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1. Introduction

The purpose of this paper is to define and study a common generalisation of multiple
zeta values, which are iterated integrals on the projective line minus 3 points and
periods of mixed Tate motives over Z, and the special values of L-functions of modular
forms at all integers. Multiple modular values are regularised iterated integrals of
modular forms on an (orbifold) quotient Γ\\H of the upper-half plane H by a subgroup
Γ ≤ SL2(Z) of finite index, building on those first considered by Manin [31, 32]. They
are periods of a hypothetical Tannakian category of mixed modular motives MMM
(M3) consisting of iterated extensions of motives of modular forms. By Belyi’s theorem
[2], the simple objects in M3 should include the motives of algebraic curves over number
fields. The goal is to understand this category through iterated integrals.

The motivations for this work are numerous. First of all, there are modular phe-
nomena in the ring of multiple zeta values relating to the depth filtration which are not
fully understood, and a geometric understanding of these phenomena seems to require
placing multiple zeta values and modular forms for SL2(Z) in a common framework.
Secondly, there is no prescription, conjectural or otherwise, for constructing the objects
of the category of mixed Tate motives over the ring of S-integers Z[S−1] where S is
a finite set of primes. Indeed, it is known [21] that the motivic fundamental group of
the projective line minus roots of unity fails to generate the corresponding category
of mixed Tate motives over cyclotomic fields. It is my hope that these categories can
be constructed from the multiple modular motives generated by congruence subgroups
of SL2(Z). Finally, multiple zeta values and polylogarithms play an important role in
high-energy physics as the Feynman amplitudes of a very large class of physical pro-
cesses. However, there is an increasing supply of examples which are not of this type,
and whose underlying motives are mixed modular and hence objects in M3. There-
fore, in order to express the basic quantities in quantum field theory, we are forced to
enlarge the class of known periods to incorporate periods of modular forms.

1.1. Philosophy. A programme for the study of multiple modular motives could go
something along the following lines. The motivic fundamental groupoid of Γ\\H, with
tangential base-points at the cusps, should define a pro-object in the category M3,
and in a suitable realisation ω, will admit an action of the Tannaka group π1(M

3, ω).
We wish to study this action using motivic periods in a category of Betti-de Rham
realisations [9]. The Betti realisation of the fundamental groupoid of Γ\\H should be
the unipotent completion of Γ relative to the embedding Γ → SL2(Q). Its de Rham
version, together with its mixed Hodge structure, was worked out by Hain [22], [24].

As a prototype, we have in mind the analogous story for the projective line minus
three points which goes back to [19, 14, 17, 27]. The de Rham Tannaka group GdR

MT (Z)

of the category MT (Z) of mixed Tate motives over Z acts on the de Rham realisation
of the motivic fundamental groupoid of P1\{0, 1,∞} with respect to suitable tangential
base points at 0 and 1. The periods of this fundamental groupoid are iterated integrals
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on P1\{0, 1,∞} and are expressible in terms of multiple zeta values. The non-vanishing
of the ζ(2n + 1), or rather, their motivic versions, proves that the generators of the
Lie algebra of GdR

MT (Z) act non-trivially on the de Rham fundamental group [16]. The

ℓ-adic analogue of this result was previously proved by Hain and Matsumoto [25],
and was called the ‘generation’ conjecture. Next, one needs a formula for the action
of GdR

MT (Z) on the de Rham fundamental groupoid of P1\{0, 1,∞}, which was first

computed by Ihara. The dual coaction on motivic multiple zeta values is given by a
version of a formula due to Goncharov [21], [9]. Finally, the freeness of this action
was proved in [6], which implies that MT (Z) is actually generated by the motivic
fundamental groupoid of P1\{0, 1,∞}. See [9], [15] for an overview.

A key ingredient in this picture is the upper bound on the Ext groups of mixed Tate
motives which come from Borel’s deep theorems on the rational algebraic K-theory of
Q. Analogous results for the motives of modular forms are presently unavailable, but
we can nonetheless follow a similar programme for multiple modular motives.

The first step is to write down the periods of M3 which are iterated integrals of
modular forms and study their structure. An analogue of the ‘generation’ part of the
previous story is partly carried out in the present paper in the case Γ = SL2(Z). We
prove that for every cusp form g of weight k for SL2(Z), and for every n ≥ 0, the
L-value L(g, n) multiplied by a suitable power of 2πi, is a multiple modular value
for SL2(Z), and, in particular, a period in the sense of [28]. It occurs as a certain
part of an iterated integral of two Eisenstein series (or of an Eisenstein series and
the cusp form g). The second step is to study the motivic periods corresponding to
multiple modular values (in a category of Betti and de Rham realisations), and the
action of the Tannaka group upon them. This will be the topic of a future paper in the
general context of relative unipotent completions of discrete groups. The formula for
the motivic action is actually derived in the present paper in the case of SL2(Z), since
it is required for the final chapters. One of our goals is ultimately to study the freeness
of this action. Perhaps surprisingly, this action is combinatorially simpler than the
action of the motivic Galois on the projective line minus three points.

1.2. Contents. Apart from the motivic philosophy described above, this paper is
almost entirely analytic, and I have tried to stay as close as possible to the language
of classical modular forms.

Section 2 consists of background material, and can be consulted when required. The
next section §3 is a brief reminder of Manin’s theory of iterated Shimura integrals. In
§4, I explain how to regularise these iterated integrals with respect to a tangential
base point at the cusp. One obtains explicit and highly convergent formulae which
are very well suited to numerical computation. In §5, I explain how the generating
series of regularised iterated integrals defines a canonical cocycle C for SL2(Z) in a
certain non-abelian pro-unipotent group. Its coefficients can be thought of as higher
period polynomials for iterated modular forms: and in length one, it gives precisely the
generating series of period polynomials for modular forms. These are recalled in §7,
together with standard facts about Hecke operators and the Eichler-Shimura theorem.

The work begins in §8, where a curious phenomenon of transference of periods is
described, related to the fact that the compactly supported cohomology of Man

1,1 is
non-zero in degree 2. It gives rise to a higher analogue of the Peterssen inner product
for iterated integrals and implies that periods are transferred between iterated integrals
of quite different types: for example, certain coefficients in an iterated integral of two
Eisenstein series also occur as iterated integrals of an Eisenstein series and a cusp form.
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In §9, we compute a certain group A of automorphisms of the space of non-abelian
SL2(Z)-cocycles with coefficients in its relative completion. The action of the motivic
Galois group of M3 should factor through A, which is the direct analogue of the Ihara
action of the motivic Galois group on the fundamental groupoid of the projective line
minus three points. It is the group which preserves the following (motivic) structures:
the shuffle and cocycle relations between iterated integrals, and the local monodromy
at the cusp (which is mixed Tate and computed in §6). One could further constrain
the image of the motivic Galois group by adding information about the mixed Hodge
structure on the de Rham relative completion of SL2(Z) [22, 24] and the action of
Hecke operators. A more detailed study of this group in a more general context will
be undertaken in [5].

The main theorems are proved in §11. The imaginary part of an iterated integral
of two Eisenstein series is computed using a generalisation of Haberlund’s formula
and the Rankin-Selberg method. The periods can be expressed as special values of
L-functions of cusp forms f at all integers n where n is greater than or equal to the
weight of f . The basic ideas for such a computation can presumably be traced back
to Beilinson’s original work on his conjecture on L-values. The computations of §11
should also give a new proof of his conjecture for modular forms. As a bonus we also
obtain the extended regulators for motives of modular forms as the real part of double
Eisenstein integrals. In the light of the transference principle, I have the feeling that
the general method can be pushed much further.

In the final section, I describe in detail the periods of double Eisenstein integrals. I
briefly explain how the presence of the L-values described above gives rise to the depth-
defect for double zeta values and hence relates to the Broadhurst-Kreimer conjecture.
In this sense, multiple modular values give a kind of resolution of the depth-defect.

1.3. Applications, and further remarks. A first application of the results of §11 is
to compute cup products in the Deligne cohomology of M1,1. This will be undertaken
in a forthcoming joint work with R. Hain. It implies in particular that the relations
between certain derivations on a free Lie algebra with two generators studied by Pollack
are motivic [35]. I believe that a special case of this computation was also obtained by
Terasoma. The results of §10.1 should also compute the quadratic part of the action
of GdR

MT (Z) on this Lie algebra.

All the results in this paper can easily be transposed to the case of general congru-
ence subgroups. I preferred to restrict to the case of SL2(Z) for the time being because
of the special connection with multiple zeta values, and in order not to condemn this
work to the graveyard of unfinished manuscripts. The key remark to achieve this is to
view a modular curve as a finite cover of Man

1,1 and push all geometric structures down
to Man

1,1. This idea was recently used by Pasol and Popa [34] in their work on period
polynomials for modular forms of higher level. Using Shapiro’s lemma, all computa-
tions can be performed using SL2(Z)-cocycles (as opposed to general Γ-cocyles, which
are hard to manage), and therefore the methods described here should carry through
with only minor modifications.

There is a class of relations between multiple modular values which I did not touch
upon here, which relate to multiple elliptic zeta values, but goes in the opposite direc-
tion from the main philosophical thrust of the present paper. This is very easily seen
using the formulae from [10]: iterated integrals on the universal elliptic curve restricted
to the zero section can be expressed as certain iterated integrals of Eisenstein series
(see also [18]). One immediately deduces that the corresponding multiple modular
values are multiple zeta values. In the language of Hain and Matsumoto, this should
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be equivalent to computing the image of O(ueis) inside the affine ring of the relative
completion of Γ.

1.4. Acknowledgements. I am greatly indebted to Andrey Levin for discussions in
2013 and encouragement. As part of our project to study multiple elliptic polyloga-
rithms [10], it was our intention to prove that multiple elliptic zeta values are orthog-
onal to cusp forms in order to explain the depth-defect of multiple zeta values. This
results of §11 imply this result and were inspired by our joint work. Many thanks also
to Dick Hain for numerous discussions and his patient explanation of his joint work
with Matsumoto. See his notes [24] for much background, as well as his IHES lectures
in May 2014. Many thanks also to Yuri I. Manin and Pierre Cartier for their interest.
This work is part of the ERC grant PAGAP 257638. Some of the numerical checks of
§12 were computed during a stay at Humboldt University in summer 2013.

2. Basic notation and reminders

All tensor products are over Q unless stated otherwise.

2.1. Modular forms.

2.1.1. Let Γ = SL2(Z), acting on the left on H = {τ ∈ C : Im(τ) > 0} via

τ 7→
aτ + b

cτ + d
where γ =

(
a b
c d

)
∈ Γ .

Recall that the group Γ is generated by matrices S, T defined by

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

If we set U = TS, then S2 = U3 = −1. Let Γ∞ denote the subgroup of Γ consisting
of matrices with a 0 in the lower left hand corner. It is generated by −1, T and is the
stabilizer of the cusp τ = i∞. Write q = exp(2πiτ) for τ ∈ H.

2.1.2. For n ≥ 0, let Vn denote the vector space of homogeneous polynomials in X, Y of
degree n with rational coefficients, and write V∞ =

⊕
n≥0 Vn ⊂ Q[X, Y ]. The graded

vector space V∞ admits the following right action of SL2(Q)

P (X, Y )
∣∣
γ

= P (aX + bY, cX + dY ) where γ =

(
a b
c d

)
.

We shall identify V ⊗n
∞ with the vector space of (multi-)homogeneous polynomials

in X1, Y1, . . . , Xn, Yn. Thus a tensor X i1Y j1 ⊗ . . . ⊗ X inY jn will be denoted by
X i1

1 Y j1
1 . . . X in

n Y jn
n . We shall view Vn, V∞, and their various tensor products as trivial

bundles over H, equipped with the action of Γ.

2.1.3. Let Mk(Γ) denote the vector space over Q spanned by modular forms f(τ) for
Γ of weight k. Every such modular form admits a Fourier expansion

f(q) =
∑

n≥0

an(f) qn where an(f) ∈ Q .

Let Mk(Γ) = Ek(Γ)⊕Sk(Γ) denote the decomposition into Eisenstein series and cusp
forms. The Eisenstein series of weight 2k ≥ 4 will be denoted by

E2k(q) = −
b2k

4k
+

∑

n≥0

σ2k−1(n)qn ,
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where b2k is the 2kth Bernoulli number, and σ denotes the divisor function. For every
modular form f(τ) ∈ M2k(Γ) of weight 2k ≥ 4 we shall write:

(2.1) f(τ) = (2πi)2k−1f(τ)(X − τY )2k−2dτ .

It is viewed as a section of Ω1(H; V2k−2 ⊗ C). The modularity of f is equivalent to

(2.2) f(γ(τ))
∣∣
γ

= f(τ) for all γ ∈ Γ .

2.1.4. Let f ∈ M2k(Γ)⊗C with Fourier expansion f(q) =
∑

n≥0 an(f) qn. Recall that

its L-function is the Dirichlet series, defined for Re(s) > 2k, by

(2.3) L(f, s) =
∑

n≥1

an(f)

ns
.

By Hecke, it has a meromorphic continuation to C, and the completed L-function

Λ(f, s) = (2π)−sΓ(s)L(f, s)

admits a functional equation of the form Λ(f, s) = (−1)kΛ(f, 2k − s). The L-function
of the normalised Eisenstein series is

(2.4) L(E2k, s) = ζ(s)ζ(s − 2k + 1) .

When f is a cusp form, (2.3) converges for Re(s) > k + 1 and is entire. Recall Euler’s
formula for the special values of the Riemann zeta function at even integers

ζ(2n) = −
b2n

2

(2πi)2n

(2n)!
for n ≥ 1 .

2.1.5. Let Man
1,1 denote the orbifold quotient Γ\\H. Let M

an

1,1 denote its compactifica-
tion, and denote the cusp, corresponding to the point i∞ on the boundary of H, by
p. There is a canonical tangential base point at p which is often denoted by ∂/∂q [24].

Here it will be written as
→
1∞.

2.2. Tensor algebras.

2.2.1. Let W =
⊕

m≥0 Wm be a graded vector space over Q whose graded pieces

Wm are finite-dimensional. Its graded dual is defined to be W∨ =
⊕

m≥0 W∨
m. All

infinite-dimensional vector spaces considered in this paper will be of this type. Let

T (W ) =
⊕

n≥0

W⊗n

denote the tensor algebra on W . It is a graded Hopf algebra for the grading given by
the length of tensors, and the coproduct for which each w ∈ W is primitive. Its graded
dual (in the above sense, i.e., using the grading Wm on W ) is the tensor coalgebra

T c(W ) (sometimes denoted by Q〈W 〉)

which is a commutative graded Hopf algebra whose generators will be denoted using
the bar notation [w1| . . . |wn], where wi ∈ W . The coproduct is

∆([w1| . . . |wn]) =
∑

0≤i≤n

[w1| . . . |wi] ⊗ [wi+1| . . . |wn] .

The antipode is the linear map defined on generators by

S : [w1| . . . |wn] 7→ (−1)n[wn| . . . |w1] .

The multiplication on T c(W ) is given by the shuffle product, denoted by x [11].
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2.2.2. Often it is convenient to work with a basis X =
⋃

m≥0 Xm of W =
⊕

m≥0 Wm.

Then we shall sometimes denote by T (X) (or T c(X)) the tensor algebra (or tensor
coalgebra) on the vector space W generated by X over Q.

The topological dual of T c(X) is isomorphic to the ring

Q〈〈X〉〉 = {S =
∑

w∈X∗

Sww, where Sw ∈ Q}

of non-commutative formal power series in X , where X∗ denotes the free monoid
generated by X . It is a complete Hopf algebra equipped with the coproduct for which
the elements of X are primitive. A series S in Q〈〈X〉〉 is invertible if and only if
S1 6= 0, where 1 ∈ X∗ denotes the empty word. A series S is group-like if and only if
its coefficients satisfy the shuffle equations: the linear map defined on generators by

w 7→ Sw : T c(X) −→ Q

is a homomorphism for the shuffle product x .
By the previous paragraph, Spec T c(X) is an affine group scheme over Q. It is

pro-unipotent. For any commutative unitary ring R, its group of R points is

{S ∈ R〈〈X〉〉× : S is group-like} .

