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The motivic Lie algebra

Belyi’s theorem:

Gal(Q/Q) ↪→ Out(π̂1(P1\{0, 1,∞}))

Motivic version (Deligne-Ihara):

Gal(MT (Z)) ↪→ Aut(πun
1 (P1\{0, 1,∞}))

The motivic Lie algebra is gm = Liegr Gal(MT (Z)). We know by
deep results in the theory of motives that

gm ∼=
non-can

LieQ〈σ3, σ5, σ7, . . .〉

It is the free graded Lie algebra generated by one element σ2n+1 in
every odd degree 2n + 1 ≥ 3.

Goal: construct a kind of ‘Taylor expansion’ for the σ2n+1.
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The motivic Lie algebra (II)

Various versions of πun
1 (P1\{0, 1,∞}) give rise to algebras

LieQ〈e0, e1〉 ⊂ T (e0Q⊕ e1Q) ⊂ Q〈〈e0, e1〉〉

The injectivity of Gal(MT (Z)) implies that the motivic Lie algebra gm

embeds as a graded subspace of the tensor algebra

gm ↪→ T (e0Q⊕ e1Q)

The Lie bracket on gm is induced by the Ihara bracket, denoted {, }.
Example 1

The element σ3 ∈ gm maps to [e0, [e0, e1]] + [e1, [e1, e0]]

The elements σ3, σ5, σ7, σ9 are canonical. The element σ11 is only

well-defined up to Q{σ3, {σ5, σ3}}. ‘Large’ torsor.
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An aside: canonical generators

We can construct rational motivic associators as follows. Let

Φm =
∑

w∈{e0,e1}×
ζm(w)w ∈ H〈〈e0, e1〉〉

be the motivic Drinfel’d associator, where H is the algebra of motivic
MZV’s. We know that H has as basis the Hoffman elements

B = {ζm(n1, . . . , nr ) where ni ∈ {2, 3}} .
Define a map τ : H → Q by sending ζm(n1, . . . , nr ) ∈ B to 0 if at least
one ni = 3, and τ(ζm(2{n})) = (2n + 1)!22n.

Theorem 2

τ(Φm) ∈ Q〈〈e0, e1〉〉 is a rational associator.

A similar construction using Hoffman-Lyndon elements gives canonical
σ2n+1 for all n ≥ 1.

Today’s goal is NOT to define rational associators!
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Depth filtration

The depth filtration D is the decreasing filtration:

DrQ〈〈e0, e1〉〉 = {S ∈ Q〈〈e0, e1〉〉 : Sw = 0 if dege1
w < r} ,

which counts the number of e1’s in a word. Every series S ∈ Q〈〈e0, e1〉〉
admits a decomposition by depth

S =
∑
r≥0

S (r) with S (r) ∈ grrDQ〈〈e0, e1〉〉

The component S (r) consists of words with exactly r letters e1.

One can show that D is motivic: i.e., the induced filtration Drgm on the

motivic Lie algebra is preserved by { , }.
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Words and power series

We shall replace non-commutative formal power series in e0, e1 with
commutative power series in many variables xi (Ecalle, Zagier).

There is a Q-linear isomorphism

grrD Q〈〈e0, e1〉〉 ∼−→ Q[[x0, x1, . . . , xr ]] (1)

ea0
0 e1ea1

0 . . . e1ear
0 7→ xa0

0 xa1
1 . . . xar

r .

All power series that we consider will be translation-invariant.
Therefore no information will be lost in setting x0 = 0.

A formal power series Φ ∈ Q〈〈e0, e1〉〉 is completely determined by its

depth r -components Φ(r) ∈ Q[[x0, . . . , xr ]], for r ≥ 0.
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Examples

Example 3

We have σ3 = [e0, [e0, e1]] + [e1, [e1, e0]]. Therefore

σ(1) = [e0, [e0, e1]] −→ (x1 − x0)2

σ(2) = [e1, [e1, e0]] −→ x2 − 2x1 + x0

Translation invariant, so set x0 = 0. Represent σ3 as

σ3 = (x2
1 , x2 − 2x1, 0, . . .)

