
AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER

CONJECTURE

FRANCIS BROWN

Don Zagier asked me whether the Broadhurst-Kreimer conjecture could be refor-
mulated as a short exact sequence of spaces of polynomials in commutative variables.
The purpose of this note is to describe just such a sequence.

1. Depth-graded double shuffle Hopf algebra

Recall the double shuffle equations from [5], Définition 1.3. Let Φ ∈ Q〈〈e0, e1〉〉 be
a non-commutative formal power series with coefficients in Q. Let

∆x : Q〈〈e0, e1〉〉 −→ Q〈〈e0, e1〉〉⊗̂QQ〈〈e0, e1〉〉

denote the continuous comultiplication for which e0, e1 are primitive, such that ∆x

is a homomorphism for the concatenation product. The coefficients of the element Φ
satisfy the shuffle equations if ∆x Φ = Φ ⊗ Φ. Now let Y = {y1, y2, . . . , } denote an
alphabet in infinitely many elements yi of degree i and let

∆∗ : Q〈〈Y 〉〉 −→ Q〈〈Y 〉〉⊗̂QQ〈〈Y 〉〉

denote the continuous comultiplication such that ∆∗(yn) =
∑

i+j=n yi ⊗ yj , and such
that ∆∗ is a homomorphism for the concatenation product. The coefficients of an
element Ψ ∈ Q〈〈Y 〉〉 satisfy the stuffle equations if ∆∗Ψ = Ψ ⊗ Ψ. Racinet’s group of
solutions to the double shuffle equations consists of elements Φ ∈ Q〈〈e0, e1〉〉 such that

∆x Φ = Φ ⊗ Φ(1.1)

∆∗Φ∗ = Φ∗ ⊗ Φ∗

Φ(e0) = Φ(e1) = 0 , Φ(1) = 1

where Φ(w) is the coefficient of a word w ∈ {e0, e1}
× in Φ, and Φ∗ ∈ Q〈〈Y 〉〉 is obtained

from Φ by a regularization procedure, which we shall not require here. We can view
a solution to (1.1) either as an element Φ ∈ Q〈〈e0, e1〉〉 or as an element Φ∗ ∈ Q〈〈Y 〉〉
since they determine each other uniquely.

1.1. Depth-graded version. Recall that the depth filtration is the decreasing filtra-
tion on Q〈〈e0, e1〉〉 (and respectively Q〈〈Y 〉〉) with respect to the D-degree, where e0

has D-degree 0, and e1 has D-degree 1 (respectively yn has D-degree 1). By passing to
the associated weight and depth bigraded Hopf algebras, ∆x becomes the coproduct

(1.2) ∆x : Q〈e0, e1〉 −→ Q〈e0, e1〉 ⊗Q Q〈e0, e1〉

with respect to which e0, e1 are primitive (no change here), and ∆∗ becomes

(1.3) ∆Y
x

: Q〈Y 〉 −→ Q〈Y 〉 ⊗Q Q〈Y 〉

for which yn is primitive for all n ≥ 1. Now define a map

α : Q〈e0, e1〉 −→ Q〈Y 〉(1.4)

α(e1e
n1

0 . . . e1e
nr

0 ) = yn1+1 . . . ynr+1
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and such that α sends all words beginning in e0 to zero. A section of this map is given
by the map β : Q〈Y 〉 → Q〈e0, e1〉 which sends yn to e1e

n−1
0 and is a homomorphism

for the concatenation products.

Definition 1.1. An element Ψ ∈ Q〈Y 〉 is a solution to the depth-graded double shuffle
equations if it equalizes the two coproducts (1.2) and (1.3) and is even in depth one:

∆x β(Ψ) = (β ⊗ β)(∆Y
x

Ψ)(1.5)

Ψ(yn) = 0 if n is even or n is 1

The reason for the second condition in (1.5) is explained in [1]: the double shuffle
equations, restricted to depth one, are vacuous. Nonetheless the full equations (in
particular in depth ≤ 2) imply evenness in depth one, so this condition must be added
back artificially to the depth-graded versions of the equations.

Definition 1.2. Let D̃ ⊂ Q〈Y 〉 denote the largest bigraded subspace of the vector
space of solutions to (1.5) which is a coalgebra for ∆Y

x
.

For simplicity, we shall denote the coproduct by

∆ : D̃ −→ D̃ ⊗Q D̃ .