2.2.3. Let W be a vector space over Q as above. The algebra Sym(W ) defines a
commutative and cocommutative Hopf subalgebra

Sym(W ) ⊂ T c(W )

w1 . . . wn 7→
∑

σ

wσ(1) ⊗ . . . wσ(n)

where the sum is over all permutations of n letters, and Sym(W ) is equipped with
the coproduct for which the elements of W are primitive. The affine group scheme
Spec (SymW ) can be identified with the abelianization of SpecT c(W ). Its group of
R-points is the abelian group Hom(W, R).

2.3. Group cohomology.

2.3.1. Let G be a (finitely-generated) group, and let V be a right G-module over a
Q-algebra R. Recall that the group of i-cochains for G is the abelian group generated
by maps from the product of i copies of G to V :

Ci(G; V ) = 〈f : Gi −→ V 〉R .

These form a complex with respect to differentials δi : Ci(G; V ) → Ci+1(G; V ), whose
ith homology group is denoted Hi(G; V ). The group of i cocycles is denoted Zi(G; V ).
We shall only need the following special cases:

• A 0-cochain is an element v ∈ V . Its coboundary is

δ0(v)(g) = v|g − v .

In particular H0(G; V ) ∼= Z0(G; V ) ∼= V G, the group of G-invariants of V .

• A 1-cochain is a map f : G → V . Its coboundary is

δ1f(g, h) = f(gh) − f(g)
∣∣
h
− f(h) .

We will often denote the value of a cochain f on g ∈ G by a subscript fg.
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2.3.2. Cup products. There is a cup product on cochains

∪ : Ci(G; V1) ⊗R Cj(G; V2) −→ Ci+j(G; V1 ⊗R V2) ,

which satisfies a version of the Leibniz rule δ(α ∪ β) = (−1)βδ(α) ∪ β + α ∪ δ(β). In
particular, cup products of cocycles are cocycles. Some special cases:

(i, j) = (0, 1) : (v ∪ φ)(g) = v|g ⊗ φ(g)
(i, j) = (1, 0) : (φ ∪ v)(g) = φ(g) ⊗ v
(i, j) = (1, 1) : (φ1 ∪ φ2)(g, h) = φ1(g)|h ⊗ φ2(h) .

2.3.3. Relative cohomology. Let H ≤ G be a subgroup, and let Ci(G, H ; V ) denote the
cone of the restriction morphism:

i∗ : Ci(G, V ) −→ Ci(H, V ) .

Denote the homology of Ci(G, H ; V ) by Hi(G, H ; V ). Chains in Ci(G, H ; V ) can be
represented by pairs (α, β), where α ∈ Ci(G; V ) and β ∈ Ci−1(H ; V ), with differential

δ(α, β) = (δα, i∗α − δβ)

where i∗ denotes restriction to H . There is a long exact cohomology sequence

(2.5) · · · → Hi(G; V ) → Hi(H ; V ) → Hi+1(G, H ; V ) → Hi+1(G; V ) → · · · .

2.4. Representations of SL2.

2.4.1. Tensor products. Let m, n ≥ 0. There is an isomorphism of SL2-representations

Vm ⊗ Vn
∼
−→ Vm+n ⊕ Vm+n−2 ⊕ . . . ⊕ V|m−n|

Identifying Vm =
⊕

i+j=m X iY jQ, we can define an explicit SL2-equivariant map

∂k : Vm ⊗ Vn → Vm+n−2k for all k ≥ 0 as follows. First of all, let us denote the
projection onto the top component

(2.6) πd : Vm1 ⊗ · · · ⊗ Vmn
−→ Vm1+...+mn

It is given by the diagonal map Q[X1, . . . , Xn, Y1, . . . , Yn] −→ Q[X, Y ] which sends
every (Xi, Yi) to (X, Y ). Now define

∂k : Q[X1, X2, Y1, Y2] −→ Q[X, Y ]

to be the operator πd(∂12)
k where

∂12 =
∂

∂X1

∂

∂Y2
−

∂

∂Y1

∂

∂X2
.

The operator ∂k decreases the degree by 2k and is evidently SL2-equivariant. It is
(−1)k symmetric with respect to the involution v ⊗w 7→ w ⊗ v : Vm ⊗ Vn

∼
→ Vn ⊗ Vm.

2.4.2. Equivariant inner product. In particular, the operator (k!)2∂k : Vk ⊗ Vk → V0

defines a Γ-invariant pairing commonly denoted by

〈 , 〉 : Vk ⊗ Vk −→ Q .

It is uniquely determined by the property that for all P (X, Y ) ∈ Vk

(2.7) 〈P, (aX + bY )k〉 = P (−b, a) .

In particular 〈P |γ , Q|γ〉 = 〈P, Q〉 for all γ ∈ Γ and P, Q ∈ Vk.
Now suppose that P, Q : Γ → Vk ⊗ C are two Γ-cocycles, and suppose that Q is

cuspidal (i.e., QT = 0). Define the Peterssen-Haberlund pairing [29, 34] by

(2.8) {P, Q} = 〈PS , QS

∣∣
T−T−1〉 − 2 〈PT , QS

∣∣∣
1+T

〉
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It will be derived in §8.2 and §11.3.2. It has the property that {P, Q} = 0 whenever P
is the cocycle of a Hecke normalised Eisenstein series (proved in §8.4).

3. Iterated Shimura integrals

I recall some basic properties of iterated Shimura integrals on modular curves which
are essentially contained in Manin [31]. I only consider the special case Γ = SL2(Z).
For simplicity, I prefer to work entirely on the universal covering space.

3.1. Generalities on iterated integrals. Let ω1, . . . , ωn be smooth 1-forms on a
differentiable manifold M . For any piecewise smooth path γ : [0, 1] → M , the iterated
integral of ω1, . . . , ωn along γ is defined by

∫

γ

ω1 . . . ωn =

∫

0<t1<...<tn<1

γ∗(ω1)(t1) . . . γ∗(ωn)(tn) .

The empty iterated integral n = 0 is defined to be the constant 1. Well-known results
due to Chen [12] state that there is the composition of paths formula:

(3.1)

∫

γ1γ2

ω1 . . . ωn =

n∑

i=0

∫

γ1

ω1 . . . ωi

∫

γ2

ωi+1 . . . ωn ,

whenever γ1(1) = γ2(0) and γ1γ2 denotes the path γ1 followed by γ2. The shuffle
product formula states that iterated integration along a path γ is a homomorphism for
the shuffle product. Extending the definition by linearity, this reads

∫

γ

ω1 . . . ωm

∫

γ

ω′
1 . . . ω′

n =

∫

γ

ω1 . . . ωm xω′
1 . . . ω′

n .

Finally, recall that the reversal of paths formula states that
∫

γ−1

ω1 . . . ωn = (−1)n

∫

γ

ωn . . . ω1

where γ−1 denotes the reversed path t 7→ γ(1 − t). Many basic properties of iterated
integrals can be found in [12]. One often writes iterated integrals using bar notation

∫

γ

ω1 . . . ωn =

∫

γ

[ω1| . . . |ωn] .

It is convenient to work with generating series of iterated integrals, indexed by
non-commuting symbols, as follows.

3.2. Notations. Most of the constructions in this paper will be defined intrinsically,
but it can be useful to fix a rational basis B of M(Γ). We assume that B = ∪kBk

where Bk is a basis of Mk(Γ), and that Bk is compatible with the action of Hecke
operators. This means that Bk is a disjoint union of subsets, each of which is a basis
for generalised eigenspaces with respect to the action of Hecke operators. For every k,
define a Q-vector space with a basis consisting of certain symbols indexed by Bk

Mk = 〈af : f ∈ Bk〉Q .

In order to distinguish between vector spaces and their duals, we shall reserve upper
case letters (to be consistent with [31, 32]) for the dual vector space

M∨
k = 〈Af : f ∈ Bk〉Q ,

where 〈af , Ag〉 = δf,g, and δ is the Kronecker delta. We can assume B2n contains the
Hecke normalised Eisenstein series E2n, and write

(3.2) e2n for aE2n
, and E2n for AE2n
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Consider the graded right SL2-module

M∨ =
⊕

k≥0

M∨
k ⊗ Vk−2

which has one copy of Vk−2 for every element of Bk. For any commutative unitary
Q-algebra R, let R〈〈M∨〉〉 denote the ring of formal power series in M∨. It is a
complete Hopf algebra with respect to the coproduct which makes every element of
M∨ primitive. Its elements can be represented by infinite R-linear combinations of

(3.3) Af1 . . . Afn
⊗ X i1−1

1 Y k1−i1−1
1 · · ·X in−1

n Y kn−in−1
n

where fj ∈ Bkj
and 1 ≤ ij ≤ kj − 1.

Remark 3.1. Hain’s notations are equivalent but slightly different. Given a Hecke
eigenform f of weight n he writes Sn−2(ef ) for the SL2 representation Af ⊗ Vn−2,
where ef denotes the highest weight vector Af ⊗Xn−2. Note, however, that he works
with left SL2-modules as opposed to the right ones we consider here.

3.3. Iterated Shimura integrals. Consider the trivial bundle

H × C〈〈M∨〉〉 −→ H

on H. The corresponding holomorphic vector bundle has a connection

∇ : Ω0(H, C〈〈M∨〉〉) −→ Ω1(H, C〈〈M∨〉〉)

defined by ∇ = d + Ω(τ), where d(Af ) = 0,

(3.4) Ω(τ) =
∑

f∈B

Af f(τ) ,

and Af acts on C〈〈M∨〉〉 by concatenation on the left. Clearly ∇ is flat because
dΩ(τ) = 0 and Ω(τ) ∧ Ω(τ) = 0. By the invariance (2.2) of f(τ), we have

Ω(γ(τ))
∣∣
γ

= Ω(τ) for all γ ∈ Γ .

Horizontal sections of this vector bundle can be written down using iterated integrals.
Let γ : [0, 1] → H denote a piecewise smooth path, with endpoints γ(0) = τ0, and
γ(1) = τ1, and consider the iterated integral

(3.5) Iγ = 1 +

∫

γ

Ω(τ) +

∫

γ

Ω(τ)Ω(τ) + . . .

Since the connection ∇ is flat and H is simply connected, Iγ only depends on the
homotopy class of γ relative to its endpoints. As a consequence we can write Iγ as

I(τ0; τ1) ∈ C〈〈M∨〉〉 ,

It is a well-defined function on H×H, and for all τ1 ∈ H, the map τ 7→ I(τ ; τ1) defines
a horizontal section of the bundle (C〈〈M∨〉〉,∇).

3.4. Properties.

Proposition 3.2. The integrals I(τ0; τ1) have the following properties:
i). (Differential equation).

dI(τ0; τ1) = I(τ0; τ1)Ω(τ1) − Ω(τ0) I(τ0; τ1) .

ii). (Composition of paths). For all τ0, τ1, τ2 ∈ H,

I(τ0; τ2) = I(τ0; τ1)I(τ1; τ2) .

iii). (Shuffle product).

I(τ0; τ1) ∈ C〈〈M∨〉〉 is invertible and group-like .
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iv). (Γ-invariance). For all γ ∈ Γ, and τ0, τ1 ∈ H, we have

I(γ(τ0); γ(τ1))
∣∣
γ

= I(τ0; τ1) .

Proof. Properties i)-iii) are general properties of iterated integrals. The last property
iv) follows because Ω is Γ-invariant, and therefore, for any τ1 ∈ H, I(γ(τ); γ(τ1))|γ
satisfies the differential equation ∇F = 0, as does I(τ ; τ1). Both solutions are equal to
1 when τ = τ1, which fixes the constant of integration. �

3.5. A group scheme. Consider the following graded ring and its dual

M =
⊕

k≥2

Mk ⊗ V ∨
k−2 and M∨ =

⊕

k≥2

M∨
k ⊗ Vk−2

Then M a graded left SL2-module, and M∨ is a graded right SL2-module. Let T c(M)
denote the tensor coalgebra on M . It is a graded Hopf algebra over Q whose graded
pieces are finite-dimensional left SL2-representations. Let us define

(3.6) Π = Spec (T c(M)) .

It is a non-commutative pro-unipotent affine group scheme over Q, and for any com-
mutative Q-algebra R, its group of R-points is given by formal power series

Π(R) = {S ∈ R〈〈M∨〉〉× such that S is group-like} .

The group Π(R) admits a right action of SL2 and hence Γ which we write

S
∣∣
γ
T

∣∣
γ

= ST
∣∣
γ

for S, T ∈ Π(R) .

Property iii) of proposition 3.2 states that the elements I(τ0; τ1) ∈ Π(C) for all τ0, τ1 ∈
H × H, and in fact the iterated integral I : H × H → Π(C) defines an element of the
constant groupoid Π(C) over H by property ii).

3.6. Representation as linear maps. Any element S ∈ R〈〈M∨〉〉 can be viewed as
a collection of maps (also denoted by S):

(3.7) S : Mk1 ⊗ . . . ⊗ Mkn
−→ Vk1−2 ⊗ . . . ⊗ Vkn−2 ⊗ R

which to any n-tuple of modular forms associates a multi-homogeneous polynomial in
n pairs of variables. The right-hand side carries a right action of SL2. This map sends
af1 . . . afn

to the coefficient of Af1 . . .Afn
in S. A series S is group-like if and only if

the following shuffle relation holds

(3.8) S(af1 . . . afp
)(X1, . . . , Xp)S(afp+1 . . . afp+q

)(Xp+1, . . . , Xp+q)

=
∑

σ∈Sp,q

S(afσ(1)
. . . afσ(p+q)

)(Xσ(1), . . . , Xσ(p+q))

and if the leading term of S is 1. In this formula, Sp,q denotes the set of shuffles of
type p, q, and we dropped the variables Yi for simplicity. Note, for example, that the
polynomial S(afaf) in four variables X1, Y1, X2, Y2 is not completely determined by
S(af )(X1, Y1) by the relation (3.8); however, its image under πd (2.6) is.

4. Regularization

We explain how to regularise the iterated integrals of §3 at a tangential base point at
infinity. This defines canonical iterated Eichler integrals, or higher period polynomials,
for any sequence of modular forms. The construction is simplified by exploiting the
explicit universal covering spaces that we have at our disposal.
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4.1. Tangential base points and iterated integrals. Let C be a smooth complex
curve, p ∈ C a point, and C = C\p the punctured curve. Let Tp denote the tangent

space of C at the point p, and T×
p = Tp\{0} the punctured tangent space.

A tangential base point on C at the point p is an element
→
v ∈ T×

p ([14], §15.3-
15.12). A convenient way to think of the tangential base point is to choose a germ of
an analytic isomorphism Φ : (Tp, 0) → (C, p) such that dΦ : Tp → Tp is the identity.
One can glue the space T×

p to C along the map Φ to obtain a space

T×
p ∪Φ C

which is homotopy equivalent to C. The tangential base point
→
v is simply an ordinary

base point on this enlarged space. A path from a point x ∈ C to this tangential base
point can be thought of as a path in C from x to a point Φ(ε) close to p, followed by

a path from ε to
→
v in the tangent space Tp. This is pictured below.

C

Tp

↓ Φ

p
Φ(ε)

ε
→

v

x

Figure 1

Now let ω be a meromorphic one-form on C with at most a logarithmic singularity
at p. If we choose a linear function q on Tp, we can write

Φ∗(ω) =
∑

n≥0

αnqn dq

q

and define the polar part PΦ∗(ω) to be the one-form α0
dq
q

on T×
p . It does not depend

on the choice of function q. The line integral of ω along a path from x to v is defined
to be

∫ →

v

x

ω = lim
ε→p

(∫ Φ(ε)

x

ω +

∫ →

v

ε

PΦ∗(ω)
)

It is straightforward to verify that the limit is finite and does not depend on Φ. The
analogue for iterated integrals is given by the composition of paths formula (3.1). If
ω1, . . . , ωn are closed holomorphic one forms with logarithmic singularities at p, let

∫ →

v

x

ω1 . . . ωn = lim
ε→p

( n∑

k=0

∫ Φ(ε)

x

ω1 . . . ωk

∫ →

v

ε

PΦ∗(ωk+1) . . . PΦ∗(ωn)
)

The iterated integral is finite and is independent of the choice of Φ. It only depends

on x and
→
v in the sense that homotopy equivalent paths from x to

→
v give rise to the

same integral (since ωi ∧ ωj = 0 for all i, j). The integrals in the right-hand factors of
the right-hand side are performed on T×

p , those on the left on C.