The depth one component is always

σ
(1)
2n+1 = x2n

1

In depths d ≥ 3, σ
(d)
2n+1 depends on choice of σ2n+1.
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Examples II

Example 4

The element σ9 is canonical. We can compute its depth 3 component:

σ
(3)
9 = −25

6
x6

1 +
1159

72
x5

1 x2 +
551

36
x5

1 x3 − 559

24
x4

1 x2
2 −

3319

72
x4

1 x2x3 + · · ·

plus 23 more terms. It clearly has non-trivial denominators.

Each coefficient in σ9 is the coefficient of ζm(2n + 1) in a decomposition
of the corresponding multiple zeta value:

ζm(5, 2, 2) =
−3319

72
ζm(9) +

2

3
ζm(3)3

+ 31 ζm(7)ζm(2)− ζm(5)ζm(4)− 25

6
ζm(3)ζm(6) .
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Standard relations

The simplest way to get at the generators σ2n+1 is via relations.

{Motivic associators} ⊂ {Drinfel’d associators} Furushou⊂ {Solutions to Dbsh}

where Dbsh are double shuffle equations. On the level of Lie algebras:

gm ⊂ grt ⊂ dmr .

dmr = solutions to double shuffle equations mod products (Racinet).

Standard Conjectures

gm ∼= dmr (Zagier) (⇒ gm ∼= grt (Drinfel’d))

Focus on dmr since it is well-adapted to depth filtration.
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Double shuffle equations I

The double shuffle equations are relations satisfied by MZV’s:

ζ(n1, . . . , nr ) =
∑

1≤k1<...<kr

1

kn1
1 . . . knr

r
, nr ≥ 2

Recall that the weight is the n1 + . . .+ nr . The depth is r .
Consider the (regularized!) generating series in depth r

Z (r)(x1, . . . , xr ) =
∑

n1,...,nr≥1

ζ(n1, . . . , nr ) xn1−1
1 . . . xnr−1

r

Relations between MZV’s ←→ Functional equations for Z (•)
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Double shuffle equations II

The stuffle equation is an equation of the type

ζ(m)ζ(n) = ζ(m, n) + ζ(n,m) + ζ(m + n)

Taking the generating series (and ignoring issues of divergence):

The depth two stuffle eqation

Z (1)(x1)Z (1)(x2) = Z (2)(x1, x2) + Z (2)(x2, x1) + Z (1)(x1)−Z (1)(x2)
x1−x2

The shuffle equation comes from representation of MZV’s as integrals.

The depth two shuffle eqation

Z (1)(x1)Z (1)(x2) = Z (2)(x1, x1 + x2) + Z (2)(x2, x1 + x2)
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The linearized double shuffle equations

We shall consider two simplified variants of these equations:

Double shuffle equations modulo products

Kill all products on the left-hand side:

0 = Z (2)(x1, x2) + Z (2)(x2, x1) +
Z (1)(x1)− Z (1)(x2)

x1 − x2

0 = Z (2)(x1, x1 + x2) + Z (2)(x2, x1 + x2)

The linearized double shuffle equations (Zagier, Ihara, Kaneko)

Kill all terms of lower depth as well

0 = Z (2)(x1, x2) + Z (2)(x2, x1)

0 = Z (2)(x1, x1 + x2) + Z (2)(x2, x1 + x2)
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Double shuffle equations II

Notation

dmr is the set of Q-solutions to the Dsh equations mod products:

Φ = (Φ(1)(x1),Φ(2)(x1, x2), . . . ) Φ(r) ∈ Q[x1, . . . , xr ]

lsr is the set of Q-solutions to the linearized equations in depth r . Let

ls =
⊕
r≥1

lsr

Definition

Let dgm
• = gr•Dgm be the depth-graded motivic Lie algebra.