Recall that the linearized double shuffle equations [1] are defined by the bigraded
vector space ls of elements Φ ∈ Q〈e0, e1〉 which satisfy the equations:

∆x Φ = 1 ⊗ Φ + Φ ⊗ 1(1.6)

∆Y
x

α(Φ) = 1 ⊗ α(Φ) + α(Φ) ⊗ 1

Φ(ei
0e1) = 0 if i is odd

and satisfy Φ(e0) = 0 and Φ(e1) = 0. Note that, compared to [1] §7, we have added
the condition that Φ(e1) vanish to exclude the trivial solution to these equations.

Lemma 1.3. The primitive elements in D̃ are exactly given by ls.

Proof. Suppose that Ψ ∈ D̃ ⊂ Q〈Y 〉 is primitive for ∆Y
x

and therefore by (1.5), β(Ψ)
is primitive for ∆x . Since every word in {e0, e1}

× can be uniquely written as a linear
combination of shuffles of en

0 with words beginning in e1, we can uniquely extend β(Ψ)
to an element Φ ∈ Q〈e0, e1〉 which is primitive for ∆x and satisfies Φ(e0) = 0 and
α(Φ) = Ψ. The element Φ satisfies the linearized double shuffle equations (1.6). �

1.2. The Ihara action. The action on the pro-unipotent fundamental groupoid of
P1\{0, 1,∞} by automorphisms gives rise to a continuous Q-linear map

◦ : 0Π1(Q) ⊗̂ 0Π1(Q) −→ 0Π1(Q) ,

known as the Ihara action, where 0Π1(Q) ⊂ Q〈〈e0, e1〉〉 consists of invertible power
series Φ which are group-like for ∆x . Concretely, ◦ is defined on power series by

F (e0, e1), G(e0, e1) 7→ G(e0, F (e0, e1)e1F (e0, e1)
−1)F (e0, e1)

One of the main results of Racinet’s thesis [5] is the following.

Theorem 1.4. (Racinet) The solutions to the double shuffle equations (1.1) are pre-
served by the Ihara action.

In [2], we defined a variant of the Ihara action, called the linearized Ihara action.
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Definition 1.5. The linearized Ihara action is the Q-bilinear map

◦ : Q〈e0, e1〉 ⊗Q Q〈e0, e1〉 → Q〈e0, e1〉

defined inductively as follows. For words a, w in e0, e1, and for any integer n ≥ 0, let

(1.7) a ◦ (en
0 e1w) = en

0ae1w + en
0 e1a

∗w + en
0 e1(a ◦w)

where a ◦ en
0 = en

0 a, and for any ai ∈ {e0, e1}
×, (a1 . . . an)∗ = (−1)nan . . . a1.

The action ◦ is not associative but satisfies

(1.8) f1 ◦ (f2 ◦ g) − f2 ◦ (f1 ◦ g) = (f1 ◦ f2) ◦ g − (f2 ◦ f1) ◦ g

for all f1, f2, g ∈ Q〈e0, e1〉. A variant of Racinet’s theorem is the following:

Corollary 1.6. The linearized Ihara action defines a map

(1.9) ◦ : ls ⊗Q D̃ −→ D̃

1.3. A variant of the Milnor-Moore theorem. Suppose that we have a coalgebra
A over Q, with coproduct

∆ : A −→ A ⊗Q A

which is graded, connected, and cocommutative. Let a denote the set of primitive
elements of A. Suppose now that we have a Q-bilinear map

(1.10) a ◦ A −→ A

which is graded, and such that ∆(f ◦ g) = ∆(f) ◦ ∆(g) for all f ∈ a, g ∈ A. Denote
the antisymmetrization ∧2a → a by {f, g} = f ◦ g − g ◦ f . Suppose furthermore that
◦ satisfies the pre-Lie identity:

f1 ◦ (f2 ◦ g) − f2 ◦ (f1 ◦ g) = {f1, f2} ◦ g

for all f1, f2 ∈ a, g ∈ A. Then in particular, a is a Lie algebra with respect to {, } and
the map (1.10) defines a map Ua → A, where Ua is the universal enveloping algebra
of a.

Proposition 1.7. With these assumptions, Ua ∼= A.

Proof. For any connected graded Hopf algebra H , let ∆(2) = ∆(x) − x ⊗ 1 − 1 ⊗ x

denote the reduced coproduct, and define ∆(r) : H → H⊗r to be the iterated reduced
coproduct for r ≥ 2, and the identity for r = 1. For every x ∈ H there is a smallest
r such that ∆(r)(x) = 0. This defines an increasing (coradical) filtration R on H . In
our situation, A is cocommutative and so we obtain a map

∆(r−1) : grR
r A −→ Symr−1a .

