AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER
CONJECTURE

FRANCIS BROWN

Don Zagier asked me whether the Broadhurst-Kreimer conjecture could be refor-
mulated as a short exact sequence of spaces of polynomials in commutative variables.
The purpose of this note is to describe just such a sequence.

1. DEPTH-GRADED DOUBLE SHUFFLE HOPF ALGEBRA

Recall the double shuffle equations from [5], Définition 1.3. Let ® € Q({eg, e1)) be
a non-commutative formal power series with coefficients in Q. Let

A : Q{{eo, e1)) — Q({eo, €1))®Q((e0, €1))

denote the continuous comultiplication for which ey, e; are primitive, such that Ay
is a homomorphism for the concatenation product. The coefficients of the element ®
satisfy the shuffle equations if Amm® = ® @ &. Now let Y = {y1,¥2,...,} denote an
alphabet in infinitely many elements y; of degree ¢ and let

A, Q((Y)) — QUY))8Q((Y))
denote the continuous comultiplication such that A, (y,) = >2;,;_,, ¥i ® y;, and such
that A, is a homomorphism for the concatenation product. The coefficients of an
element ¥ € Q((Y)) satisfy the stuffle equations if A, ¥ = ¥ ® ¥. Racinet’s group of
solutions to the double shuffle equations consists of elements ® € Q({eg, e1)) such that
(1.1) Amd® = d2®

AP, = D, 29,

(I)(eo) = @(el) =0 s (I)(l) =1
where ®(w) is the coefficient of a word w € {eg,e1}™ in @, and @, € Q((Y")) is obtained
from ® by a regularization procedure, which we shall not require here. We can view

a solution to (1.1) either as an element ® € Q((ep, e1)) or as an element . € Q((Y))
since they determine each other uniquely.

1.1. Depth-graded version. Recall that the depth filtration is the decreasing filtra-
tion on Q({ep, e1)) (and respectively Q((Y))) with respect to the ®-degree, where eq
has ©-degree 0, and e; has ©-degree 1 (respectively y,, has D-degree 1). By passing to
the associated weight and depth bigraded Hopf algebras, A becomes the coproduct

(1.2) Am : Qeo, e1) — Q(eo, e1) ®g Q(eo, 1)
with respect to which eg, e; are primitive (no change here), and A, becomes
(1.3) A : QY) — Q(Y) ©o Q(Y)
for which vy, is primitive for all n > 1. Now define a map
(1.4) a:Qlep,er) — Q)
aleregt ...e1€0") = Ynyi41---Yn,+1
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and such that « sends all words beginning in ey to zero. A section of this map is given
by the map 3 : Q(Y) — Q(eq, e1) which sends y, to ejeff ' and is a homomorphism
for the concatenation products.

Definition 1.1. An element U € Q(Y") is a solution to the depth-graded double shuffle
equations if it equalizes the two coproducts (1.2) and (1.3) and is even in depth one:

(1.5) AmB(¥) = (Be06)(An )
U(y,) = Oifnisevenornisl

The reason for the second condition in (1.5) is explained in [1]: the double shuffle
equations, restricted to depth one, are vacuous. Nonetheless the full equations (in
particular in depth < 2) imply evenness in depth one, so this condition must be added
back artificially to the depth-graded versions of the equations.

Definition 1.2. Let D C Q(Y') denote the largest bigraded subspace of the vector
space of solutions to (1.5) which is a coalgebra for A}, .

For simplicity, we shall denote the coproduct by
A:D—D ®qQ D.

Recall that the linearized double shuffle equations [1] are defined by the bigraded
vector space [s of elements ® € Q(eq, e1) which satisfy the equations:

(1.6) Ap® = 1@0+0®1
Afja(®) = 10a(®) +a(®) @1
d(ehe;) = 0ifiisodd

and satisfy ®(eg) = 0 and ®(e;) = 0. Note that, compared to [1] §7, we have added
the condition that ®(e;) vanish to exclude the trivial solution to these equations.

Lemma 1.3. The primitive elements in D are ezactly given by ls.

Proof. Suppose that ¥ € D C Q(Y) is primitive for AY, and therefore by (1.5), 5(¥)
is primitive for Apr. Since every word in {eg, e1}* can be uniquely written as a linear
combination of shuffles of ef} with words beginning in e, we can uniquely extend 5(¥)
to an element ® € Q(eg,e1) which is primitive for A and satisfies ®(eg) = 0 and
a(®) = U. The element ¥ satisfies the linearized double shuffle equations (1.6). O

1.2. The Ihara action. The action on the pro-unipotent fundamental groupoid of
P\ {0, 1,00} by automorphisms gives rise to a continuous Q-linear map

o1 oI11(Q) ® o111 (Q) — o111 (Q) ,

known as the Ihara action, where ¢II1(Q) C Q((eg,e1)) consists of invertible power
series ® which are group-like for Aqy. Concretely, o is defined on power series by

F(eo, e1), G(eo, e1) — Gleo, Feo, e1)e1 F(en, e1) ) F(eo, e1)
One of the main results of Racinet’s thesis [5] is the following.

