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Abstract. We study the de Rham fundamental group of the configuration space
E(n) of n+1 marked points on an elliptic curve E, and define multiple elliptic poly-
logarithms. These are multivalued functions on E(n) with unipotent monodromy,
and are constructed by a general averaging procedure. We show that all iterated
integrals on E(n), and in particular the periods of the unipotent fundamental group
of the punctured curve E\{0}, can be expressed in terms of these functions.

1. Introduction

1.1. Motivation. Iterated integrals on the moduli space M0,n of curves of genus 0
with n ordered marked points can be expressed in terms of multiple polylogarithms.
These are defined for n1, . . . , nr ∈ N by

(1.1) Lin1,...,nr
(x1, . . . , xr) =

∑

0<k1<...<kr

xk1

1 . . . xkr
r

kn1

1 . . . knr
r

where |xi| < 1 ,

and have many applications from arithmetic geometry to quantum field theory. By
specializing (1.1) at xi = 1, one obtains the multiple zeta values

(1.2) ζ(n1, . . . , nr) =
∑

0<k1<...<kr

1

kn1

1 . . . knr
r

, where nr ≥ 2 ,

which are of particular interest since they are the periods of the fundamental group of
P1\{0, 1,∞}, and generate the periods of all mixed Tate motives over Z.

The goal of this paper is to construct the elliptic analogues of the multiple poly-
logarithms and to set up the necessary algebraic and analytic background required to
study multiple elliptic zeta values. The former are iterated integrals on the configura-
tion space E(n) of n + 1 marked points on an elliptic curve, i.e., the fiber of the map
M1,n+1 → M1,1, where M1,m denotes the moduli space of curves of genus 1 with m
marked points. They generalize the classical elliptic polylogarithms studied in [13], and
are the universal periods of unipotent variations of mixed elliptic Hodge structures.

In a sequel to this paper, we shall study the multiple elliptic zeta values, obtained
by specializing multiple elliptic polylogarithms to the zero section of the universal
elliptic curve. They define multivalued functions on M1,1 which degenerate to ordinary
multiple zeta values at the cusp. The existence of these functions sheds light on
the structural relations between ordinary multiple zeta values, and in particular, the
relation between double zetas and period polynomials for cusp forms [9].

1.2. The rational case. Firstly we recall the definition of iterated integrals [6]. Let
M be a smooth real manifold, and let ω1, . . . , ωn denote smooth 1-forms on M . Let
γ : [0, 1]→M be a smooth path, and write γ∗ωi = fi(t)dt for some smooth functions
fi : [0, 1]→ R, where 1 ≤ i ≤ n. The iterated integral of ω1, . . . , ωn is defined by

(1.3)

∫

γ

ω1 . . . ωn =

∫

0≤tn≤...≤t1≤1

f1(t1) . . . fn(tn) dt1 . . . dtn .

1
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Now let M = P1\{0, 1,∞}, and let ω0 = dz
z and ω1 = dz

1−z . Let 0 < z < 1, and denote

the straight path from 0 to z by γz. The initial point γ(0) does not in fact lie in M ,
but the following iterated integral still makes sense nonetheless, and gives

(1.4)

∫

γz

ω0 . . . ω0︸ ︷︷ ︸
nr−1

ω1 . . . ω0 . . . ω0︸ ︷︷ ︸
n1−1

ω1 = ±Lin1,...,nr
(1, . . . , 1, z) .

This is easily proved by a series expansion of the forms ω1. The periods of the funda-
mental groupoid of M from 0 to 1 (with tangential basepoints 1, −1), are obtained by
taking the limit as z → 1. In the case nr ≥ 2, this yields

(1.5)

∫ 1

0

ω0 . . . ω0︸ ︷︷ ︸
nr−1

ω1 . . . ω0 . . . ω0︸ ︷︷ ︸
n1−1

ω1 = ±ζ(n1, . . . , nr) ,

as first observed by Kontsevich. Similarly, one can define the regularized iterated
integral from 0 to 1 of any word in the one-forms ω0, ω1, and in every case, it is easy
to show that it is a linear combination of multiple zeta values.

To verify that all (homotopy invariant) iterated integrals on M are expressible in
terms of multiple polylogarithms requires Chen’s reduced bar construction. By Chen’s
general theory, the iterated integrals on a manifold M are described by the zeroth
cohomology of the bar construction on the de Rham complex of M . To write this
down explicitly for M = P1\{0, 1,∞}, we can use the rational model

Q⊕ (Q ω0 ⊕Q ω1) →֒ Ω·
DR(P1\{0, 1,∞}; Q)

which is a quasi-isomorphism of differential graded algebras. From this one deduces
that H0(B(Ω·

DR(P1\{0, 1,∞}; Q))) ∼= T (Q ω0⊕Q ω1), where B is the bar complex, and
T is the tensor algebra. This is the Q-vector space generated by words in the forms
ω0, ω1, which leads to integrals of the form (1.5). The upshot is that the periods of the
unipotent fundamental groupoid πun

1 (P1\{0, 1,∞}, 0+, z) are multiple polylogarithms
(1.4), and the periods of πun

1 (P1\{0, 1,∞}, 0+, 1−) are multiple zetas (1.2).
We need to generalize this picture to higher dimensions as follows. For r ≥ 1, let

(1.6) M0,r+3(C) = {(t1, . . . , tr) ∈ Cr : ti 6= 0, 1 , ti 6= tj}

denote the moduli space of genus 0 curves with r + 3 marked points. One can likewise
write down a rational model for the de Rham complex in terms of the one-forms

dti − dtj
ti − tj

,
dti

1− ti
,

dti
ti

which satisfy certain quadratic relations due to Arnold. Forgetting a marked point
defines a fibration M0,r+3 →M0,r+2, and by general properties of the bar construction
of fibrations, one can likewise write down all homotopy invariant iterated integrals on
M0,r+3 [4] and show that they are expressible in terms of the functions

(1.7) In1,...,nr
(t1, . . . , tr) = Lin1,...,nr

( t1
t2

, . . . ,
tr−1

tr
, tr
)

.

The purpose of this paper is to generalize the above picture for P1\{0, 1,∞} to
the case of a punctured elliptic curve E×. In particular, we compute the periods of
πun

1 (E×, ̺, ξ), where ρ, ξ ∈ E× are finite basepoints (the case of tangential basepoints
is similar and will be postponed to a later paper). There are two parts: first, to write
down the iterated integrals generalizing the left hand side of (1.4) using Chen’s general
theory, and the second is to construct multiple elliptic polylogarithm functions which
correspond to the right-hand side of (1.4). In so doing, we are forced to consider the
higher-dimensional configuration spaces E(n), even to construct the functions on E×.
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1.3. The elliptic case. Let E be an elliptic curve, viewed as the analytic manifold
C/τZ⊕Z, where τ ∈ C satisfies Im (τ) > 0. We first require a model for the de Rham
complex on E×. For this, we construct a universal family of smooth one-forms

(1.8) ν, ω(0), ω(1), ω(2), . . . ∈ A1(E×) ,

where ω(0), ν are closed and form a basis of H1(E×) which is compatible with its Hodge
structure. The forms ω(i), i ≥ 1 can be viewed as higher Massey products satisfying

dω(i) = ν ∧ ω(i−1) for i ≥ 1 .

Note that a priori E× has no natural Q-structure on its de Rham complex. However,
the forms (1.8) have good modularity and rationality properties as a function of the
moduli τ , and there are good reasons to take

X = graded Q-algebra spanned by the ν, ω(i), i ≥ 0

as a Q-model for the C∞-de Rham complex on E×, (indeed, X ⊗Q C →֒ A·(E×) is a
quasi-isomorphism). We also define a higher-dimensional model for the configuration
space E(n) of n + 1 points on E . It is an elliptic version of Arnold’s theorem describing
the cohomology of the configuration space of n points in P1.

The next stage is to write down the bar construction of X , which defines a Q-
structure on the iterated integrals on E×. The bar construction has a filtration by the
length, and the associated graded is just the tensor algebra on ω(0) and ν:

(1.9) grℓH0(B(X)) ∼= T (Q ω(0) ⊕Q ν) .

The Massey products ω(i), for i ≥ 1, give a canonical way to lift an element of (1.9) to
H0(B(X)), and thus enable us to write down explicitly all the iterated integrals on E×.
These are indexed by any word in the two one-forms ω(0) and ν. The Hodge filtration
on the space of iterated integrals is related to the number of ν’s. This completes the
algebraic description of the iterated integrals on E×.

The main problem is then to write down explicit formulae for these iterated integrals,
and for this we write the elliptic curve via its Jacobi uniformization

E ∼= C×/qZ ,

where q = exp(2πiτ). In order to construct multivalued functions on E×, the basic
idea is to average a multivalued function on C× with respect to multiplication by q as
was done for the classical polylogarithms [2, 13]. However, applying this idea naively
to the multiple polylogarithms in one variable (1.4) does not lead to elliptic functions.
Instead, the correct approach is to view the multiple polylogarithms in r variables
(1.1), or rather their variants (1.7), as multivalued functions on

M0,r+3
∼= C× × . . .× C×

︸ ︷︷ ︸
r

\diagonals

and average with respect to the group qZ × . . .× qZ (r factors). Since polylogarithms
have logarithmic singularities at infinity, the straightforward average diverges, and so
instead one must take a weighted average with respect to some auxilliary parameters
ui to dampen the singularities. In short, one considers the functions

(1.10)
∑

m1,...,mr∈Z

um1

1 . . . umr
r In1,...,nr

(qm1t1, . . . , q
mr tr)

which converge uniformly under some conditions on the ui. A considerable part of this
paper is devoted to studying the structure of the poles of (1.10) in the ui variables,
which are related to the geometry of M0,r+3 and the asymptotics of the polylogarithms
at infinity. Finally, writing ui = exp(2iπαi) for 1 ≤ i ≤ r, the multiple elliptic



4 FRANCIS BROWN AND ANDREY LEVIN

polylogarithms are defined to be the coefficients of (the finite part of) (1.10) with
respect to the αi. The analysis involved in this averaging procedure is quite general
and should apply to a class of functions of finite determination and moderate growth
on certain toric varieties.

The functions obtained in this way are multivalued functions on E(n). By allowing
some of the arguments ti of (1.10) to degenerate to 1, we obtain multivalued functions
on E×. By computing the differential equations satisfied by these functions, we see
that they are iterated integrals in the forms (1.8) and, using the description of the bar
construction of X , we deduce that all the iterated integrals on E× are of this form.

1.4. Plan of the paper. First, §2 consists of reminders on multiple polylogarithms
and the moduli space of curves of genus 0 which are used throughout the paper. There-
after, the exposition splits into two parts - the first part, consisting of sections 3,4, and
5, concerns the de Rham complex of differential forms on E(n). The second, consisting
of sections 6, 7 and 8, concerns the procedure for averaging multiple polylogarithms.
Since this is quite involved, we give a separate overview of the method in §6.1.

In §3 we use the Kronecker series (Proposition-Definition 4) to define the fundamen-
tal one-forms (1.8). In §4, we define some differential graded algebras Xn and prove
by a Leray spectral sequence argument that they are Q-models for the de Rham com-
plex on E(n). In §5 we use the models Xn to study Chen’s reduced bar construction
on E(n), and hence obtain an algebraic description for the iterated integrals on E(n).
Some of the results of this section require some generalities on the bar construction of
differential graded algebras which we decided to relegate to a separate paper [3].

In §6, we study the general averaging procedure for functions on M0,n(C). This re-
quires constructing a certain partial compactification of M0,n and analyzing the asymp-
totics of series in the neighbourhood of boundary divisors. We apply this formalism
to the classical multiple polylogarithms in §7. In §8, which is logically independent
from the rest of the paper, we compute the asymptotics of the Debye polylogarithms at
infinity in terms of a certain coproduct. The Debye multiple polylogarithms (definition
1) are essentially generating series of multiple polylogarithms and are useful for sim-
plifying many formulae. In §9, we treat the case of the classical elliptic polylogarithms
(depth 1) and the double elliptic polylogarithms (depth 2) in detail. The two parts
of the story recombine in §10 where we prove that all iterated integrals on E×, with
respect to finite basepoints, are obtained by averaging.

1.5. Related work. One of many motivations for this paper is the study of mixed
elliptic motives. Since the Beilinson-Soulé conjectures are currently unavailable in this
case, our goal was to tease out the elementary consequences of such a theory, and in
particular, write down the underlying numbers and functions in the belief that they
will find applications in other parts of mathematics. We learned at a conference in
Bristol in 2011 that there has been recent progress in constructing categories of mixed
elliptic motives [12, 17], and universal elliptic motives [10] with similar goals. In this
paper we completely neglected the Lie algebra side, which is dual to the bar construc-
tion, and its relation to quantum groups and stable derivations. This is treated in
[5, 8, 18]. Somewhat further afield, it may also be helpful to point out related work in
the profinite setting [16], and possible diophantine applications [11].
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The second author is partially supported by AG Laboratory GU-HSE, RF government
grant, ag. 11 11.G34.31.0023. We thank the Fondation des Sciences Mathématiques
de Paris, the Institut Poncelet in Moscow, and the MPIM for hospitality.
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2. Preliminaries: the rational case

2.1. Standard coordinates on M0,n+3. Let M0,n+3 denote the moduli space of
curves of genus 0 with n + 3 ordered marked points. By placing three of the marked
points at 0, 1,∞, it can be identified with an affine hyperplane complement:

(2.1) M0,n+3
∼= {(t1, . . . , tn) ∈ P1\{0, 1,∞} : ti 6= tj} .

We refer to the coordinates ti as simplicial coordinates. We will often write tn+1 = 1.
There is a smooth compactification M0,n+3, such that the complement M0,n+3\M0,n+3

is a normal crossing divisor. Its irreducible components are indexed by partitions S∪T
of the set of marked points, which we denote by S|T , or, T |S, where S ∩ T = ∅ and
|S|, |T | ≥ 2. The corresponding divisor is isomorphic to M0,|S|+1 ×M0,|T |+1.

2.2. Multiple polylogarithms. These are defined for n1, . . . , nr ∈ N by

(2.2) Lin1,...,nr
(x1, . . . , xr) =

∑

0<k1<...<kr

xk1

1 . . . xkr
r

kn1

1 . . . knr
r

which converges absolutely for |xi| < 1, and therefore defines a family of holomorphic
functions in the neighbourhood of the origin. We can also write these functions in
simplicial coordinates, using standard notations:

(2.3) In1,...,nr
(t1, . . . , tr) = Lin1,...,nr

( t1
t2

, . . . ,
tr−1

tr
, tr

)
.

We denote the quantities N = n1 + . . . + nr and r by the weight and the depth,
respectively. There is an iterated integral representation

(2.4) In1,...,nr
(t1, . . . , tr) = (−1)r

∫

0≤σ1≤...σr≤1

dσ1

σ1 − ρ1
. . .

dσN

σN − ρN
,

where (ρ1, . . . , ρN ) = (t−1
1 , 0n1−1, t−1

2 , 0n2−1, . . . , t−1
r , 0nr−1), N = n1 + . . . + nr, and

0n denotes a string of n 0’s. This is easily proved by expanding the integrand into
a geometric series. One can deduce that they extend to multivalued functions on
M0,n+3(C) ⊂ (C×)n. The following differential equation is easily verified from (2.2).

dI1,...,1(t1, . . . , tn) =

n∑

k=1

[
dI1

( tk
tk+1

)
− dI1

( tk
tk−1

)]
I1,...,1(t1, . . . , t̂k, . . . , tn)(2.5)

where by convention we take dI1(t1/0) = 0, tn+1 = 1 and t0 = 0. The differential
equations for the multiple polylogarithms In1,...,nr

(t1, . . . , tr) in the general case are
easily computed and left to the reader, since they are not required in the sequel.

Definition 1. The generating series of multiple Debye polylogarithms is:

Λr(t1, . . . , tr; β1, . . . , βr) = t−β1

1 . . . t−βr
r

∑

m1,...,mr≥1

Im1,...,mr
(t1, . . . , tr)β

m1−1
1 . . . βmr−1

r

One easily verifies from dLin(t) = t−1Lin−1(t), valid for n ≥ 2, that

dΛ1(t; β) = t−βdLi1(t) .