We are interested in the case C = Man
1,1, C = M

an

1,1 and p the cusp (image of i∞).

The punctured tangent space T×
p is isomorphic to the punctured disc with coordinate

q. The tangential base point corresponding to 1 ∈ T×
p is often denoted by ∂

∂q
.
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Remark 4.1. There are many equivalent ways to think of tangential base points. A

better way is to view
→
v as a point on the exceptional locus of the real oriented blow-up

of C at p. This makes the independence of Φ obvious. In our setting, however, we have
a canonical map Φ (given by the q-disc) so the presentation above is more convenient.

A more general version of regularisation exists for vector bundles with flat connec-
tions, using Deligne’s canonical extension ([14], §15.3-15.12). Instead of presenting
this approach, we prefer to adapt the above construction for universal covering spaces,
which gives a more direct route to the same answer.

4.2. Universal covering space at ∂
∂q

. The punctured tangent space T×
p of M

an

1,1 is

isomorphic to C×. Its universal covering space is (C, 0) with the covering map

τ 7→ exp(2πiτ) : (C, 0) → (C×, 1) .

We can therefore glue a copy of C to H via the natural inclusion map i∞ : H → C to
define a space H ∪i∞ C pictured below.

w

H

C
i∞

ε

ε τ
0

τ

Figure 2

A path from τ ∈ H to
→
1∞ can be thought of as the compositum of the following two

path segments on H ∪i∞ C:

(i) a path from τ to a point ε ∈ H infinitely close to i∞,
(ii) a path from i∞(ε) to the point 0 in C.

As shown in the picture, the latter path can be divided into two segments, from ε
to τ and from τ to 0. Recombining these three segments in a different way gives

(i)′ a path from τ to a point ε, followed by a path from i∞(ε) to i∞(τ).
(ii)′ a path from i∞(τ) to the point 0 in C.

Later we shall identify H with its image in C, which means that we drop all i∞’s
from the notation (as in figure 2 above) and compute all integrals on C.

Remark 4.2. The space (H∪i∞ C, 0) is the universal covering space of (Man
1,1∪ΦC×, ∂

∂q
),

where Φ−1 is the germ of the map τ 7→ exp(2iπτ), at the tangential base point 1 ∈ T×
p .

One can repeat this construction by gluing a copy of C at every cusp (rational point)
along the boundary of H. This gives rise to a space H∪Q∪{∞} C, which now carries an

action of Γ. Its orbifold quotient is Man
1,1 ∪Φ C×.

4.3. Iterated integrals on the tangent space. In §4.1, the divergent part of ω
corresponded to the form dq

q
on T×

p . On a universal covering space of T×
p , the divergent

parts correspond to iterated integrals in dq
q

, namely, polynomials in τ times dτ .

Definition 4.3. Let f ∈ M2k(Γ), and denote the constant term in its Fourier expan-
sion by a0(f). Define the tangential component of f(τ) to be

f∞(τ) = (2πi)2k−1a0(f)(X − τY )2k−2dτ .(4.1)
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It is to be viewed as a section of Ω1(C; V2k−2 ⊗C) on the tangent space C ⊂ H∪i∞ C.
Clearly, f is a cusp form if and only if f∞(τ) vanishes.

One can repeat the discussion of §3.3 with the trivial bundle C〈〈M∨〉〉 viewed this
time over C, and replacing ∇ with the connection ∇∞ = d + Ω∞(τ), where

(4.2) Ω∞(τ) =
∑

f∈B

Af f∞(τ) ,

For any pair of points a, b ∈ C, define I∞(a; b) ∈ C〈〈M∨〉〉 to be the iterated integral

(4.3) I∞(a; b) = 1 +

∫

γ

Ω∞ +

∫

γ

Ω∞ Ω∞ + . . .

along any piecewise smooth path γ : [0, 1] → C such that γ(0) = a, γ(1) = b. It only
depends on the endpoints a, b for similar reasons to proposition 3.2. In particular, the
composition of paths formula I∞(a; c) = I∞(a; b) I∞(b; c) holds for all a, b, c ∈ C, and
I∞(a; b) ∈ Π(C). We have a similar equivariance property

Ω∞(γ(τ))
∣∣
γ

= Ω∞(τ) for all γ ∈ Γ∞ .

4.4. Iterated Eichler integrals. As in figure 2, we integrate the form Ω(τ) along
the first path segment (i) on H, and integrate Ω∞(τ) along the second segment (ii) on
C. Since composition of paths corresponds to the concatenation product of generating
series of iterated integrals, one arrives at the following definition.

Definition 4.4. The iterated Eichler integral from τ ∈ H to
→
1∞ is

I(τ ;∞) = lim
ε→i∞

(
I(τ ; ε) I∞(i∞(ε); 0)

)
∈ Π(C) ⊂ C〈〈M∨〉〉 ,

where i∞ : H → C is the inclusion.

The right-hand integral I∞ in the definition is viewed on the tangent space C, the
left-hand one on H. However, using the gluing map i∞ : H → C, we can compute both
kinds of iterated integral on a single copy of C: in short we can drop all occurrences
of i∞ from the notation and henceforth work entirely on C.

To verify the finiteness of the iterated Eichler integral, we first define, for τ0, τ1 ∈ H,
the regularized iterated integral to be

RI(τ0; τ1) = I(τ0; τ1)I
∞(τ1; τ0) .

Lemma 4.5. RI(τ ; x) is finite as x → i∞ and converges like O(e2πix).

Proof. From the differential equation for I (Proposition 3.2 i)), we check that

∂

∂x
RI(τ ; x) = I(τ0; x)

(
Ω(x) − Ω∞(x)

)
I∞(x; τ0) .

For each ω ∈ Mk(Γ), the form ω(x) grows at most polynomially in x near ∞. Therefore
each term in I(τ0; x), and I∞(x; τ0), is of polynomial growth in x. On the other hand

Ω(x) − Ω∞(x) = O(exp(2πix)) as x → i∞ ,

which follows from the Fourier expansion §2.1.3. This proves the lemma. �

As a consequence, we define

(4.4) RI(τ) = lim
x→i∞

RI(τ ; x) .

Recombining the paths in figure 2 into the two parts (i)′ and (ii)′ leads to the following
formula for the generating series of iterated Eichler integrals.
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Corollary 4.6. The iterated Eichler integral is a product

(4.5) I(τ ;∞) = RI(τ) I∞(τ ; 0) .

Proof. By the composition of paths formula for I∞, we have

I(τ ;∞) = lim
x→i∞

(
I(τ ; x) I∞(x; τ)

)
I∞(τ ; 0) = RI(τ) I∞(τ, 0) .

�

4.5. Properties. The following properties are almost immediate from definition 4.4.

Proposition 4.7. The iterated Eichler integrals I(τ ;∞) have the following properties:
i). (Differential equation).

d

dτ
I(τ ;∞) = −Ω(τ) I(τ ;∞) .

ii). (Composition of paths). For any τ1, τ2 ∈ H,

I(τ1;∞) = I(τ1; τ2) I(τ2;∞) .

iii). (Shuffle product). I(τ ;∞) ∈ Π(C), or equivalently,

I(τ ;∞) ∈ C〈〈M∨〉〉 is invertible and group-like .

Proof. To verify i), observe that

∂

∂τ
I(τ ; x) I∞(i∞(x); 0) = −Ω(τ) I(τ ; x) I∞(i∞(x); 0)

and take the limit as x → i∞, according to definition 4.4. The remaining properties
are straightforward and follow in a similar manner to the proof of proposition 3.2. �

4.6. Explicit formulae. Let ω ∈ Mk(Γ), and write

(4.6) ω0(τ) = ω(τ) − ω∞(τ) ,

where ω0, ω, ω∞ are viewed as sections of Ω1(C; Vk−2 ⊗ C). We have seen that ω0(τ)
tends to zero like e2πiτ , as τ tends to i∞ along the imaginary axis. In order to
write down compact formulae for iterated Eichler integrals as integrals of absolutely
convergent forms, we use the following notation. Let W be a vector space together
with an isomorphism

(π0, π∞) : W
∼
−→ W 0 ⊕ W∞ .

We shall also write w0, w∞ for π0(w), π∞(w). Consider the convolution product

R = x ◦ (id ⊗ π∞S) ◦ ∆ : T c(W ) −→ T c(W )

where S, ∆, were defined in §2.2.1, and x is the shuffle multiplication on T c(V ).
Explicitly, the map R is given for ω1, . . . , ωn ∈ W by

(4.7) R[ω1| . . . |ωn] =

n∑

i=0

(−1)n−i[ω1| . . . |ωi]x [ω∞
n | . . . |ω∞

i+1] .

Lemma 4.8. For any elements ω1, . . . , ωn ∈ W we have

(4.8) R[ω1| . . . |ωn] =
n∑

i=1

(−1)n−i
[
[ω1| . . . |ωi−1]x [ω∞

n | . . . |ω∞
i+1]

∣∣∣ω0
i

]
.
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Proof. By replacing the final ω0
i in (4.8) by ωi −ω∞

i , we can view both (4.7) and (4.8)
as formal expressions inside T c(W ⊕ W∞). They satisfy the formulae R(1) = 1 and

∂ωi
R[ω1| . . . |ωn] = δi1R[ω2| . . . |ωn]

∂ω∞

i
R[ω1| . . . |ωn] = −R[ω1| . . . |ωn−1]δin ,

where ∂a is the differential operator on T c(W ⊕W∞) defined by ∂ωi
[ω1| . . . |ωn] = δi1,

and δ is the Kronecker delta. These equations uniquely determine R. �

Example 4.9. In lengths 1 and 2,

R[ω1] = [ω1] − [ω∞
1 ](4.9)

= [ω0
1 ] .

R[ω1|ω2] = [ω1|ω2] − [ω1]x [ω∞
2 ] + [ω∞

2 |ω∞
1 ](4.10)

= [ω1|ω
0
2 ] − [ω∞

2 |ω0
1 ] .

Applying the above to the subspace W ⊂ Γ1(C; Ω1
C ⊗ V ) spanned by f(τ) (2.1) for

f ∈ M(Γ) ⊗ C, and combining with (4.5) leads to the following formula:

∫ →

1∞

τ

[ω1| . . . |ωn] =

n∑

i=0

∫ ∞

τ

R[ω1| . . . |ωi]

∫ 0

τ

[ω∞
i+1| . . . |ω

∞
n ](4.11)

=
n∑

i=0

(−1)n−i

∫ ∞

τ

R[ω1| . . . |ωi]

∫ τ

0

[ω∞
n | . . . |ω∞

i+1]

Each right-hand factor (the integral from 0 to τ) is simply a polynomial in τ , and
each left-hand factor (the integral from τ to ∞) converges exponentially fast in τ . The
second line of (4.11) follows from the first by the reversal of paths formula §3.1.

Example 4.10. In length 1, this gives for ω a modular form of weight k by (4.9),

(4.12)

∫ →

1∞

τ

ω(τ) =

∫ ∞

τ

ω0(τ)(X − τY )k−2dτ −

∫ τ

0

a0(ω)(X − τY )k−2 .

In length 2, with ω1, ω2 ∈ M(Γ), formula (4.11) combined with (4.9), (4.10) gives
the following four rapidly-convergent integrals, for any τ ∈ iR>0:

(4.13)

∫

τ≤τ1≤τ2≤∞

ω1(τ1)ω
0
2(τ2) − ω∞

2 (τ1)ω
0
1(τ2)

−

∫ ∞

τ

ω0
1(τ)

∫ τ

0

ω∞
2 (τ) +

∫

0≤τ2≤τ1≤τ

ω∞
2 (τ2)ω

∞
1 (τ1)

Because of the exponentially fast convergence of the integrals, these formulae lend
themselves very well to numerical computations.

5. The canonical Γ-cocyle

5.1. Definition. Let I(τ ;∞) denote the non-commutative generating series of iterated
Eichler integrals defined in §4.4.

Lemma 5.1. For every γ ∈ Γ, there exists a series Cγ ∈ Π(C), such that

(5.1) I(τ ;∞) = I(γ(τ);∞)
∣∣
γ
Cγ

It does not depend on τ . It satisfies the cocycle relation

(5.2) Cgh = Cg

∣∣
h
Ch for all g, h ∈ Γ .
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Proof. Let γ ∈ Γ. It follows from the Γ-invariance of Ω(τ) that I(τ ;∞) and I(γ(τ);∞)|γ
are two solutions to the differential equation ∂

∂τ
L(τ) = −Ω(τ)L(τ) where L(τ) ∈ Π(C).

They therefore differ by multiplication on the right by a constant series Cγ ∈ Π(C)
which does not depend on τ . The proof of (5.2) is standard. Put γ = g in (5.1), replace
τ with h(τ), and act on the right by h. This gives

I(h(τ);∞)
∣∣
h

= I(gh(τ);∞)
∣∣
gh
Cg

∣∣
h

.

Subsituting this equation into (5.1) with γ = h gives

I(τ ;∞) = I(gh(τ);∞)
∣∣
gh
Cg

∣∣
h
Ch .

The cocycle relation then follows from definition of Cgh. �

Equation (5.2) follows without calculation from remark 5.3 below since the mon-
odromy of (C〈〈M∨〉〉,∇) at ∂

∂q
gives a homomorphism γ 7→ (γ, Cγ) : Γ → Γ ⋉ Π(C).

Definition 5.2. Define the ring of multiple modular values MMVΓ for Γ to be the
Q-algebra generated by the coefficients of (3.3) in Cγ for all γ ∈ Γ.

Setting τ = γ−1(∞) in equation (5.1) gives the following formula for Cγ

(5.3) Cγ = I(γ−1(∞);∞) .

To make sense of this formula, one must define iterated integrals I(a; b) regularised
with respect to two tangential base points a and b. But this follows easily from the
previous construction using the formula I(a; b) = I(τ ; a)−1I(τ ; b), for any τ ∈ H.

5.2. Non-abelian cocycles. Let G be a group, and let A be a group with a right
G-action. This means that ab|g = a|gb|g for all a, b ∈ A and g ∈ G, and

a|gh = (a|g)|h

for all a ∈ A, and g, h ∈ G. The set of cocycles of G in A is defined by

Z1(G, A) = {C : G → A such that Cgh = Cg

∣∣
h
Ch for all g, h ∈ G}

Two such cocycles C, C′ differ by a coboundary if there exists a B ∈ A such that

C′
g = B|gCgB

−1

This defines an equivalence relation on cocycles, and the set of equivalence classes is
denoted by H1(G, A). It has a distinguished element 1 : g 7→ 1.

Remark 5.3. Let HomG(G, G ⋉ A) denote the set of group homomorphisms from G to
G ⋉ A whose composition with the projection G ⋉ A → G is the identity on G → G.
As is well known, there is a canonical bijection

Z1(G, A) = HomG(G, G ⋉ A)

z 7→ (g 7→ (g, zg))

The canonical cocycle C defines an element

C ∈ Z1(Γ; Π(C)) .

Since Γ is generated by S and T (§2.1.1), the cocycle C is completely determined by
CS and CT . Since i ∈ H is fixed by S, formula (5.1) gives the following formula for CS:

(5.4) CS = I(i;∞)
∣∣−1

S
I(i;∞) .

The series CT will be computed explicitly in the next paragraph. Its coefficients are
rational multiples of powers of 2πi. Therefore the ring MMV is generated by the
coefficients of CS and 2πi.
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Remark 5.4. For every point τ1 ∈ H, one obtains a cocycle C(τ1) ∈ Z1(Γ; Π(C)) defined
by I(τ ; τ1) = I(γ(τ); τ1)|γCγ(τ1). The composition of paths formula for I implies that
the cocyles Cγ(τ1), for varying τ1, define the same cohomology class. Manin called this
class the non-commutative modular symbol in [32].

5.3. Equations. To simplify notations, let Z1(Γ; Π) denote the functor on commuta-
tive unitary Q-algebras R 7→ Z1(Γ; Π(R)).