Theorem 1.4. (Racinet) The solutions to the double shuffle equations (1.1) are pre-
served by the Thara action.

In [2], we defined a variant of the Thara action, called the linearized Ihara action.
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Definition 1.5. The linearized Ihara action is the Q-bilinear map
o+ Q{eo, e1) ®q Qeo, e1) — Qeo, €1)
defined inductively as follows. For words a,w in eg, e1, and for any integer n > 0, let
(1.7) ao(eferw) = ejaeiw + efera*w + effer (aow)
where aoefl = ef a, and for any a; € {eg,e1}™, (a1...an)* = (=1)"ay ...as.
The action o is not associative but satisfies

(1.8) fie(f2aog) = fao(ficog) = (fiafe)og— (f2ofi)oyg

for all f1, f2,9 € Q{eg,e1). A variant of Racinet’s theorem is the following:
Corollary 1.6. The linearized Ihara action defines a map
(1.9) 9:[5®@l~)—>5

1.3. A variant of the Milnor-Moore theorem. Suppose that we have a coalgebra
A over Q, with coproduct

A:A— ARg A

which is graded, connected, and cocommutative. Let a denote the set of primitive
elements of A. Suppose now that we have a Q-bilinear map

(1.10) aoAd— A

which is graded, and such that A(f o g) = A(f) o A(g) for all f € a,g € A. Denote
the antisymmetrization A2a — a by {f,g} = fog — go f. Suppose furthermore that
o satisfies the pre-Lie identity:

fio(faog) = fao(fiog) ={f1,fa}og

for all f1, fo € a,g € A. Then in particular, a is a Lie algebra with respect to {, } and
the map (1.10) defines a map Ua — A, where Ua is the universal enveloping algebra
of a.

Proposition 1.7. With these assumptions, Ua = A.

Proof. For any connected graded Hopf algebra H, let A®) = A(z) —z@1 -1z
denote the reduced coproduct, and define A : H — H®" to be the iterated reduced
coproduct for » > 2, and the identity for » = 1. For every x € H there is a smallest
7 such that A()(z) = 0. This defines an increasing (coradical) filtration R on H. In
our situation, A is cocommutative and so we obtain a map

A= grfA — Sym™ 'a .

By iterating (1.10) and symmetrizing, we obtain a map m : Sym” 'a — R,.A, which
is an inverse to A1) by the compatibility between A and o. Thus

grfA =~ Sym™'a .

But Sym"'a is isomorphic to grfUa by the Poincaré-Birkhoff-Witt theorem. There-
fore Ua — A is an isomorphism (of coalgebras). O

By applying the previous proposition to ﬁ, we deduce from lemma 1.3 that the
coalgebra D is isomorphic to the universal enveloping algebra of Is:

(1.11) Uls =D .
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2. EQUATIONS FOR POLYNOMIALS IN COMMUTING VARIABLES

In [1], §3-5, it is explained how to translate Hopf algebraic properties of series ®
as described above, into functional equations for power series in commuting variables.
The basic remark is that there is an isomorphism of graded vector spaces

ng@Q<Y> I Q[‘Th'"ax’r]
Yiy - Yi, —  x...xy

where the weight of a polynomial in Q[z1,...,,] is defined to be the degree plus
the number of variables. The (p, q)-th shuffle equations are defined to be the (p,q)'"
component of Ay W. If the depth p + ¢g-component of W is the element f, it is written

fl . capmapy . Tpry)
where, using the notation from [4], we define
gu(xl,...,xn) =gz, 21 +22,...; 01+ ...+ ),

and m is the shuffle product acting formally on the arguments of the function f; thus
flrjumzjv) = f(z;,uma;v) + f(xj, xjumv). Likewise, the (p,¢)-th stuffle equation
is defined to be the (p, q)™" component of AY, W. It is written

flxr . xpmapyt ... Tpiq)
Corresponding to the (i, 7)™ component of 3, let us define a map £3; ;:
(2.1) Bijf(zr,. . zigy) =
f(fEl,Il —|—I2,...,I1 —|—...—|—a:l-,:1:1-+1,:131-+1 +$i+27---a$i + +$Z+J)
Lemma 2.1. The defining equations for l~)n, where n > 2 correspond to:

(2.2) frar . capmapyt . Tprg) = Bpgf(T1 . Ty Ty .. Tpiy)

fler. . xpmzpir ... Tprq) € Dp®Rg Dy

for all 1 < p < q where p+ q = n. In the second line of these equations we identify
Qlz1, ... xp) @0 Qlz1, ..., 24| with Q[z1, ..., Tprql.

