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Zeta values and Euler’s theorem

Recall the Riemann zeta values

ζ(n) =
∑
k≥1

1

kn
for n ≥ 2

Euler proved that ζ(2) = π2

6 and more generally

ζ(2n) = −B2n
2

(2πi)2n

(2n)! for n ≥ 1

where Bm is the mth Bernoulli number.

Folklore conjecture

The odd Riemann zeta values ζ(3), ζ(5), ζ(7), . . . are algebraically
independent over Q[π].

Few known results: Lindemann, Apéry, Rivoal, Ball-Rivoal, Zudilin.
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Multiple Zeta values

Whilst searching for quadratic relations between zeta values, Euler
computed a product of two zeta values∑

k≥1

1

km

∑
`≥1

1

`n
=
(∑

k<`

+
∑
`<k

+
∑
k=`

) 1

km`n

and was led to introduce multiple zeta values (MZV’s):

ζ(n1, . . . , nr ) =
∑

1≤k1<...<kr

1

kn1
1 . . . knr

r

where n1, . . . , nr ≥ 1 and nr ≥ 2 to ensure convergence. Its weight
is the quantity n1 + . . .+ nr . The above equation can be written

ζ(m)ζ(n) = ζ(m, n) + ζ(n,m) + ζ(m + n)

and is the first example of a huge family of algebraic relations.
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Transcendence conjecture

Sudden re-appearance in mathematics and independently in
physics around the 1990’s: Ecalle, Hoffman, Zagier, Broadhurst-Kreimer

Amplitudes in quantum field theory, superstring theory, moduli

spaces of curves, periods of mixed Tate motives, π1(P1\{0, 1,∞}),

Grothendieck-Teichmuller theory, resurgence, conformal field theory,

quantum groups, deformation quantization, knot invariants . . .

Conjecture (Zagier)

Let Zn denote the Q-vector space of MZV’s of weight n. Then∑
n≥0

dimQZntn =
1

1− t2 − t3

The weight is a grading. If Z =
∑
Zn then

Z =
⊕
n≥0

Zn
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Periods: elementary definition

A period is a type of complex number. Its real and imaginary parts
are integrals of rational differential forms, over domains defined by
polynomial inequalities (all with rational coefficients).Kontsevich, Zagier

Examples

log(2) =

∫
1≤z≤2

dz

z
, ζ(2) =

∫
0≤t1≤t2≤1

dt1

1− t1

dt2

t2

Multiple zeta values are periods (later).

General philosophy of motives (Grothendieck) suggests that there
should be a Galois theory of periods: a motivic Galois group
(pro-algebraic group) which acts on the space of periods.

Algebraic numbers are periods - contains usual Galois theory.
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Periods and cohomology

Classical periods: Let X be a smooth algebraic variety over Q. To
it we associate its Betti or singular cohomology

Hn
B(X ) := Hn(X (C); Q)

It also has algebraic de Rham cohomology (Grothendieck)

Hn
dR(X ) := Hn(X ; Ω•X/Q)

Both are vector spaces over Q. There is a comparison isomorphism

compB,dR : Hn
dR(X )⊗ C ∼−→ Hn

B(X )⊗ C

The comparison map boils down to integration of differential forms
over singular chains since Hn

B(X ) = Hn(X (C); Q)∨.

Generalisation: use relative cohomology.

6 / 22



Framework for motivic periods

Let T be a Tannakian category over Q, with two fiber functors

ωB , ωdR : T −→ VecQ

and a functorial isomorphism ωdR(M)⊗ C ∼→ ωB(M)⊗ C. T is
equivalent to the category of representations of an affine group
scheme GdR defined over Q.

1 There is a ring of motivic periods Pm
T generated by symbols

[M, ω, σ]m M ∈ T , ω ∈ ωdR(M) , σ ∈ ωB(M)∨

modulo a certain equivalence relation.
2 The Galois group acts on motivic periods:

GdR × Pm
T −→ Pm

T .

3 There is a period homomorphism to numbers:

per : Pm
T −→ C
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What to take for T ?

Would like to take T a category of ‘mixed motives’. Not currently
available. We have at least three options:

Category of mixed Tate motives over a number field.1 Let
MT (Z) category of unramified mixed Tate motives/Q.

Nori’s Tannakian category of mixed motives MM.

A category of realisations H. Objects are pairs:

(MB ,MdR) where MB ,MdR ∈ VecQ

with an isomorphism MdR ⊗ C ∼→ MB ⊗ C, and various
filtrations so that MB is a Q mixed Hodge structure.

We have a homorphism of motivic periods

Pm
MT (Z) −→ Pm

H

The main theorem actually takes place in Pm
H !

1
Deligne-Goncharov, Levine, Voevodsky, Hanamura, Bloch, Beilinson, Borel, . . .
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Example: motivic version of 2πi

Let X = P1\{0,∞}, X (C) = C×. Let γ be a loop around 0.