By iterating (1.10) and symmetrizing, we obtain a map m : Symr−1a → RrA, which
is an inverse to ∆(r−1) by the compatibility between ∆ and ◦. Thus

grR
r A ∼= Symr−1a .

But Symr−1a is isomorphic to grR
r Ua by the Poincaré-Birkhoff-Witt theorem. There-

fore Ua → A is an isomorphism (of coalgebras). �

By applying the previous proposition to D̃, we deduce from lemma 1.3 that the

coalgebra D̃ is isomorphic to the universal enveloping algebra of ls:

(1.11) U ls ∼= D̃ .
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2. Equations for polynomials in commuting variables

In [1], §3-5, it is explained how to translate Hopf algebraic properties of series Φ
as described above, into functional equations for power series in commuting variables.
The basic remark is that there is an isomorphism of graded vector spaces

grr
DQ〈Y 〉 −→ Q[x1, . . . , xr]

yi1 . . . yir
7→ xi1

1 . . . xir

r

where the weight of a polynomial in Q[x1, . . . , xr] is defined to be the degree plus
the number of variables. The (p, q)-th shuffle equations are defined to be the (p, q)th

component of ∆x Ψ. If the depth p + q-component of Ψ is the element f , it is written

f ♯(x1 . . . xp xxp+1 . . . xp+q)

where, using the notation from [4], we define

g♯(x1, . . . , xn) = g(x1, x1 + x2, . . . , x1 + . . . + xn) ,

and x is the shuffle product acting formally on the arguments of the function f ; thus
f(xiuxxjv) = f(xi, uxxjv) + f(xj , xiux v). Likewise, the (p, q)-th stuffle equation
is defined to be the (p, q)th component of ∆Y

x
Ψ. It is written

f(x1 . . . xp xxp+1 . . . xp+q)

Corresponding to the (i, j)th component of β, let us define a map βi,j :

(2.1) βi,jf(x1, . . . , xi+j) =

f(x1, x1 + x2, . . . , x1 + . . . + xi, xi+1, xi+1 + xi+2, . . . , xi + . . . + xi+j)

Lemma 2.1. The defining equations for D̃n, where n ≥ 2 correspond to:

f ♯(x1 . . . xp xxp+1 . . . xp+q) = βp,qf(x1 . . . xp xxp+1 . . . xp+q)(2.2)

f(x1 . . . xp xxp+1 . . . xp+q) ∈ D̃p ⊗Q D̃q

for all 1 ≤ p ≤ q where p + q = n. In the second line of these equations we identify
Q[x1, . . . xp] ⊗Q Q[x1, . . . , xq] with Q[x1, . . . , xp+q].

For comparison, the defining equations for lsn, where n ≥ 2 correspond to

f ♯(x1 . . . xp xxp+1 . . . xp+q) = 0 for all 1 ≤ p ≤ q , p + q = n(2.3)

f(x1 . . . xp xxp+1 . . . xp+q) = 0 for all 1 ≤ p ≤ q , p + q = n

The defining equations for D̃n and lsn in depth n = 1 are simply f(0) = 0, f(x1)
even, by the second lines of equations (1.5) and (1.6), giving

(2.4) D̃1 = ls1
∼= x2

1Q[x2
1]

Of course, D̃0 = Q, by definition.

2.1. Linearized Ihara action for polynomials. In [2] and [1] we wrote down the
following explicit formula for the linearized Ihara action:

◦ : Q[x1, . . . , xr] ⊗Q Q[x1, . . . , xs] −→ Q[x1, . . . , xr+s]
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which is given explicitly by

f ◦ g (x1, . . . , xr+s) =

s∑

i=0

f(xi+1 − xi, . . . , xi+r − xi)g(x1, . . . , xi, xi+r+1, . . . , xr+s)

− (−1)deg f+r
s∑

i=1

f(xi+r−1 − xi+r, . . . , xi − xi+r)g(x1, . . . , xi−1, xi+r, . . . , xr+s)

Specializing to the case when r = 1, the previous formula reduces to

Q[x2
1] ⊗Q Q[x1, . . . , xs−1] −→ Q[x1, . . . , xs]

x2n
1 ◦ g(x1, . . . , xs−1) =

s∑

i=1

(
(xi−xi−1)

2n − (xi−xi+1)
2n

)
g(x1, . . . , x̂i, . . . , xs)

where x0 = 0 and xs+1 = xs (i.e., the term (xs − xs+1)
2n is discarded).