Relation with the motivic Lie algebra

gm ⊂ dmr dgm ⊂ ls

Zagier-Ihara-Kaneko have conjectured that dgm = ls.
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Ihara action

The Ihara bracket can be written explicitly

Q[x0, . . . , xr ]⊗Q[x0, . . . , xs ] −→ Q[x0, . . . , xr+s ]

f , g 7→ {f , g}
where

{f , g} =
∑

µ∈Dr+s+1

ε(µ)µ
(
f (x0, . . . , xr )g(xr , . . . , xr+s)

)
Here Dr+s+1 = 〈σ, τ〉 is the dihedral group generated by

τ(f ) = f (x0, xr , . . . , x1)

σ(f ) = (−1)r f (−xr , . . . ,−x1,−x0)

and ε : Dr+s+1 → {±1} is sign representation.
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Solving the linearized double shuffle equations

Variant of Racinet’s theorem

The vector space of solutions to the linearized double shuffle equations is
a bigraded Lie algebra for the Ihara bracket:

{ , } : ls ∧ ls→ ls

In depth one, the only elements in ls1 are

x2n
1 for n ≥ 1

These are precisely the depth one components of the σ2n+1

grD : gm −→ dgm ⊂ ls

σ2n+1 7→ x2n
1

‘Depth-graded motivic multiple zeta values’, arXiv:1301.3053
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Relations

The theorem means that any iterated bracket

{x2n1
1 , {x2n2

1 , {x2n3
1 , . . . , } · · · } ∈ dgm

Example 5

Ihara discovered the relation {x2
1 , x

8
1} − 3{x4

1 , x
6
1} = 0.

There are many quadratic relations. A relation∑
i<j

λi,j{x2i
1 , x

2j
1 } = 0

holds if and only if the polynomial

P(X ,Y ) =
∑
i,j

λijX
2iY 2j

is an even period polynomial (Ihara-Takao, Goncharov, Schneps)
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Period polynomials

Even period polynomials

Let n ≥ 1 and let Wo
2n ⊂ Q[x , y ] denote the vector space of homogeneous

polynomials P(x , y) of degree 2n − 2 satisfying P(1, 0) = 0,

P(x , y) + P(y , x) = 0

P(±x ,±y)− P(x , y) = 0

P(x , y) + P(x − y , x) + P(−y , x − y) = 0 .

The Eichler-Shimura-Manin theorem implies that

dimQ Wo
2k−2 = dimQ S2k(PSL2(Z))

where S2k(PSL2(Z)) is the space of cusp forms of weight 2k.
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Exceptional solutions

Since LieQ〈x2
1 , x

4
1 , x

6
1 , . . .〉 is not free, the depth-graded motivic Lie

algebra must contain some extra generators in higher depth!

Therefore we should expect a map Wo → (ls)ab. Surprisingly:

Theorem 6

For every even period polynomial f ∈Wo , there is an element

ef ∈ Q[x1, x2, x3, x4]

which is defined explicitly, such that ef is a solution to the (four)
linearized double shuffle equations in depth 4.

We actually get a map Wo ↪→ ls4 which is defined over Z.

Not known if the ef are motivic, i.e., lie in dgm
4 .
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Motivic Broadhurst-Kreimer-Zagier-Ihara-Kaneko conjecture

If we believe the Broadhurst-Kreimer conjecture we are led to:

Conjecture 2

H1(ls; Q) ∼=
⊕

x2n
1 Q⊕ e(Wo)

H2(ls; Q) ∼= Wo

Hi (ls; Q) = 0 for all i ≥ 3 .

Suggests that the depth-graded motivic Lie algebra dgm has:

Generators: x2n
1 and the ef

Relations: period polynomial relations between {x2a
1 , x2b

1 }

Theorem 7

Conjecture 2 ⇒ Broadhurst-Kreimer conjecture for motivic MZV’s &
dgm = ls & Zagier, Drinfel’d conjecture gm = grt = dmr.
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We have:

A complete conjectural description of solutions to the linearized
double shuffle equations. ls←→ dgm.

Now:

We shall try to construct all solutions to the double shuffle
equations modulo products explicitly. dmr←→ gm.
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Double shuffle equations with poles

Idea1 is to try solve the double shuffle equations with poles. Define

Od = Q
[
x1, . . . , xd ,

1

x1
, . . . ,

1

xd
,
( 1

xi − xj

)
1≤i<j≤d

]
.