H1
B(X ) ∼= Q[γ]∨ and H1

dR(X ) ∼= Q[dz
z ]

are Q-vector spaces of dimension 1. The Tannaka group GdR acts
by linear automorphisms of H1

dR , i.e., multiplication by a scalar. Let

Lm = [H1(X ), [dz
z ], [γ]]m

It is the motivic version of 2πi , its period is

per (Lm) =

∫
γ

dz

z
= 2πi .

Then GdR(Q) acts via the multiplicative group Q× and transforms

Lm 7→ λLm λ ∈ Q×

We should think of 2πi not as a number, but as a function!
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More examples

Let p prime. Then logm(p) transforms like

logm(p) 7→ λ logm(p) + νp

where λ ∈ Q× the same λ as before and νp ∈ Q. This is an
avatar of the fact that log(z) is a multivalued function.

The odd zeta values transform like

ζm(2n+1) 7→ λ2n+1ζm(2n+1) + µ2n+1

where λ as above, and µ2n+1 ∈ Q.

The even zeta values transform trivially

ζm(2n) 7→ λ2nζm(2n)

by a version of Euler’s theorem : ζm(2n) ∈ Q×(Lm)2n.

The power of λ defines a weight grading. The motivic Galois group
can move each ζm(3), ζm(5), . . . independently.
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Bounds on dimensions

It follows from deep theorems due to Borel that Liegr GdR
MT (Z) is

isomorphic to the free graded Lie algebra on generators

σ3, σ5, σ7, . . .

of degree −3,−5,−7, . . .. They act by σ2n+1ζ
m(2m+1) = δm,n.

One can define motivic multiple zeta values

ζm(n1, . . . , nr ) ∈ P ⊂ Pm
MT (Z)

in the subspace P of real, geometric motivic periods of MT (Z).
An easy counting argument gives the enumeration

If dn = dimQ Pn then
∑
n≥1

dntn =
1

1− t2 − t3

The period map per : Pn → Zn is a surjection. We get:

Theorem (Terasoma, Goncharov) : dimQZn ≤ dn
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Statement of the main theorem for MZV’s

Main Theorem (2011)

The following motivic multiple zeta values are linearly independent:

(∗) ζm(n1, . . . , nr ) where ni ∈ {2, 3}

We deduce that (∗) is a basis for P.

Corollary (Goncharov conjecture)

The periods of every mixed Tate motive over Z are in Z[(2iπ)−1].

Corollary (Hoffman conjecture)

Every MZV is a linear comb. of ζ(n1, . . . , nr ), ni ∈ {2, 3}.

Corollary: The Deligne-Ihara conjecture is true

Also deduce existence of canonical generators σ2n+1; existence of
canonical rational associators; lower bounds for grt; . . .
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Grothendieck’s period conjecture

Version of Grothendieck’s period conjecture for MT (Z): Y. André

Conjecture

The homomorphism per : Pm
MT (Z) −→ C is injective.

It says that there is a relation between MZV’s if and only if the
corresponding relation holds for motivic MZV’s. It implies Zagier’s
transcendence conjecture for MZV’s, and the folklore conjecture
for zeta values.

It suggests that the action of GdR
MT (Z) on motivic multiple zeta

values should also give a well-defined action on actual MZV’s.
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A philosophy for motivic periods

The main theorem is a statement about independence, or
transcendence, of motivic periods. Recall there is a map

Pm
MT (Z) −→ Pm

H

If the images of elements in Pm
MT (Z) are independent in Pm

H , then a
fortiori they are independent in Pm

MT (Z). So we can drop the
motives and work in the elementary category H.

Write down interesting arithmetic examples of periods

Compute the Galois action on their motivic versions in Pm
H

Try to prove independence theorems.

Other approaches to periods emphasise the relations between
periods. This is the opposite point of view.
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Part II: The projective line minus 3 points

Let X = P1\{0, 1,∞}, and x ∈ X (Q). The profinite completion of
π1(X (C), x) admits an action by Gal (Q/Q).

Theorem (Belyi 1979):

Gal (Q/Q) −→ Aut(π̂1(X , x)) is injective.

This theorem initiated Grothendieck’s ‘Esquisse d’un programme’.

Can replace profinite completion with prounipotent completion
(Deligne, Drinfeld, Ihara ∼ 1990). I want to explain

Theorem (Deligne-Ihara conjecture)

GdR
MT (Z) −→ Aut(πdR

1 (X ,
→
10)) is injective.

Difference: Belyi’s theorem is geometric, this is arithmetic.
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Fundamental groupoid of P1\{0, 1,∞}

Let x , y ∈ X (Q). Realisations of πmot
1 (X , x , y) are:

A scheme πB
1 (X , x , y) over Q equipped with morphisms

πB
1 (X , x , y)× πB

1 (X , y , z) −→ πB
1 (X , x , z)

The topological π1 maps to its Q-points:

iB : π1(X (C), x , y) −→ πB
1 (X , x , y)(Q) .

An affine group scheme πdR
1 (X , x , y) over Q.