2.2. Examples in depths 2 and 3.

2.2.1. Depth 2. The space D̃2 is defined by the equations

f ♯(x1 xx2) = f(x1 xx2)(2.5)

f(x1 xx2) ∈ D̃1 ⊗Q D̃1

Concretely, this is the pair of equations

f(x1, x1 + x2) + f(x2, x1 + x2) = f(x1, x2) + f(x2, x1)(2.6)

f(x1, x2) + f(x2, x1) ∈ x2
1x

2
2Q[x2

1, x
2
2]

Compare the space ls2 of linearized double shuffle equations in depth 2, given by

f(x1, x1 + x2) + f(x2, x1 + x2) = 0(2.7)

f(x1, x2) + f(x2, x1) = 0

The map ls1 ⊗ ls1 −→ D̃2 is given by

(2.8) x2m
1 ◦ x2n

1 = x2m
1 x2n

2 + (x2 − x1)
2mx2n

1 − (x2 − x1)
2mx2n

2

2.2.2. Depth 3. The space D̃3 is defined by the equations

f ♯(x1 xx2x3) = β1,2f(x1 xx2x3)(2.9)

f(x1 xx2x3) ∈ D̃1 ⊗Q D̃2

Concretely, this is the pair of equations

(2.10) f(x1, x12, x123) + f(x2, x12, x123) + f(x2, x23, x123)

= f(x1, x2, x23) + f(x2, x1, x23) + f(x2, x23, x1)

f(x1, x2, x3) + f(x2, x1, x3) + f(x2, x3, x1) ∈ x2
1Q[x2

1] ⊗Q D̃2

where we write xab for xa + xb, and xabc for xa + xb + xc.
Compare the space ls3 of linearized double shuffle equations in depth 2, given by

f(x1, x12, x123) + f(x2, x12, x123) + f(x2, x23, x123) = 0(2.11)

f(x1, x2, x3) + f(x2, x1, x3) + f(x2, x3, x1) = 0

The map ls1 ⊗Q D̃2 −→ D̃3 is given by

(2.12) x2m
1 ◦ f(x1, x2) = x2m

1 f(x2, x3)+

(x2 − x1)
2m(f(x1, x3) − f(x2, x3)) + (x3 − x2)

2m(f(x1, x2) − f(x1, x3))
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3. Relations and exceptional cuspidal elements

3.1. Period polynomials.

Definition 3.1. Let n ≥ 1 and let W e
2n ⊂ Q[X, Y ] denote the vector space of homo-

geneous polynomials P (X, Y ) of degree 2n − 2 satisfying

P (X, Y ) + P (Y, X) = 0 , P (±X,±Y ) = P (X, Y )(3.1)

P (X, Y ) + P (X − Y, X) + P (−Y, X − Y ) = 0 .(3.2)

The space W e
2n contains the polynomial p2n = X2n−2 − Y 2n−2, and is a direct sum

W e
2n

∼= W
e,0
2n ⊕ Q p2n

where W
e,0
2n is the subspace of polynomials which vanish at (X, Y ) = (1, 0). We write

W e,0 =
⊕

n W
e,0
2n . By the Eichler-Shimura theorem and classical results on the space

of modular forms, one knows that

(3.3)
∑

n≥1

dimW
e,0
2n s2n =

s12

(1 − s4)(1 − s6)
.

3.2. Relations in depth 2. The Ihara bracket gives a map

(3.4) {., .} : ls1 ∧ ls1 −→ ls2 .

It follows immediately from formula (2.8) for ◦ and the definition of W e,0 that

(3.5) W e,0 = ker(ls1 ∧ ls1 −→ ls2)

It is easy to show that the following sequence is exact

(3.6) 0 −→ W e,0 −→ ls1 ∧ ls1
{,}
−→ ls2 −→ 0 .

and hence by lemma 1.3, the following sequence is also exact:

0 −→ W e,0 −→ ls1 ⊗Q ls1
◦

−→ D̃2 −→ 0 .

3.3. Exceptional elements in depth 4. Let f ∈ W
e,0
2n+2 be an even period poly-

nomial of degree 2n which vanishes at y = 0. It follows from (3.1) and (3.2) that it
vanishes along x = 0 and x − y = 0. Therefore we can write

f = xy(x − y)f0

where f0 ∈ Q[x, y] is symmetric of homogeneous degree 2n − 3. Let us also write
f1 = (x − y)f0. We have f1(−x, y) = f1(x,−y) = −f1(x, y).