Lemma 5.5. An element C ∈ Z1(Γ, Π) is uniquely determined by a pair CS , CT ∈ Π
satisfying the relations:

1 = CS

∣∣
S

CS

1 = CU

∣∣
U2 CU

∣∣
U

CU

where CU = CT

∣∣
S

CS.

Proof. Since all modular forms for Γ have even weight, it follows from the definition
of Π that the image of the maps (3.7) for any element of Π have even weight (−1 acts
trivially). Therefore C−1 = 1 for any cocycle C ∈ Z1(Γ, Π) and thus

Z1(Γ, Π)
∼
−→ Z1(Γ/{±1}, Π) .

It is well-known (§2.1.1) that Γ/{±1} = 〈S, T, U : U = TS, U3 = S2 = 1〉. Now simply
apply remark 5.3. A computational proof was given in [32], §1.2.1. �

These equations can be made more explicit by the following observation. Consider
C ∈ Z1(Γ, Π(R)). Since Cγ ∈ Π(R), its leading term is 1, and we can define

C′ : Γ −→ R〈〈M∨〉〉

by the equation C′ = C − 1. The element C′ satisfies

C′
gh − C′

g

∣∣
h
− C′

h = C′
g

∣∣
h
C′

h

for all g, h ∈ Γ. Thinking now of Cγ as a morphism via (3.7), the previous equation
can be written, for all n ≥ 1, as a system of cochain equations (à la Massey)

(5.5) δC[a1| . . . |an] =

n−1∑

i=1

C[a1| . . . |ai] ∪ C[ai+1| . . . |an] ,

where ai ∈ M and where δ1(C)(g, h) = Cgh−Cg

∣∣
h
−Ch and (A∪B)(g, h) = Ag|h⊗Bh

are the coboundary and cup product for Γ-cochains (see §2.3.1, §2.3.2).

Caveat 5.6. A cocycle C, viewed as a series of higher period polynomials (3.7) is
completely determined by the shuffle equation (3.8), together with the equations (5.5)
evaluated at the pairs (S, S), (T, S), (U, U2) by lemma 5.5. They are unobstructed
in the sense that they can be solved recursively in the length: the C[a1] are ordinary
abelian cocyles, and so on. This is because Γ has cohomological dimension 1.

However, we will need to constrain the value of CT which leads to non-trivial ob-
structions to solving (5.5). These obstructions are the object of study of §8.

5.4. Real structure. The real Frobenius acts on Π(C) as follows. Let

(5.6) ǫ =

(
1 0
0 −1

)
.

It acts on the right on V∞ via (X, Y ) 7→ (X,−Y ) and acts diagonally on T (V∞). This
defines an involution on Π(C) by acting trivially on the elements af (respectively Af ).
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Let c denote the action of complex conjugation on the coefficients of Π(C). Let

F∞ : Π(C) −→ Π(C)(5.7)

S 7→ c(S)
∣∣
ǫ

denote the involution obtained by composing them. Recall that complex conjugation
on Man

1,1 ∪Φ T ∗
∞ corresponds to the map τ 7→ −τ on H ∪i∞ C.

To justify the formula for F∞, let f ∈ M(Γ) be a modular form with rational (and
in particular, real) Fourier coefficients. Then it follows from the definition (2.1) that

f(−τ ) = f(τ)
∣∣
ǫ

and there is a similar equation on replacing f with f∞. Thus the action of complex

conjugation cdR on differential forms f(τ) is right action by ǫ, and the action of real
Frobenius F∞ indeed corresponds to (5.7).

On the other hand, complex conjugation acts on the space Man
1,1∪ΦC× which induces

an action on Γ = π1(M
an
1,1,

∂
∂q

). This is given by conjugation by ǫ, because

−γ(τ) = ǫγǫ−1(−τ )

for all τ ∈ H, γ ∈ Γ, and similarly for τ ∈ C in the tangent space at the cusp, and
γ ∈ Γ∞. The following lemma is an immediate corollary.

Lemma 5.7. Let C denote the canonical cocycle. Then

(5.8) F∞Cγ = Cǫγǫ−1 .

In particular, CS is invariant under F∞ and F∞CT = CT−1 .

One can also prove that F∞CS = CS by direct computation using (5.4): CS is
obtained by integrating along the imaginary axis which is invariant under τ 7→ −τ .
Likewise the path T corresponds to a simple loop around 0 in C× and is reversed under
complex conjugation and a similar computation using (6.2) below gives F∞CT = CT−1 .
Equation (5.8) can then be deduced from (5.2). Finally, observe that

(5.9) ∂k(ε ⊗ ε) = (−1)kε ∂k .

which follows immediately from the definition of ∂k, §2.4.1.

6. Cocycle at the cusp

It is straightforward to compute the image of the canonical cocycle C under the map

(6.1) Z1(Γ; Π) −→ Z1(Γ∞; Π) .

6.1. Rational structure. Since Γ∞ is generated by −1 and T , and C−1 = 1, the
image of C under (6.1) is determined by CT .

Lemma 6.1. We have the following formula for CT :

(6.2) CT = I∞(−1; 0) .

In particular, CT has coefficients in Q[2πi] (see below for an explicit formula).

Proof. It follows from setting γ = T−1 in (5.1) that CT can be computed by integrating

along a path from the tangential base point T−1
→
1∞ to

→
1∞. On the universal covering

H ∪i∞ C this is simply the path from −1 to 0 on the tangent space C. Formula
(6.2) is immediate from the discussion of §4.4. The second statement follows from the
observation that the coefficients of Ω∞(τ) are given by the zeroth Fourier coefficients of
Eisenstein series (multiplied by a power of 2πi). By §2.1.3, the latter are rational. �
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Remark 6.2. The map (6.1) can be interpreted as follows. The inclusion of the tangent
space T×

p → Man
1,1 ∪Φ T×

p gives rise to the local monodromy map

π1(T
×
p , 1) −→ π1(M

an
1,1, ∂/∂q) ,

which is the inclusion of Γ∞ into Γ. One can deduce that the coefficients of CT are
periods of the unipotent fundamental group of T×

∞
∼= Gm, which are in Q[2πi].

If we view CT ∈ Π(C) as a linear map from a sequence of modular forms to polyno-
mials via (3.7), then it follows from the above discussion that

(6.3) CT (af1 . . . afn
) = 0

whenever any fi is a cusp form (since f∞

i
vanishes in that case). The only non-zero

contributions to CT come from iterated integrals of Eisenstein series only.

6.2. Formula for CT . In order to write down CT it is convenient to rescale the Eisen-
stein series as follows. By comparing with §2.1.3, we define normalized letters

Ẽ2k =
1

(2πi)2k−1

−4k

b2k(2k − 2)!
E2k , for k ≥ 2 .

The rational factor is chosen so that in this alphabet,

Ω∞(τ) =
∑

k≥2

Ẽ2k

(2k − 2)!
(X − Y τ)2k−2 .

With this choice of normalisation, we can write down the cocycle explicitly as follows.

Lemma 6.3. The coefficient of Ẽ2k1 . . . Ẽ2kn
in CT is equal to the coefficient of

s2k1−2
1 . . . s2kn−2

n in the commutative generating series

(6.4) es1X1+...+snXn

( n∑

i=0

(−1)n−i

πL(s1Y1, . . . , siYi)

es1Y1+...+siYi

πR(si+1Yi+1, . . . , snYn)

)
.

Here we use the notation ‘pile up on the left or right’:

πL(z1, . . . , zn) = (z1 + . . . + zn) · · · (zn−1 + zn)zn

πR(z1, . . . , zn) = z1(z1 + z2) · · · (z1 + . . . + zn)

For clarity, formula (6.4) in lengths 1 and 2, and with s1 = s2 = 1 reads

eX1

(eY1

Y1
−

1

Y1

)
and eX1+X2

( eY1+Y2

(Y1 + Y2)Y2
−

eY1

Y1Y2
+

1

Y1(Y1 + Y2)

)

Lemma 6.3 can be deduced from (6.2) but follows from the discussion below. Note
that (6.4), despite appearances, has no poles. It is clearly defined over Q.

6.3. Trivialisation. We can formally trivialise the restriction of C to Z1(Γ∞, Π(C))
by enlarging the space of coefficients in the following way. By (3.7), we can regard CT

as a map from sequences of modular forms into the space T (V∞) of polynomials in
infinitely many variables Xi, Yi. Enlarge it by letting

T̂ (V∞) = Q[X1, Y1, X2, Y2, . . .]
[ 1

Y1
,

1

Y1 + Y2
, . . . ,

1

Yi + . . . + Yi+r

]

denote the space of polynomials in Xi, Yi with denominators in Yi + Yi+1 + . . . + Yi+r.
Since the elements Yi are fixed by T , this space inherits an action of Γ∞ by §2.1.1.
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Proposition 6.4. There exists a series V ∈ T̂ (V∞)〈〈Ẽ2n〉〉 which trivialises CT , i.e.,

(6.5) CT = V|T V−1 .

It is not unique. A representative is given by the series whose coefficient of Ẽ2k1 . . . Ẽ2kn

is the coefficient of s2k1−2
1 . . . s2kn−2

n in the commutative generating series

(6.6)
es1X1+...+snXn

(s1Y1 + . . . + snYn) . . . (sn−1Yn−1 + snYn)snYn

.

expanded in the sector 0 ≪ s1 ≪ . . . ≪ sn.

Proof. By (5.1), restricted to the tangent space C of H ∪i∞ C, we have

I∞(τ ; 0) = I∞(τ + 1; 0)
∣∣
T
CT .

We wish to set V = limτ→∞ I∞(τ ; 0)−1. For this, consider the series I∞(0; τ) in
length n, and view it as a commutative formal power series by replacing the words

Ẽ2k1 . . . Ẽ2kn
with s2k1−2

1 . . . s2kn−2
n , for r ≤ n. Since I∞(0; τ) is the iterated integral

of Ω∞(τ) by (4.3), the coefficients of I∞(0; τ) are represented by the iterated integral

∫ τ

0

[e(X1−τY1)s1 | . . . |e(Xn−τYn)sn ]dτ .

Formally taking the limit as τ → ∞ (thinking of Yn as positive real numbers) gives
(6.6). From this we deduce that (6.5) holds, as a function of the parameters si. By
transposing the concatenation and inversion of formal (non-commutative) power series
into the language of commutative generating series, one readily sees that (6.5) implies
(6.4). Finally, equation (6.6) is justified by expanding the expression V|TV

−1 (which
is well-defined as a power series in si) in the chosen sector. �

Expanding (6.6) in a different sector gives rise to a different choice of trivialisation
for the restriction of C to Γ∞. However, after projecting

πd : T̂ (V∞) → Q[X, Y,
1

Y
]

by sending (Xi, Yi) to (X, Y ), we obtain a canonical trivialisation from (6.6)

e(s1+...+sn)X

Y n(s1 + . . . + sn) . . . (sn−1 + sn)sn

which can be uniquely expanded as a Laurent power series in the si (in any sector).

Remark 6.5. Zagier’s ‘extended period polynomials’ for Eisenstein series are the coef-
ficients of AE2k

in the cocycle γ 7→ V|−1
γ CγV (viewed as a cocycle whose coefficients are

in the field of rational functions in Xi, Yi) applied to γ = S.

7. The abelianised cocycle and the Eichler-Shimura theorem

We compute the image of the canonical cocycle C under the map

Z1(Γ; Π(C)) −→ Z1(Γ; Πab(C)) .

The results of this section are well-known, but are recalled here for convenience.



MULTIPLE MODULAR VALUES 21

7.1. Abelianization of C. For any commutative Q-algebra R we have §2.2.3

Πab(R) ∼= Hom(M, R) =
∏

k

M∨
k ⊗ Vk−2 ⊗ R .

The natural map Π → Πab therefore induces a map

Z1(Γ, Π) −→ Z1(Γ; Πab) ∼=
∏

k

M∨
k ⊗ Z1(Γ; Vk−2) .

This can be written

Z1(Γ, Π) −→
∏

k

Hom(Mk, Z1(Γ; Vk−2)) .

In particular, for f ∈ Bk, the coefficient of Af in C, which is denoted by C(af ) (see
(3.7)), is a Γ-cocycle in Vk−2. This defines a linear map

p : Mk(Γ) −→ Z1(Γ; Vk−2) ⊗ C

which we call p for period. It is the abelianization of the canonical cocycle C. Explicit
formulae for p are obtained from (5.4) and (4.12).

7.2. Periods of cusp forms. For any cusp form f ∈ S2k(Γ) of weight 2k,

p(f)T = 0

p(f)S = (2πi)2k−1

∫ i∞

0

f(τ)(X − τY )2k−2dτ .

Performing a Fourier expansion of the second equation yields the formula

p(f)S = (2πi)2k−1
2k−1∑

r=1

(−i)r−1

(
2k − 2

r − 1

)
Λ(g, r)X2k−r−1Y r−1

In particular, we immediately deduce that the numbers (2πi)2k−1ir−1Λ(g, r) are mul-
tiple modular values for all values of r inside the critical strip 1 ≤ r ≤ 2k − 1. If f is
a normalised Hecke eigenform, Manin showed [30] that there exist two real numbers

ω+
f , ω−

f ∈ R ,

called the periods of f , such that (extending scalars p : Mk ⊗ C → V2k−2 ⊗ C),

p(f)S = ω+
f P+

f (X, Y ) + i ω−
f P−

f (X, Y )

where P±
f (X, Y ) ∈ V ±

k−2 ⊗ Kf , and Kf is the number field generated by the Fourier
coefficients of f , and ± denotes the eigenspaces with respect to ε. In fact, we can
assume that the coefficients ω±

f are equivariant: σ(ω±
f ) = ω±

σ(f) for all σ ∈ AutQ(Kf ).

7.3. Periods of Eisenstein series. Let

(7.1) c(x) =
1

ex − 1
+

1

2
−

1

x

Define a set of rational cocycles e0
2k ∈ Z1(Γ; V2k−2) via their generating series

e0 =
∑

k≥2

2

(2k − 2)!
e0
2k

where e0 is the unique cocycle defined on Γ by

e0(S) = c(X)c(Y )(7.2)

e0(T ) = 1
Y

(c(X + Y ) − c(X)) − 1
12

One easily verifies that the e0
2k do indeed satisfy the cocycle relations.
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Lemma 7.1. (Zagier). The cocycles of Eisenstein series are

p(E2k) = (2iπ)2k−1e0
2k −

(2k − 2)!

2
ζ(2k − 1)δ0(Y 2k−2) ,

where δ0 is the differential §2.3.1 and k ≥ 2. The coboundary term δ0(Y 2k−2) is the
cocycle which sends T to 0 and S to X2k−2 − Y 2k−2.

Proof. (Sketch). For any f ∈ Mk(Γ), the value of the cocycle Cab(f) on S is given by:

Cab(f)S = (2πi)2k−1
(∫ i∞

i

f0(X − τY )k−2dτ −

∫ τ

0

a0(f)(X − τY )k−2dτ
)∣∣∣

S−1

by (5.4) and (4.12), where f0 is defined by (4.6). The left-hand integral can be ex-
pressed in terms of the L-function of E2k which is a product of zeta functions §2.1.4;
the right-hand integral is elementary. The value of p(E2k) on T follows from §6.2. �

The coefficients of the cocycle p(E2k) lie in ζ(2k − 1)Q + (2πi)2k−1Q. We have

[p] : Ek(Γ) −→ H1(Γ; Vk−2) ⊗ (2πi)2k−1Q .(7.3)

E2k 7→ (2iπ)2k−1[e0
2k]

Thus the cohomology class of the Eisenstein cocycle is, up to a power of 2πi, rational,
although the cocycle itself is not, due to the presence of the odd zeta value. An
explanation of this phenomenon will follow from the description of the motivic Galois
action on cocycles to be given in §9.9.