In general, they satisfy a differential equation which is entirely analogous to equation
(2.5) for the multiple 1-logarithm. Namely, dΛr(t1, . . , tr; β1, . . , βr) =

=

r∑

k=1

dΛ1

( tk
tk+1

, βk

)
Λr−1(t1, . . , t̂k, . . , tr; β1, . . , βk + βk+1, . . , βr)

−
r∑

k=2

dΛ1

( tk
tk−1

, βk

)
Λr−1(t1, . . , t̂k, . . , tr; β1, . . , βk−1 + βk, . . , βr)(2.6)
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where βr+1 = 0, so the last term in the first line is dΛ1(tr; βr)Λr−1(t1, . . , tr−1; β1, . . , βr−1).

2.3. Asymptotics of regular nilpotent connections. Let X be a smooth projec-
tive complex variety, let D ⊂ X be a smooth normal crossing divisor, and let U = X\D.
Let V ⊂ X be a simply connected open set and let z1, . . . , zn denote local coordinates
on V such that V ∩D = ∪k

i=1{zi = 0}, for some k ≤ n.

Definition 2. Let f be a multivalued holomorphic function on U (i.e. f is holomorphic
on a covering of U). We say that f has locally unipotent mondromy (or is locally
unipotent) on V if it admits a finite expansion:

(2.7) f(z1, . . . , zn) =
∑

I=(i1,...,ik)

logi1(z1) . . . logik(zk)fI(z1, . . . , zn) ,

where fI(z1, . . . , zn) is holomorphic on V . We say that a multivalued function f on
X\D is unipotent if it is everywhere locally unipotent.

The main class of functions which are studied in this paper, and in particular the
multiple polylogarithms, are unipotent. The expansion (2.7) can be characterized by
a property that f has ‘moderate’ growth near D (in particular, no poles), and that
for sufficiently large N , (Mi1 − id) . . . (MiN

− id)f = 0 for all i1, . . . , iN ∈ {1, . . . , k},
whereMi denotes analytic continuation around a small loop encircling zi = 0.

3. Differential forms on E(n)

3.1. Basic notations. Let e(z) denote the function e(z) = exp(2πiz). In accordance
with [19], Greek letters ξ and η denote coordinates on C, the letter α will denote
a formal variable, and τ will denote a point of the upper half-plane H = {τ ∈ C :
Im (τ) > 0}. Put z = e(ξ), w = e(η) and q = e(τ). Then z, w ∈ C∗, and 0 < |q| < 1.

3.2. Uniformization. We represent a complex elliptic curve E = C/(τZ + Z), where
τ ∈ H, and q = e(τ), via its Jacobi uniformization

E
∼
−→ C∗/qZ .

Let ξ (resp. z = e(ξ)) denote the coordinate on E (resp. C∗). The punctured curve
E× = E\{0} is isomorphic to C∗\{qZ}/qZ. For n ≥ 1, let E(n) denote the configuration
space of n + 1 distinct points on E modulo translation by E . Thus

E(n) ∼= {(ξ1, . . . , ξn) ∈ (E\{0})n : ξi 6= ξj for i 6= j} ,

and has an action of Sn+1 which permutes the marked points. Setting ti = e(ξi) for
1 ≤ i ≤ n, and setting tn+1 = 1, gives an isomorphism

E(n) ∼= {(t1, . . . , tn) ∈ C∗, ti /∈ qZtj for 1 ≤ i < j ≤ n + 1}/qZn

.

The set on the right-hand side is the largest open subset of M0,n+3(C) stable under

translation by qZn

. The symmetry group Sn+1 of E(n) can thus be identified with the
subgroup of Aut(M0,n+3(C)) ∼= Sn+3 which fixes the marked points 0 and ∞.

In order to fix branches when considering multivalued functions, and to ensure
convergence when averaging functions on M0,n+3(C), we must fix certain domains in

E(n). Let D be the standard open fundamental domain for Z + τZ (the parallelogram
with corners 0, 1, τ, 1 + τ), and let

(3.1) U = {(ξ1, . . . , ξn) ∈ Dn : Im (ξn) < . . . < Im (ξ1)}
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3.3. Elliptic functions. Let θ(ξ, τ) denote “two thirds of the Jacobi triple formula”:

(3.2) θ(ξ, τ) = q1/12(z1/2 − z−1/2)

∞∏

j=1

(1− qjz)

∞∏

j=1

(1 − qjz−1) =
θ11(ξ, τ)

η(τ)
,

where θ11(ξ, τ) is the standard odd elliptic theta function and η(τ) is the Dedekind
η-function q1/24

∏∞
j=1(1 − qj). Recall from [19] that the Eisenstein summation of a

double series (am,n)m,n∈Z is defined by:

∑

m,n

e am,n = lim
N→∞

lim
M→∞

N∑

n=−N

M∑

m=−M

am,n

Define the Eisenstein functions Ej(ξ, τ) and the Eisenstein series ej(τ), for j ≥ 1, by

Ej(ξ, τ) =
∑

m,n

e
1

(ξ + m + nτ)j
, ej(τ) =

∑

m,n

′

e
1

(m + nτ)j
,

where ′ means that we omit (m, n) = (0, 0) in the summation.

Lemma 3. It follows from the definitions that for j ≥ 1,

∂

∂ξ
Ej(ξ, τ) = −jEj+1(ξ, τ) ,

∂

∂ξ
log(θ(ξ, τ)) = E1(ξ, τ),

and E1(α, τ) = 1/α−
∑∞

j=0 ej+1(τ)αj . The series ej(τ) vanish for odd indices j.

The Weierstrass function ℘ is equal to E2 − e2, and ℘′ = −2E3. The coefficients of

the Weierstrass equation ℘′2 = 4℘3 − g2℘− g3 are given by g2 = 60e4, g3 = 140e6.

3.4. The Kronecker function. See also [13, 14, 20] for further details.

Proposition-Definition 4. The following three definitions are equivalent:

i) F (ξ, η, τ) =
θ′(0)θ(ξ + η)

θ(ξ)θ(η)
,

ii) F (ξ, η, τ) = −2πi

(
z

1− z
+

1

1− w
+
∑

m,n>0

(zmwn − z−mw−n)qmn

)
,

iii) F (ξ, α, τ) =
1

α
exp


−

∑

j≥1

(−α)j

j
(Ej(ξ, τ) − ej(τ))


 .

The equivalence of the (i) and (ii) is proved in [19]. The equivalence of (i) and (iii)
follows by computing the logarithmic derivative of F , from the relationship between
E1 and log(θ) (lemma 3), and the Taylor expansion of E1 at a point α. The following
properties of the Kronecker function F will be important for the sequel.

Proposition 5. F (ξ, η, τ) has the following properties:
i) Quasi-periodicity with respect to ξ 7→ ξ + 1 and ξ 7→ ξ + τ :

F (ξ + 1, η, τ) = F (ξ, η, τ) F (ξ + τ, η, τ) = w−1F (ξ, η, τ)

ii) The mixed heat equation:

2πi
∂F

∂τ
=

∂2F

∂ξ∂η
.

iii) The Fay identity:

F (ξ1, η1, τ)F (ξ2, η2, τ) = F (ξ1, η1+η2, τ)F (ξ2−ξ1, η2, τ)+F (ξ2, η1+η2, τ)F (ξ1−ξ2, η1, τ) .
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Proof. The quasi-periodicity is immediate from the first definition of F . The mixed
heat equation follows from the second definition of F . The last statement is a conse-
quence of the third representation of F , and the Fay trisecant equation (see [15]). �

The following formula is an easy corollary of iii):

(3.3) F (ξ, α1)F
′
2(ξ, α2)− F ′

2(ξ, α1)F (ξ, α2) = F (ξ, α1 + α2)(E2(α1)− E2(α2)) ,

where F ′
2 denotes the derivative of F with respect to its second argument.

3.5. Massey products on E(n). We use the Eisenstein-Kronecker series F to write
down some explicit one-forms on E(n). First consider a single elliptic curve E× with
coordinate ξ as above. Write ξ = s + rτ , where r, s ∈ R and τ is fixed, and let ω = dξ
and ν = 2πidr. The classes [ω], [ν] form a basis for H1(E×; C).

Lemma 6. The form Ω(ξ; α) = e(αr)F (ξ; α)dξ is invariant under elliptic transfor-
mations ξ 7→ ξ + τ and ξ 7→ ξ + 1, and satisfies d Ω(ξ; α) = να ∧ Ω(ξ; α).

Proof. Straightforward calculation using proposition 5i). �

We can view Ω(ξ; α) as a generating series of one-forms on E×. Let ξ1, . . . , ξn denote
the usual holomorphic coordinates on E× × . . .× E× and set νi = 2iπdri.

Definition 7. Let ξ0 = 0 and define holomorphic one forms ω
(k)
i,j ∈ A

1(E(n)) for all
0 ≤ i ≤ j ≤ n and k ≥ 0 by the generating series:

(3.4) Ω(ξi − ξj ; α) =
∑

k≥0

ω
(k)
i,j αk−1 .

We clearly have ω
(k)
i,i = 0 and ω

(k)
i,j + (−1)kω

(k)
j,i = 0 for all i, j, k. The leading terms

ω
(0)
i,j are equal to dξi − dξj and therefore satisfy the relations:

(3.5) ω
(0)
i,j + ω

(0)
j,k = ω

(0)
i,k for all i, j, k .

The higher terms ω
(k)
i,j can be viewed as Massey products via the equation:

(3.6) dω
(k+1)
i,j = (νi − νj) ∧ ω

(k)
i,j for k ≥ 0 ,

which follows from lemma 6. The Fay identity implies that

Ω(ξi − ξℓ; α) ∧ Ω(ξj − ξℓ; β) + Ω(ξj − ξi; β) ∧ Ω(ξi − ξℓ; α + β)(3.7)

+ Ω(ξj − ξℓ; α + β) ∧ Ω(ξi − ξj ; α) = 0

which gives rise to infinitely many quadratic relations between the ω
(k)
i,j . Finally, the

definition of F shows that the residues of these forms are given by

(3.8) Resξi=ξj
ω

(k)
i,j = 2iπ δ1k ,

where δ denotes the Kronecker delta. Now consider the projection E(n) → E(n−1) given
by (ξ1, . . . , ξn)→ (ξ1, . . . , ξn−1). Its fibers EFn

are isomorphic to the punctured elliptic

curve E×\{ξ1, . . . , ξn−1} with coordinate ξn. Let ω
(k)
i,j (resp. νn) denote the relative

forms obtained by restricting ω
(k)
i,j (resp. νn) to the fiber. Clearly ω

(0)
n,i = dξn for all i.

Lemma 8. The 1-forms {νn, dξn, ω
(k)
n,i for k ≥ 1, all i} ⊂ A1(EFn

), and the 2-forms

(3.9) {νn ∧ dξn , νn ∧ ω
(k)
n,i for k ≥ 1, all i} ⊂ A2(EFn

)

are linearly independent over C.
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Proof. Since the ω’s are of type (1, 0) and νn is not, it follows from (3.8) that the forms

dξn, ω
(1)
n,0, . . . , ω

(1)
n,n−1, νn are linearly independent. Consider a non-trivial relation

∑

0≤i<n, k≤w

ci,k ω
(k)
n,i = 0 , where ci,k ∈ C ,

and w is minimal. Differentiating gives νn ∧
(∑

i,k ci,kω
(k−1)
n,i

)
= 0, by (3.6). Since νn

has a non-zero component of type (0, 1), the wedge product by νn on (1, 0)-forms is

injective, giving a smaller relation
∑

i,k≤w−1 ci,k+1 ω
(k)
n,i = 0, which is a contradiction.

The same argument proves that (3.9) are linearly independent. �

4. A rational model for the de Rham complex on E(n)

We construct a differential graded algebra Xn over Q which is defined by generators
and quadratic relations, along with a quasi-isomorphism Xn⊗Q C →֒ An, where An =

A•(E(n)) is the C∞-de Rham complex on the configuration space of n+1 points on E .
We show that Xn carries a mixed Hodge structure and give a presentation for H•(E(n))
which is an elliptic analogue of Arnold’s theorem in the genus 0 case.

4.1. Differential graded algebras and fibrations. Let k be a field of characteristic
zero. Recall that a (positively-graded) DGA over k is a graded-commutative algebra
A =

⊕
n≥0 An with a differential d : A → A of degree +1 which satisfies the Leibniz

rule. It is said to be connected if A0 ∼= k. We shall consider algebras A which are
either finite-dimensional in each degree, or else carry a second grading (called the
weight grading) for which they are finite-dimensional in every bidegree.

Let AT be such a DGA with differential dT , and let AB ⊂ AT be a sub-DGA. Define

(4.1) AF = AT /A≥1
B AT ,

which inherits a differential dF from dT . We call the triple AB , AT , AF a fibration
if AT is a free AB-module. The indices T, B, F stand for the total space, base, and
fiber. Now suppose that we are given a splitting iF : AF → AT of A0

B-modules. When
AB, AT , AF is a fibration, the map iF defines an isomorphism of AB-modules:

(4.2) AT
∼= AB ⊗A0

B
AF =

⊕
i≥0A

i
B ⊗A0

B
AF ,

which does not necessarily respect the differential or algebra structure.

4.2. The model Xn. We consider the differential graded algebra Xn generated by
symbols corresponding to the forms considered in §3.5. By abuse of notation, we use
the same symbol to denote the generators in Xn and their images in An = A•(E(n)).
This will be justified when we show that Xn → An is injective (corollary 16).

Definition 9. Let Xn be the Q-differential graded algebra generated by elements

ω
(k)
i,j for k ≥ 0 and 0 ≤ i ≤ j ≤ n

νi for 1 ≤ i ≤ n

in degree 1, modulo the graded-commutative ideal generated by the relations (3.5) and

the coefficients of (3.7). The differential is given by dνi = 0, dω
(0)
i,j = 0, and (3.6) in all

other cases. It is a simple calculation to check that the differential ideal generated by
the Fay identity (3.7) is equal to the (usual) ideal it generates.

There is an obvious map Xn−1 → Xn. Let X+
n−1 be the ideal in Xn generated by the

images of elements of Xn−1 of positive degree, and let XFn
= Xn/X+

n−1. Denote the

images of ω
(k)
i,j and νi under the natural map Xn → XFn

by ω
(k)
i,j and νi, respectively.
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Lemma 10. XFn
is isomorphic to the Q-differential graded algebra generated by ω

(k)
n,i

and νn in degree 1, subject to the relations: ω
(0)
n,i = ω

(0)
n,j for all i, j; νn ∧ νn = 0; and

(4.3) ω
(k)
n,i ∧ ω

(ℓ)
n,j = 0 ∀ i, j, k, ℓ .

The differential is given by d ω
(0)
n,i = d νn = 0 and d ω

(k+1)
n,i = νn ∧ ω

(k)
n,i for k ≥ 1.

Proof. All the relations are obvious except for (4.3). It follows from the Fay identity
(3.7) that Ω(ξn − ξi, α) ∧ Ω(ξn − ξj , β) = 0 mod X+

n−1. �

In particular, XFn
is concentrated in degrees 0, 1, and 2. Let iFn

: XFn
→ Xn denote

the splitting of the quotient map Xn → XFn
defined by:

iFn
(νn) = νn , iFn

(ω
(k)
n,i) = ω

(k)
n,i − ω

(k)
0,i .

4.3. Mixed Hodge structure on Xn. The complex of C∞ forms on E(n) with log-
arithmic singularities carries a Hodge and weight filtration. The weight filtration on
1-foms is concentrated in degrees 1 and 2. But it turns out that there is a refined
weight filtration on Xn, which is in fact a grading. To define it, set W0X

1
n = 0 and

WℓX
1
n = 〈νi, ω

(k)
i,j : k < ℓ〉 for all ℓ ≥ 1 ,

and extend it by multiplication to Xn. It is well-defined because the relations implied
by (3.7) are homogeneous for the weight. The Hodge filtration is given by

F 0X1
n = X1

n ⊃ F 1X1
n = 〈ω

(k)
i,j 〉 ⊃ F 2X1

n = 0

and extends to Xn in the same way. One easily verifies that this defines a mixed Hodge
structure on Xn such that d : Xn → Xn is homogeneous for the weight. Likewise XFn

inherits a mixed Hodge structure which is compatible with the map iFn
.

4.4. Quadratic Algebras. We give a sufficient criterion for an algebra defined by
quadratic relations to be a fibration. We shall only apply this in the case of Xn.