Definition 3.2. Let f ∈ Q[x, y] be an even period polynomial as above. The following
element was defined in [2]:

ef ∈ Q[y0, y1, y2, y3, y4](3.7)

ef =
∑

Z/Z5

f1(y4 − y3, y2 − y1) + (y0 − y1)f0(y2 − y3, y4 − y3) ,

where the sum is over cyclic permutations (y0, y1, y2, y3, y4) 7→ (y1, y2, y3, y4, y0). Its
reduction ef ∈ Q[x1, . . . , x4] is obtained by setting y0 = 0, yi = xi, for i = 1, . . . , 4.

Theorem 3.3. [2] The reduced polynomial ef obtained from (3.7) satisfies the lin-
earized double shuffle relations. In particular, we get an injective linear map

e : W e,0 −→ ls4

Definition 3.4. Let E ⊂ ls4 be the image of the map e.
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By the previous theorem, E ∼= W e,0. There is an explicit map E → W e,0 given by
f(x1, x2, x3, x4) 7→ x1x2f(x1, x2, 0, 0).

4. A three-term complex of vector spaces

Consider the following complex, where n ≥ 1:

(4.1) 0 −→ W e,0 ⊗Q D̃n−2 −→ (ls1 ⊗Q D̃n−1) ⊕ (E ⊗Q D̃n−4) −→ D̃n −→ 0

where the first map is the composite (identifying ls1 ⊗Q ls1
∼= x2

1x
2
2Q[x1, x2]),

W e,0 ⊗Q D̃n−2 ⊂ ls1 ⊗Q ls1 ⊗Q D̃n−2 id⊗◦
−→ ls1 ⊗Q D̃n−1 ,

and the maps in the middle are given by the Ihara bracket (recall ls1
∼= D̃1)

ls1 ⊗Q D̃n−1 ◦
−→ D̃n , E ⊗Q D̃n−4 ◦

−→ D̃n

The sequence (4.1) is a complex, by (3.5) and (1.8).

Conjecture 1. The complex (4.1) is an exact sequence.

If we use the notation

(4.2) O(s) =
s3

1 − s2
, S(s) =

s12

(1 − s4)(1 − s6)
.

then clearly the exactness of the sequence (4.1) implies that

(4.3)
∑

N,d≥0

(dimQ D̃d
N ) sN td =

1

1 − O(s)t + S(s)t2 − S(s)t4
.

where D̃d
N is the part of D̃d of weight N . By the arguments given in [2], this in turn

implies the usual Broadhurst-Kreimer conjecture for motivic multiple zeta values (and
much more besides).

4.1. General remark on Lie algebras with split quadratic homology. Let g be
a graded Lie algebra over a field k whose graded pieces are finite dimensional. Recall
that the Chevalley-Eilenberg complex is given by

−→ ∧2g ⊗k Ug −→ g ⊗k Ug −→ Ug −→ k −→ 0

and is exact. Now suppose that h ⊂ g and r ⊂ ∧2h, such that the sequence

(4.4) 0 −→ r ⊗k Ug −→ h ⊗k Ug −→ Ug −→ k −→ 0

is exact. Then since this is a resolution of k, we immediately deduce (by tensoring
with k, viewed as a Ug-module for the augmentation map) that

H1(g; k) ∼= h(4.5)

H2(g; k) ∼= r

Hi(g; k) = 0 for all i ≥ 3

Conversely, suppose that (4.5) is true, where h ⊂ g, and r ⊂ ker(∧2h → g). The first
line implies that g, and hence Ug are generated by h. Thus there is a surjective map
h ⊗k Ug → Ug>0, and we have

(4.6) r ⊗k Ug ⊂ ker(h ⊗k Ug −→ Ug>0)

Standard arguments imply that the Poincaré series of Ug is related to the Poincaré
series of the homology of g via χUg(t) = (1−χH1(g;k)(t) + χH2(g;k)(t))

−1. This implies
equality in (4.6) and hence the sequence

0 −→ r ⊗k Ug −→ h ⊗k Ug → Ug>0 −→ 0
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is exact. This is equivalent to the exactness of (4.4).

4.2. Closing remark.

Theorem 4.1. The exactness of sequence (4.1) (conjecture 1) is equivalent to the
strong Broadhurst-Kreimer conjecture (conjecture 3 in [2]), which states that

H1(ls; Q) ∼= ls1 ⊕ E(4.7)

H2(ls; Q) ∼= W e,0

Hi(ls; Q) = 0 for all i ≥ 3

Proof. Apply the previous remarks to g = ls, and use the fact (lemma 1.3) that

Ug ∼= D̃, together with (3.5). �

Question: Does there exist a natural splitting D̃n −→ E ⊗Q D̃n−4 which is zero on

the image of D̃1 ⊗Q D̃n−1? I.e., can one think of (4.1) as a (split) 4-term sequence?
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