to 6 loops: [G] always polynomial

ℓ = 7. New functions [X2 + X + 1], [X2 − 1]

ℓ = 8. We get 4 modular forms

ℓ = 9,10. Another 12 modular forms (but no

weight 2!), and many unidentified c̃2(G).

wt 2 3 4 5 6 7 8

level 11 7 8 5 8 4 9 3 8 3 9 2 10

14 8 8 6 9 7 4 9 7 3

15 11 7 10 8 5 8 5 10

17 12 9 8 11 6 11 6

19 15 9 12 7 9 15 7
20 15 10 15 8 15 8
21 16 12 15 9 16 8

24 19 13 9 19 10 10 19 9

26 20 ... 20 10 20 10

26 20 17 10 20 10 20 12

Conclusion: the general integrals IG are exotic,

but still seem to be highly constrained.
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Motivic Galois coaction

What can we say about the Feynman integrals
IG which do evaluate to multiple zetas?

If we pass to ‘motivic’ multiple zeta values ζm,
there is a hidden structure: the action of mo-
tivic derivations for each 2n + 1:

∂3, ∂5, ∂7, . . .

We have ∂2n+1ξ = 0 for all n ≥ 1 if and only if
ξ is a linear combination of simple zetas ζm(m).

The action is highly non-trivial: e.g.

∂3 ζm(7,3) = 17 ζm(7) (4)

∂5 ζm(7,3) = 6 ζm(5)

∂7 ζm(7,3) = ζm(3)

and respects all motivic (and conjecturally, all
possible) Q-algebraic relations between MZVs.

Thus there is the period map

per : ζm(n1, . . . , nr)→ ζ(n1, . . . , nr)

which respects all the relations.
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(with O. Schnetz). Experimentally, the known

multiple zeta values which occur in φ4 theory

are highly constrained by how the operators

∂2n+1 act upon them. This partially explains

the strange linear combinations of multiple ze-

tas which occur in φ4.

Define a linear combination of (motivic) multi-

ple zeta values to be abelian if it is polynomial

in single zeta values:

P(ζm(2), ζm(3), ζm(5), . . . , ζm(2n + 1))

with P a polynomial with rational coefficients.

Incredibly, we find that the multiple zeta values

which occur in φ4 are only slightly more general

than abelian multiple zetas.

Holy grail: would be to compute the action of

the ∂2n+1 from the topology of a graph.

The motivic philosophy suggests that all am-

plitudes carry an action of a motivic Galois Lie

algebra (P. Cartier’s ‘cosmic Galois group’).
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Renormalization (joint with D. Kreimer)

We can treat graphs with subdivergences in a

similar way (BPHZ and Mom).

Using the Hopf algebra of renormalization, sep-

arate Feynman integral into single-scale part

and purely angular, convergent part. The renor-

malization can be done graph by graph:

φren =
∑

φren
1−scale(S)φfin(θ)

Leads to explicit parametric representations for

the renormalized amplitudes, which can then

be treated by the general methods above.

We get simple proofs of

1). Finiteness of renormalized amplitudes.

2). Graph-by-graph Callan-Symanzik equations.

Uses only simple properties of graph polynomi-

als and the Hopf algebra of renormalization.
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Example: 3-loop graph inserted into itself:

γ Γ/γΓ

For the single-scale contribution, the renormal-

ization group equation gives

IΓ log(q2

µ2) + 1
2IγIΓ/γ log2(q2

µ2)

with Iγ = IΓ/γ = 6ζ(3). IΓ can be written as

an integral over graph polynomials involving

auxilliary graphs obtained from Γ, γ,Γ/γ.

IΓ =
∫ (

1

Ψ2
Γ

−
ΨΓ•/γ

Ψ2
Γ/γ

ΨγΨc(γ,Γ/γ)

)
<∞.

This should be computable by the symbolic

integration method (in progress).

Theorem 6. (with O. Schnetz and K. Yeats):

c2(Γ) = 0 for any Γ ∈ φ4 with subdivergences.
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1. Standard conjectures in algebraic geome-

try suggest that the amplitudes of the modu-

lar 8-loop graphs are not multiple zeta values

(multiple elliptic polylogs come next?).

2. By theorem 6, we expect graphs with subdi-

vergences to have weight drop. The subdiver-

gences should also make the amplitudes easier

to compute: so the number theory content of

1-scale divergent graphs is simpler.

3. Because of their sparsity, there is nothing

for these exotic ‘modular’ amplitudes to cancel

against. Thus we expect them to survive in the

sum over all graphs. This suggests there is no

way to change the renormalization scheme to

get only MZVs.

4. What about N = 4 SYM?

There is some hope: all the non-MZV exam-

ples have a weight drop in the sense of Hodge

theory.
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