7.4. Eichler-Shimura isomorphism. We clearly have H0(Γ; V∞) = V Γ
∞ = Q, and

furthermore, Hi(Γ; Vn) vanishes for all i ≥ 2, because Man
1,1(C) is of real dimension 2

and non-compact. The group H1(Γ; Vn) is described by the Eichler-Shimura theorem.
By §5.4, complex conjugation acts on Vn by ǫ on the right, and the real Frobenius

acts on Γ by conjugation by ǫ. This defines the following action on cochains:

Ci(Γ; Vn) −→ Ci(Γ; Vn)(7.4)

φ 7→
(
(g1, . . . , gn) 7→ φ(ǫg1ǫ

−1, . . . , ǫgnǫ−1)
∣∣
ǫ

)

It is a morphism of complexes, and therefore induces an action on cohomology. Denote
the eigenspaces of H1(Γ; Vn) for this action by ±. Thus elements of H1(Γ; Vn)± can
be represented by cocycles satisfying

Cǫγǫ−1

∣∣
ǫ
= ±Cγ

For example, CS |ε = CS if and only if CS is even in Y (an ‘even period polynomial’)
and CS |ε = −CS if and only if CS is odd in Y .

Theorem 7.2. (Eichler-Shimura) For all n ≥ 2, integration defines isomorphisms

[p+] : Sn(Γ)
∼
−→ H1(Γ; Vn−2)

+ ⊗ R ,

[p−] : Mn(Γ)
∼
−→ H1(Γ; Vn−2)

− ⊗ R .

where p+ = Re p and p− = Im p. In particular, for all n ≥ 2

dimQ H1(Γ; Vn−2) = dimQ En(Γ) + 2 dimQ Sn(Γ) .

The restriction map induced from the inclusion i of Γ∞ in Γ is

i∗ : H1(Γ; Vn) → H1(Γ∞; Vn)

Denote the kernel of this map by H1
cusp(Γ; Vn) ⊂ H1(Γ; Vn).
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7.5. Hecke-equivariant splitting. Let k ≥ 2, and let

Z1
cusp(Γ; V2k) = ker(Z1(Γ; V2k) −→ Z1(Γ∞; V2k))

denote the subspace of cuspidal cocycles. The subspace of coboundaries in Z1
cusp(Γ; V2k)

is one-dimensional, spanned by δ0Y 2k. This follows immediately from the following
exact sequence of Q-vector spaces:

0 −→ Y 2kQ −→ V2k
T−1
−→ V2k −→ X2kQ −→ 0 .

Since the cocycle of a cusp form vanishes on T , we have

p± : Sk(Γ) −→ Z1
cusp(Γ, Vk−2)

± ⊗ R −→ H1
cusp(Γ, Vk−2)

± ⊗ R .

Manin defined [30] the action of Hecke operators onto Z1
cusp(Γ, Vk−2)

± and proved that

p± commutes with this action. Linear algebra implies the following lemma.

Lemma 7.3. There is a canonical splitting over Q

s : H1
cusp(Γ; V2k) → Z1

cusp(Γ; V2k)

which is equivariant for the action of Hecke operators. We have

Z1
cusp(Γ; V2k) = δ0Y 2kQ ⊕ s(H1

cusp(Γ; V2k)) .

Proof. The map s can be written explicitly by noting that the space s(H1
cusp(Γ; V2k))

is orthogonal to the space of Eisenstein cocycles e0
2k with respect to the inner product

{ , } defined in (2.8), which is equivariant for the action of Hecke operators [29, 34].
Since a cuspidal cocycle C (or its cohomology class) is uniquely determined by the
polynomial CS ∈ V2k, we can simply define s(C)T = 0 and

s(C)S = CS + α(X2k − Y 2k)

where α is determined by {e0
2k, CS} + α{e0

2k, X2k − Y 2k} = 0. The coefficient of α is
non-zero by the following lemma. �

Lemma 7.4. Let e0
2k denote the rational cocycle defined above. Then

(7.5) {e0
2k, δ0Y 2k−2} =

3b2k

2k
for k ≥ 2 .

Proof. Applying definition (2.8) gives

〈e0
2k(S), (X − Y )2k−2 − (X + Y )2k−2〉 − 2〈e0

2k(T ), (X2k−2 − Y 2k−2)
∣∣
1+T

〉

By §5.4, we have F∞CT = CT−1 . Since C is a cocycle, 0 = CT |T−1 + CT−1 and hence
CT |ǫ = CT |T−1 . This implies that e0

2k(T )|T−1 = e0
2k(T )|ǫ. Using the Γ, and ǫ-invariance

of 〈 , 〉, the previous expression therefore becomes

〈e0
2k(S), (X − Y )2k−2 − (X + Y )2k−2〉 − 4〈e0

2k(T ), X2k−2 − Y 2k−2〉

Replacing e0 with its generating series, and applying formula (2.7) proves that the

expression (7.5) is (2k−2)!
2 times the coefficient of t2k−2 in

c(t)c(−t) − c(t)c(t) + 4
(
c′(t) −

c(t)

t

)
= 6c′(t) −

1

2
.

The previous identity follows easily from the definition (7.1). �
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In summary, the following diagram is commutative:

H1
cusp(Γ; V2k)+ ⊗ R

s⊗R
−→ Z1

cusp(Γ; V2k)+ ⊗ R

↑[p+] ||

S2k+2(Γ)
p+

−→ Z1
cusp(Γ; V2k)+ ⊗ R

By the above remarks, we can completely determine elements in Z1
cusp(Γ; V2k) by pair-

ing with the cocycles of cusp forms §7.2 and Eisenstein series §7.3 with respect to { }
(since it is well-known that the Haberlund-Peterssen inner product is non-degenerate).

8. Transference of periods

The non-vanishing of H2(Γ, Γ∞; Q) leads to non-trivial identities between periods
of iterated Eichler integrals. It gives rise to a kind of ‘transference principle’ whereby
periods of iterated integrals of certain modular forms are related to periods of iterated
integrals of completely different modular forms.

8.1. Relative H2. The group Γ is of cohomological dimension 1. The cohomology of
Γ relative to Γ∞ (§2.3.3), however, satisfies

H2(Γ, Γ∞; Vn) =

{
Q if n = 0 ,

0 if n even > 0 .
(8.1)

corresponding to the compactly supported cohomology of Man
1,1. Equation (8.1) can

also be easily verified using the long exact sequences of relative cohomology and the
results of the previous section. We construct an isomorphism

h : H2(Γ, Γ∞; Q)
∼
−→ Q

by standard arguments in homological algebra. An element in H2(Γ, Γ∞; Q) can be
represented by a pair (α, β), where α ∈ Z2(Γ; Q), β ∈ C1(Γ∞; Q) and α|Γ∞

= δ1β.

Lemma 8.1. Let (α, β) ∈ Z2(Γ, Γ∞; Q) as above. Then

(8.2) h((α, β)) = βT +
1

6

(
2α(U,U) + 2α(U2,U) + 6α(T,S) − 3α(S,S)

)

defines an isomorphism h : H2(Γ, Γ∞; Q)
∼
→ Q.

Proof. The long exact cohomology sequence (2.5) implies that

H1(Γ; Q) → H1(Γ∞; Q) → H2(Γ, Γ∞; Q) → H2(Γ; Q) = 0

and since H1(Γ; Q) = 0 this gives H1(Γ∞; Q)
∼
→ H2(Γ, Γ∞; Q). It is induced by the

map v 7→ (0, v) on cocycles. Now v 7→ vT gives an isomorphism H1(Γ∞; Q) ∼= Q and
we define h to be the compositum H2(Γ, Γ∞; Q) ∼= Q. In particular, h([0, v]) = vT .

Since H2(Γ; Q) = 0 there exists f ∈ C1(Γ; Q) such that α = −δ1f . To compute fT ,
evaluate the equation α = −δ1f on pairs in Γ2 using §2.3.1 to get:

α(S,S) = 2fS , α(T,S) = fS + fT − fU

α(U,U) = 2fU − fU2 , α(U2,U) = fU + fU2 .

Combining these equations gives

6fT = 2α(U,U) + 2α(U2,U) + 6α(T,S) − 3α(S,S) .

Now the element
(α, β) + δ(f, 0) = (0, β + i∗f)

represents the same cohomology class as (α, β) where i : Γ∞ → Γ. The value of
h([α, β]) is defined to be βT + fT ∈ Q, which gives (8.2). �



MULTIPLE MODULAR VALUES 25

8.2. Pairing and cup product. There is a cup product

Z1(Γ; Vn) × Z1(Γ, Γ∞; Vn)
∪

−→ Z2(Γ, Γ∞; Vn ⊗ Vn)

γ ∪ (α, β) = (γ ∪ α, γ ∪ β)

Composing with the projection Vn ⊗ Vn → V0
∼= Q of §2.4.2, taking cohomology, and

applying the map h of (8.2) yields a pairing between cocycles and relative cocycles. In
particular, via tha map α 7→ (α, 0) : Z1

cusp(Γ; Vn) → Z1(Γ; Γ∞; Vn) it gives a pairing

{ , } : Z1(Γ; Vn) × Z1
cusp(Γ; Vn) −→ Q

We can lift this formula to cochains (non-uniquely) by substituting §2.3.1 into (8.2).

Definition 8.2. Define a bilinear pairing

(8.3) h : C1(Γ; Vm) ⊗ C1(Γ; Vn) −→ Vm ⊗ Vn

by the formula h(α ⊗ β) = h(α ∪ β). Explicitly,

(8.4) h(α, α′) =
1

3

(
α′

U + α′
U2

)∣∣
U
⊗ αU +

(
α′

T −
1

2
α′

S

)∣∣
S
⊗ αS

The pairing h is a precursor to the Peterssen-Haberlund inner product.

Lemma 8.3. If f ∈ Z1(Γ; V2k) and g ∈ Z1
cusp(Γ; V2k) then

{f, g} = −6〈h(g, f)〉

where the bracket { , } was defined in (2.8).

Proof. For any cocycle c, we have 0 = cU +cU2 |U since U3 = 1, and also cU = cS +cT |S
since U = TS. Because gT = 0, we have furthermore gU = gS. Therefore

〈h(g, f)〉 =
1

3
〈gS

∣∣
TS

− gS , fS + fT

∣∣
S
〉 −

1

2
〈gS

∣∣
S
, fS〉 .

Using the Γ-invariance of the inner-product, and the equation cS |S = −cS gives

(8.5) 6〈h(g, f)〉 = 〈gS − 2gS|T , fS〉 + 2〈gS

∣∣
1+T

, fT 〉 .

On the other hand, for any cocycle c we have cU + cU |U + cU |U−1 = 0, which, applied
to g gives gS + gS |TS + gS |ST−1 = 0. Pairing with fS leads to the equation

〈gS , fS〉 = 〈gS

∣∣
T
, fS〉 + 〈gS

∣∣
T−1 , fS〉

Substituting into (8.5) and using the fact that 〈 , 〉 is symmetric on V2k ⊗V2k gives the
required formula (2.8). �

8.3. Transference principle. Let C denote the canonical cocyle. By (3.7), we shall
view C as a collection of cochains

C : Mk1 ⊗ . . . ⊗ Mkr
−→ C1(Γ; Vk1−2 ⊗ . . . ⊗ Vkr−2)

The vector space on the left has a basis given by words w = af1 . . . afr
where fi ∈ Bki

.
Let C(w) denote the corresponding Γ-cochain.

Theorem 8.4. Let π : Vk1−2⊗ . . .⊗Vkr−2 → V0 denote any SL2-equivariant projection
onto a copy of V0

∼= Q. The coefficients of C satisfy an equation

(8.6) π
( ∑

uv=w

h(C(u), C(v)) + C(w)T

)
= 0

for any word w in the af , where the sum is over strict factorisations of w. If w contains
at least one letter af where f is a cusp form, then

π
∑

uv=w

h(C(u), C(v)) = 0 .
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Proof. Denote the restriction of Cw to Γ∞ by i∗Cw. Then

δ1(C(w), 0) = (
∑

w=uv

C(u) ∪ C(v), i∗C(w))

is a relative coboundary by (5.5), so its class in H2(Γ; Γ∞, Q) vanishes. Applying
(8.2) to this coboundary leads to equation (8.6) via definition (8.4). The last equation
follows immediately from (8.6) on applying (6.3). �

One can rewrite relation (8.6) as a certain pairing between non-abelian cochains.
It states that C pairs with itself to give 0. Equation (8.6) implies relations between
iterated Eichler integrals of length n coming from the existence of iterated Eichler
integrals of length n + 1.

8.4. Length one. Let n ≥ 2 and let a1, a2 ∈ M2n where a1 corresponds to a cusp
form. Then C(a1a2) is cuspidal (vanishes on T ), and we deduce that

〈h(C(a1), C(a2))〉 = 0 ,

which implies by lemma 8.3 that {C(a2), C(a1)} = 0 since the C(ai) are cocycles. In
particular, if f is a cusp form of weight 2n, then C(af ) is p(f) and C(e2n) is, by §7.3,
a multiple of the rational cocycle e0

2n plus a coboundary term. It follows immediately
from lemma 8.3 that the cocycles of cusp forms satisfy

(8.7) {e0
2n, p(f)} = 0 .

This is of course well-known [29].

8.5. Examples in length two. Let p, q, r ∈ N be a triangle:

|p − q| ≤ r ≤ p + q

and let a1 ∈ M2p+2, a2 ∈ M2q+2, a3 ∈ M2r+2. Then we have

〈h(C(a1), ∂
q+r−p C(a2a3))〉 + 〈h(∂p+q−rC(a1a2), C(a3))〉 ∈ Q(2iπ)2p+2q+2r+3 .

The left-hand side vanishes if a1, a2, a3 are not all Eisenstein series.
On the other hand, when r = p + q, and a1, a2, a3 are Eisenstein series, we obtain:

〈∂0h(C(emen), C(em+n−2))〉 + 〈h(C(em), ∂n−2C(enem+n−2))〉 ∈ Q(2iπ)2m+2n−5

from the previous formula with m = 2p + 2, n = 2q + 2. Since we know the cocycles
C(em) explicitly, this gives a relation between the highest-weight and lowest-weight
parts of double Eisenstein cocycles

∂0C(emen) and ∂n−2C(enem+n−2)

This is significant because these are precisely the two places (see §12) where we obtain
non-trivial multiple zeta value coefficients (as opposed to single zeta values).

More strikingly, if a1, a2 are Eisenstein series and a3 corresponds to a cusp form, we
find non-trivial relations between the periods of double Eisenstein integrals C(emen)
and the iterated integral C(enaf ) of an Eisenstein series and a cusp form.

9. Cocycle structure and automorphisms

We define the Betti fundamental groupoid P of Γ\\H at cusps and compute its
group of automorphisms. Many of the results of this section are valid for general
relative Malcev completions, and will be studied in much greater detail in [5].
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9.1. Betti fundamental group. Compare the discussion in §3.2. For all k ≥ 2,
define a Q-vector space of rational cohomology classes by

Pk = H1(Γ; Vk−2) .

Since the right-hand side admits an action of Hecke operators and also an action of ǫ
§7.4 we have in particular a decomposition

Pk = P eis
k ⊕ P cusp

k and P cusp
k = P cusp,+

k ⊕ P cusp,−
k

The subspace P eis
k is spanned by cocycles of Eisenstein series §7.3 and is anti-invariant

with respect to ǫ. The subspace P cusp
k is defined to be H1

cusp(Γ, Vk−2).
Now let P∨

k denote the vector space dual to Pk, and define

P =
⊕

k≥2

Pk ⊗ V ∨
k−2 and P∨ =

⊕

k≥2

P∨
k ⊗ Vk−2 .

Then P is a graded left SL2 module, and P∨ is a graded right SL2-module.

Definition 9.1. Let T c(P ) denote the tensor coalgebra §2.2.1 on P . It is a graded
Hopf algebra over Q equipped with a left action of SL2, and hence Γ. Define

P = Spec (T c(P )) .

It is a pro-unipotent affine group scheme over Q, and its set of R-points is

P(R) = {S ∈ R〈〈P∨〉〉× such that S group-like} .

This is the set of group-like formal power series with respect to the coproduct for which
elements of P∨ are primitive, where R is any commutative unitary Q-algebra.

The group P(R) admits a right action of SL2, and hence Γ, satisfying

S
∣∣
γ
T

∣∣
γ

= ST
∣∣
γ

for all S, T ∈ P(R) .