For comparison, the defining equations for [s,,, where n > 2 correspond to

(2.3) frar.capmapg ... xpy) =0 foralll<p<q , pt+qg=n
=0

flrr . xpmapyr ... Tpiq) foralll<p<gq , p+qg=n

The defining equations for D,, and s, in depth n = 1 are simply f(0) = 0, f(x1)
even, by the second lines of equations (1.5) and (1.6), giving

(2.4) Dy = ls = 23Qla}

Of course, ﬁo = Q, by definition.

2.1. Linearized Thara action for polynomials. In [2] and [1] we wrote down the
following explicit formula for the linearized Ihara action:

o :Qxy,..., 2] ®q Qz1, ..., 25] — Qz1, ..., 2Tr14]
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which is given explicitly by

S
fog(z, ... ,@rys) = Zf(xi_l,_l — Ty ey Tigr — ) G(T1y ooy iy Tt 1y e e oy Tyges)
=0
S
— (=) F (i1 = Tigrs o @ — igr) g1, Tt Tigys - Trgs)
i=1

Specializing to the case when r = 1, the previous formula reduces to

Q[JI%] ®Q Q[xlu"wxs—l] B Q[xl,...,.’lis]
2n

xi"og(xy,...,x5-1) = Z((xi—xi,l)%— (Ii_zi+1)2n)g($17...7@7...,175)
i=1

where 79 = 0 and 74,1 = x4 (i.e., the term (x5 — 751 1)?" is discarded).

2.2. Examples in depths 2 and 3.

2.2.1. Depth 2. The space 52 is defined by the equations

(2.5) fArimay) = frymas)
flzimas) € l~)1 ®q 51

Concretely, this is the pair of equations

(2.6) f@r, @ +@2) + flre, 21+ 32) = flar,22) + fla2,21)

flxr, ) + f(az,21) € afa3Qlat, 23]

Compare the space [s5 of linearized double shuffle equations in depth 2, given by

(2.7) flx1, 21 +22) + f(ze, 1 +22) = 0
f(@1,22) + fz2,21) = 0

The map s ® l[s7 — 52 is given by

(2:8) " oaf" = eiad" + (w2 — 21)*"ad" — (22— 21)*"a"

2.2.2. Depth 3. The space 53 is defined by the equations
(29) fﬁ(.fl III{EQIg) = 61)2f($1 HIIQIg)
f(Il III{EQIg) S D1 ®Q D2
Concretely, this is the pair of equations
(2.10)  f(w1, w12, 2123) + f(22, 212, %123) + f(T2, T23, T123)
= f(x1, 22, x23) + f(x2, 21, 223) + f(x2, 223, 71)
f(@1, @, 23) + f(x9,21,73) + f(22,23,11) € 23Q[23] ®g Do

where we write x4 for z, + xp, and zgp. for z, + xp + 20
Compare the space lsg of linearized double shuffle equations in depth 2, given by

(2.11) flx1, x12,2123) + f(22, 212, T123) + f(22, 223, 2123) = O
fl@r, o, 23) + f(w2, 21, 23) + f(22,3,21) = 0
The map Is; ®q Dy — Dy is given by
(2.12) 21" o f(x1,22) = 27" f (22, 73)+
(2 — 21)*™(f (21, 23) — flx2,23)) + (w3 — 22)* " (f (21, 32) — f(21,23))
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3. RELATIONS AND EXCEPTIONAL CUSPIDAL ELEMENTS

3.1. Period polynomials.
Definition 3.1. Let n > 1 and let W3, C Q[X,Y] denote the vector space of homo-
geneous polynomials P(X,Y) of degree 2n — 2 satisfying
(3.1) PX,)Y)+PY,X)=0 , P(£X,+Y)=PX,Y)
(3.2) PX,)Y)+P(X-Y,X)+P(-Y,X-Y)=0.

The space W5, contains the polynomial py,, = X272 — Y?"~2 and is a direct sum

W2€n = WQe;zO EB Qp2n

where W32 is the subspace of polynomials which vanish at (X,Y) = (1,0). We write
wed =@, W;;LO. By the Eichler-Shimura theorem and classical results on the space
of modular forms, one knows that

12

) di e,0 2n — S )
(3.3) 7;1 imWy's —(1 — 511 =55

3.2. Relations in depth 2. The Thara bracket gives a map

(34) {., } cls Alsy — Isg .
It follows immediately from formula (2.8) for o and the definition of W& that
(3.5) WO = ker(ls; Als; — Iso)

It is easy to show that the following sequence is exact

(3.6) 0— W 15y Als; tsy — 0.
and hence by lemma 1.3, the following sequence is also exact:

O—>We’0—>[51®(@[51i>ﬁ2—>0.