Taking the product over all d , we define

O =
∏
d≥1

Od

Wish to find elements Φ = (Φ(1),Φ(2), . . .) ∈ O which solve the double
shuffle equations mod products. We have

gm ⊂ dmr ⊂ pdmr ⊂ O
where pdmr means ‘polar solutions to double shuffle’.

Miracle: we can write down explicit solutions in pdmr.
1I am informed that Ecalle has previously considered solutions to similar

types of equations amongst much more general classes of functions (eg in
relation to problems of resurgence)
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Canonical Polar Associators

For every n, d ≥ 1, define

ψ
(d)
2n+1 =

1

2

d∑
i=1

( (xi − xi−1)2n

x{0,..,i−2},{i−1} x{i+1,..,d},{i}
+

x2n
d

x{1,..,i−1},{0} x{i,..,d−1},{d}

)
+

1

2

d−1∑
i=1

( (x1 − xd)2n

x{2,..,i},{1} x{i+1,..,d−1,0},{d}
− x2n

d−1

x{d,1,..,i−1},{0} x{i,..,d−2},{d−1}

)
where for A,B ⊂ {0, . . . , d}, write xA,B =

∏
a∈A,b∈B(xa − xb) ,

Theorem 8

For all n ≥ 1, the elements ψ2n+1 = (ψ
(•)
2n+1) satisfy the double shuffle

equations modulo products.
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Canonical Polar Associators II

We think of ψ2n+1 as the ‘polar version’ of σ2n+1, since

ψ
(1)
2n+1 = x2n

1 = σ
(1)
2n+1

It corresponds to ζ(2n + 1). So we have integral polar generators

ψ3, ψ5, ψ7, . . .

in every odd degree. They have poles in depths ≥ 3.

However, we cannot construct elements of gm out of these polar

solutions. Idea from Quantum Field Theory: we need to construct a ‘pure

pole’ solution in pdmr and subtract counter-terms to cancel the poles.
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Vineyards

A bunch of n grapes gn is a labelled tree with vertices {i , i + 1, . . . , i + n}

The vertex i is the stalk, and i , . . . , i + n the grapes.

A vine v = gi1 . . . gin is a labelled rooted tree obtained by grafting

bunches of grapes. Each stalk must be glued to the highest grape.

8 FRANCIS BROWN

The vertex i will be called the stalk, and the vertices i, . . . , i + n the grapes.
A vine is a rooted tree whose vertices have distinct labels {0, 1, . . . , n}, where 0

denotes the root vertex, such that every non-root vertex is either a grape, or is the
stalk of a bunch of grapes. Any vine v is uniquely determined by a sequence

gi1 . . . gik

where the stalk of each bunch of grapes gi!
is grafted to the grape with the highest

label of the vine gi1 . . . gi!−1. The index k will be called the depth d(v) of the vine.
Let Vn denote the set of vines with n grapes. A vineyard is any Q-linear combination

(possibly infinite) of vines. A vineyard can be identified with an element of the free
associative algebra generated by elements gi of degree i, for i ≥ 1, and completed with
respect to the degree:

(4.5) V̂ = Q〈〈g1, g2, . . .〉〉 .

The sets V1,V2,V3 are depicted below:

g1

0

1

g2

0

1 2

g1g1

0

1

2

g3

0

1 2 3

g1g2

0

1

2 3

g2g1

0

1
2

3

g1g1g1

0

1

2

3

To every vine we associate a polynomial as follows.

Definition 4.5. Let x0 = 0. For every vine T ∈ Vn, define

(4.6) xT =
∏

(i,j)∈E(T )

(xj − xi) ∈ Z[x1, . . . , xn]

where the product is over all edges (i, j) of T , where 0 ≤ i < j ≤ n.

Definition 4.6. Define an element ψ−1 ∈ O as follows:

ψ
(d)
−1 =

∑
v∈Vd

(−1)d(v)+1

d(v)
1

xvxd
.

In particular, ψ
(1)
−1 = 1

x2
1
. We set

(4.7) ψ−1 = (ψ(1)
−1 , ψ

(2)
−1 , ψ

(3)
−1 , . . .)