An element S ∈ P(R) can be viewed as a collection of linear maps

S : Pk1 ⊗ . . . ⊗ Pkr
−→ Vk1−2 ⊗ . . . ⊗ Vkr−2 ⊗ R

which satisfies the analogue of the shuffle equation (3.8).

Remark 9.2. The scheme P is isomorphic to the pro-unipotent radical of the relative
Malcev completion of Γ, graded for the lower central series filtration [22, 24].

9.2. Cocycles tangent to the identity. We describe a certain subspace of cycles in
Z1(Γ; P(R)) tangent to the identity. The general case will be discussed in [5].

For any commutative Q-algebra R we have by §2.2.3

Pab(R) ∼= Hom(P, R) ∼=
∏

k≥2

P∨
k ⊗ Vk−2 ⊗ R .

The natural map P → Pab therefore induces a map

Z1(Γ; P) −→ Z1(Γ; Pab) ∼=
∏

k

P∨
k ⊗ Z1(Γ; Vk−2) .

Since Pk = H1(Γ; Vk−2), this can be written

(9.1) Z1(Γ; P) −→
∏

k

Hom(H1(Γ; Vk−2), Z
1(Γ; Vk−2)) .

Define the tangent map to be

t : Z1(Γ; P) −→
∏

k

Hom(H1(Γ; Vk−2), H
1(Γ; Vk−2)) ⊂ Hom(P, P ) .
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In general, we are interested in the subset of cocycles of Z1(Γ; P) which map to au-
tomorphisms of H1(Γ; Vk−2) commuting with the action of Hecke operators [5]. For
simplicity, here we shall only consider those mapping to the identity.

Definition 9.3. Define the subspace of cocycles tangent to the identity by

Z1
t (Γ; P) = {C ∈ Z1(Γ; P) such that t(C) = id} .

Since Γ is finitely-generated, Z1(Γ; P) is defined by a finite number of equations
defined over Q (lemma 5.5) and Z1

t (Γ; P) is an affine scheme over Q.

9.3. Automorphisms. The Lie algebra LieP of P is isomorphic to the completion
of the free graded Lie algebra generated by

⊕

k≥2

P∨
k ⊗ Vk−2

It admits a right action of SL2. Let

(9.2) Aut0(Lie P)SL2 = {φ : Lie P → Lie P such that φ(x)|g = φ(x|g) for all g ∈ SL2

and such that φab : Lie Pab → Lie Pab is the identity} .

The second condition means that any element φ ∈ Aut0(Lie P)SL2 acts on generators
x ∈ P∨

k ⊗ Vk−2 by sending x 7→ x + commutators of length ≥ 2. Any element
φ ∈ Aut0(Lie P)SL2(R) acts on formal power series by non-commutative substitutions:

R〈〈P∨〉〉 −→ R〈〈P∨〉〉

S 7→ φ(S)

It clearly respects the actions of SL2 and preserves the subspace of group-like formal
power series. In particular, it preserves P(R) ⊂ R〈〈P∨〉〉.

The subspace of SL2-invariants PSL2 ≤ P acts by conjugation on P. This defines a
right action of PSL2 on Aut0(Lie P)SL2 which we denote by a subscript. It satisfies

(φa)(S) = a−1φ(S)a for all S ∈ P, a ∈ PSL2 .

For every a ∈ PSL2 , the element φa is an automorphism of the Lie algebra Lie P

because in any Hopf algebra, conjugation of a primitive element by a group-like element
is primitive. For any a ∈ PSL2 , φab

a = id because conjugation by a is trivial on the
abelianization, and φa is SL2-invariant because a is.

Definition 9.4. Let A denote the semi-direct product

(9.3) A = P ⋊PSL2 Aut0(Lie P)SL2

Elements of A are represented by (B, φ) ∈ P×Aut0(Lie P)SL2 modulo the equivalence

(9.4) (Ba, φa) ∼ (B, φ) for all a ∈ PΓ .

Denote the equivalence class of (B, φ) by [B, φ].

One can show that A is an affine group scheme defined over Q. It acts on the left
on the subspace of cocyles Z1

t (Γ; P) ⊂ Z1(Γ; P) tangent to the identity as follows:

A× Z1
t (Γ; P) −→ Z1

t (Γ; P)(9.5)

[B, φ] ◦ C =
(
γ 7→ B

∣∣
γ

φ(Cγ)B−1
)

where B ∈ P and φ ∈ Aut0(Lie P)SL2 . The element [B, φ] ◦ C evidently satisfies the
cocycle relations for C (§5.2) and is tangent to the identity because φab = id. Note
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that (9.5) is well-defined: equivalent representatives (9.4) act in an identical way on
Z1

t (Γ; P). The group law is given by

[B1, φ1] ◦ [B2, φ2] = [B1φ1(B2), φ1φ2] .

Remark 9.5. As observed in §9.1, an element B ∈ P(R) can be viewed as a morphism.
In order not to clutter the notation, we shall denote the image of w ∈ P2k1 ⊗ . . .⊗P2kr

under the map B by a subscript Bw. Thus

Bw ∈ V2k1−2 ⊗ . . . ⊗ V2kr−2

is a polynomial, and satisfies the analogue of the shuffle equations (3.8). On the other
hand, an element φ ∈ Aut0(Lie P)SL2 can be viewed as a series of linear maps

⊕

k1,...,kr

P2k1 ⊗ V ∨
2k1−2 ⊗ · · · ⊗ P2kr

⊗ V ∨
2kr−2 −→

⊕

k

P2k ⊗ V ∨
2k−2

which are SL2-equivariant and vanish on products. Thus we can view

φw ∈
⊕

k

P2k ⊗ HomSL2(V2k−2, V2k1−2 ⊗ . . . ⊗ V2kr−2)

=
⊕

k

HomSL2
(P∨

2k ⊗ V2k−2, V2k1−2 ⊗ . . . ⊗ V2kr−2) .

We will refer to Bw and φw as coefficients of B and φ, respectively.

9.4. The space of cocycles as an A-torsor.

Theorem 9.6. The space Z1
t (Γ; P) is a principal A-torsor.

Proof. This is a special case of a more general theorem which will be proved in the
context of relative Malcev completion [5], and follows easily from the universal property
of relative completion via remark 5.3. In the meantime, I shall sketch an ad hoc proof
here, which is heavy-handed but has the advantage of being constructive. Consider
two cocycles C1, C2 ∈ Z1

t (Γ; P). We wish to construct an α = [B, φ] ∈ A such that
α ◦ C1 = C2. Suppose by induction that B and φ, viewed as morphisms as in remark
9.5, are defined on P⊗r for r ≤ n − 1 such that

C2 = α ◦ C1 (mod terms of length ≥ n) .

We wish to extend B and φ to pure tensors w ∈ P⊗n. Let {p} denote a basis of P∨.
By formula (9.5) for the action of A, we have

(9.6) (α ◦ C1)w = δ0Bw +
∑

{p}

φw(p ⊗ C1
p) + (α ◦̃C1)w

where the right-most term consists of all terms in (α ◦ C1)w which involve coefficients
of B, φ of length ≤ n − 1 (which are known by the previous induction step). The
middle sum is finite because φ has to be SL2-invariant.

Now, by (5.5), we have the equation

δ1Ci
w ≡

∑

uv=w

Ci
u ∪ Ci

v

for i = 1, 2 where the sum is over strict factorisations of w. This implies that

δ1(α ◦̃C1)w = δ1(α ◦ C1)w =
∑

uv=w

(α ◦ C1)u ∪ (α ◦ C1)v =
∑

uv=w

C2
u ∪ C2

v = δ1C2
w
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and the difference ξw = C2
w − (α ◦̃C1)w is closed hence a Γ-cocycle. The first equality

follows from (9.6) using the fact that δ1C1
p = 0. The equation

(9.7) ξw = δ0Bw +
∑

{p}

φw(p ⊗ C1
p )

can always be solved in Bw and φ(p)w, because C1 is tangent to the identity and so
the C1

p are a basis for the cohomology of Γ. The first step in the induction n = 1 is

guaranteed because C2 is tangent to the identity, and so φab is the identity. One can
ensure that B is group-like and φ is a Lie algebra homomorphism using the fact that
C1, C2 are group-like (solve (9.7) for algebra generators w; the remaining coefficients of
B, φ are determined by multiplicativity). Note that the element Bw is uniquely defined
up to addition of a Γ-invariant element and hence B is unique up to multiplication by
an element of PΓ = PSL2 . Hence α = [B, φ] ∈ A is unique.

Finally, the existence of a rational point on Z1
t (Γ; P) is equivalent, by remarks 5.3

and 9.2, to the fact that the unipotent radical of the relative Malcev completion of
Γ admits a splitting over Q. This follows from a variant of Levi’s theorem (see for
example [24], proposition 3.1 for a proof of such a splitting). �

9.5. Betti cocycle. Recall from §7.4 that integration defines a linear map:

(9.8) p : Mk −→ Pk ⊗ C ,

from modular forms to cohomology classes. It defines a canonical morphism of affine
group schemes over C

(9.9) p∗ : P × C −→ Π × C

In particular, this induces a morphism

(9.10) Z1(Γ; P)(C) −→ Z1(Γ; Π)(C) .

Let us denote, by abuse of notation, elements

e2k ∈ P2k and E2k ∈ P∨
2k

for all k ≥ 2, where e2k = [e0
2k] ∈ P eis

2k is cohomology class of the rational Eisenstein
cocycle of §7.3 and E2k is the dual element in (P eis

2k )∨. They correspond to (3.2) via the
map p. The Eisenstein series of weight 2k therefore defines elements e2k,E2k without
ambiguity in both M2k, P2k and their duals.

Theorem 9.7. There exists a cocycle z ∈ Z1
t (Γ; P)(C) whose image under the previous

map is the canonical cocycle C ∈ Z1(Γ; Π)(C). Its restriction to Γ∞ is rational, i.e.,

zT ∈ P(Q) .

Proof. (Sketch) This can be proved using Chen’s formal power series connections [22],
§9. One can choose a (de Rham rational) formal power series connection form

Ω̃ ∈ Ω1(H, P(C))

such that its image under the map (9.9) is Ω defined in (3.4). By [22], §9, this defines a
splitting of the relative Malcev completion of Γ, and hence a cocycle z ∈ Z1(Γ; P)(C)

by remarks 5.3 and 9.2. The restriction of Ω̃ to the punctured tangent space at the cusp
is Betti rational, because the motivic fundamental group of Gm at the unit tangent
vector based at 0 is simply Q(−1). Therefore zT is rational. �
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Let us choose such an element z and denote by

κ = zT ∈ P(Q)

By abuse of notation, we shall sometimes denote the restriction of z to Γ∞ by κ ∈
Z1(Γ∞; P)(Q) also. The image of κ under the map (9.9) is CT . It is unlikely that an
element z can be chosen canonically, but it is an interesting problem to determine the
coefficients of κ as explicitly as possible. For example, we can easily show that

(9.11) κp = 0 for all p ∈ P cusp .

This is because, for all cusp forms f , we have p(f)T = 0 and hence p(f)+T = p(f)−T = 0.
By the Eichler-Shimura isomorphism this implies (9.11). On the other hand,

(9.12) κe2k
=

b2k

4k(2k − 1)

1

Y

(
(X + Y )2k−1 − X2k−1

)
=

b2k

4k(2k − 1)

X2k−1

Y

∣∣∣
T−1

by the results of §6, since κe2k
= (2πi)1−2kCe2k

. Similar arguments imply that the
coefficient of ep in κ also vanishes. These results can also be deduced by purely Hodge-
theoretic arguments, but this is outside the scope of this paper.

9.6. A scheme of cocycles. We can define a certain scheme of non-abelian cocycles
as follows. It will be studied in greater detail in [5].

Definition 9.8. Fix a κ as above, and let

i∗ : Z1(Γ; P) −→ Z1(Γ∞; P)

denote the restriction map. For R a Q-algebra, define a space of cocycles

Zκ(R) = {z ∈ Z1
t (Γ; P)(R) : i∗(z) = κ}

Because κ is rational, one can show that Z is representable and defines an affine
scheme over Q.

Remark 9.9. We could dispense with a choice of κ by defining a space of cocycles
Z ⊂ Z1

t (Γ; P) which have the property that their images under the composition

Z1(Γ; P)
i∗

−→ Z1(Γ∞; P)
p∗

−→ Z1(Γ∞; Π × C) ,

This weaker construction actually suffices for almost all the results of the present
paper, where we are only considering holomorphic iterated integrals. However it is
convenient, both notationally, and psychologically to do computations with a chosen
rational element κ.

9.7. Group of ‘motivic’ automorphisms. With a fixed κ as above define a group
of automorphisms of Zκ as follows.

Definition 9.10. For any such κ, define Gκ ≤ A to be the stabiliser of κ. More
precisely, Gκ is the set of [B, φ] ∈ A satisfying the equation:

(9.13) B
∣∣−1

T
φ(κ)B = κ .

By theorems 9.6 and theorem 9.7, Zκ(C) is a torsor over the group Gκ(C). It
follows from standard arguments about torsors over unipotent groups that Zκ contains
a rational point. We shall see that the seemingly innocuous equation (9.13) actually
contains a lot of arithmetic information, although we shall only scratch the surface
here.
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Choose a rational point z0 ∈ Zκ(Q) as above. Let z ∈ Zκ(C) be a complex point
whose image in Z1(Γ; Π)(C) is C, as provided by theorem 9.7. Since Zκ is a torsor over
Gκ, there exists [B, φ] ∈ Gκ(C) such that

z = [B, φ] ◦ z0

Corollary 9.11. By applying the map (9.10) we obtain the following formula:

(9.14) C = p∗([B, φ] ◦ z0) .

This equation enables us to tease out the coefficients of C, and also describes the
action of the corresponding motivic Galois group. More precisely, the coefficients of
(3.3) in C involve periods of very different types superposed in a complicated way.
Equation (9.14) enables us to separate them out.

9.8. Transference and higher Petersson-Haberlund products. By following the
identical argument to theorem 8.4, we have an analogue for Zκ.

Theorem 9.12. For all z ∈ Zκ, and all SL2-invariant projections π onto the trivial
representation V0 = Q, we have an equation

(9.15) π
( ∑

uv=w

h(z(u), z(v))
)

= −π(κ(w)) .

where the sum is over strict factorisations of w a word in elements of P .

We wish to view the left-hand side as a generalisation of the inner product {, }, via
lemma 8.3. The action of the automorphism group Gκ fixes the right-hand side, and
therefore fixes the left hand side also. Thus, for all g ∈ Gκ, we have

(9.16) π
( ∑

uv=w

h(g ◦ z(u), g ◦ z(v))
)

= −π(κ(w)) .

Thus we can think of Gκ as preserving ‘higher inner products’. In this way we see that
the non-vanishing of H2(Γ, Γ∞; Q) leads to non-trivial constraints on κ. For example,
take two elements p, q ∈ P cusp

k . Then (9.15) applied to the word w = pq implies that

{zp, zq} = −6κpq

by lemma 8.3. Since [zp] = p and [zq] = q, we deduce that κpq 6= 0 whenever
the Petersson-Haberlund inner product {p, q} is non-zero. In this respect, the non-
vanishing components in V0 of κ encode the non-vanishing higher inner products.

9.9. Example: action of automorphisms in length 1. We illustrate how to un-
ravel the inertia equation (9.13) with some simple computations in length one. This
gives the action of the motivic Galois group on multiple modular values of length one.

By definition of the tangential condition, every [B, φ] ∈ Gκ, has the property that
φ is the identity in length one. Therefore

(9.17) Bp

∣∣
T−1

= 0 for all p ∈ Pk

which follows on taking the coefficient of p on both sides of (9.13). Thus

(9.18) Bp = αpY
k−2 where αp ∈ Q , for all p ∈ Pk .

Lemma 9.13. Let [B, φ] ∈ Gκ. Then Bf = 0 if f ∈ P cusp.