3.3. Exceptional elements in depth 4. Let [ € W;;lo_|r2 be an even period poly-
nomial of degree 2n which vanishes at y = 0. It follows from (3.1) and (3.2) that it
vanishes along x = 0 and « — y = 0. Therefore we can write

f=wy(x—y)fo
where fy € Q[z,y] is symmetric of homogeneous degree 2n — 3. Let us also write

fi = (xz —y)fo. We have fi(—z,y) = fi(z, —y) = —fi(z,y).

Definition 3.2. Let f € Q[z,y| be an even period polynomial as above. The following
element was defined in [2]:

(37) ef S Q[y05y17y25y35y4]

e = Y filys—ys,v2 —v1) + (Wo — v1) fo(y2 — ys, ya — v3)
775

where the sum is over cyclic permutations (yo, ¥1, Y2, ¥3, Y1) — (Y1, Y2, Y3, Ya,Yo). Its
reduction €5 € Q[x1,...,x4] is obtained by setting yo = 0,y; = z;, for i =1,...,4.

Theorem 3.3. [2] The reduced polynomial €; obtained from (3.7) satisfies the lin-
earized double shuffle relations. In particular, we get an injective linear map

e:wel — (s,

Definition 3.4. Let £ C ls4 be the image of the map €.
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By the previous theorem, £ =2 W0, There is an explicit map & — W given by
f(xl, o, T3, $4) [ xlng(xl, o, O, O)

4. A THREE-TERM COMPLEX OF VECTOR SPACES
Consider the following complex, where n > 1:
(4.1) 0— W g D" 2 — (Is; ©g D" 1) @ (€ ©g D) — D" — 0
where the first map is the composite (identifying [s; ®q ls1 = 2323Q[z1, 22]),
Wl e D2 € s ®gls; ©g D" 2% 15 @g D",
and the maps in the middle are given by the Ihara bracket (recall [s; = l~)1)
sy @ D" ' = D" |  E@gD"* = D"
The sequence (4.1) is a complex, by (3.5) and (1.8).

Conjecture 1. The complex (4.1) is an exact sequence.

If we use the notation

83 812

= — S = Y F=7T .
= SO =gaTe
then clearly the exactness of the sequence (4.1) implies that

1

(4.3) N%O(dim(@ Dy) st = 1 — O(s)t +S(s)t? = S(s)t*

(4.2) O(s)

where IND?\, is the part of D? of weight N. By the arguments given in [2], this in turn
implies the usual Broadhurst-Kreimer conjecture for motivic multiple zeta values (and
much more besides).

4.1. General remark on Lie algebras with split quadratic homology. Let g be
a graded Lie algebra over a field k whose graded pieces are finite dimensional. Recall
that the Chevalley-Eilenberg complex is given by

— NgRrUg — g@pUg — Ug — k — 0
and is exact. Now suppose that h C g and t C A2b, such that the sequence
(4.4) 0 —t@rUg — heUg — Ug — k — 0

is exact. Then since this is a resolution of k, we immediately deduce (by tensoring
with k, viewed as a Ug-module for the augmentation map) that

(4.5) Hi(g:;k) = b
Hy(gik) = ¢
Hi(g;k) = 0 foralli >3

Conversely, suppose that (4.5) is true, where b C g, and v C ker(A%h — g). The first
line implies that g, and hence Ug are generated by . Thus there is a surjective map
h ®rUg — Ug~o, and we have

(4.6) t® UG C ker(h @, Ug — Ugso)

Standard arguments imply that the Poincaré series of Ug is related to the Poincaré
series of the homology of g via xu1g(t) = (1 = X, (gik) (£) + X s (gik) (£)) . This implies
equality in (4.6) and hence the sequence

0 —t®rUg — h L Ug — Ugso — 0
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is exact. This is equivalent to the exactness of (4.4).
4.2. Closing remark.

Theorem 4.1. The exactness of sequence (4.1) (conjecture 1) is equivalent to the
strong Broadhurst-Kreimer conjecture (conjecture 8 in [2]), which states that

(4.7) Hi(ls;Q) = Is;p€

Hy(ls;Q) = wW*°

Hi(l5;Q) = 0 foralli >3
Proof. Apply the previous remarks to g = [s, and use the fact (lemma 1.3) that
Ug = D, together with (3.5). O

Question: Does there exist a natural splitting DM — € ®q D"* which is zero on
the image of D! ®g D" ™17 Le., can one think of (4.1) as a (split) 4-term sequence?
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