Definition 11. Let V be a finite dimensional vector space over a field k. Let R ⊆
∧2

V
be a subspace (the space of relations). The associated quadratic algebra is

Y · =
∧·

V/〈R〉 ,

where 〈R〉 ⊆
∧·

V is the ideal generated by R. We have Y 0 = k, Y 1 = V .

Now suppose that VB ⊆ V is a subspace, and let VF = V/VB. Choose a splitting

V = VB ⊕ VF ,

which induces a splitting
∧2

V =
∧2

VB⊕(VB⊗kVF )⊕
∧2

VF . Let πF :
∧2

V →
∧2

VF

denote projection onto the last component. Assume that the space of relations splits:

R = RB ⊕RF ,

where RB ⊆
∧2

VB, and RF ⊆ (VB ⊗k VF )⊕
∧2

VF . Let Y ·
B =

∧·
VB/〈RB〉.

Proposition 12. Suppose that

(4.4) πF : RF −→
∧2

VF is an isomorphism.

In this case, the relations RF define the graph of a map α :
∧2

VF → VB ⊗k VF , where
α = id− π−1

F . Suppose furthermore that the map induced by α:
∧3

VF −→ VB ⊗k

∧2
VF −→ Y 2

B ⊗k VF

is well-defined, i.e., for all v1, v2, v3 ∈ VF , there is the associativity condition:

(4.5) (id ∧ α)(α(v1 ∧ v2) ∧ v3)− (id ∧ α)(α(v2 ∧ v3) ∧ v1) ∈ RB ⊗k VF .
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Then YB → Y is injective, and a fibration, with fibers YF , where Y 0
F = k, and Y 1

F
∼= VF ,

and Y k
F = 0 for k ≥ 2. Thus there is an isomorphism of YB-modules:

Y ∼= YB ⊗k YF
∼= YB ⊕ (YB ⊗k VF ) .

Proof. There is an obvious natural map

i : YB ⊕ (YB ⊗k VF ) −→ Y .

We construct an inverse to i by defining by induction a sequence of linear maps

αn :
∧nVF −→ Y n−1

B ⊗k VF for n ≥ 2 ,

such that i ◦ αn(ξ) ≡ ξ mod 〈R〉. For this, let α2 be the map α = id − π−1
F defined

above, and let αn be the map obtained by composing α with itself n − 1 times. By
the associativity property (4.5), αn is well-defined. It is clear from the definition that
i ◦ α2 ≡ id mod R, and from this we deduce that i ◦ αn ≡ id mod 〈R〉 for all n by
induction. Now write ∧n

V =
⊕n

i=0

∧i
VB ⊗k

∧n−i
VF .

If we set α0 : k → k and α1 : VF → VF to be the identity maps, we deduce a map

ρ =

n⊕

i=0

πi
B ⊗ αn−i :

∧n
V −→ YB ⊗k (YB ⊗k VF ) ,

where πi
B :

∧i
VB → YB is the natural map. Since αn(〈R〉) = 0 for all n, and since

R = RB ⊕RF , the map ρ passes to the quotient to define a map

ρ : Y −→ YB ⊕ (YB ⊗k VF )

which satisfies ρ ◦ i = id by definition and i ◦ ρ is an isomorphism since i ◦ αn ≡ id
mod 〈R〉. Thus i is an isomorphism. �

Remark 13. In the previous discussion, we can also replace V with a graded vector
space which is of finite dimension in every degree, and R by a graded subspace.

4.5. Structure of Xn. We show that Xn−1, Xn, XFn
is a fibration of DGA’s.

Lemma 14. There is an isomorphism of graded-commutative algebras

Xn
∼=
∧

(Qν1 ⊕ . . .⊕Qνn)⊗Q Zn ,

where Zn is the subalgebra of Xn spanned by the elements ω
(k)
i,j . Likewise,

XFn
∼=
∧

(Qνn)⊗Q ZFn
,

where ZFn
is the subalgebra of XFn

spanned by ω
(k)
n,i . Note that these isomorphisms do

not respect the differential structures on Xn and XFn
.

Proof. All defining relations of Xn have Hodge filtration ≥ 1, so Xn/F 1Xn is iso-
morphic to the free graded-commutative algebra spanned by ν1, . . . , νn. An identical
argument gives the corresponding isomorphism for XFn

. �

Lemma 15. The map Xn−1 → Xn is injective, and Xn is a free Xn−1-module.

Proof. We must prove that Xn−1 →֒ Xn and Xn
∼= Xn−1 ⊗Q XFn

as Xn−1-modules.
By lemma 14 this is equivalent to showing that Zn−1 →֒ Zn and Zn

∼= Zn−1⊗Q ZFn
as

Zn−1-modules. Since Zn is quadratic, it is enough to verify the criteria of proposition
12. The quadratic relations R are defined by (3.7) and so RF is generated by

(4.6) (i, n; α) ∧ (j, n, β) + (j, n; α + β) ∧ (i, j; α) + (j, i; β) ∧ (i, n; α + β) = 0
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where i, j ≤ n− 1 and (i, n; α) denotes Ω(ξi − ξn; α), etc. Since every term ω
(k)
n,i ∧ ω

(ℓ)
n,j

for k, ℓ ≥ 1 occurs exactly once in the Taylor expansion of the first term of (4.6), the
condition (4.4) is verified. The cases where k or ℓ = 0 are trivial to check. To verify
(4.5), apply the identity (4.6) four times to get:

[[
(i, n; α) ∧ (j, n; β)

]
∧ (k, n; γ)

]
= (j, i; β) ∧ (k, i; γ) ∧ (i, n; α + β + γ)

+ (k, j; γ) ∧ (i, j; α) ∧ (j, n; α + β + γ)

+ (i, k; α) ∧ (j, k, β) ∧ (k, n; α + β + γ)

Since the right-hand side is antisymmetric, the left hand side clearly does not depend
on the bracketing, and the analogue of proposition 12 holds in the infinite graded case
(remark 13), where the grading is given by the weight grading of §4.3. �

Let us write AFn
= An/A+

n−1 and let φ denote the natural map Xn → An. The

choice of coordinate ξn on the fiber of E(n) → E(n−1) gives an isomorphism

(4.7) An−1 ⊗A0
n−1
AFn

∼= An .

Corollary 16. The map φ is injective.

Proof. By lemma 10, XFn
is concentrated in degrees at most two, so it follows from

lemma 8 that XFn
→ AFn

is injective. The injectivity of X1 → A1 is a special case.
The lemma follows by induction on n using the previous lemma and (4.7). �

4.6. Proof that Xn is a model. We now show that φ : Xn ⊗Q C → An is a quasi-
isomorphism. First we compute H1(XFn

) and the Gauss-Manin connection on it.

Lemma 17. We have H0(XFn
) = Q, Hk(XFn

) = 0 if k ≥ 2, and

grW
1 H1(XFn

) ∼= Q[νn]⊕Q[ω
(0)
n,0] , grW

2 H1(XFn
) ∼=

⊕

1≤i≤n−1

Q[ω
(1)
n,i − ω

(1)
n,0] ,

where H1(XFn
) ∼= grW

1 H1(XFn
)⊕ grW

2 H1(XFn
).

Proof. For all k ≥ 3, Xk
Fn

= 0 and so Hk(XFn
) = 0. By (4.3) and νn ∧ νn = 0, any

two-form can be written
∑

k,i

ck
n,i νn ∧ ω

(k)
n,i = d

(∑

k,i

ck
n,i ω

(k+1)
n,i

)
where ck

n,i ∈ Q ,

so is exact. Thus H2(XFn
) = 0 and clearly H0(XFn

) ∼= X0
Fn

= Q. Since ν and ω
(0)
n,0

are closed, it suffices by lemma 10 to consider a closed one-form

η =
∑

k≥1,0≤i<n

ck
n,i ω

(k)
n,i where ck

n,i ∈ Q , such that dη = 0 .

This implies that dη = νn ∧
(∑

k≥1,0≤i<n ck
n,iω

(k−1)
n,i

)
= 0. By lemma 14 we have

∑

k≥1,0≤i<n

ck
n,i ω

(k−1)
n,i = 0 .

Since the forms ω
(k)
n,i , k ≥ 1 and ω

(0)
n,0 are linearly independent in XFn

by lemma 8, and

since ω
(0)
n,n−1 = . . . = ω

(0)
n,0, we conclude that the closed forms in X1

Fn
are spanned by

νn , ω
(0)
n,0 , and {η =

∑

0≤i<n

c1
n,iω

(1)
n,i such that

∑

0≤i<n

c1
n,i = 0} .

This implies the result, along with the definition of the mixed Hodge structure §4.3. �
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Since Xn is a fibration, we can easily compute the Gauss-Manin connection on
H1(XFn

) (see [3] for further details). It is a priori nilpotent since the weight filtration
is defined on all of Xn, and satisfies W0Xn−1 = 0. Explicitly, it is

H1(XFn
) → X1

n−1 ⊗Q H1(XFn
)(4.8)

∇[ω
(1)
n,0 − ω

(1)
n,i] = νi ⊗ [ω

(0)
n,0] + ω

(0)
i,0 ⊗ [νn]

∇[ω
(0)
n,0] = 0

∇[νn] = 0

Using the fact that ω
(0)
n,i = ω

(0)
n,0 − ω

(0)
i,0 , the first line follows from the calculation

iFn
(ω

(1)
n,i − ω

(1)
n,0) = ω

(1)
n,i − ω

(1)
0,i − ω

(1)
n,0

d(iFn
(ω

(1)
n,i − ω

(1)
n,0)) = (νn − νi) ∧ ω

(0)
n,i − νi ∧ ω

(0)
i,0 − νn ∧ ω

(0)
n,0 ,

= −νi ∧ ω
(0)
n,0 − νn ∧ ω

(0)
i,0 .

The second and third lines of (4.8) follow from the fact that ω
(0)
n,0 and νn are exact.

Lemma 18. H1(φ) : grW
· H1(XFn

)⊗Q C→ grW
· H1(AFn

) is an isomorphism.

Proof. The differential graded algebra AFn
computes the de Rham cohomology of the

fiber of the map E(n) → E(n−1), which is isomorphic to E minus n points. Furthermore,
it carries a Hodge and weight filtration which induces the corresponding filtrations on
H1(E\{n points}). The Gysin sequence gives:

0→ H1(E ; C)→ H1(E\{n points}; C)→ C(−1)n−1 → 0 ,

where the third map is given by the residue. Therefore grW
1 H1(AFn

) ∼= H1(E) and

grW
2 H1(AFn

) ∼= C(−1)n−1. The lemma follows from the fact that [φ(νn)], [φ(ω
(0)
n,0)] is

a basis of H1(E) and φ(ω
(1)
n,i) has residue 2πi at ξn = ξi, by (3.8). �

Theorem 19. φ : Xn ⊗Q C →֒ An is a quasi-isomorphism.

Proof. The case n = 1 follows from the previous lemma. The case n > 1 follows by
induction by a standard Leray spectral sequence argument. The precise statement is
corollary 6 in [3], and can be applied directly. �

In conclusion, Xn is a model for the de Rham complex on E(n) and provides a
universal Q-structure on its cohomology.

4.7. A simplified model. Although we shall not use it, one can consider a finitely-
generated DGA model Yn for the cohomology of a configuration of elliptic curves.

Definition 20. Let Yn be the commutative graded Q-algebra defined by generators
ωi, νi for 1 ≤ i ≤ n and ωij for 1 ≤ i ≤ j ≤ n in degree one such that

ωij − ωji = 0(4.9)

ωi ∧ νi = 0

ωij ∧ ωi + ωji ∧ ωj = 0

ωij ∧ νi + ωji ∧ νj = 0

ωiℓ ∧ ωjℓ + ωjℓ ∧ ωij + ωji ∧ ωil = 0

and define a differential d : Yn → Yn by dωi = dνi = 0 and

(4.10) dωij = ωi ∧ νj + ωj ∧ νi .
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There is a surjective map Xn → Yn which sends ω
(0)
i,0 to ωi and ω

(1)
i,j to ωij , νi to νi

and all ω
(k)
i,j for k ≥ 2, to zero. We can define a mixed Hodge structure on Yn in the

same way as for Xn, i.e., ωi, νi have weight one and ωij weight two.

Theorem 21. The map Xn → Yn is a quasi-isomorphism, i.e., H•(Yn) ∼= H•(E(n)).

Proof. (Sketch) Follow the steps of the proof that Xn → An is a quasi-isomorphism:
first define YFn

to be Yn/Y +
n−1 and check that it is a fibration. Then apply the Leray

spectral sequence argument, noting that (4.10) exactly corresponds to the Gauss-Manin
connection on H1(XFn

) ∼= H1(YFn
). �

The model Yn kills all higher Massey products in Xn. Since Yn is finitely generated
it may be useful for explicit implementation of the algebra H•(E(n)). We have quasi-
isomorphisms Yn ←← Xn →֒ An but note there is no map from Yn to An.

5. Bar construction of the de Rham complex of E(n)

The model Xn enables us to put a Q-structure on the bar construction of An.

5.1. Reminders on the bar construction. See [7], §1 for further details. Let A be
a DGA as in §4.1, and further assume that A has an augmentation map ε : A→ k. Let
s : A→ A denote the map s(a) = (−1)deg aa. Let A+ = ker ε denote the augmentation
ideal of A and let T (A+) = k ⊕ A+ ⊕ A+⊗2 ⊕ . . . denote the tensor algebra on A+,
where all tensor products are over k. We write the element a1 ⊗ . . .⊗ an ∈ A⊗n using
the bar notation [a1| . . . |an]. Recall that T (A+) is a commutative Hopf algebra for the
shuffle product (Σ(r, s) denotes the set of r, s shuffles):

[a1| . . . |ar]x [ar+1| . . . |ar+s] =
∑

σ∈Σ(r,s)

ε(σ)[aσ(1)| . . . |aσ(r+s)] ,

where the sign ε(σ) also depends on the degrees of the ai’s but is always equal to 1 if
all ai are of degree 1. The coproduct ∆ : T (A+)→ T (A+)⊗k T (A+) is given by

∆([a1| . . . |ar]) =

r∑

i=1

[a1| . . . |ai]⊗ [ai+1| . . . |ar] .

The length filtration is the increasing filtration associated to the tensor grading

FnT (A+) =
⊕

0≤i≤n

A+⊗i .

The bar complex is the double complex with terms (A+⊗p)q (elements of total degree
q and length p in T (A+)), and with one differential (−1)pdi : (A+⊗p)q → (A+⊗p)q+1:

di([a1| . . . |ap]) =
∑

1≤i≤p

(−1)i[sa1| . . . |sai−1|dai|ai+1| . . . |ap]

and a second differential de : (A+⊗p)q → (A+⊗p−1)q where:

de([a1| . . . |ap]) =
∑

1≤i<p

(−1)i+1[sa1| . . . |sai−1|sai ∧ ai+1|ai+2| . . . |ap]

The bar construction B(A) is defined to be the total complex
⊕

(A+⊗p)q with total
differential D = di + de. Note that the total degree of elements in B(A) is given by

(5.1) deg([a1| . . . |ap]) = deg(a1) + . . . + deg(ap)− p .

Let V (A) = H0(B(A)) be the zeroth cohomology. It is a commutative Hopf algebra.
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5.2. Connected case. When A is connected, this construction simplifies. The aug-
mentation ideal A+ =

⊕
n≥1 An is the set of elements of positive degree. It is clear

from (5.1) that only elements of A of degree 1 contribute to V (A) = H0(B(A)), so
let T (A1) denote the tensor algebra generated by elements of degree 1. Note that
(A+⊗p)q = 0 if p > q and the total degree (5.1) is non-negative. The total differential
−D = di + de reduces to D : T (A1)→ T (A):

D([w1| . . . |wr]) =

r∑

i=1

[w1| . . . |wi−1|dwi|wi+1| . . . |wr] +

r−1∑

i=1

[w1| . . . |wi ∧ wi+1| . . . |wr]

where we changed the overall sign for convenience. We can simply write

(5.2) V (A) = ker
(
D : T (A1)→ T (A)

)
.

We say that elements ξ ∈ T (A1) satisfying Dξ = 0 are integrable.

Definition 22. Define the bar construction of E(n) to be V (Xn) = H0(B(Xn)), where
Xn is our model (§4.2). It is a commutative Hopf algebra over Q, filtered by the length.