The element ψ−1 is homogeneous of weight −1. It has at most simple poles along
all divisors xi = 0 and xi = xj , except for a double pole along xn = 0.

Theorem 4.7. The element ψ−1 satisfies the inhomogeneous double shuffle equations.

4.3. A Hopf algebra of vines. I will only make a very brief remark to explain
why the shuffle product formula holds for the element ψ−1, since it comes from an
underlying Hopf algebra structure.

Definition 4.8. Define a completed coproduct

∆ : V̂ −→ V̂ ⊗̂Q V̂
such that ∆(gn) =

∑
i+j=n gi ⊗ gj, where we set g0 = 1.

Define the height h(gi1 . . . gik ) to be k .
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A solution corresponding to ζ(−1)

If v is a vine, define a polynomial

xv =
∏

(i,j)∈E(v)

(xj − xi )

where x0 = 0 and the product is over edges (i , j) with i < j . Define

ψ
(d)
−1 =

∑
v∈Vd

(−1)h(v)+1

h(v)

1

xv xd
,

where the sum is over vines with d grapes. It has ψ
(1)
−1 = x−2

1 .

Theorem 9

The element ψ−1 = (ψ
(•)
−1) is a solution to the double shuffle equations

modulo products
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The Lie algebra of polar associators

We obtain a graded Lie algebra

L = LieQ〈ψ−1, ψ3, ψ5, ψ7, . . .〉

equipped with the Ihara bracket. By adapting Racinet’s theorem:

Theorem 10

Every ξ ∈ L is a solution to the double shuffle equations mod products.

Suppose that we have a rational combinations of brackets

{ψ2n1+1, {ψ2n2+1, {ψ2n3+1, . . .}} · · · } ∈ L

such that all poles cancel. Such a combination will be in dmr. By

Zagier’s conjecture it will be in the motivic Lie algebra gm. Conversely,

every element in gm should have a ‘Taylor expansion’ in L.
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Anatomy of an associator

Anatomies of the canonical elements σ3, σ5, σ7, σ9:

σ3 ≡ ψ3

σ5 ≡ ψ5 − 1

60
{ψ−1, {ψ−1, ψ7}} − 1

5
{ψ3, {ψ3, ψ−1}}

σ7 ≡ ψ7 − 1

112
{ψ−1, {ψ−1, ψ9}} − 1

14
{ψ5, {ψ3, ψ−1}}

− 29

224
{ψ3, {ψ5, ψ−1}} + {terms of depth ≥ 5}

σ9 ≡ ψ9 − 1

180
{ψ−1, {ψ−1, ψ11}} − 7

180
{ψ7, {ψ3, ψ−1}}

−113

180
{ψ3, {ψ7, ψ−1}} − 1

16
{ψ5, {ψ5, ψ−1}}+ {dpth ≥ 5}
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Subtraction of counter-terms

Idea is to construct expansion of σ2n+1 depth by depth.

Theorem 11

Let ξ ∈ L of weight ≥ 0. Then ξ(r) has at most simple poles.

Theorem 12

Let ξ ∈ L such that ξ(1), ξ(2), . . . , ξ(d−1) have no poles. Then ξ(d) ∈ Od

only has poles along ‘consecutive diagonals’

x1 = 0, x2 = x1, , . . . , xn−1 = xn, xn = 0

What is the conjecture which guarantees the existence of this expansion?
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Main conjecture (first version)

Definition

Let plsd be the space of solutions f (x1, . . . , xd) ∈ Od to the linearized
double shuffle equations in depth d such that

x1(x2 − x1) . . . (xd − xd−1)xd f ∈ Q[x1, . . . , xd ]

Then pls =
⊕

d plsd is a Lie algebra for the Ihara bracket.

Conjecture 3

The Lie algebra pls is generated by

x−2
1 , x2

1 , x
4
1 , x

6
1 , . . . (and 1, which is central)

Theorem 13

Conjecture 3 implies that gm ⊂ L = LieQ〈ψ−1, ψ3, ψ5, . . .〉.
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Remarks

If conjecture 3 is true, this construction ‘rigidifies’ the motivic Lie
algebra enormously. A priori, σ11 was ambiguous up to a multiple of
{σ3, {σ3, σ5}}. The above construction fixes σ11 uniquely.