A comparison isomorphism (of schemes)

πB
1 (X , x , y)× C ∼−→ πdR

1 (X , x , y)× C

Deligne-Goncharov: if x =
→
10, y = −

→
11 unit tangent vectors at 0

and 1, then the motivic fundamental groupoid is in MT (Z).
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Periods of πmot
1 (X ,

→
10,−

→
11)

1 Domain of integration: take the straight path γ from 0 to 1.
2 Differential forms: take any element in

O(πdR
1 ) = T (H1

dR(X )) ∼=
⊕
n≥1

(
Qω0 ⊕Qω1

)⊗n

where ω0 = dz
z and ω1 = dz

1−z .
3 The comparison map is given by the iterated integral:∫

γ

ω1ω
n1−1
0 . . . ω1ω

nr−1
0︸ ︷︷ ︸

ωn1,...,nr

:= (−1)r

∫
0≤t1≤···≤tn≤1

dt1

t1 − ε1
· · · dtn

tn − εn

= ζ(n1, . . . , nr )

where (ε1, . . . , εn) = 10n1−1 . . . 10nr−1.

Motivic multiple zeta values are thus motivic periods:

ζm(n1, . . . , nr ) = [O(πmot
1 ), ωn1,...,nr , i

Bγ]m ∈ Pm
MT (Z)
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How to compute the Galois action?

In fact, we can’t in general. One can only show that the Galois
action factorizes through a certain group which respects the
symmetries of P1\{0, 1,∞} (Ihara, Goncharov,. . . ). Astonishingly,
this actually gives some useful information.

Upshot: there is a coaction

∆ : Pm
MT (Z) →

(
Pm
MT (Z)/ζ

m(2)
)
⊗ Pm

MT (Z)

which can be computed on motivic MZV’s. Example:

∆ζm(4, 3, 3) = ζu(3)⊗ ζm(4, 3) + 10ζu(5)⊗ ζm(2, 3)

+ ζu(3, 3)⊗ ζm(4)− (2ζu(4, 3) + 4ζu(3, 4))⊗ ζm(3)

+ (6ζu(4, 4) + 2ζu(3, 5) + 6ζu(5, 3))⊗ ζm(2)

where ζu denotes ζm taken modulo ζm(2). It is very complicated.

Note! The motivic MZV’s satisfy very complex relations which are
not fully understood. The coaction respects these relations.
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Proof of Deligne-Ihara conjecture

We have to wrestle with this coaction formula. It is compounded
by the fact that there are 2N multiple zeta values in weight N, but
they span a vector space of dimension ∼ ( 4

3 )N . There are a huge
number of relations, which are not understood.

A key input: a formula due to Zagier for

ζ(2, . . . , 2, 3, 2, . . . , 2)

It is proved by a clever use of generating function methods, and
analytic methods. Subsequent work by Terasoma and Li.

The idea is to prove independence of ζm(n1, . . . , nr ) where
ni ∈ {2, 3} by induction on the weight and number of 3’s, by using
the coaction formula.
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Generalization: Roots of unity

Where to go from here? Deligne has previously studied

X = P1\{0, µN ,∞}

where µN denotes Nth roots of unity (motivation from
Broadhurst’s calculations in quantum field theory).

In exceptional cases N = 2, 3, 4, 6, 8, Deligne proved analogous
results (faithfulness of Galois action on motivic fundamental
group). It uses the depth filtration. (The depth filtration is
pathological for N = 1 and related to modular forms).

If N prime ≥ 11, Goncharov showed that πmot
1 (X ) cannot

generate the corresponding category of mixed Tate motives.
There are missing periods already in weight 2.

I want to suggest a completely different approach.
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A programme

1 Replace P1\{0, 1,∞} with Γ\\H where Γ ≤ SL2(Z) is any
subgroup of finite index and H is the upper-half plane.

2 Instead of unipotent completion, we must now take relative
unipotent completion, with respect to Γ→ SL2(Q). It defines
a mixed Hodge structure (Hain).

3 Examples of periods are iterated integrals of modular forms on
H between cusps (Eichler, Shimura, Manin). Building blocks
are values of L-functions of modular forms.

4 By (2), we can define the corresponding motivic periods in
Pm

H . There is a general formula for the Galois (co)action.

We can apply the whole philosophy of motivic periods in this set
up. It gives information about a huge conjectural Tannakian
category of mixed modular motives (containing the motives of all
algebraic curves by Belyi’s theorem).
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Towards modularity of mixed Tate motives?

Main theorem for P1\{0, 1,∞} was arithmetic. There is no
clue from the geometry as to the structure of the motivic
Galois group. Equivalently, there are too many periods on
P1\{0, 1,∞}, with many complicated relations. We had to
work around this with tricky combinatorics.

On the other hand, for SL2(Z)\\H, we have exactly one
Eisenstein series for every generator σ2n+1 of Lie GdR

MT (Z).

E4,E6,E8, . . . ↔ σ3, σ5, σ7, . . .

This suggests there is a geometric way to obtain similar
results but using modular forms. The price to pay is that we
must wander outside the category of mixed Tate motives.

Can we construct (motivic periods of), e.g., MT (Q) from
congruence subgroups of SL2(Z)?
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