By (5.2), V (Xn) is the subalgebra of T (X1
n) given by the integrable words in X1

n.
Since Xn carries a mixed Hodge structure, so too does V (Xn).

5.3. Description of V (XFn
). We first give an explicit description of the bar con-

struction of an elliptic curve with punctures. By the general theory, the length-graded

grℓV (XFn
) ∼=

⊕

ℓ≥0

H1(EFn
)⊗ℓ ,

since there is no integrability condition for one-dimensional varieties. The right-hand
side is just the set of words in the generators of H1(EFn

). These generators are repre-

sented by the closed one-forms ω
(0)
n , νn and ηi := ω

(1)
n,i − ω

(1)
n,0, for 1 ≤ i < n.

Proposition 23. Any word in the letters ω
(0)
n , νn, ηi of length ℓ can be canonically

lifted to an integrable element in V (XFn
) using the forms ω

(k)
n,i for k < ℓ.

Proof. Use Chen’s formal power series connections [6]. Let S = Q〈〈x0, x1, y1, . . . , yn−1〉〉
denote the ring of non-commutative formal power series in symbols x0, x1, y1, . . . , yn−1

and let α = −ad(x0). Consider the formal 1-form [5, 14]:

J = ν x0 + α Ω(ξn; α)x1 +
n−1∑

i=1

(
Ω(ξn − ξi; α)− Ω(ξn; α)

)
yi ∈ XFn

⊗Q S

It is well-defined since all polar terms in α cancel, and is of the form

J = νn x0 + ω(0)
n x1 + η1y1 + . . . + ηn−1yn−1 + higher order terms in x’s,y’s

One easily checks from lemma 10 that dJ = −J ∧J . It follows that the formal element
Ξ = [J ] + [J |J ] + [J |J |J ] + . . . lies in V (XFn

)⊗Q S, and by duality defines a map from
T (〈x0, x1, y1, . . . , yn−1〉) ∼= grℓV (XFn

) to V (XFn
). Concretely, let w be any word of

length ℓ in the alphabet {ω
(0)
n , νn, ηi}. Mapping νn to x0, ω

(0)
n to x1, ηi to yi gives a

word w′ in {xi, yj}. The coefficient of w′ in Ξ is a finite integrable word in the symbols

νn, ω
(k)
n,i , 0 ≤ k ≤ ℓ− 1 whose longest term is w. This gives a canonical splitting:

grℓV (XFn
) −→ V (XFn

)

Note that it follows from the proof that this lifting has integral coefficients. �
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It follows that V (XFn
) is canonically isomorphic to the tensor coalgebra spanned

by [ω], [ν], [ηi], equipped with the shuffle product. The Hodge and weight filtrations
are induced from the corresponding filtrations on Xn. More precisely we have

(5.3) [x1| . . . |xn] ∈ F rV (XFn
) if

∣∣{i : xi = ν}
∣∣ ≤ n− r .

The weight comes from a grading w : grℓV (XFn
)→ N which is defined by

(5.4) w([x1| . . . |xn]) = n +
∣∣{i : xi ∈ {ηj}}

∣∣ ,

and is obtained by giving ω(0) and ν weight 1, and the ηi’s weight 2.

5.3.1. Example: the bar construction on E×. In the case of a single puncture:

grℓ
·V (X1) ∼= T (Q[ω(0)]⊕Q[ν]) .

The formal power series connection J reduces in this case to

J = ν x0 + Ω(ξ,−ad(x0)) x1 ∈ X1〈〈x0, x1〉〉

= ν x0 + x1ω
(0) − [x0, x1]ω

(1) + [x0, [x0, x1]]ω
(2) + . . .

and gives an explicit way to lift any word in the letters [ω(0)], [ν] to V (X1).

Corollary 24. The weight and the length filtrations on V (X1) coincide.

Examples 25. The elements of V (X1) of length at most one are 1, [ω(0)], [ν]. In length
≤ 2 we also have: [ω(0)|ω(0)], [ω(0)|ν] + [ω(1)], [ν|ω(0)]− [ω(1)], and [ν|ν].

5.4. Structure of V (Xn). The main result of [3] gives:

Theorem 26. There is an isomorphism of algebras

(5.5) V (Xn) ∼=

n⊗

i=1

V (XFi
) .

The length and weight filtrations on V (Xn) coincide.

Proof. The bar Gauss-Manin connection ∇B : V (XFn
) → X1

n−1 ⊗Q V (XFn
), which is

defined in [3], is nilpotent with respect to the weight grading. It implies the existence
of a map V (XFn

) → V (Xn) and an isomorphism V (Xn) ∼= V (Xn−1) ⊗Q V (XFn
) of

algebras, from which the statement follows by induction (see [3] for the proofs). �

Note that (5.5) does not respect the Hopf algebra, or differential structures on Xn.
It is however a complete algebraic description of all iterated integrals on E(n), and in
particular, enables one to write down a basis for them.

Remark 27. Theorem 26 is proved in [3] by first showing that the bar-de Rham coho-
mology of Xn is trivial. This is equivalent to the exactness of the sequence:

0 −→ Q −→ X0
n ⊗Q V (Xn) −→ X1

n ⊗Q V (Xn) −→ . . . −→ Xn
n ⊗Q V (Xn) −→ 0

which establishes a duality between V (Xn) and Xn. One way to understand the refined
mixed Hodge structure on Xn (§4.3) is to say that it is induced from the mixed Hodge
structure on V (Xn) by this duality. Alternatively, it follows from the decomposition
Xn
∼= Xn−1 ⊗Q XFn

and the refined mixed Hodge structure on XFn
by induction.

∗ ∗ ∗
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6. Averaging unipotent functions

6.1. Introduction. The main idea for constructing multivalued functions on an ellip-
tic curve is to use the Jacobi uniformization

E = C×/qZ

and average a function on C× with respect to multiplication by q. Consider the example
of the multivalued function Li1(z) = − log(1 − z). Let q ∈ C× such that |q| < 1 and
z ∈ C× such that 1 /∈ qRz. The spiral qRz can be lifted to a universal covering space
of C\{0, 1}, and the function Li1(z) has a well-defined analytic continuation along
it. Near the origin, the function Li1(z) vanishes, but at the point z = ∞ it has a
logarithmic singularity, so the naive average diverges. One way to ensure convergence
is to consider the generating series

E(z; u) =
∑

m∈Z

umLi1(q
mz)

where u−1 is chosen small enough to dampen the logarithmic singularity at infinity,
but not so small as to wreck the convergence at the origin. For m≪ 0, the asymptotic
is um log(qmz), which is bounded if u > 1. For m ≫ 0 the terms are asymptotically
umqmz, which is bounded if u < |q|−1. Thus for 1 < u < |q|−1 the series E(z; u)
converges absolutely, and is almost periodic with respect to multiplication by q.

From this one can easily show that E(z; u) has a simple pole at u = 1. Now one
must view E(z; u) as a function of ξ and α, where u = e(α) and z = e(ξ). Thus the
pole at u = 1 contributes a pole at α = 0 which can be removed to obtain

Ereg(ξ; α) = E(ξ; α) −
1

α
.

This function now admits a Taylor expansion at the point α = 0. The procedure for
constructing multivalued functions on the elliptic curve E× is to take the coefficients
of αi, i ≥ 0 in this Taylor expansion.

The situation is more complicated in the case of several complex variables. Suppose
that we have a function f(t1, t2) on M0,5(C) = {(t1, t2) : t1, t2 6= 0, 1, t1 6= t2}, with
singularities along the removed hyperplanes. We wish to average the function

(6.1)
∑

m1,m2∈Z

um1

1 um2

2 f(qm1t1, q
m2t2)

The first problem that we encounter is that the function f(t1, t2) is simply not well-
defined as t1, t2 → ∞ since its singularities ti = ∞, t1 = t2 do not cross normally at
that point, and so the limit depends on the direction in which it is approached. The
standard solution is to blow-up the points (0, 0), (∞,∞), as below:

t2 = 1

t2 =∞

t1 = 1 t1 =∞
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Note that we do not need to blow up the point t1 = t2 = 1, which is also a non-
normal crossing point, because there are only finitely many lattice points {(qZt1, q

Zt2)}
in its neighbourhood. The domain of summation naturally decomposes into the six
sectors pictured above, each of which is homeomorphic to a square [0, 1] × [0, 1]. By
analysing the behaviour of f(t1, t2) in the neighbourhood of each sector, one finds
necessary and sufficient conditions on u1, u2 to ensure the absolute convergence of
(6.1). It turns out that the poles in the u1, u2 plane are in one-to-one correspondence
with the boundary divisors in the figure, and depend on the local asymptotic behaviour
of f . One can then remove poles in the αi plane (where ui = e(αi)) and compute Taylor
expansions to extract multivalued functions on E(2) with unipotent monodromy.

The plan of the second, analytic, part of this paper is as follows.

(1) First we construct an explicit partial compactification of M0,n which is adapted
to this averaging procedure.

(2) By studying the analytic properties of the multiple polylogarithms (2.3) we find
necessary and sufficient conditions on the dual variables ui to ensure absolute
convergence of the averaging function:

∑

m1,...,mr∈Z

um1

1 . . . umr
r In1,...,nr

(qm1t1, . . . , q
mr tr)

(3) From its differential equation, we compute the pole structure in the ui coordi-
nates. The multiple elliptic polylogarithms can be defined as the coefficients
in its regularized Taylor expansion at α1 = . . . = αr = 0, where ui = e(αi).
Note that, since the singularities in the space of αi parameters are not normal
crossing, the regularization must be performed with some care. We do not
address the question of explicit regularization in the present paper.

The entire procedure from (1) to (3) will work more generally for any functions
satisfying some growth conditions on certain toric varieties. Section §6 covers the
general steps (1) and (2). The definition of the multiple elliptic polylogarithms is
completed in §7, with examples given in §9. In §8, which is independent from the rest
of the paper, we show how to compute the asymptotics of the Debye polylogarithms
explicitly at infinity using a certain coproduct. Finally, in §10 we prove that all iterated
integrals on a punctured elliptic curve can be obtained by this averaging procedure.

6.2. Preliminaries. Let q = e(τ), where τ is in the upper-half plane, and let ti =
e(ξi), for i = 1, . . . , r, where ξ1, . . . , ξr are in the domain U defined by (3.1), in §3.2.

Consider the following preparation map to a universal covering of M0,r+3(C):

σ : Rn −→ M̃0,r+3(C)

(s1, . . . , sr) 7→ (qs1t1, . . . , q
sr tr) ,

where we view M0,r+3(C) ⊂ Cr in simplicial coordinates. Suppose that we have a
multivalued function f(t1, . . . , tr) on M0,r+3(C), with a fixed branch in the neighbour-

hood of some (t1, . . . , tr) such that tit
−1
j /∈ qR for i 6= j and ti /∈ qR. Then f(t1, . . . , tr)

admits a unique analytic continuation to the image of σ(Rn), and in particular, the
values f(qn1t1, . . . , q

nr tr) are well-defined for all (n1, . . . , nr) ∈ Zr.
We apply this to the multiple polylogarithm functions

(6.2) Im1,...,mn
(t1, . . . , tn) =

∑

a1,...,an≥1

ta1

1 . . . tan
n

am1

1 (a1 + a2)m2 . . . (a1 + . . . + an)mn
,
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which give rise to multivalued unipotent functions on M0,r+3(C) ⊂ Cr, and vanish
along the divisors ti = 0. The power series expansion above defines a canonical branch
in the neighbourhood of the origin.

6.3. Compactification of the hypercube. Let S = {1, . . . , n} and let us write P1
S

for Hom(S, P1) ∼= (P1)n. Let �n ⊂ P1
S denote the real hypercube [0,∞]n. For any

disjoint pair of subsets I, J ⊂ S, let

F J
I =

⋂

i∈I

{zi = 0} ∩
⋂

j∈J

{zj =∞} ⊆ P1
S

denote the corresponding coordinate linear subspace. The sets F J
I ∩�n give the stan-

dard stratification of the hypercube by its faces.
Working first in simplicial coordinates, consider the set of divisors

X =
⋃

1≤i<j≤n

{ti − tj = 0} ∪
⋃

1≤i≤n

{ti = 1} ,

which meets the set of faces F J
I non-normally. Let us write FI = F ∅

I , F J = F J
∅ and

call such divisors of type 0 or type ∞, respectively. Consider the sets of faces:

F0 = {FI : |I| > 1} , F∞ = {F J : |J | > 1} ,

of codimension ≥ 2. Following the standard practice for blowing up linear subspaces,
we blow up the set of faces in F0 of smallest dimension, followed by the strict transforms
of faces FI where |I| = n − 1, and so on, in increasing order of dimension, until the
strict transforms of all elements in F0 have been blown up. Now repeat the same
procedure with F∞, and denote the corresponding space by PS , with

(6.3) π : PS −→ P1
S

It does not depend on the chosen order of blowing-up.
Let us denote the strict transform of any face FI (resp. F J) by DI (resp. DJ),

for all |I|, |J | ≥ 2. Let Di (resp. Dj) denote the strict transform of the divisor F ∅
i

(resp. F j
∅ ) which corresponds to a facet of the original hypercube, and let us denote

by D =
⋃

|K|≥1 DK ∪DK , the union of all the above. The strict transform of �n is a

certain polytope Cn, whose facets are in bijection with the irreducible components of
D, which number 2× (2n − 1). Let X ′ ⊂ PS denote the strict transform of X .

Proposition 28. The divisor D ∪X ′ ⊂ PS is locally normal crossing near D.

The proof will be given by computing explicit normal coordinates in every local
neighbourhood of D, using a decomposition into sectors.

6.4. Sector decomposition. Let us view M0,n(R) in simplicial coordinates as the
complement of divisors of the form ti = tj and ti = 1 in (R×)n. Then �n ∩M0,n+3(R)
admits a decomposition into (n + 1)! connected components:

∆π = {0 < tπ(1) < . . . < tπ(n+1) <∞} ,

where π is a permutation of (1, . . . , n + 1), the ti are simplicial coordinates on each
component of (P1)n, and where tn+1 = 1. The permutation π should be viewed as a
dihedral ordering of the n+3 marked points 0, 1,∞, t1, . . . , tn on P1(R). To every such
π we associate local ‘sector’ coordinates on M0,n+3(C) as follows:

(6.4) sπ
1 =

tπ(1)

tπ(2)
, . . . , sπ

n =
tπ(n)

tπ(n+1)
.
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The coordinates sπ
i give a homeomorphism from ∆π to the unit cube (0, 1)n. When

π is the trivial permutation, the coordinates sπ
i are the same coordinates xi used to

define the multiple polylogarithms in §2.2. For each π, we define the open affine scheme

Uπ = Spec Z[sπ
1 , . . . , sπ

n, {(
∏

i≤k≤j

sπ
k − 1)−1}1≤i≤j≤n] .

Note that the Uπ are all canonically isomorphic, and (0, 1)n ⊂ Uπ(R).

Lemma 29. For every π, Uπ defines an affine chart on M0,n+3:

M0,n+3 ⊂ Uπ ⊂M0,n+3

Proof. Consider the set of forgetful maps (or ‘cross-ratios’) fT : M0,n+3 →M0,4
∼= P1,

where T is a subset of any 4 of the n+3 marked points. Then M0,n+3 ⊂M0,n+3 is the
open subscheme where all fT ’s are non-zero. It suffices to check that Uπ is isomorphic
to the open subscheme of M0,n+3 where some of the fT ’s are non-zero. For this, one
can write each sπ

k and
∏

i≤k≤j sπ
k − 1 as cross-ratios, and conversely every cross-ratio

as a function of the sπ
i . We omit the details. �

Definition 30. Let Un =
⋃

π Uπ ⊂ M0,n+3 be the scheme obtained by gluing all

charts Uπ together. Viewing Sn+1 as the stabilizer of 0,∞ in Aut(M0,n+3) ∼= Sn+3,
we have

Un =
⋃

π∈Sn+1

π(Uid) ,

where Uid corresponds to the trivial permutation.

The smooth scheme Un ⊂M0,n+3 is equipped with a set of normal crossing divisors
defined in each chart by the vanishing of the sπ

k .

Example 31. Let n = 2. The coordinate square (0,∞)× (0,∞) ⊂M0,5(R) is covered
by six sectors ∆π as shown below after blowing up F12 = (0, 0), F 12 = (∞,∞).