The anatomical decomposition is not unique. We shall see that the
ambiguity is precisely controlled by modular forms.

The anatomical decomposition is extremely compact. A priori σ9

has 512 coefficients. They can be completely reconstructed from

1

180
,− 7

180
,−113

180
,− 1

16

just four numbers! In weights ≤ 13, the MZV data mine contains
∼ 30, 000 numbers. It should reduce to about 40.
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Canonical Lie algebra

Question: If power-series correspond to words via

ea0
0 e1ea1

0 . . . e1ear
0 ⇐⇒ xa0

0 xa1
1 . . . xar

r ;

then what is the meaning of power-series with poles?

Answer: Pass from genus 0 to genus 1.
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Eisenstein derivations

E\{0} punctured elliptic curve, Liegr(πun
1 (E\{0})) ∼= LieQ〈a, b〉. Let d

be the set of derivations δ on T (a Q⊕ b Q) such that

δ([a, b]) = 0

and a∨(δ(b)) = 0. Then δ is uniquely determined by δ(a).

Definition Nakamura-Asada, ..., Hain-Matsumoto, Pollack

For all n ≥ 0 there is a unique ε2n ∈ d such that ε2n(a) = ad(a)2nb.

Let uε ⊂ d be the Lie algebra spanned by ε2n, n ≥ 0. It encodes in

particular the universal monodromy of M1,1 on universal elliptic curve.
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Words and rational functions

A derivation δ ∈ d is determined by

δ(a) ∈ T (a Q⊕ b Q)

The ‘depth’ is the now the degree in b. As before, map to words

gr(r)
D T (a Q⊕ b Q) −→ Q[x0, . . . , xr ]

ak0 bak1 . . . bakr 7→ xk0
0 xk1

1 . . . xkr
r

but this time divide by (x0 − x1) . . . (xr − xr−1)(xr − x0).
This gives a map from derivations to rational functions:

d −→ Q[x0, x1, . . . , xr ]

(x1 − x0)(x2 − x1) . . . (xr − xr−1)(xr − x0)
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Back to the linearized double shuffle equations

Everything is translation-invariant, so we set x0 = 0 as usual.

Example 14

The elements ε2n satisfy ε2n(a) = ad(a)2n(b). Therefore

ε2n 7→ (x1 − x0)2n

(x1 − x0)2
− x0=0− − → x2n−2

1

Theorem 15

The map above gives a morphism of Lie algebras

uε ↪→ pls

The Eisenstein derivations satisfy the ordinary linearized double shuffle

equations.
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Main conjecture revisited

Since uε is spanned by ε2n ↔ x2n−2
1 , for n ≥ 0, we get

Conjecture 3 revisited

uε = pls

This is an elliptic analogue of Zagier’s conjecture gm = dmr.

‘The Lie algebra of Eisenstein derivations should be precisely the Lie
algebra of solutions to linearized double shuffle with poles’.

Theorem 16

The conjecture is true in depths ≤ 3.

In particular, Hain-Matsumoto-Pollack’s period polynomial relations lift
in depth 3, and these are the only relations.
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Structures on pls

Recall that uε ⊂ pls. We have:

1 An action of sl2 on pls which extends the action on uε.

2 An increasing filtration Rnpls which is preserved by the Lie bracket.
It is concentrated in non-negative degrees. It satisfies

ls = R0pls

Therefore, dgm ⊂ R0pls.

3 So pls is a triply-graded Lie algebra. It forms a bridge between the
Broadhurst-Kreimer conjecture and the Lie algebra of Eisenstein
derivations. It satisfies

dgm ⊂ pls ⊃ uε
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Conclusion

We defined an explicit Lie algebra

L = LieQ〈ψ−1, ψ3, ψ5, . . .〉
of solutions to double shuffle equations modulo products.

The Eisenstein Lie algebra uε satisfies linearized double shuffle
equations with poles pls. Conjectured that uε = pls.

