The block filtration for MZV's.

0.1. **Recap.** Let $\mathbb{Q}\langle e_0, e_1 \rangle$ denote the tensor coalgebra on $\mathbb{Q}e_0 \oplus \mathbb{Q}e_1$. Its underlying \mathbb{Q} -vector space is generated by words in e_0, e_1 . Recall that a convergent word is one which begins in e_1 and ends in e_0 . To every convergent word $w = e_{i_1} \dots e_{i_n}$ we can associate the convergent multiple zeta value

$$\zeta(w) := \int_0^1 \omega_{i_1} \dots \omega_{i_n}$$

where we integrate from left to right, and $\omega_0 = \frac{dx}{x}$, $\omega_1 = \frac{dx}{1-x}$. We have $\zeta(\emptyset) = 1$.

0.2. Alternating block decomposition. Define a word in $\{e_0, e_1\}$ to be alternating if it is non-empty and has no repeats, i.e., contains no subsequence of the form e_0e_0 or e_1e_1 . There are exactly two alternating words of any given length. The set of alternating words, ordered by length are

$$A = \{e_0, e_1, e_0e_1, e_1e_0, e_0e_1e_0, e_1e_0e_1, \ldots\}$$

Clearly, every non-empty word w in e_0, e_1 can be written as a word in the alphabet A, i.e., a concatenation of alternating words. Define a *block decomposition* [3] of w to be a shortest such representation. For example,

$$e_0e_1e_1e_0e_1e_0e_0 = (e_0e_1)(e_1e_0e_1e_0)(e_0)$$

Note that the last letter in each block (alternating word) is equal to the first letter in the next one.

Lemma 0.1. (Charlton [3]) Every word in $\{e_0, e_1\}$ has a unique block decomposition.

Define the block degree \deg_B to be the number of alternating words in the block decomposition minus 1. It counts the number of repeats in w:

 $\deg_B(w) =$ number of subsequences of w of the form e_0e_0 or e_1e_1 .

Let us define the block degree of the empty word to be $\deg_B(\emptyset) = 0$.

Lemma 0.2. (Charlton [3]) A word w is convergent if and only if it begins in e_1 and

$$\deg_B(w) - |w| \equiv 0 \pmod{2}$$

where |w| denotes the length of a word.

This is reminiscent of the depth-parity theorem. Charlton also observes that the block degree is preserved under the duality relation for multiple zeta values (induced by $t \mapsto 1-t$ in the integral representation). Charlton applies the block decomposition not to the argument w of the integral for $\zeta(w)$ above, but to the word e_0we_1 .

0.3. Block filtration. The block degree defines a grading on $\mathbb{Q}\langle e_0, e_1 \rangle$. The block filtration is the associated increasing filtration.

Definition 0.3. Let us define the block filtration

$$B_n \mathbb{Q}\langle e_0, e_1 \rangle \subset \mathbb{Q}\langle e_0, e_1 \rangle$$

to be the subspace spanned by words whose block decomposition is of length $\leq n + 1$. Equivalently, it is the subspace spanned by words of length $\leq n + 1$ in A. Note that the block degree of a convergent word w is the same as that of the word e_0we_1 , so we obtain the same filtration whether we include the endpoints of integration or not (at least for convergent words). The block filtration induces a filtration on the ring of motivic multiple zeta values, and hence on multiple zeta values:

$$B_n \mathcal{Z}^{\mathfrak{m}} = \langle \zeta^{\mathfrak{m}}(w) : w \text{ convergent such that } \deg_B w \leq n \rangle_{\mathbb{Q}}$$

 $B_n \mathcal{Z} = \langle \zeta(w) : w \text{ convergent such that } \deg_B w \leq n \rangle_{\mathbb{Q}}$.

Observe that

$$B_0 \mathcal{Z}^{\mathfrak{m}} = \bigoplus_{n \ge 0} \zeta^{\mathfrak{m}}(\{2\}^n) \mathbb{Q} \ .$$

We know that $\zeta^{\mathfrak{m}}(\{2\}^n) \in \mathbb{Q}\zeta^{\mathfrak{m}}(2)^n$. Therefore $B_0\mathcal{Z} \cong \mathbb{Q}[\pi^2]$.

Lemma 0.4. The block filtration induces the level filtration on the subspace spanned by the set of Hoffman motivic multiple zeta values $\zeta^{\mathfrak{m}}(n_1,\ldots,n_r)$ with $n_i \in \{2,3\}$, where the level is the number of indices n_i equal to 3.

Proof. The word corresponding to (n_1, \ldots, n_r) with $n_i \in \{2, 3\}$ of level k has exactly k occurrences of the subsequence e_0e_0 and no occurrences of the subsequence e_1e_1 . Therefore its block degree is exactly k + 1.

Since the level is motivic, this motivates the following proposition. Let $G_{\mathcal{MT}(\mathbb{Z})}^{dR}$ denote the de Rham motivic Galois group of the category $\mathcal{MT}(\mathbb{Z})$ and $U_{\mathcal{MT}(\mathbb{Z})}^{dR}$ its unipotent radical. They both act upon $\mathcal{Z}^{\mathfrak{m}}$.

Proposition 0.5. The block filtration is motivic: i.e., B_n is stable under the action of $G_{\mathcal{MT}(\mathbb{Z})}^{dR}$. Furthermore, the subgroup $U_{\mathcal{MT}(\mathbb{Z})}^{dR}$ acts trivially on $\operatorname{gr}_{\bullet}^{B} \mathcal{Z}^{\mathfrak{m}}$.