D2

t2 = 1

D1

D2

D1

t1 = 1

D12

D12∆π0

Consider the sector denoted ∆π0
, where π0 = (1, t1, t2), which corresponds to the

dihedral ordering 0 < 1 < t1 < t2 < ∞ on the marked points of M0,5(R). Its sector

coordinates are sπ0

1 = t−1
1 , sπ0

2 = t1/t2. The divisor sπ0

2 = 0 corresponds to the partition

{0, 1, t1}|{t2,∞} on M0,5, and the divisor sπ0

1 = 0 corresponds to {0, 1}|{t1, t2,∞}.

In the general case, we have:
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Lemma 32. The divisor sπ
k = 0 corresponds on Uπ ⊂M0,n+3 to the partition (§2.1)

{0, tπ(1), . . . , tπ(k)}
∣∣{tπ(k+1), . . . , tπ(n+1),∞} .

Therefore the scheme Un is the complement in M0,n+3 of the set of divisors A corre-
sponding to partitions in which the marked points 0 and ∞ lie in the same component.

The simplicial coordinates t1, . . . , tn give a canonical map Un → (P1)n, which iden-
tifies Un with the blow-up PS of (P1)n defined in §6.3. Thus, we have

PS\X
′ ∼= M0,n+3\A ∼= Un .

This identifies the following divisors on PS\X ′, M0,n+3\A, and Un, respectively:

DI ↔ {0, tk : k ∈ I}
∣∣{∞, 1, tk : k /∈ I} ↔ sπ

|I| = 0 on every Uπ st π(I) = I

DJ ↔ {0, 1, tk : k /∈ J}
∣∣{∞, tk : k ∈ J} ↔ sπ

n+1−|J| = 0 on every Uπ st π(J) = J

We deduce that DI ∩DI′ 6= ∅ if and only if I ⊆ I ′ or I ′ ⊆ I (and likewise for DJ , DJ′

)
and DI ∩DJ 6= ∅ if and only if I ∩ J = ∅.

Proof. Straightforward. One must only verify that the sector coordinates sπ
k are pre-

cisely the local coordinates that one obtains when one blows up (P1)n along divisors
FI and F J in order of increasing dimension. �

In conclusion, we have three descriptions of the space Un: first, as a certain blow-up
of (P1)n along the boundary of the hypercube; second, as the gluing together of affine
schemes Uπ; and third, as the complement in M0,n+3 of a certain family of divisors.

Corollary 33. Let D ⊂ Un be an irreducible divisor defined locally by the vanishing
of an sπ

k . Then D ∼= Uk−1 × Un−k, where U0 is a point. It follows that the polytope
Cn (which was defined to be the strict transform π−1(�n) ) has the following product
structure on its facets: Cn ∩DI

∼= C|I|−1 × Cn−|I| and similarly for Cn ∩DJ .

6.5. Absolute convergence of multivalued series. Let

(6.5) S = {(q, t1, . . . , tn) : 0 < |q| < |t1| < . . . < |tn| < 1, tit
−1
j /∈ qR , ti /∈ qR} ,

and let f be a unipotent function on (C×)n\{ti = tj}, i.e., a multivalued function on

M0,n+3(C) ⊂M0,n+3(C) with everywhere local unipotent monodromy around bound-
ary divisors (definition 2). Consider a sum

(6.6) F (t1, . . . , tn; q) =
∑

m1,...,mn∈Z

um1

1 . . . umn
n f(qm1t1, . . . , q

mntn) ,

By §6.2, the values f(qm1t1, . . . , q
mntn) are well-defined if we fix a branch of f near

some point (t1, . . . , tn), where (q, t1, . . . , tn) ∈ S. We give sufficient conditions on the
auxilliary variables ui to ensure the absolute convergence of such a series, by bounding
the terms of F in different sectors.

Definition 34. For 0 < ε≪ 1, let Uε
π ⊂ Uπ denote the open set of points

{(sπ
1 , . . . , sπ

n) ∈ Uπ : |sπ
i | < 1 for all i, and |sπ

i | < ε for some 1 ≤ i ≤ n} ,

and let Uε =
⋃

π∈Sn+1
Uε

π.

Let K be a compact subset of S (6.5).

Lemma 35. For (q, t1, . . . , tn) in K, there are only finitely many m = (m1, . . . , mn)
such that (qm1t1, . . . , q

mntn) lies in the complement of Uε, and f(qm1t1, . . . , q
mntn) is

uniformly bounded for such m.
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Proof. The first part follows since the complement of Uε in M0,n+3 is compact, and
does not contain the total transform of any divisors ti = 0,∞. The definition of S
ensures that qmiti 6= qmj tj and qmiti 6= 1 for all mi, mj , i 6= j, and since these are the
possible singularities of f(qm1t1, . . . , q

mntn), it is uniformly bounded on K. �

All the remaining terms of (6.6) lie in some sector Uε
π. Let us fix one such per-

mutation π and work in local sector coordinates sπ
1 , . . . , sπ

n. Then Uε
π can be further

decomposed into smaller pieces as follows. For any non-empty A ⊆ {1, . . . , n}, let

Nπ
A = {(sπ

1 , . . . , sπ
n) : |sπ

i | < ε for i ∈ A, 1 > |sπ
i | ≥ ε for i /∈ A} .

We clearly have:

Uε
π =

⋃

∅6=A⊆{1,...,n}

Nπ
A .

Nπ
2Nπ

12

Nπ
1

1

ε

ε 1

Proposition 36. There is a constant C ∈ R such that for all (sπ
1 , . . . , sπ

n) ∈ Nπ
A,

|f(sπ
1 , . . . , sπ

n)| ≤ C
(∏

i∈A

κi(s
π
i )
)
fA((sπ

j )j /∈A) ,

where fA(sπ
j )j /∈A is a unipotent function on

⋂
i∈A{s

π
i = 0}, and

κi(s) = |s|Mi logw |s| ,

where f vanishes along sπ
i = 0 to order Mi ≥ 0, and w is some integer ≥ 0.

Proof. This follows immediately from the local expansion of a unipotent multivalued
function in the neighbourhood of a normal crossing divisor (definition (2.7)). �

Recall from definition (6.4) that sπ
i = tπ(i)t

−1
π(i+1). Thus the action of the summation

index (m1, . . . , mn) ∈ Zn on the sector coordinate sπ
i is given by sπ

i 7→ qpπ
i sπ

i , where

(6.7) pπ
i = mπ(i) −mπ(i+1) .

By lemma 32, the divisor sπ
k = 0 corresponds to a divisor DI or DJ . Let us define

(6.8) vπ
k =

∏

i∈I

ui or vπ
k =

∏

j∈J

u−1
j

accordingly, where ui are the parameters in (6.6). One verifies that

(vπ
1 )pπ

1 . . . (vπ
n)pπ

n = um1

1 . . . umn
n .

Thus, for the terms of (6.6) which lie in the sector Uπ, we can write

um1

1 . . . umn
n f(qm1t1, . . . , q

mntn) = (vπ
1 )pπ

1 . . . (vπ
n)pπ

nf(qpπ
1 sπ

1 , . . . , qpπ
nsπ

n)

in local coordinates. Dropping cluttersome π’s from the notation, we have:
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Corollary 37. For all (q, t1, . . . , tn) ∈ K, there exists a constant C such that
∣∣vp1

1 . . . vpn
n f(qp1sπ

1 , . . . , qpnsπ
n)
∣∣ ≤ C

∏

i∈A

|viq
Mi |pi |pi|

w

for all (p1, . . . , pn) ∈ Zn such that (qp1sπ
1 , . . . , qpnsπ

n) ∈ Nπ
A.

Proof. Consider the bound in proposition 36. The function fA on the right-hand side
can be uniformly bounded by a version of lemma 35, applied to

⋂
i∈A{s

π
i = 0}, which

is isomorphic to a product of Uk’s. This gives the above bound. �

Theorem 38. Suppose that the chosen branch of f vanishes along all divisors DI of
type 0 with multiplicity |I|. Then (6.6) converges absolutely on compacta of the polydisc

1 < u1, . . . , un < |q|−1

Proof. Consider first a divisor DI of type 0. Then, in the previous corollary, the divisor
DI = {sπ

k = 0} in some chart Uπ will correspond in the right-hand side to terms of the

form |vπ
k q|I||ppw, where p is large and positive. The assumptions on ui imply that

|vπ
k q|I||ppw =

(∏

i∈I

|uiq|
)p

pw < 1 ,

and therefore |vπ
k q|I||ppw tends to zero exponentially fast in p. Now consider a divisor

DJ of type ∞. It corresponds to terms of the form |vπ
k qMk |ppw, where p is large and

positive and Mk, w ≥ 0. But by the assumptions on ui, we have

|vπ
k | =

(∏

j∈J

u−1
j

)
< 1 ,

and so once again, |vπ
k qMk |ppw tends to zero exponentially fast in p. �

6.6. Structure of the poles. We first make some general remarks about the pole
structure as follows from the proof of theorem 38. In §7.4 we shall refine this result in
the case of the multiple elliptic polylogarithms by exploiting their differential equation.

Corollary 39. Let f satisfy the conditions of theorem 38. For every I 6= ∅, let wI de-
note the order of the logarithmic singularity of f along DI . Every codimension h face of
the polytope Cn corresponds to a flag I1 ( I2 ( . . . ( Ih, where I1, . . . , Ih ⊆ {1, . . . , n},
and is contained in the intersection E = DI1 ∩ . . . ∩DIh . Let s1, . . . , sh, sh+1, . . . , sn

denote local normal coordinates in which DIk is given by sk = 0 for 1 ≤ k ≤ h. Then
in the neighbourhood of E, the function f has an expansion of the form

f =
∑

i1≤wI1
,...,ih≤wIh

fi1,...,ih
(sh+1, . . . , sn) logi1(s1) . . . logih(sh) ,

where (sh+1, . . . , sn) are coordinates on E. After averaging, each term in the sum
which is indexed by i1, . . . , ih contributes singularities to (6.6) of the form

(
∏

k∈I1

uk − 1)−j1 . . . (
∏

k∈Ih

uk − 1)−jh ,

with j1 ≤ i1 + 1, . . . , jh ≤ ih + 1. In particular, the term f0,...,0(sh+1, . . . , sn) which is
constant in s1, . . . , sh, contributes a simple pole of the form

(
∏

k∈I1

uk − 1)−1 . . . (
∏

k∈Ih

uk − 1)−1 .
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Proof. Following the method of proof of the previous theorem, one sees that the state-
ment reduces to a local computation in the one-dimensional situation. In this case, it
is clear that the averaging procedure applied to logi z, for i ≥ 0, gives

∑

m≥0

um logi qmz =
∑

m≥0

um(m log q + log z)i ,

which has a pole at u = 1 of order at most i + 1. �

Remark 40. Corollary 39 gives an upper bound on the singularities which occur: it
can happen that summing over one sector gives rise to spurious poles in the ui’s, which
cancel on taking the total contribution over all sectors.

The upshot of the previous corollary is that if we know the differential equations
satisfied by f , then we can deduce the pole structure of F completely from these
differential equations, up to constants of integration (see §9 below). The corollary
states that the constants of integration necessarily contribute simple poles, and these
are in bijection with the n! maximal flags I1 ( I2 ( . . . ( In−1 ( In.

Example 41. In the case n = 2, we have poles along ui = 1 coming from logarithmic
singularites along Di, for i = 1, 2, and along u1u2 = 1 coming from D12. The typical
contribution from D1, for example, is of the form

w∑

i=0

Ri(ξ2; u2)

(u1 − 1)i+1

where Ri(ξ2; u2) is the result of averaging a function of t2. The two maximal flags
{1} ⊂ {1, 2} and {2} ⊂ {1, 2} which correspond to the corners D1∩D12 and D2∩D12,
give constant contributions of the form

c1,12

(u1 − 1)(u1u2 − 1)
and

c2,12

(u2 − 1)(u1u2 − 1)

where c1,12 (resp. c2,12) is the regularized limit of f at D1 ∩ D12 (resp. D2 ∩ D12).
For an explicit computation of such a pole structure, see §9.2.

7. Elliptic multiple polylogarithms

In this section, we apply the results of §6 to prove the following theorem.

Theorem 42. The series obtained by averaging the classical multiple polylogarithm

En1,...,nr
(ξ1, . . . , ξr; u1, . . . , ur) =

∑

m1,...,mr∈Z

um1

1 . . . umr
r In1,...,nr

(qm1t1, . . . , q
mr tr)

converges for 1 < u1, . . . , ur < |q|−1, and (q, t1, . . . , tr) ∈ S. It defines a (generating
series) of functions on E(r) with poles given by products of consecutive ui’s only:

ui = |q|−1 for 1 ≤ i ≤ r , and
∏

i≤k≤j

uk = 1 for all 1 ≤ i ≤ j ≤ r .

In order to extract a convergent Taylor expansion in the variables αi, where ui =
e(αi), it suffices to know the exact asymptotic behaviour of In1,...,nr

(t1, . . . , tr) at
infinity. This is carried out for the Debye polylogarithms in §7.
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7.1. Analytic continuation of polylogarithms. The function In1,...,nr
(t1, . . . , tr)

has a convergent Taylor expansion at the origin, and so defines the germ of a multival-
ued analytic function on M0,n+3(C) ⊂ Cn. As is well-known, it is unipotent by (2.5),
has a canonical branch at the origin, and vanishes along the divisors ti = 0.

It therefore extends by analytic continuation to a multivalued function on the blow-
up Un\X(C), and can have at most logarithmic divergences along the boundary com-
ponents DJ and DI of X . It turns out that for some of these components D, there is
no logarithmic divergence and we can speak of the continuation Im1,...,mn

(t1, . . . , tn)
∣∣
D

of Im1,...,mn
(t1, . . . , tn) to D. This is not well-defined, since the function is multivalued.

However, if D also meets the strict transform of a divisor ti = 0, for some i, there is a
canonical branch which vanishes at {ti = 0} ∩ D, and defined in a neighbourhood of
{ti = 0}. The following lemma is the key to the absolute convergence of (7.1).

Lemma 43. Let DI be of type 0. Then Im1,...,mn
(t1, . . . , tn)

∣∣
DI

vanishes to order |I|.

Proof. The sum (6.2) converges in the neighbourhood of the origin and locally defines
a holomorphic function which vanishes along the divisors ti = 0. It therefore vanishes
on any exceptional divisor DI lying above the origin to order |I|. �

Setting f(t1, . . . , tn) = Im1,...,mn
(t1, . . . , tn) proves the first part of theorem 42.

Lemma 44. Let J ⊂ {1, . . . , n} be non-empty, and 1 /∈ J . Let Jc = {1, . . . , n}\J and
write Jc = {i1, . . . , ik} where 1 = i1 < . . . < ik. Then

Im1,...,mn
(t1, . . . , tn)

∣∣
DJ = (−1)|J|Im′

1
,...,m′

k
(ti1 , . . . , tik

) ,

where m′
1 = mi1 + . . . + mi2−1, m′

2 = mi2 + . . . + mi3−1,. . . , m′
k = mik

+ . . . + mn.

Proof. This follows immediately from the iterated integral representation (2.4). �

Corollary 45. Every multiple polylogarithm Im1,...,mn
(t1, . . . , tn) is the analytic con-

tinuation to some exceptional divisor of a multiple logarithm I1,...,1(t1, . . . , tN ).

Thus we can restrict ourselves to considering only multiple logarithms if we wish.
Another way to interpret lemma 44 is to notice that the terms I

∣∣
DJ are in one-to-one

correspondence with the terms in the so-called stuffle product formula.

7.2. Elliptic Multiple Polylogarithms. The functions obtained by averaging mul-
tiple polylogarithms satisfy differential equations which are easily deduced from (2.5).

Lemma 46. The function F (ξ; u) is the averaged weighted generating series for z
z−1 :

F (ξ; u) = −2πi
∑

n∈Z

qnz

1− qnz
un .

Proof. By decomposing the domain of summation into various parts we obtain:

∑

n∈Z

qnz

1− qnz
un =

∑

n<0

−q−nz−1

1− q−nz−1
un −

∑

n<0

un +
z

1− z
+
∑

n>0

qnz

1− qnz
un

=
∑

n>0

∑

m>0

qmn(−z−mu−n + zmun) +
z

1− z
+

1

1− u

which is the definition of the Eisenstein-Kronecker series −(2iπ)−1F (ξ; u). �

Lemma 47. The averaged weighted generating series for dLi1(z) is:
∑

n∈Z

dLi1(zqn)un = F (ξ; u)dξ .