If conjecture true, then the motivic Lie algebra embeds

gm ↪→ L ‘Anatomy’

This is a theorem in depths 1, 2, 3, 4. Also implies dgm = R0u
ε.

The elements ψ2n+1 should be viewed as a ‘lifting’ of the Eisenstein
derivations ε2n+2 for n ≥ −1. In other words L −→ uε

ψ2n+1 7→ ε2n+2

Similar story for associators ⇒ Massive compression of MZV tables.
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....Hold on!....

The double shuffle equations are in fact vacuous in depth 1.

We know that all solutions are necessarily even functions in depth
1, but what about solutions with poles...?
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An exceptional solution

Return to double shuffle equations:

0 = Φ(2)(x1, x2) + Φ(2)(x2, x1) + Φ(1)(x1)−Φ(1)(x2)
x1−x2

0 = Φ(2)(x1, x1 + x2) + Φ(2)(x2, x1 + x2) (2)

Easy to see that the only solutions satisfy Φ(1)(x1) = Φ(1)(−x1) when
Φ(1),Φ(2) are power series. When we allow poles, there is

Exceptional solution

Φ(1)(x1) =
1

x1
and Φ(2)(x1, x2) =

1

3

( 2

x1x2
+

1

x1(x1 − x2)

)
.

This element has weight 0: it corresponds to ζ(0).
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A weight 0 element

Recall that we had an algebra of vines

Q〈g1, g2, . . .〉
where gn is in degree n. It is a Hopf algebra for the coproduct
∆(gn) =

∑
i+j=n gi ⊗ gj . Define a series of elements

sn = S ? Y (gn)

where S ? Y is the Dynkin operator. Then

s1 = g1 s2 = 2g2 − g1g1

We had a map x from vines to rational functions. Define

ψ
(d)
0 =

(
d+1

2

)−1
x−1

sd

Theorem 17

ψ0 = (ψ
(•)
0 ) solves the double shuffle equations mod products.
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Twisting with ψ0

Definition of twisting

Let 0 6= α ∈ Od be a solution to the linearized double shuffle equations in
depth d . Let α̃(i) = 0 for i < d , and α̃(d) = α. Recursively define

α̃(d+k) =
1

2k

k∑
i=1

{ψ(i)
0 , α̃(d+k−i)} (3)

for k ≥ 1. Let α̃ = (α̃(•)). Its first non-zero component is α.

Theorem 18

α̃ is a solution to the double shuffle equations mod products.

Proof of theorem 18 in progress
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Twisting with ψ0

We could have saved ourselves a lot of trouble and defined

χ2n+1 = x̃2n
1 ∈ pdmr

We get solutions to double shuffle equations for free! But they are
different from the ones defined earlier: χ2n+1 6= ψ2n+1, and have bad
poles.

Example: χ−1 starts to differ from ψ−1 starting from depth 5.

Twisting with ψ0 gives an unconditional anatomical decomposition for
the motivic Lie algebra in the space of solutions to the linearized double
shuffle equations (with more general poles, this time).
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An algebraic structure

What happens if we allow ψ0 to twist with itself?
We get a copy of the Witt algebra.

Theorem 19

The elements sd =
(
d+1

2

)
ψ

(d)
0 satisfy

{sm, sn} = (m − n)sm+n

In fact, we get an action of the Witt algebra on the Hopf algebra of vines
coming from the linearized Ihara action:

s1 ◦ gn = (n + 1)gn+1 and s2 ◦ gn = (n + 2)gn+2 − gn+1g1

which satisfies

a ◦ (b.c) = (a ◦ b)c + b(a ◦ c)− abc

What is the meaning of this algebraic structure?
43 / 43


	Introduction
	The motivic Lie algebra
	Depth filtration
	Words and power series
	Examples

	Linearized double shuffle
	Standard relations
	Double shuffle
	Ihara bracket
	Motivic Broadhurst-Kreimer conjecture

	Anatomy of the motivic Lie algebra
	Canonical Polar Solutions
	Hopf algebra of vines
	Canonical Lie algebra

	Eisenstein derivations