Proof. Let f ∈ P cusp
2k be cuspidal of degree 2k and let e denote the rational Eisenstein

cocycle of the same degree. Take the coefficient of ef in (9.13) to obtain

(9.19) Bef

∣∣
T−1

+ Beκf − κeBf + ((φ − id)κ)ef = 0 ,
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using (9.17) and B−1
ef = BeBf − Bef . This equation is in V2k ⊗ V2k. Project onto the

component V0 = Q as in §2.4.1. Since T acts trivially on V0, the image of the left
most term vanishes. The third term vanishes by (9.11). Finally, φ − id is equivariant
for the action of SL2, and there is no coefficient of κ in length one with a non-trivial
component in V0, since P0 = 0. Thus the final term vanishes also, leaving

〈κe, Bf 〉 = 0 .

Since Bf = αfY 2k−2, a simple application of (2.7) shows that αf = 0 since we know
that κe is given explicitly by (9.12) and does not vanish at Y = 0. �

The type of argument of this lemma can be substantially generalised. A simpler
way to prove the same result, using (9.15), is as follows. Apply equation (9.16) in the
case w = ef , where e and f are as in the previous lemma and g = [B, φ] ∈ Gκ. Since
φ ≡ id modulo terms of length ≥ 2, we have

(g ◦ z)p = zp + δ0Bp .

and therefore

κef + {ze, zf} = 0(9.20)

κef + {ze + δ0Be, zf + δ0Bf} = 0 ,

By (9.17), δ0Bp = αp(X
2k−2 − Y 2k−2) for some αp. Since the inner product of a

coboundary with a cuspidal cocycle vanishes, we have {δ0Be, δ
0Bf} = {δ0Be, zf} = 0.

The equations (9.20) imply that {ze, δ
0Bf} = 0 which, by (7.5) implies that αf = 0,

since ze is an Eisenstein cocycle.
In conclusion, every cocycle z ∈ Zκ(Q) defines a collection of maps from P2k to

Z1(Γ; V2k−2). In length one, we have for all p ∈ P2k,

(9.21) zp = s(p) + αp(X
2k−2 − Y 2k−2) for some αp ∈ Q

where s is the Hecke-equivariant splitting of §7.5, and αp is zero if p is cuspidal. In other
words, only the Eisenstein cocycles admit a non-trivial action of the automorphism
group Gκ. This corresponds to the fact that the period polynomials of cusp forms
have coefficients which are periods of pure motives (and therefore fixed under the
action of the unipotent part of the motivic Galois group). On the other hand, periods
of Eisenstein series have a single zeta value as the coefficient of X2k − Y 2k, which is
moved non-trivially by the unipotent radical of the motivic Galois group of MT (Z).
This is precisely what the formulae above are telling us.

10. Action of automorphisms in length 2

We specialise the general description given in the previous section to write down
closed formulae for the structure of double Eisenstein integrals in length 2.

10.1. Determination of φ in length 2. Using the equation (9.13), we can completely
compute the action of φ on Eisenstein elements in length two. Let [B, φ] ∈ Gκ(R).
Let e2m ∈ P eis

2m denote the rational Eisenstein cocycle, and let E2m denote the dual
element in (P eis

2m)∨ ⊂ P∨
2m. We have

Be2m
= α2mY 2m−2 for some α2m ∈ R .

The following theorem completely describes the action of φ on Eisenstein elements up
to length two. For every |m − n| ≤ k ≤ m + n, let us denote by

ιm,n
k : V2k → V2m ⊗ V2n

the SL2-equivariant map which is the inverse of ∂m+n−k described in §2.4.1.
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Theorem 10.1. Let [B, φ] ∈ Gκ(R) as above. Then φ satisfies

(10.1) φ(E2k ⊗ v) = E2k ⊗ v +
∑

m<n

λm,n
k (E2mE2nιm,n

k v + (−1)k−1E2nE2mιn,m
k v)

+ terms of length ≥ 3

for all v ∈ V2k−2, and where all coefficients λm,n
k vanish if k 6= n − m + 1. In the

remaining case k = n − m + 1 and m < n, they are given explicitly by

(10.2) λm,n
n−m+1 =

(n − m + 1)

n

(
2n − 2

2n− 2m

)
b2n

b2n−2m+2
α2m

where α2mY 2m−2 is the coefficient of e2m in B as above.

Proof. Taking the coefficient e2me2n in equation (9.13) gives

Be2me2n

∣∣
T−1

+ Be2m
κe2n

− κe2m
Be2n

+
∑

k

λm,n
k ιm,n

k (κe2k
) = 0

in V2m−2 ⊗ V2n−2. Here we have used the fact that B is T -invariant in length one.
Applying ∂r for each r, this splits into a series of equations in V2m+2n−4−2r:

(10.3) ∂rBe2me2n

∣∣
T−1

= ∂r(κe2m
Be2n

− Be2m
κe2n

) − λm,n
m+n−r−1κe2m+2n−2r−2

This can be viewed as an equation between Γ∞-cocycles. Concretely, consider the
short exact sequence

0 −→ Y 2kQ −→ V2k
T−1
−→ V2k

cX−→ X2kQ −→ 0

where cX is the map Y 7→ 0. Since the left-hand side of (10.3) is in the image of T −1,
the right-hand side must be in the kernel of cX .

By (9.12), cX(κe2k
) = b2k

4k
X2n−2. Since the Bernoulli number b2n is non-zero, the

numbers λm,n
m+n−r are completely determined by applying cX to the right-hand side of

(10.3). A completely elementary calculation gives

cX∂rBe2m
κe2n

= α2m

b2n

2n

(
2n− 2

2n − 2m

)
δr,2m−2X

2n−2m

if n ≥ m, and is zero if n < m. From this we deduce for n > m that:

λm,n
n−m+1 =

(n − m + 1)

n

(
2n − 2

2n − 2m

)
b2n

b2n−2m+2
α2m .

Finally we need to show that φ(E2k ⊗ v) has no cuspidal components. Let e, f ∈ P
be an Eisenstein and cuspidal cocycle, respectively. Returning to equation (9.19), and
using the fact (from lemma 9.13) that κf = Bf = 0, we have

Bef

∣∣
T−1

+ ((φ − id)κ)ef = 0 .

As above, we can view this as an equation of Γ∞-cochains. By repeating a similar
argument we deduce that the cohomology class of ((φ − id)κ)ef vanishes. The other
case (coefficient of fg where f, g ∈ P cusp) is similar. �

The coefficients λ2,n
n−1, up to a normalisation of the generators e2r, agree with the

computations due to Pollack ([35], §5.3) of the action of the generator σ3 in degree 3
of the Lie algebra of mixed Tate motives over Z on the derivations of the unipotent
fundamental group of the Tate curve. He guessed correctly that the quadratic coeffi-
cients are a quotient of two Bernoulli numbers b2n/b2n−2. The connection between the
previous theorem and his computations will be discussed in a joint work with Hain.
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10.2. Remark on the top slice quotient. Define the top slice of P to be

Ptop = πdP

where πd is the map defined in (2.6) which retains the top slice of a tensor product of
SL2 representations. There is a natural map P → Ptop. Elements of Ptop(R) can be
represented, via a version of (3.7), as morphisms

Pk1 ⊗ . . . ⊗ Pkr
−→ πd(Vk1−2 ⊗ . . . ⊗ Vkr−2) ⊗ R = Vk1+...+kr−2r ⊗ R .

In particular, we have a morphism Z1(Γ; P) → Z1(Γ; Ptop), and one checks that
the group Gκ acts upon Z1

t (Γ; Ptop) because in the definition 9.4 automorphisms are
required to be SL2-equivariant. One of the main advantages of looking at Ptop is that
O(Ptop) contains a unique copy of the trivial representation V0

∼= Q, and therefore
H2(Γ;O(Ptop)>0) vanishes. The argument in the previous section can be substantially
generalised, and suggests that for every [B, φ] ∈ Gκ, the image of πdφ(E2n) consists
of words in Eisenstein series (this is true at least modulo terms of high length, of the
order of about 10 corresponding to the fact that the first non-trivial cusp form for
SL2(Z) has weight 12). If the image of the Tannaka group of mixed Hodge structures
(not discussed here) in Gκ consists of elements φ preserving the subspace of Ptop

generated by the Eisenstein cocycles P eis ⊂ P , then the action on this subspace defines
a natural quotient whose underlying Lie algebra should be isomorphic, by the previous
computations, to a free Lie algebra with one generator in every odd degree ≥ 3.
This is isomorphic to the fundamental Lie algebra of MT (Z). This should give a
purely geometric construction of the category MT (Z), and justifies the comments in
the introduction which suggest that multiple modular values should give a natural
construction of the category of mixed Tate motives over Z.

10.3. Double Eisenstein integrals. Given a rational point z0 ∈ Z(Q), there exists
[B, φ] ∈ Gκ such that the element z of theorem 9.7 can be written in the form

(10.4) zγ = B
∣∣
γ

φ(z0)B−1 .

We can assume the coefficients z0(e2m) are the cocycles e0
2n defined in proposition 7.1.

Denote the coefficients z0(e2me2n) by e0
2m,2n. They satisfy

e0
2m,2n ∈ C1(Γ; V2m−2 ⊗ V2n−2)

δ1e0
2m,2n = e0

2m ∪ e0
2n(

e0
2m,2n

)
T

= (κe2me2n
)T

together with the shuffle equation

e0
2m,2n(X1, Y1, X2, Y2) + e0

2n,2m(X2, Y2, X1, Y1) = e0
2m(X1, Y1)e

0
2n(X2, Y2) .

These cochains are well-defined up to Z1
cusp(Γ; V2m−2 ⊗ V2n−2), i.e., rational cocycles

which vanish on T . Furthermore, since the cocycles e0
2m are odd with respect to ǫ, the

middle equation above implies that the odd part (id − ǫ)e0
2m,2n is a cocycle, and we

can assume it is zero. Therefore, we can assume that e0
2m,2n is ǫ-invariant.

The general formula (10.4) gives the following equation

(10.5) ze2me2n
= e0

2m,2n + Be2m
∪ e0

2n − e0
2m ∪ Be2n

+ δ0Be2me2n
+ Φ

where the final term of (10.5) is a cochain

Φ = ((φ − id)z0)e2me2n
∈ Z1(Γ; V2m−2 ⊗ V2n−2)
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and can be written explicitly

Φ = λm,n
n−m+1ι

m,n
n−m+1(e

0
n−m+1) +

∑

p
+
i
∈P

cusp,+
2k

λm,n
i,+ ιm,n

k (sp+
i ) +

∑

p
−

i
∈P

cusp,−

2k

λm,n
i,− ιm,n

k (sp−i )

where the p±i range over a basis in P±
2k = H1

cusp(Γ; V2k)±, s is the canonical Hecke-

equivariant splitting of §7.5 (this follows from (9.21)) and where λm,n
n−m+1 is given in

theorem 10.1. A formula for Ce2me2n
is deduced from (10.5) by applying the period

map (9.8). Half of the coefficients λm,n
i,± will be determined in the next paragraph and

related to special values of L-functions of cusp forms.
Finally, the element Be2me2n

∈ V2m−2 ⊗ V2n−2 can be written down by solving
equation (10.3) and using the trivialisation of κ in terms of V (6.5). This gives

(10.6) ∂rBe2me2n
= f

(r)
2m,2nY 2m+2n−2r−2 + ∂r(v2m ∪ Be2n

− Be2n
∪ v2m)

− ∂rBe2m
∪ Be2n

+ λm,n
n−m+1v2m+2n−2r−2δr,m−2

where f
(r)
2m,2n is a new indeterminate, and

Be2m
=

(2m − 2)!

2
f2m−1Y

2m−2 and v2n = −
b2n

4n(2n − 1)

X2n−1

Y
(10.7)

Elements such as v2m ∪ Be2n
in the right-hand side of (10.6) have poles, but the

operators ∂r make sense nonetheless. Formula (10.6) describes the shape of double
Eisenstein integrals. All the interesting information is contained in the coefficients λ

of Φ, and a single complex number f
(r)
2m,2n for each 0 ≤ r ≤ |m − n| (see §12).

11. Double Eisenstein Integrals and L-values

We can determine the imaginary part of the regularised iterated integrals of two
Eisenstein series. It involves special values of L-functions of modular forms outside the
critical strip and proves that the latter are periods.

11.1. Statement. Let a, b ≥ 2. For all k ≥ 0, define

(11.1) Ik
2a,2b = ∂kIm

(
Ce2ae2b

+ b2a ∪ e0
2b − e0

2a ∪ b2b

)

where Ce2ae2b
is the coefficient of e2ae2b in the canonical cocycle C, and for k ≥ 2,

b2k = −
(2k − 2)!

2
ζ(2k − 1)Y 2k−2(11.2)

e0
2k = (2πi)2k−1e0

2k .

It follows from the explicit description of the cocycle structure of double Eisenstein
integrals in the previous section, and also the calculations below, that Ik

2a,2b is a cocycle,
and furthermore, that its cohomology class is cuspidal:

[Ik
2a,2b] ∈ H1

cusp(Γ, V2a+2b−4−2k) .

The cocycle Ik
2a,2b is (−1)k invariant with respect to ǫ, and the shuffle product (3.8)

for iterated integrals implies the symmetry Ik
2a,2b = (−1)k−1Ik

2b,2a. The cohomology

class [Ik
2a,2b] is therefore completely determined by pairing with the cocycles of Hecke

eigenforms via the Peterssen-Haberlund inner product {, } defined in (2.8).

Theorem 11.1. Let k ≥ 0 and let g be a Hecke normalised cusp eigenform for Γ of
weight w = 2a + 2b − 2k − 2, and let Cg denote the corresponding cocycle. Then

(11.3) {Ik
2a,2b, Cg} = 3Ak

a,b(2πi)w+k−1Λ(g, 2a − k − 1)Λ(g, w + k)
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where Λ(s) = (2π)−sΓ(s)L(g, s) and

Ak
a,b = (−1)a

(
2a−2

k

)(
2b−2

k

)
(k!)3 .

Note that the functional equation of the L-series of g implies that formula (11.3) is
compatible with the symmetry Ik

2a,2b = (−1)k−1Ik
2b,2a.

The strategy of proof is the following: first we relate the coefficient of E2aE2b in
the indefinite iterated integral Im(I(τ ;∞)) to the product of a holomorphic Eisenstein
series with a certain real analytic Eisenstein series. Then the Petersson inner product
of its cocycle with that of an arbitrary cusp form g can be expressed as an integral
over a fundamental domain via a generalisation of Haberlund’s formula. This can in
turn be computed using a version of the Rankin-Selberg method. When g is a Hecke
eigenform, the final answer is a convolution L-function.

Corollary 11.2. For every a, b, k as above, we can write

(11.4) Ik
2a,2b(S) ≡

∑

{g}

(2πi)kΛ(g, w + k)P±
g (mod δ0(Vw−2 ⊗ C)S)

where the sum ranges over a basis of Hecke normalised cusp eigenforms of weight w,
and P±

g ∈ Pw−2 ⊗ Kg are Hecke-invariant period polynomials §7.2. Here, ± denotes
ǫ-invariants if k is odd, and ǫ-anti-invariants if k is even, and Kg is the field generated

by the Fourier coefficients of g. We can can assume σ(P±
g ) = P±

σ(g) for σ ∈ AutQ(Kg).

Proof. By §7.2, we can choose the period ω∓
g (opposite parity to ± in the statement)

to be the quantity (2πi)w−1Λ(g, 2a−k−1). The polynomials P±
g ∈ P±

w−2⊗Kg can be

assumed to be AutQ(Kg) equivariant. Now write Ik
2a,2b =

∑
{g} αgP

±
g . Plugging into

the formula of the previous theorem implies that

{P+
g , P−

g }αg ∈ (2iπ)kΛ(g, w + k)Q

Rescaling P±
g by {P+

g , P−
g }−1 gives the required statement. �

Let g be a cusp Hecke eigenform g ∈ Sw(Γ). By pairing (11.4) with P∓
g with respect

to {, }, we deduce using Λ(g, s) = (2π)−sΓ(s)L(g, s) that the L-values

(2iπ)−wL(g, n) for all n ≥ w

can be expressed as Q-linear combinations of double integrals of Eisenstein series.