Likewise, the result of averaging z−sdLi1(z) is e(−ξs)F (ξ; u)dξ.
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Proof. Follows from the previous lemma using the fact that dξ = 1
2iπ

dz
z . �

Let us define the (unregularized) multiple elliptic polylogarithm to be:

En1,...,nr
(ξ1, . . . , ξr; α1, . . . , αr) =

∑

m1,...,mr∈Z

um1

1 . . . umr
r In1,...,nr

(qm1t1, . . . , q
mr tr) .

where ui = e(αi) for 1 ≤ i ≤ r.

Theorem 48. The total derivative dE1,...,1(ξ1, . . . , ξn; α1, . . . , αn) equals

=
n∑

k=1

dE1(ξk − ξk+1; αk)E1,...,1(ξ1, . . . , ξ̂k, . . . , ξn; α1, . . . , αk + αk+1, . . . , αn)

−
n∑

k=2

dE1(ξk − ξk−1; αk)E1,...,1(ξ1, . . . , ξ̂k, . . . , ξn; α1, . . . , αk−1 + αk, . . . , αn)

where ξn+1 = 0, αn+1 = 0, and dE1(ξ; α) = F (ξ; α)dξ.

Proof. Since it converges uniformly, we can differentiate term by term in the definition
of E1,...,1. The differential equation then follows from the corresponding differential
equation (2.5) for I1,...,1(t1, . . . , tn). The key observation is that a term such as

∑

m1,...,mn∈Z

dI1

( qmktk
qmk+1tk+1

)
I1,...,1(q

m1t1, . . . , q̂mk tk, . . . , qmntn)um1

1 . . . umn
n

can be rewritten in the form
∑

m1,...,mn∈Z

dI1

(
qmk−mk+1

tk
tk+1

)
u

mk−mk+1

k

× I1,...,1(q
m1t1, . . . , q̂mktk, . . . , qmntn)um1

1 . . . (ukuk+1)
mk+1 . . . umn

n

and the region of summation decomposes into a product after a triangular change of
basis of the summation variables (m1, . . . , mn) 7→ (m1, . . . , mk −mk+1, . . . , mn). �

7.3. Elliptic Debye polylogarithms. Recall the definition of the classical Debye
polylogarithms (definition 1). Let us write α = (α1, . . . , αr) and likewise for β.

Definition 49. The generating series of elliptic Debye polylogarithms is:

Er(ξ1, . . , ξr; α, β) =
∑

m1,. . ,mr∈Z

e(m1α1 + · · ·+ mrαr)Λr(q
m1

1 t1, . . , q
mr
r tr; β1, . . , βr)

The absolute convergence of the series is guaranteed by theorem 38.

One of the main reasons for considering such a generating series is because of a
mysterious modularity property relating the parameters α and β (see [13] when r = 1).

Proposition 50. Let r ≥ 2. The differential d Er(ξ1, . . , ξr; α, β) is equal to

=

n∑

k=1

d E1(ξk − ξk+1; αk, βk) Er−1(ξ1, . . , ξ̂k, . . , ξr; α1, . . , αk + αk+1, . . , αn, β1, . . )

−
n∑

k=2

d E1(ξk − ξk−1; αk, βk) Er−1(ξ1, . . , ξ̂k, . . , ξr; α1, . . , αk−1 + αk, . . , αn, β1, . . )

where ξn+1 = αn+1 = βn+1 = 0, and in the right-hand side, the arguments in the β’s
are of the same form as those for the α’s. In the case r = 1, we have

(7.1) d E1(ξ; α; β) = e(−βξ)F (ξ; α− τβ)dξ .

The proof follows immediately from theorem 48.
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7.4. The structure of the poles of elliptic polylogarithms. Let us write

(7.2) γi = αi − τ βi for 1 ≤ i ≤ r .

Proposition 51. The Debye elliptic polylogarithms (definition 49) have at most simple
poles along the divisors which have consecutive indices only:

∑

i≤j≤k

γi = 0 and
∑

i≤j≤k

αj = 0 .

The multiple elliptic polylogarithm Em1,. . ,mn
(ξ1, . . , ξn; α1, . . , αn) has poles along divi-

sors of the form
∑

i≤j≤k αj = 0 of order at most m1 + . . . + mn + 1.

Proof. By induction. Suppose that Er has simple poles along
∑

i≤j≤k αj = 0, and∑
i≤j≤k γj = 0 with consecutive indices only. This is automatically true for r ≤ 2.

It follows from the shape of the differential equation (proposition 50), that d Er+1

only has simple poles along
∑

i≤j≤k αj = 0 and
∑

i≤j≤k γj = 0. Thus the same
conclusion also holds for Er+1, except that the constants of integration might give
rise to supplementary poles. To see that such constants of integration must be zero,
let I be a set of non-consecutive indices. The divisor DI meets a divisor of the form
tj = 0, for j /∈ I, along which the function Λ(t1, . . . , tn; s1, . . . , sn) vanishes. It follows
from the discussion above that Λ has no divergence in the neighbourhood of DI ∩
{tj = 0}, and hence no pole in either

∑
i∈I αi = 0 or

∑
i∈I γi = 0. This proves the

result for the generating series Er. The corresponding statement for its coefficients
Em1,. . ,mr

(ξ1, . . , ξr; α1, . . , αr) follows on taking a series expansion in the βi. �

This method for computing the pole structure is illustrated below (§9.2).

8. Asymptotics of Debye polylogarithms.

In the previous section we showed that the polar contributions in the averaging pro-
cess come from the asymptotic expansion of polylogarithms at infinity. This expansion
can be computed explicitly in terms of a combinatorially defined coproduct.

8.1. The coproduct for Debye polylogarithms. The Debye multiple polyloga-
rithms are defined by iterated integrals, and so by the general theory [6] admit a
coproduct which is dual to the composition of paths. We describe it explicitly below.

Definition 52. Let n ≥ 1. Let I = {1, . . . , n} be an ordered set of indices and let
β1, . . . , βn be formal variables satisfying

∑n
i=1 βi = 0. Define a string in I to be a

consecutive subsequence S = (i1, i2, . . . , il) of length 2 ≤ l < n, which is either in
increasing or decreasing order and such that i1 6= n. Let

βS = βi1 + βi2 + . . . + βil−1
.

For any such string S = (i1, . . . , il), let AS denote the symbol

(8.1) AS = (ti1 : ti2 : . . . : til
; βi1 , βi2 , . . . , βil−1

,−βS) .

Let Hn denote the commutative ring over Z generated by all symbols AS as S ranges
over the set of strings in 1, 2, . . . , n. The length of a string defines a grading on Hn.

The Debye polylogarithm defines a map from Hn to generating series of multivalued
functions. If a string S is given by (8.1) then we have

(8.2) Λ(AS) = Λl−1

( ti1
tiℓ

,
ti2
tiℓ

, . . . ,
til−1

tiℓ

; βi1 , βi2 , . . . , βil−1

)
.

Denote the last element of a string by ℓ(i1, i2, . . . , il) = il, and define the sign ε(S)
of S to be 1 if S is in increasing order, or (−1)l−1 if it is in decreasing order.
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Definition 53. A finite collection S = {Sα} of strings is admissible if the strings
intersect at most in their last indices, i.e., if Sα, Sβ are in S and α 6= β then either

(1) Sα ∩ Sβ = ∅

or (2) Sα ∩ Sβ = {ℓ} , where ℓ = ℓ(Sα) = ℓ(Sβ) .

Given an admissible set of strings S = {Sα}, define the set of remaining indices

RS =
(
I \
⋃

Sα

)
∪
⋃

ℓ(Sα)

with the ordering induced from I, and define the corresponding quotient sequence

QS = (tj1 : tj2 : . . . : tjm
; β̃j1 , β̃j2 , . . . , β̃jm

) ,

where (j1, j2, . . . , jm) = RS and β̃j = βj +
∑

α,ℓ(Sα)=j βSα
.

Definition 54. Define a map ∆′ : Hn −→ Hn ⊗Hn by

(8.3) ∆′AJ =
∑

S={S1,...,Sk}

ε(S1)AS1
. . . ε(Sk)ASk

⊗QS

where J ⊆ {1, . . . , n}, and the sum is over all non-empty admissible collections of
strings S in J such that QS has at least two elements.

Consider the map which sends AS of (8.1) to t
βi1

i1
. . . t

βil

il
, with βil

= −βS, and

extend by multiplicativity. Then each term in (8.3) maps to ±tβ1

1 . . . tβn
n .

Example 55. Writing βij for β{i,j} = βi + βj , and so on, formula (8.3) gives:

∆′(t1 : t2 : t3; β1, β2, β3) = (t1 : t2; β1,−β1)⊗ (t2 : t3; β12, β3)(8.4)

− (t2 : t1; β2,−β2)⊗ (t1 : t3; β12, β3)

+ (t2 : t3; β2,−β2)⊗ (t1 : t3; β1, β23) .

In general, a typical term in ∆′(t1 : . . . : t6; β1, . . . ; β6) is

(t1 :t2 :t3; β1, β2,−β12)(t4 :t3; β4,−β4)(t5 :t6; β5,−β5)⊗ (t3 :t6; β1234, β56)

Proposition 56. Let ∆ : Hn → Hn ⊗ Hn be ∆ = 1 ⊗ id + id ⊗ 1 + ∆′. Then Hn,
equipped with ∆, is a commutative graded Hopf algebra.

Proof. We omit the proof. In fact it suffices to show that the 1-part of the coproduct
coincides with the differential for the Debye polylogarithms (lemma 57 below). �

Let ∆(m+1) : Hn → H⊗m+1
n denote the m-fold iteration of ∆. Let ∆

(m+1)
⋆,...,⋆,1,⋆,...,⋆

denote its component whose corresponding tensor factor contains only strings of length
two. Thus ∆1,⋆ extracts all ordered pairs of neighbouring indices except (n, n− 1).

Lemma 57. The differential equation for Λ can be rewritten as

d Λ = µ ◦ (dΛ ⊗ Λ) ◦∆1,⋆ ,

where µ denotes the multiplication map.

Proof. Follows from the definition of Λ together with the differential equation (2.6). �

Example 58. For any i 6= j, let t[i,j] = (ti : . . . : tj) denote the tuple of consecutive
elements. Contributions to ∆1,⋆ are of the following kinds (omitting indices βi):

(ti−1 : ti) ⊗ (t1 : . . . : t̂i−1 : . . . : tn) 1 < i ≤ n(8.5)

(ti : ti−1) ⊗ (t1 : . . . : t̂i : . . . : tn) 1 < i < n(8.6)
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Contributions to ∆⋆,1 are of the following kinds:

t[1,n−1] ⊗ (tn−1 : tn)(8.7)

t[2,n] ⊗ (t1 : tn)(8.8)

t[n−1,1] ⊗ (t1 : tn)(8.9)

t[i,1]t[i+1,n] ⊗ (t1 : tn) 1 < i < n− 1(8.10)

t[1,k]t[i,k]t[i+1,n] ⊗ (tk : tn) 1 < k < i < n− 1(8.11)

8.2. Asymptotic of the Debye polylogarithms. Let J be a subset of {1, 2, . . . , n}.
We study the asymptotics of Λ(A1,...,n), as defined by (8.2) when tj for j ∈ J simulta-
neously tend to infinity: i.e., for some finite values t01, . . . , t

0
n, we set:

(8.12) tj = T t0j , for j ∈ J , tk = t0k for k /∈ J , and let T →∞ .

Caveat 59. The Debye polylogarithms are multivalued, and so their asymptotics are
only well-defined up to monodromy. For divisors of the form DI , where I ( {1, . . . , n},
and i 6= I, there is a canonical branch in the neighbourhood of ti = 0, where it vanishes
(see §7.1). Only for the divisor D{1,...,n} must one make some choice. In the following
theorem, this ambiguity is contained in the constant C in equation (8.13).

We call a string S = (i1, i2, . . . , il) essential if il /∈ J and i1, . . . , il−1 ∈ J , and
regular if: either all indices belong to J , or none of its indices belongs to J . Set

Λreg(AS) =

{
Λ(AS) if S is regular ,
0 otherwise ,

and likewise define Φ(AS) to be 0 if S is non-essential and

Φ(AS) =
t
−βi1

i1
t
−βi2

i2
. . . t

−βin

in

βi1βi1,i2 . . . βi1,i2,...,in−1

if S is essential .

Theorem 60. With the assumptions (8.12) above, for any 0 < ε << 1 we have

(8.13) Λ(t1 : t2 : . . . : tn; β1, β2, . . . , βn) = µ3 ◦ (Φ⊗ Λreg ⊗ C) ◦∆(3) + O(T ε−1)

for some functions C(t1 : t2 : . . . : tn; β1, β2, . . . , βn) = C(β1, β2, . . . , βn) which are
constant in the t’s, and where µ3 denotes the triple product.

Proof. Induction on the depth n. For n = 2 this theorem reduces to the well-known
asymptotics of the classical Debye polylogarithm. For strings of length two

dΛ(t1 : t2; β1, β2) = t−β1

1 t−β2

2 d Li1(t1/t2)

where β1 + β2 = 0. It follows from this that for S = (1, 2), AS = (t1 : t2; β1, β2),

dΛ(AS) =





dΦ(AS) + O(T ε−1) if S is essential ,
dΛreg(AS) if S is regular ,
O(T ε−1) otherwise .

This follows from the fact that Λ diverges at most logarithmically at infinity, and
log(T )aO(T ε−1) = O(T ε−1). Hence, by lemma 57 it follows that asymptotically

(8.14) dΛ ∼ µ ◦ (d Φ⊗ Λ) ◦∆1,⋆ + µ ◦ (d Λreg ⊗ Λ) ◦∆1,⋆ ,

where a ∼ b means that a− b = O(T ε−1). For the induction step, we first check that
the differential of the difference between both sides of (8.13) vanishes. By induction
hypothesis, we replace Λ in (8.14) by (8.13):

(8.15) dΛ ∼ µ4 ◦ (d Φ⊗ Φ⊗ Λreg ⊗ C + d Λreg ⊗ Φ⊗ Λreg ⊗ C) ◦∆
(4)
1,⋆,⋆,⋆ .
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Now compute the differential of the right-hand side of (8.13),

(8.16) µ3 ◦ (d Φ⊗ Λreg ⊗ C) ◦∆(3) + µ4 ◦ (Φ⊗ d Λreg ⊗ Λreg ⊗ C) ◦∆
(4)
⋆,1,⋆,⋆ .

where in the second term we used lemma 57 applied to dΛreg. In order to show that
(8.16) and the right-hand side of (8.15) coincide, it suffices to use the coassociativity
of the coproduct and to show that the following expression vanishes:

Ω = d Φ + µ2 ◦ (Φ⊗ d Λreg) ◦∆⋆,1 − µ2 ◦ (d Φ⊗ Φ + d Λreg ⊗ Φ) ◦∆1,⋆

as the difference of (8.16) and (8.15) is µ3 ◦ (Ω⊗ Λreg ⊗ C) ◦∆(3). We will prove that

(8.17) d Φ = µ2 ◦
[
− (Φ⊗ d Λreg) ◦∆⋆,1 + (d Φ⊗ Φ) ◦∆1,⋆ + (d Λreg ⊗ Φ) ◦∆1,⋆

]

applied to ξ, where ξ = (t1 : t2 : . . . : tn; β1, β2, . . . , βn).

Case when ξ is essential. Then J = {1, . . . , n − 1}. It follows from example 58
that the only quotient sequences arising from ∆1,⋆ are of the form (ti : tn) for some
i < n, and are therefore not regular. Thus the first term in the right-hand side of
(8.17) vanishes. The only contributions to the second summand come from the string
(tn−1, tn); only the strings (ti−1, ti) and (ti, ti−1), for 1 < i < n, contribute to the last
summand. For such a string a, let ξ/a denote its quotient. From the definitions:

(d Λreg ⊗ Φ)(a⊗ ξ/a) = β1,2,...,i−1 d Li(ti−1t
−1
i )Φ(ξ) if a = (ti−1, ti)

(d Λreg ⊗ Φ)(a⊗ ξ/a) = β1,2,...,i−1 d Li(tit
−1
i−1)Φ(ξ) if a = (ti, ti−1)

Using the fact that d Li(ti−1t
−1
i )−d Li(tit

−1
i−1) = d log(ti)−d log(ti−1) a straightforward

calculation shows that both sides of (8.17) agree on ξ.