Equivalently, if Δ denotes the (left) motivic coaction dual to the action of $U^{dR}_{\mathcal{MT}(\mathbb{Z})}$,

 $\Delta(B_n\mathcal{Z}^{\mathfrak{m}})\subset \mathcal{O}(U^{dR}_{\mathcal{MT}(\mathbb{Z})})\otimes_{\mathbb{Q}} B_{n-1}\mathcal{Z}^{\mathfrak{m}}$

An immediate corollary of the main theorem of [2] is :

Theorem 0.6. Every element in $B_n \mathcal{Z}^m$ and weight N can be written uniquely as a \mathbb{Q} -linear combination of motivic Hoffman elements of weight N and level $\leq n$.

It follows that the associated graded for the block filtration has the following Poincaré series (where W is the MZV-weight):

$$\sum_{p,n\geq 0} \left(\dim_{\mathbb{Q}} \operatorname{gr}_{p}^{B} \operatorname{gr}_{n}^{W} \mathcal{Z}^{\mathfrak{m}} \right) s^{p} t^{n} = \frac{1}{1 - t^{2} - st^{3}}$$

Corollary 0.7. Taking the period of the previous theorem: every multiple zeta value of block degree $\leq n$ and weight N can be written as a \mathbb{Q} -linear combination of Hoffman multiple zeta values of weight N with at most n threes.

Corollary 0.8. The block filtration on $\mathcal{Z}^{\mathfrak{m}}$ is the coradical filtration.

Proof. If C denotes the coradical filtration, then the proposition implies $B_n \subset C_n$. The converse follows from lemma 0.4, and the fact [2], that the coradical filtration on the Hoffman basis for motivic multiple zeta values is given by the level filtration. \Box

The previous corollary is equivalent to the statement that the block filtration is given by the length filtration in any f-alphabet decomposition [1].

It follows from the last corollary that $B_0 \mathcal{Z}^{\mathfrak{m}} = \mathbb{Q}[\zeta^{\mathfrak{m}}(2)]$ and

$$B_1 \mathcal{Z}^{\mathfrak{m}} = \bigoplus_{n \ge 1} \zeta^{\mathfrak{m}} (2n+1) \mathbb{Q}[\zeta^{\mathfrak{m}}(2)]$$

i.e., the space of polynomials in single motivic zeta values which are of degree at most one in the odd motivic zeta values. Taking the period implies that:

$$B_1 \mathcal{Z} = \langle \zeta(2n+1)\pi^{2k-2}, \text{ for } k, n \ge 1 \rangle_{\mathbb{Q}}$$

0.4. **Proof of the proposition.** The motivic coaction factors through the action of operators D_{2r+1} defined in [2], (3.4). They act via the following formula, where $a_i \in \{0, 1\}$:

$$(0.1) \quad D_n I^{\mathfrak{m}}(a_0; a_1, \dots, a_N; a_{N+1}) = \\ \sum_{p=0}^{N-n} I^u(a_p; a_{p+1}, \dots, a_{p+n}; a_{p+n+1}) \otimes I^{\mathfrak{m}}(a_0; a_1, \dots, a_p, a_{p+n+1}, a_{p+n+2}, \dots, a_N; a_{N+1}) .$$

where $I^{\mathfrak{m}}$ is the motivic iterated integral, and $I^{\mathfrak{u}}$ the unipotent de Rham iterated integral. It is enough to show that

$$D_{2r+1}B_k\mathcal{Z}^{\mathfrak{m}} \subset \mathcal{O}(U^{dR}_{\mathcal{MT}(\mathbb{Z})}) \otimes B_{k-1}\mathcal{Z}^{\mathfrak{m}}$$

Suppose that $a_0 = 0$, $a_{N+1} = 1$, and $a_1 \dots a_N$ is convergent of *B*-degree *k*. It can be written as a concatenation

$$w = v_1 \dots v_k$$

of k alternating words $v_i \in A$. In the formula for D_n , all terms with $a_p = a_{p+n+1}$ vanish by [2] **IO**. Therefore we can assume $a_p \neq a_{p+n+1}$, which proves that every non-zero term on the right-hand side is convergent and of B-degree $\leq k$. Furthermore, this implies that

$$a_p a_{p+1} \dots a_{p+n+1} \notin A$$
,

since any alternating word of odd length necessarily begins and ends in the same letter. This implies that: if p = 0 then a_{p+n+1} is not a letter of v_1 ; if p = N - n then a_p is not a letter of v_k ; and in all other cases, a_p and a_{p+n+1} are not letters in the same word v_i . This implies that the right-hand side of (0.1) has B-degree $\langle k$: every non-zero term on the right-hand side is of the form $v_1 \ldots v_{i-1} w v_{i+j+1} \ldots v_k$, for some $w \in A$ and $j \geq 1$.

References

- F. Brown: On the decomposition of motivic multiple zeta values, Adv. Stud. Pure Math., 63, Math. Soc. Japan, Tokyo, (2012), 31-58.
- [2] F. Brown: Mixed Tate motives over Z, Ann. of Math. (2) 175 (2012), no. 2, 949-976.
- [3] S. Charlton: Identities arising from coproducts on Multiple Zeta Values and Multiple Polylogarithms, Ph. D thesis, Durham University, September 2016.