Case when ξ is non-essential. Either n ∈ J or some i < n is not in J . Suppose
first that n ∈ J . The first term of (8.17) vanishes as either the argument of Φ is not
essential, or the argument of Λreg is not regular. The second and third summands
vanish since the arguments of Φ are non-essential. Hereafter, we assume n /∈ J .

Now suppose that Jc contains at least 3 elements Jc ⊇ {i, j, n}. Then the entire
right-hand side of (8.17) vanishes, since every argument of Φ is always non-essential.

It only remains to check the equality of (8.17) when Jc consists of two elements
{k, n} for some k < n. Consider the second and third terms on the right-hand side
of (8.17). The quotient sequences of (8.5) and (8.6) are essential only for the strings
(tk : tk+1) and (tk : tk−1). These are non-essential so the second factor dΦ⊗Φ vanishes
for all possible values of k. The third factor dΛreg⊗Φ is non-trivial only when k = n−1
on the term (tn−1 : tn). In fact, in the case k = n − 1, we have contributions from
Φ⊗ dΛreg(8.7) and dΛreg ⊗ Φ applied to (8.5), for i = n− 1. They cancel.

Thus in all remaining cases k < n only the first term Φ ⊗ dΛreg of (8.17) can be
non-zero. If k = 1 then we get terms in the first summand corresponding to (8.8),
(8.9), (8.10). The cancellation of these terms follows from the equality

(8.18)

n−1∑

i=1

(−1)i−1a−1
[i,2]b

−1
[i+1,n−1] = 0

where a[i,j] = βi(βi + βi−1) . . . (βi + . . . + βj), if i ≥ j and is equal to 1 otherwise, and
b[i,j] = βi(βi +βi+1) . . . (βi + . . .+βj), if i ≤ j and is equal to 1 otherwise. The general
case 1 < k < n− 1 is similar, and equivalent to

(8.19)
∑

1<k<i<n−1

(−1)k−i−1b−1
[1,k−1]a

−1
[i,k+1]b

−1
[i+1,n−1] = 0

Both identities (8.18) and (8.19) are easily checked by taking the residues along the
divisors βi + . . . + βn−1 = 0 and induction.
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In conclusion, we have proved that Ω vanishes, and hence, by induction hypothesis,
the differential of the difference between both sides of (8.13) is O(T ε−1). Thus the
difference between both sides is a constant plus O(T ε−1), which proves the theorem. �

8.3. Asymptotics in depths 1 and 2. In depth 1 we have,

Λ(t; β) ∼ β−1t−β + C(β) as t→∞ ,

where C(β) = 2iπ (1− e(β))−1 (see lemma 62 below).
Let β12 = β1 + β2, t12 = t−1

21 = t1t
−1
2 . In depth two, the coproduct (8.4) yields

Λ(t1, t2; β1, β2) ∼
t−β1

12

β1
Λ(t2; β12) + Λ(t2; β2)C(β1) + C1 as t1 →∞

∼
t−β2

2

β2

[
Λ(t1; β1)− tβ2

1 Λ(t1; β12)
]
+ C2 as t2 →∞

∼
t−β1

1 t−β2

2

β1β12
+
[
Λ(t12; β1)− Λ(t21; β2)

]
C(β12)(8.20)

+
t−β2

2

β2
C(β1) + C12 as t1, t2 →∞

where C1, C2, C12 are constant power series in β1, β2 to be determined. The constant
C1 is clearly zero as can be seen by letting t2 → 0 in the first equation of (8.20). The
same holds for C2 (let t1 → 0). The constant C12 can be computed as follows.

8.3.1. Limit at D2 ∩D12. From the second line of (8.20), we deduce that

(8.21) constant part of lim
t1→∞

lim
t2→∞

Λ(t1, t2; β1, β2) = 0 ,

since C2 = 0. Now let t1, t2 → ∞ and then let t2/t1 → ∞. The third line gives a
constant contribution C12(β1, β2)− C(β2)C(β12). It follows that

(8.22) C12(β1, β2) = C(β2)C(β12) .

8.3.2. Limit at D1 ∩D12. From the first line of (8.20), we deduce that

(8.23) constant term of lim
t2→∞

lim
t1→∞

Λ(t1, t2; β1, β2) = C(β1)C(β2) .

Now let t1, t2 → ∞ and then let t1/t2 → ∞. The third line gives the constant
contribution C(β1)C(β12)+C12(β1, β2), which yields a second equation for C12(β1, β2).
Note however, that the two limit computations are for different branches (see caveat
59), and differ by the monodromy of the third line of (8.20) around the point t1 = t2 on
D12. The monodromy of Λ(t; β) (resp. Λ(t−1; β)) is πi (resp. −πi) around a positive
upper semi-circle from 1− to 1+. Therefore, by equating the two different formulae for
C12(β1, β2) gives rise to an associator, or pentagon, equation:

(8.24)
(
C(β1) + C(β2)− 2iπ

)
C(β12) = C(β1)C(β2)

which is indeed satisfied by C(β) = 2πi
1−e(β) .

8.4. Rationality of the constants. The argument above generalizes:

Proposition 61. Let v ∈ Un be a vertex of Un, i.e., v is an intersection of bound-
ary divisors DI of dimension 0. Then there is a branch of the Debye polylogarithm
Λ(t1, . . . , tn; β1, . . . , βn) in a neighbourhood of v which is locally of the form

∑

I=(i1,...,in)

fI(s1, . . . , sn) logi1 s1 . . . login sn

where fI(0, . . . , 0) ∈ Q[πi], and s1, . . . , sn are local sector coordinates at v = (0, . . . , 0).
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Proof. It suffices to show that the constant coefficients lie in Q[πi]. But this follows
from a standard associator argument: the 1-skeleton of the polytope Cn ⊂ Un(R) is
connected, and the restriction of Λ to a one-dimensional stratum is a depth one Debye
polyogarithm, whose limiting values at infinity have the desired property, by (9.4).
By analytic continuation around the one-dimensional edges of Cn, we deduce that the
constants at v are expressible as sums and products of the coefficients of C(β). �

9. Examples in depths 1,2

9.1. Depth 1: the classical elliptic polylogarithms. Let q = e(τ) with Im (τ) > 0,
and let z = e(ξ) with ξ in the fundamental domain D (§3.2). Consider the multivalued
generating series of polylogarithms of depth one:

L(z; β) =
∑

n≥1

Lin(z)βn−1 ,

which we wish to average over the spiral (0,∞) ∼= qRz in the universal covering space
of M0,4(C). The calculations are simplified if one considers the Debye generating series
Λ(z; β) = z−βL(z; β). Since d Lin(z) = z−1Lin−1(z)dz for n ≥ 2, we have:

(9.1) dΛ(z; β) = z−βdLi1(z) .

Note that Λ(z; β) vanishes at z = 0, and so by theorem 38 the series

(9.2) E(z; u, β) =
∑

n∈Z

unΛ(qnz; β)

converges absolutely for 1 < u < |q|−1, and may have poles at u = 1, which are given
by the asymptotics of Λ(z; β) at z = ∞. Since d Li(z) is asymptotically −d log(z) at
infinity, we deduce from (9.1) that there is some constant C(β) such that:

(9.3) Λ(z; β) ∼ β−1z−β + C(β) .

Lemma 62. The constant at infinity is given by

(9.4) C(β) = −β−1 + iπ +
∑

n≥1

2 ζ(2n)β2n−1 =
2iπ

1− e(β)
.

Proof. The following functional equation follows from (9.1) and differentiating:

(9.5) Λ(z; β) + Λ(z−1;−β) = β−1z−β + C(β)

Evaluating at z = 1 gives the expression for C(β), since Lin(1) = ζ(n), for n ≥ 2. �

The corresponding constants in all higher dimensions are explicitly computable from
C(β). It follows from (9.3) that the singular part of E(z; u, β) comes from:

1

β

∑

n<0

un
(
(qnz)−β + C(β)

)
=

z−β

β(q−βu− 1)
+

C(β)

u− 1
=

e(−βξ)

β(e(γ)− 1)
+

C(β)

e(α)− 1
.

where u = e(α), and γ = α − βτ . The second expression defines a Taylor series in β
with coefficients in Q[u, (1− u)−1, log q, iπ]. Thus the singular part of E(ξ; α, β) is

(9.6) E
sing(ξ; α; β) =

e(−ξβ)

βγ
+

C(β)

α
.

In conclusion, the regularized generating series for the classical elliptic polylog is:

(9.7) E
reg(ξ; α; β) =

∑

n∈Z

e(αn)Λ(e(ξ + nτ), β)−
e(−ξβ)

βγ
−

C(β)

α
,
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which admits a Taylor expansion in α, β at the origin. Thus we write

E
reg(ξ; α; β) =

∑

m,n≥0

ΛE
m,n(ξ; τ)αmβn ,

where ΛE
m,n(ξ; τ) are the classical elliptic polylogarithms of [13], and equal to the

functions denoted (−1)nΛm,n(ξ; τ) in loc. cit., Definition 2.1.

Remark 63. In order to retrieve the explicit formula of [13], Definition 2.1, one can write
ΛE

m,n(ξ; τ) as an average of certain modified (and regularized) Debye polylogarithms.

For this, one simply replaces the term α−1 in (9.6) by the expression

(9.8)
1

α
= P (α)−

∑

m>0

e(mα)

where P is a power series whose coefficients are related to Bernoulli numbers. Replacing
the term in γ−1 by a similar expression to (9.8) leads to the required result.

9.2. Depth 2: the double elliptic polylogarithms. Consider the generating series
of depth two Debye multiple polylogarithms:

Λ(t1, t2; β1, β2) = t−β1

1 t−β2

2

∑

m1,m2≥1

Im1,m2
(t1, t2)β

m1−1
1 βm2−1

2 .

The generating series of elliptic multiple polylogarithms is:

(9.9) E2(ξ1, ξ2; u1, u2, β1, β2) =
∑

m1,m2∈Z

um1

1 um2

2 Λ(qm1t1, q
m2t2; β1, β2)

which converges absolutely for 1 < u1, u2 < |q|−1 by theorem 38, and has poles along
u1 = 1, u2 = 1, u1u2 = 1 corresponding to logarithmic singularities of Λ(t1, t2) along
D1, D2, D12. Let γi = αi − τβi, where e(αi) = ui, and q = e(τ).

Lemma 64. The singular part of E2(ξ1, ξ2; α1, α2, β1, β2) is E
sing
2 = E

sing(1)
2 + E

sing(2)
2 ,

where E
sing(i)
2 comes from singularities along divisors of codimension i. We have

E
sing(2)
2 =

e−β1ξ1−β2ξ2

β1β12γ1γ2
+

e−β1ξ12 C(β12)

β1γ1 α12
−

e−β2ξ21 C(β12)

β2γ2 α12
+

e−β2ξ2 C(β1)

β2γ2 α1
+

C1,12

α1(α1 + α2)

where C1,12 = C(β1)C(β2) and C(β) is the power series defined by (9.4), and

E
sing(1)
2 =

R1

β1γ1
+

R2

β2γ2
+

A1

α1
+

A12

α12
,

where

A1 = E
reg(ξ2; α12, β2)C(β1)

∣∣
α1=0

A12 =
(
E
reg(ξ12; α1, β1)− E

reg(ξ21;−α1, β2)
)
C(β12)

∣∣
α12=0

R1 = e−β1ξ12
E
reg(ξ2; α12; β12)

∣∣
γ1=0

R2 = e−β2ξ2
E
reg(ξ1; α1, β1)− e−β2ξ21

E
reg(ξ1; α12, β12)

∣∣
γ2=0

.

Here, ea = e(a), α12 = α1 + α2, β12 = β1 + β2, and ξ12 = −ξ21 = ξ1 − ξ2.

Proof. We can compute the singularities of E2 from the differential equation

d E2(ξ1, ξ2; α1, α2, β1, β2) = d E1(ξ1 − ξ2; α1, β1) E1(ξ2; α1 + α2, β1 + β2)(9.10)

− d E1(ξ2 − ξ1; α2, β2) E1(ξ1; α1 + α2, β1 + β2)

+ d E1(ξ2; α2, β2) E1(ξ1; α1, β1)
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The fact that d2
E2(ξ1, ξ2, α1, α2; β1, β2) = 0 reduces to the Fay identity. Substituting

the singular parts E
sing (given by (9.6)) into (9.10) yields the pole structure of E2.

Using (fg)sing = (fgsing +f singg)−f singgsing, the differential equation for E1 (7.1) and

the additivity of the exponential function, we have E
sing
2 = E

sing(1)
2 − E

sing(2)
2 , where

d Esing(2) = d
(e−ξ1β1−ξ2β2

β1β12γ1γ2
+

e−ξ12β1 C(β12)

β1γ1 α12
−

e−ξ21β2 C(β12)

β2γ2 α12
+

e−β2ξ2 C(β1)

β2γ2 α1

)

d E
sing(1)
2 =

[
d E1(ξ12; α1, β1)− d E1(ξ21; α2, β2)

]C(β12)

α12
+ d E1(ξ2, α2, β2)

C(β1)

α1

+
κ12|γ1+γ2=0

β12γ12
+

κ1|γ1=0

β1γ1
+

κ2|γ2=0

β2γ2

where γ12 = γ1 + γ2 and

κ12 =
(
F (ξ12, γ1) + F (ξ21, γ2)

)
e−β1ξ1−β2ξ2 dξ12

κ1 = e−β1ξ1−β2ξ2F (ξ2, γ2) dξ2 − β1 e−β1ξ12
E1(ξ2; α12; β12) dξ12

κ2 = β2 e−β2ξ21
E1(ξ1; α12, β12) dξ12 − β2 e−β2ξ2

E1(ξ1; α1; β1) dξ2

It follows from the expansion (iii) of Proposition-Definition 4 plus the fact that E1(ξ, τ)
is an odd function of ξ that κ12|γ1+γ2

= 0, and therefore does not contribute. There is

an obvious of d E
sing(2)
2 . By integrating, we deduce that:

E
sing(1)
2 =

R1

β1γ1
+

R2

β2γ2
+

A1

α1
+

A12

α1 + α2
,

since d Ereg and d E are equal up to higher order poles. It remains to add the constants
of integration. Since these give at most simple poles in the α’s and correspond to the
limiting values in the corners, they contribute

C1,12

α1(α1 + α2)
+

C2,12

α2(α1 + α2)
,

where C1,12 and C2,12 are the constant part of the asymptotic of the Debye double
polylogarithm near D1 ∩D12 and D2 ∩D12 given by (8.21) and (8.23). �

As in the depth 1 case, we therefore define the depth 2 multiple elliptic polyloga-
rithms to be the coefficients in the Taylor expansion:

E2 − E
sing
2 =

∑

mi,nj≥0

ΛE
(m1,m2),(n1,n2)

(ξ1, ξ2; τ)αm1

1 αm2

2 βn1

1 βn2

2 ,

where E2 is given by (9.9), and E
sing
2 by the previous lemma.

9.3. Singular part computed from the coproduct. Another way to arrive at
lemma 64 is from the computation of the asymptotic of the depth 2 Debye polyloga-
rithms given in example 8.3. In general, we have:

Corollary 65. The singular structure of the elliptic Debye polylogarithm En is ob-
tained by averaging the asymptotic of the ordinary Debye polylogarithms. In particular,
it is explicitly computable from the coproduct (8.3) and the constant terms C.

In fact, the asymptotic of the Debye polylogarithms in the neighbourhood of bound-
ary divisors of all codimensions can be computed from the coproduct in two different
ways. The first, via theorem 60, is to compute the asymptotic in the neighbourhood
of codimension 1 divisors, and by induction apply the theorem to the arguments of
Λ to obtain the asymptotic in all codimensions. The other, is directly from formula
(8.13) which immediately gives the asymptotic in all codimensions, provided that the
definition of ‘essential’, ‘regular’, and the constants C are modified accordingly.
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10. Iterated integrals on E×

We compute the integrable words corresponding to the elliptic Debye polylogarithms
viewed as functions of one variable, and compare with the bar construction. From this
we deduce that all iterated integrals on E× are obtained by averaging.

10.1. Projective coordinates and degeneration. Let Gm = P1\{0,∞}, let n ≥ 1,
and write ∆ ⊂ Gn+1

m for the union of all the diagonals. There is an isomorphism

(10.1) (Gn+1
m \∆)/Gm

∼
−→M0,n+3 .

If we write homogeneous coordinates on the left-hand side as (t1 : . . . : tn+1), then the
isomorphism is given by (t1 : . . . : tn+1) 7→ (t1t

−1
n+1, . . . , tnt−1

n+1). Let β1, . . . , βn+1 be
formal parameters satisfying β1 + . . . + βn+1 = 0. Recall that we set:

(10.2) Λ(t1 : . . . : tn+1; β1, . . . , βn+1) = Λ(t1t
−1
n+1, . . . , tnt−1

n+1; β1, . . . , βn)

Forgetting the marked point tn+1 gives rise to a fibration

M0,n+3 → M0,n+2(10.3)

(t1 : . . . : tn+1) 7→ (t1 : . . . : tn)

whose fiber over the point (t1 : . . . : tn) of M0,n is isomorphic to Gm\{t1, . . . , tn}. The
functions (10.2), when restricted to each fiber, have a particularly simple description.

Lemma 66. For constant t1, . . . , tn (i.e., dti = 0 for i ≤ n), we have

dΛ(t1 : . . . : tn+1; β1, . . . , βn+1) = dΛ(tn : tn+1; βn,−βn) ×

(10.4) Λ(t1 : . . . : tn−1 : tn+1; β1, . . . , βn−1, βn + βn+1)

For 1 ≤ i < j ≤ n, let Mij denote analytic continuation along a small loop around
ti = tj. Then the functions (10.2) are single-valued around ti = tj for i, j ≥ 1:

(Mij − id) Λ(t1 : . . . : tn+1; β1, . . . , βn+1) = 0 if i, j ≤ n .

Proof. The differential equation (10.4) follows from the differential equation for Λ. To
prove the singlevaluedness, note thatMij commutes with ∂/∂tn+1 for i, j ≤ n. From
(10.4) the result follows by induction plus the fact that Λ(t1 : . . . : tn+1) vanishes as
tn+1 tends to ∞. Alternatively, via (2.3), the Taylor expansion (2.2) of the function
Im1,...,mn

(t1, . . . , tn) at the origin shows that it has trivial monodromy around ti = tj
for i < j ≤ n. Thus the same is true of Λ(t1 : . . . : tn+1) by definition. �

The elliptic analogue of (10.1) is as follows. Letting ∆ ⊂ En+1 denote the union of
all diagonals, and using the notation (ξ1 : . . . : ξn+1) for coordinates on En/E , we have:

(En+1\∆)/E
∼
−→ E(n)(10.5)

(ξ1 : . . . : ξn+1) 7→ (ξ1 − ξn+1, . . . , ξn − ξn+1) .

Again, forgetting the marked point ξn+1 gives rise to a fibration

E(n) → E(n−1)(10.6)

(ξ1 : . . . : ξn+1) 7→ (ξ1 : . . . : ξn)

whose fiber over the point (ξ1 : . . . : ξn) is isomorphic to E\{ξ1, . . . , ξn}.

Definition 67. Define the elliptic Debye hyperlogarithm to be the generating series:

Gn(ξ; ξ1, . . . , ξn, α1, . . . , αn, β1, . . . , βn) = En(ξ1 − ξ, . . . , ξn − ξ; α1, . . . , αn, β1, . . . , βn)

viewed as a multivalued function of the single variable ξ ∈ E\{ξ1, . . . , ξn}.
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It follows from equation (10.4) that, for constant ξ1, . . . , ξn (i.e., dξi = 0),

(10.7) dGn(ξ; ξ1, . . . , ξn; α1, . . . , αn, β1, . . . , βn) = d E1(ξn − ξ; αn, βn)

× Gn−1(ξ; ξ1, . . . , ξn−1; α1, . . . , αn−1, β1, . . . , βn−1)

Remark 68. There is no obvious way to determine the constant of integration in (10.7)
since the averaging process introduces constant terms related to Bernoulli numbers.
On the other hand, one natural normalization for an iterated integral on E(n) is for it
to vanish along a tangential base point at 1 on the Tate curve at infinity, which is not
the case for the averaged functions En. Thus, the comparison between the averaged
functions En and such iterated integrals must take into account the constants.

In order to circumvent this issue, let ̺ ∈ E\{ξ1, . . . , ξn} be any point. Consider the
n + 1 square matrix Mij with 1’s along the diagonal, 0’s below the diagonal, and

Mij = Gj−i(ξ; ξi, . . . , ξj−1; αi, . . . , αj−1, βi, . . . , βj−1) for 1 ≤ i < j ≤ n + 1 .

Denote this matrix by Mξ, viewed as a function of ξ. The differential equation (10.7)
translates into an equation of the form dMξ = MξΩ for some square matrix Ω of
1-forms. It follows that M−1

̺ Mξ satisfies the same equation. Therefore, we define

G̺
i (ξ; ξ1, . . . , ξi; α1, . . . , αi, β1, . . . , βi) = (M−1

̺ Mξ)1,i+1 for 0 ≤ i ≤ n

These functions satisfy the differential equation (10.7) and vanish at ξ = ̺ if i ≥ 1.

10.2. Reminders on iterated integrals. Given a smooth manifold M over R, a
smooth path γ : [0, 1] → M , and smooth one-forms ω1, . . . , ωn on M , the iterated
integral of ω1, . . . , ωn along γ is defined to be 1 if n = 0, and for n ≥ 1:∫

γ

ω1 . . . ωn =

∫

0≤tn≤...≤t1≤1

γ∗(ω1)(t1) . . . γ∗(ωn)(tn) .

Let A be the C∞ de Rham complex on M , and let V (A) denote the zeroth cohomology
of the reduced bar complex of A. Choose a basepoint ̺ ∈ M , and let IM denote the
differential R-algebra of multivalued holomorphic functions on M with global unipotent
monodromy. A theorem due to Chen [6] states that the map V (A)→ V (M) given by

∑

I=(i1,...,in)

cI [ωi1 | . . . |ωin
] 7→

∑

I

cI

∫

γ

ωi1 . . . ωin
(10.8)

is an isomorphism, where γ is any path from ̺ to z, and the iterated integrals are viewed
as functions of the endpoint z. In particular, they only depend on the homotopy class
of γ relative to its endpoints. The differential with respect to z is

(10.9)
∂

∂z

∑

I

cI

∫

γ

ωi1 . . . ωin
=
∑

I

cI ωi1 ∧

∫

γ

ωi2 . . . ωin
.

By successive differentiation, and using formula (10.9), we can reconstruct a bar ele-
ment in V (A) which corresponds via (10.8) to any given function in I(M). We shall
apply this in the following situation. Suppose that X →֒ A is a connected Q-model for
A, so we have an isomorphism V (X)⊗QR ∼= V (A). Denote the image of the map V (X)
in I(M) by I(M)Q. It defines a Q-structure on the algebra I(M). If F ∈ I(M)Q, its
bar element in V (X) will be a unique element of T (X1) by (5.2) (since X is connected).
In the sequel, M will be a single elliptic curve with several punctures. We have a fam-
ily of functions F ⊂ I(M), which are the functions obtained by averaging, and want
to show that F = I(M)Q. For this we shall write the elements of F as elements of
V (X) ⊗Q R by computing their differential equations, and check that: firstly they lie
in V (X), and secondly, using our explicit description of V (X), that they span V (X).
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10.3. Integrable words corresponding to the elliptic polylogarithms.

Definition 69. Define the shuffle exponential to be the formal power series:

ex (αν) =
∑

n≥0

αn

n!
ν xn =

∑

n≥0

αn [ν| . . . |ν]︸ ︷︷ ︸
n

∈ T (Q[ν])[[α]] .

The leading term in the series (n = 0) is the empty word. Note that if w0, . . . , wn are
symbols and x = ex (αw0) then we have

(10.10) xx [w1|w2| . . . |wn] = [x|w1|x|w2| . . . |x|wn|x]

as an equality of power series in α with coefficients in T (Qw0 ⊕Qw1 ⊕ . . .⊕Qwn).

Lemma 70. Let ̺, ξ ∈ E, and let α, β be formal parameters, and γ = α − τβ. Then
we have the following equality of generating series of multivalued functions:

(10.11) e(β̺ + γr̺)
(
E1(ξ; α, β)− E1(̺; α, β)

)
=

∫ ξ

̺

[Ω(ξ; γ)|ex (−β′ω(0) − γν)]

where we write ̺ = s̺ + r̺τ (recall that ξ = s + r τ).

Proof. Recall that ω(0) = dξ and ν = 2πidr. Let β′ = 2πiβ. It therefore follows
immediately from definition 69 and the shuffle product for iterated integrals that

e(−βξ − γr + β̺ + γr̺) =

∫ ξ

̺

ex (−β′ω(0) − γν) .

We have d E1(ξ; α, β) = e(−βξ)F (ξ; γ)dξ and Ω(ξ; γ) = e(γr)F (ξ; γ)dξ. Hence

d E1(ξ; α, β) = e(−βξ − γr)Ω(ξ; γ) .

Combining these two facts, we see that, by (10.9),

d(LHS of (10.11)) = Ω(ξ; γ)

∫ ξ

̺

ex (−β′ω(0) − γν) ,

so the differentials of both sides of (10.11) agree, and both vanish at ξ = ̺. �

It is straightforward to verify that the coefficients in the right-hand side of (10.11)
are integrable words in V (X1)⊗Q C. For n ≥ 1, let us define

(10.12) Hn(ξ; α; β) = e(β1,...,n̺ + γ1,...,nr̺)G̺
n(ξ; ξ1, . . . , ξn; α1, . . . , αn, β1, . . . , βn)

where we recall that β1,...,n = β1 + . . . + βn, and likewise for γ. By construction, the
coefficients of H are combinations of elliptic multiple polylogs.

Recall that Xn is our rational model for the de Rham complex of E(n), and a 7→ a :
Xn → XFn

is the restriction to the fiber. For any a1, . . . , ak ∈ Xn, let us write

[a1| . . . |ak] = [a1| . . . |ak] ∈ X⊗k
Fn

,

and extend this definition in the obvious way for formal power series in T (Xn).

Proposition 71. The generating series of functions Hn is the iterated integral:

(10.13) Hn(ξ; α, β) =

∫ ξ

̺

Wn(ξ) ,

on the fiber E\{ξ1, . . . , ξn} of (10.6), where W1(ξ) = [Ω(ξ1−ξ; γ1)|ex (−β′
1ω

(0)−γ1ν)],
and Wn is defined inductively for n ≥ 2 by

Wn(ξ) = [Ω(ξn − ξ; γn)|ex (−β′
nω(0) − γnν)xWn−1(ξ)] .

Formula (10.13) also remains valid in the case when the marked points ξi, 1 ≤ i ≤ n,
are not necessarily distinct.
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Proof. The case n = 1 is essentially equation (10.11). For n > 1, we have by (10.7):

dHn(ξ) = e(βn̺ + γnr̺)d E1(ξn − ξ; αn, βn)Hn−1(ξ)

and furthermore, Hn(̺) = 0. The proof of the proposition in the generic case, i.e.,
when all ξi are distinct follows by induction just as lemma 70. Finally, it follows from
lemma 66 that Hn(ξ; α, β) has no singularities along ξi = ξj for 1 ≤ i < j ≤ n, and so
equation (10.13) remains true after degeneration of the arguments ξi. �

Note that both sides of (10.13) have simple poles in the variables γ1, . . . , γn. Here-
after, extracting the coefficients of a generating series such as either side of (10.13) will
mean multiplying by γ1 . . . γn and taking the Taylor expansion in αi, βi.

10.4. Comparison theorem. Let Σ = {σ0, . . . , σm} be distinct points on E , where
σ0 = 0. Fix a basepoint ̺ ∈ E\Σ. Define F̺(E\Σ) to be the Q-algebra of multivalued
functions spanned by the function r − r̺, and the coefficients of the functions

(10.14) Hn(ξ; ξ1, . . . , ξn; α, 0), for all n ≥ 1, where ξ1, . . . , ξn ∈ Σ .

For every σ ∈ Σ, let us write ω
(i)
σ for the coefficients of

Ω(ξ − σ; α) =
∑

n≥0

ω(i)
σ αi−1 ,

and set ησ = ω
(1)
σ − ω

(1)
σ0 , for σ 6= 0. Recall that our model XFn

for the punctured

elliptic curve E\Σ is generated by ν and the ω
(i)
σ for i ≥ 0, σ ∈ Σ (lemma 10).

Theorem 72. The map
∫ ξ

̺
: V (XFn

)→ F̺(E\Σ) is an isomorphism.

Proof. By (10.10), the integrand Wn(ξ) of proposition 71 can also be written:

(10.15) [Ω(ξn − ξ; γn)|Pn|Ω(ξn−1 − ξ; γn,n−1)|Pn−1| . . . |Ω(ξ1 − ξ; γn,...,1)|P1]

where Pi = ex (−β′
n,...,iω

(0)−γn,...,iν) for 1 ≤ i ≤ n. The functions (10.14) correspond
to the constant terms in (10.15) with respect to βi, namely the iterated integrals:

(10.16)

∫ ξ

̺

[Ω(ξn − ξ; αn)|ex (−αnν)| . . . |Ω(ξ1 − ξ; αn,...,1)|ex (−αn,...,1ν)] .

One easily checks that (10.16) is integrable, but this also follows from equation (10.13),
since the iterated integral only depends on the endpoint ξ, and not the path of inte-
gration chosen. Thus the coefficients of (10.16) with respect to α lie in V (XFn

).
It suffices to show that the iterated integral of every element of V (XFn

) arises in
this way. For this, choose any numbers ε1, . . . , εn ∈ {0, 1}. By the multilinearity of
bar elements, the iterated integral from ̺ to ξ of any integrable word of the form

(10.17) [Ω(ξn − ξ; αn)− εnΩ(ξ; αn)|ex (−αnν)| . . .

. . . |Ω(ξ1 − ξ; αn,...,1)− ε1Ω(ξ; αn,...,1)|ex (−αn,...,1ν)]

also lies in F̺(E\Σ). Now let πℓ : V (XFn
) → grℓV (XFn

) be the map which projects
onto the associated graded for the length filtration, and extended to power series in
the obvious way. It kills all Massey products of weight ≥ 2. In particular,

πℓ

(
Ω(σ − ξ; α)− Ω(ξ; α)

)
= −ησ

πℓ

(
Ω(σ − ξ; α)

)
= ω(0)α−1

Applying πℓ to (10.17) (multiplied by α1 . . . αn to clear the poles in αi) gives a gener-
ating series in α1, . . . , αn whose coefficients are all words of the form

(10.18) mkνik . . . m2ν
i2m1ν

i1
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where i1, . . . , ik are any non-negative integers, and

mi =

{
ηξi

if εi = 1

ω(0) if εi = 0

It is easy to verify that every word in {ν, ω(0), ησ1
, . . . , ησm

}× is a linear combination
of shuffle products of ν . . . ν with elements (10.18). It follows from the description (see
proposition 23 and preceding discussion):

grℓV (XFn
) ∼= T (Qν ⊕Qω(0) ⊕Qησ1

⊕ . . .⊕Qησm
) ,

that the iterated integral of every element in V (XFn
) appears a linear combination of

products of the function

r − r̺ =

∫ ξ

̺

ν

with coefficients of (10.17). This completes the proof. �

In particular, every iterated integral on E× can be obtained in this way. Our model
V (X1) defines a Q-structure on the de Rham fundamental groupoid of E×, hence:

Corollary 73. The periods of the prounipotent fundamental groupoid ̺Πξ(E×) for any
initial point ̺ ∈ E× and endpoint ξ ∈ E×, lie in the Q-algebra generated by r− r̺, and
the coefficients of (10.14) with respect to the αi’s.

10.5. Generalizations. One can extend theorem 72 to the case where ̺ is a tangen-
tial basepoint at one of the points σ ∈ Σ. As a result, a higher-dimensional version
of theorem 72 can also be deduced from theorem 26, which states that the iterated
integrals on the configuration space E(n) are products of iterated integrals on the fibers
of the map E(n) → E(n−1), which is the one-dimensional case treated above. Therefore
all iterated integrals on E(n) can be obtained from our averaging procedure.
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