11.2. Double Eisenstein integrals.

11.2.1. Real analytic Eisenstein series.

Definition 11.3. For any integers i, j ≥ 0, and s ∈ C such that i + j + 2Re(s) > 2,
define a real analytic Eisenstein series for z = x + iy ∈ H by

(11.5) Es
ij(z) =

1

2

∑

(m,n)

ys

(mz + n)i+s(mz + n)j+s

where the sum is over pairs (m, n) of coprime integers such that (m, n) 6= (0, 0).

Clearly Es
ij(z) = Es

ji(z). If i = j + k, where k ≥ 0, then

2yjζ(i + j + 2s)Es
ij(z) =

∑

m,n∈Z2\{(0,0)}

yj+s

(mz + n)k|mz + n|2j+2s

is the series considered in [38], (9.1), and has a meromorphic continuation with respect
to s to the entire complex plane ([38], 9.7). The same is therefore true of Es

ij(z).
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For any element γ ∈ Γ, we have the transformation formula

(11.6) Es
ij(γ(z)) = (cz + d)i(cz + d)j Es

ij(γ(z)) .

It can be useful to think of Es
ij as a modular form of ‘weights’ (i, j).

11.2.2. Primitives of Eisenstein series. Let w ≥ 4 and consider the following real
analytic function on H taking values in Vw−2 ⊗ C:

(11.7) Ew(z) = π−1ζ(w)(w − 2)!
∑

i+j=w−2

E1
i,j(z)(X − zY )i(X − zY )j

where the sum is over i, j ≥ 0. It is modular invariant.

Ew(γ(z))|γ = Ew(z)|γ for γ ∈ Γ .

Lemma 11.4. dEw(z) = 1
2 (Ew(z) − Ew(z))

Proof. Writing out the definition of Ew(z) gives

Ew(z) =
(w − 1)!

4πi(w − 1)

′∑

m,n∈Z

∑

i+j=w−2

(z − z)(X − zY )i(X − zY )j

(mz + n)i+1(mz + n)j+1

where the first sum is over (m, n) ∈ Z2 such that (m, n) 6= (0, 0). The lemma follows
from the following elementary identity, and its complex conjugate:

∂

∂z

( ∑

i+j=w−2

(z − z)(X − zY )i(X − zY )j

(mz + n)i+1(mz + n)j+1

)
= (w − 1)

(X − zY )w−2

(mz + n)w

The formula follows from the definition of Ew(z):

Ew(z) =
(w − 1)!

2πi

′∑

m,n∈Z

(X − zY )w−2

(mz + n)w
dz ,

which is verified by observing that the constant term of the inner sum at z = i∞ is
2ζ(w), which, by Euler’s formula, is −(2πi)wbw(w!)−1. �

Hereafter we use the following simplified notation for the iterated integrals

[E2a](z) =

∫ →

1∞

z

E2a(τ)

[E2a|E2b](z) =

∫ →

1∞

z

E2a(τ)E2b(τ)

Lemma 11.5. For all a, b ≥ 2, we have the identities

Re
(
[E2a](z)

)
= E2a(z) − b2a

where b is defined in (11.2), and

d
(
Im[E2a|E2b] − Re[E2a]Im[E2b]

)
=

(
E2a(z) − b2a

)
(X1, Y1) Im(E2b(z)(X2, Y2))

− Im(E2a(z)(X1, Y1))
(
E2b(z) − b2b

)
(X2, Y2)(11.8)

Proof. Recall that Ce2a
denotes the Γ-cocyle associated to [E2a](z). Since E2a(q) has

real Fourier coefficients, the previous lemma gives

Re[E2a](z) = Ew(z) + P2a
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for some constant polynomial P2a ∈ V2a−2 ⊗C. By (11.6), the real analytic Eisenstein
series is modular invariant Ew(γ(z))|γ = Ew(z). It follows that

Re(Ce2a
)γ = P2a

∣∣
γ
− P2a .

Now since Γ acts without fixed points on V2a−2, this uniquely determines P2a from
Re(Ce2a

). From lemma 7.1, it follows that P2a = −b2a. The second equation follows
from the general identity, for iterated integrals [ω1|ω2] of two closed 1-forms ω1, ω2

d
(
Im [ω1|ω2] − Re [ω1]Im [ω2])

)
= Re [ω1]Im [ω2] − Im [ω1]Re [ω2]

which follows from d[ω1|ω2] = −ω1[ω2] and d[ωi] = −ωi for i = 1, 2. Applying it to
ω1 = E2a(z)(X1, Y1), and ω2 = E2b(z)(X2, Y2) gives the required identity. �

11.2.3. Double Eisenstein cocyle. For all a, b ≥ 2 define a 1-form

F2a,2b(z) = Im(e2a(X1, Y1)) E2b(z)(X2, Y2) − Im(e2b(X2, Y2)) E2a(z)(X1, Y1)

It is modular invariant: F2a,2b(γ(z))|γ = F2a,2b(z) for all γ ∈ Γ. Furthermore, it has
at most logarithmic singularities (with respect to the coordinate q = e2πiz) at the cusp
and therefore we can define the regularised integral

[F2a,2b](z) =

∫ →

1∞

z

F2a,2b(z)

Since F2a,2b(z) is a closed 1-form, the integral only depends on z and not the choice
of path. Denote the corresponding Γ-cocyle by

D2a,2b : Γ −→ C[X1, Y1, X2, Y2]

D2a,2b(γ) = [F2a,2b](γ(z))|γ − [F2a,2b](z) .

It follows from equation (11.8) and lemma 7.1 that

D2a,2b = Im
(
C[e2a|e2b] + b2a ∪ e0

2b − e0
2a ∪ b2b

)
.

Our goal is to determine the cohomology class of this cochain.

11.3. Haberlund’s formula.

11.3.1. Let k ≥ 0 and a, b ≥ 4 as above. Define two differential forms

ω1(z, w) = 〈∂kF2a,2b(z), (X1 − wY1)
2a+2b−2k−4〉(11.9)

ω2(w) = g(w)dw

where g is any cusp form of weight 2a + 2b − 2k − 2. The differential form ω1 is a
polynomial in w whose coefficients are closed 1-forms in dz and dz. Then

ω1(z, w) ∧ ω2(w) = 〈∂kF2a,2b(z) , g(w)(X1 − wY1)
2a+2b−2k−4dw〉

is Γ-invariant for the diagonal action of Γ on (w, z) ∈ H × H, by the Γ-invariance of
the inner product. Since g vanishes at the cusp, the 2-form ω1(z, z) ∧ ω2(z) is clearly
integrable on the standard fundamental domain for Γ on H.

The following result is a corollary of a version of Haberlund’s theorem.

Corollary 11.6. Let Cg be the Γ-cocycle corresponding to the cusp form g. Then

{∂kD2a,2b, Cg} = 6

∫

D

ω1(z, z) ∧ ω2(z)

where D is the standard fundamental domain for Γ in H.

The right-hand side can be interpreted as a kind of Petersson product.
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Lemma 11.7. With the above notations

ω1(z, z) ∧ ω2(z) = J2a,2b − (−1)kJ2b,2a

where J2a,2b is given explicitly by

(11.10) J2a,2b =
1

2i
(2πi)2a−1 (2a − 2)!k!

(2a − 2 − k)!

(
π−1ζ(2b)(2b − 2)!

)

×
(
(z − z)2a+2b−k−4E2a(z)E1

2b−2−k,k(z)g(z)
)
dz ∧ dz

Proof. First check that for any r, i, j, k ∈ Z, we have

∂k
[
(aX1 + bY1)

r(aX2 + bY2)
i(cX2 + dY2)

j
]

(11.11)

=
r!j!(ad − bc)k

(r − k)!(j − k)!
(aX1 + bY1)

r+i−k(cX1 + dY1)
j−k

To see this, simply apply the definition of ∂k to both sides of the expression

(
(λaX1 + λbY1 + (µa + νc)X2 + (µb + νd)Y2

)N

=
∑

α+β+γ=N

(α + β + γ)!

α!β!γ!
λαµβνγ(aX1 + bY1)

α(aX2 + bY2)
β(cX2 + dY2)

γ

and read off the coefficients of λrµiνj . Suppose that m = r + i + j − k ≥ 0. For any
P ∈ Vm we have

〈P (X1, Y1), (X1 − tY1)
m〉 = P (t, 1)

by definition of the inner product. Now apply the identity (11.11) to the expression
∂k

(
(X1 − zY1)

r(X2 − zY2)
i(X2 − zY2)

j
)

and put X1 = z, Y1 = 1. This gives

〈∂k
(
(X1−zY1)

r(X2−zY2)
i(X2−zY2)

j
)
, (X1−zY1)

m〉 = δj,k

(−1)mr!k!

(r − k)!
(z−z)m+k

where δj,k is the Kronecker delta. Applying this identity to the definition of F2a,2b and
keeping track of the factors (using (11.7)) gives the required expression. �

11.3.2. Haberlund’s formula. Suppose, as above, that we have two differential forms

ω1(z, w) , ω2(w)

where ω1 is a polynomial in w whose coefficients are closed 1-forms in z and z and
ω2(w) is closed and vanishes at the cusp w = i∞. Suppose furthermore that

γ∗(ω1 ∧ ω2) = ω1 ∧ ω2

for all γ ∈ Γ, where γ acts on (z, w) ∈ H×H diagonally. We also assume that ω1(z, w)
has, for all w ∈ H, at most logarithmic singularities in q = exp(2πiz) at z = i∞ (and
likewise for all cusps γ(i∞), for γ ∈ Γ.). Therefore the following integral with respect
to z exists

F (w) =

∫ →

1∞

w

ω1(z, w) ,

and defines a real analytic function of w ∈ H. Since ω1 is closed, it only depends on w

and not the choice of path from w to
→
1∞. For all γ ∈ Γ, denote by

CF
γ (w) =

∫ →

1∞

γ
→

1∞

ω1(z, w) ,

where the integral is with respect to z and regularised with respect to the tangential
base points at the cusps. It exists by the previous assumptions on ω1(z, w).
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Lemma 11.8. For all α, β ∈ H ∪ Q ∪ {i∞}, and γ ∈ Γ,

(11.12)

∫ β

α

Fω2 =

∫ γ(β)

γ(α)

Fω2 −

∫ γ(β)

γ(α)

CF
γ ω2 .

Proof. First of all, there is the following identity (of 1-forms in w):

(11.13) γ∗(Fω2) = Fω2 − CF
γ−1 ω2

To see this, note that the left-hand side is equal to

F (γ(w)) ∧ γ∗(ω2) =

∫ →

1∞

γ(w)

ω1(z, γ(w)) ∧ γ∗(ω2) =

∫ γ−1
→

1∞

w

γ∗(ω1 ∧ ω2)

by changing variables in z. But ω1 ∧ ω2 is Γ-invariant, and the domain of integration
on the right-hand side can be written as a composition of paths:

∫ γ−1
→

1∞

w

ω1 ∧ ω2 =

∫ →

1∞

w

ω1 ∧ ω2 −

∫ →

1∞

γ−1
→

1∞

ω1 ∧ ω2

where all integrals are with respect to z. This gives (11.13). Replacing γ with γ−1 in
(11.13) and integrating from α to β in the w plane gives (11.12). �

Proposition 11.9. Let D ⊂ H denote the standard fundamental domain for Γ. Then
with the above assumptions on ω1, ω2,

6

∫

D

ω1(z, z) ∧ ω2(z) =

∫

T−1p−Tp

CF
S ω2 + 2

∫

p

(CF
T − CF

T−1)ω2

where p denotes the geodesic path from S(
→
1∞) to

→
1∞.

Proof. Consider the domain D′ enclosed by the geodesic square with corners −1, 0, 1,∞.
We also shall denote the following tangential base points

→
1∞ , S(

→
1∞) , TS(

→
1∞) , T−1S(

→
1∞)

by ∞, 0, 1,−1, respectively. The beautiful idea for taking the domain D′, as opposed
to D, is due to Pasol and Popa [34]. It is covered by exactly 6 copies of D. Applying
Stokes’ formula to D′ gives

∫

D′

ω1(w, w) ∧ ω2(w) =

∫

D′

d(F ∧ ω2) =

∫

∂D′

Fω2 .

All integrals converge because ω2(w) was assumed to vanish at the cusp. The boundary
of D′ consists of four geodesic path segments, from ∞ to −1 to 0 to 1 and back to ∞.
Denote the geodesic path from 0 to ∞ by p. Each side of the square is a path γp for
some γ ∈ Γ. Writing −p for Sp, we have

∫

∂D′

Fω2 =
(∫

−T−1p

+

∫

STp

+

∫

−ST−1p

+

∫

Tp

)
Fω2

Applying (11.12) to each term gives, for example
∫

T−1p

Fω2 =

∫

p

Fω2 −

∫

p

CF
T ω2

and applying it twice to the second term gives (since S2 = 1),
∫

STp

Fω2 =

∫

Tp

Fω2 −

∫

Tp

CF
S ω2 =

∫

p

Fω2 −

∫

p

CF
T−1ω2 −

∫

Tp

CF
S ω2 .
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Adding all four contributions together gives
∫

∂D′

Fω2 =

∫

T−1p−Tp

CF
S ω2 + 2

∫

p

(CF
T − CF

T−1)ω2

as required. �

In order to prove corollary 11.6, substitute the values (11.9) for ω1, ω2 into the
previous formula. For example,

∫

Tp

CF
S ω2 =

∫

p

∫

Tp

〈∂kF2a,2b(z), g(w)(X1 − wY1)
mdw〉

= 〈

∫

p

∂kF2a,2b(z),

∫

Tp

g(w)(X1 − wY1)
mdw〉

= −〈∂kDS
2a,2b, (Cg)S

∣∣
T−1〉

In the third line we used the Γ-invariance of g(w)(X1 − wY1)
mdw and the formula

Dγ
2a,2b = −

∫ →

1∞

γ−1(
→

1∞)

∂kF2a,2b(z)

which follows from the definition of D. The other terms similarly give a total of

〈PS , QS
∣∣
T
− QS

∣∣
T−1〉 + 2〈PT−1

− PT , QS〉

where P = ∂kD2a,2b and Q = Cg. Since P is a Γ-cocyle, PT−1

+ PT
∣∣
T−1 = 0, and the

previous expression reduces to {P, Q} by the Γ-equivariance of 〈 , 〉.

Remark 11.10. The identical argument, applied in the case ω1 = f(z)(z − w)k−2dz

and ω2 = g(w)dw where f is a modular form of weight k, and g a cusp form of weight
k, gives the generalisation of Haberlund’s formula of Kohnen and Zagier [29].

11.4. Rankin-Selberg Method. Let f ∈ Mk(Γ) be a modular form of weight k and
let g ∈ Sℓ(Γ) be a cusp form of weight ℓ. Let m ≥ max(k, ℓ) and Re s large. Then

f(z)Es
m−k,m−ℓ(z)g(z) ym−2dxdy

is invariant under Γ and the integral

〈fEs
m−k,m−ℓ, g〉 =

∫

D

f(z)Es
m−k,m−ℓ(z)g(z)ym−2dxdy

where D ⊂ H is the standard fundamental domain for Γ, converges. This is because,
as y → ∞, g(z) is exponentially small in y, whereas Es

ij(z) and f(z) are of polynomial
growth in y. In particular, it admits a meromorphic continuation to C.

Proposition 11.11. If f(z) =
∑

n≥0 ane2πinz and g(z) =
∑

n≥1 bne2πinz then

〈fEs
m−k,m−ℓ, g〉 = (4π)−(s+m−1)Γ(s + m − 1)

∑

n≥1

anbn

ns+m−1

for all Re(s) sufficiently large, and hence for all s ∈ C, by meromorphic continuation.

Proof. The proof is a standard application of the Rankin-Selberg method. For the
convenience of the reader, we sketch the argument here. Let

φs(z) = f(z)g(z)ys+m .
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It is invariant under Γ∞. When Re(s) is sufficiently large, unfolding gives
∫

Γ∞\H

φs(z)
dxdy

y2
=

∫

Γ\H

∑

γ∈Γ∞\Γ

φs(γ(z))
dxdy

y2

and the right-hand integral reduces to 〈fEs
m−k,m−ℓ, g〉. A fundamental domain for

Γ∞\H is given by (x, y) ∈ [0, 1] × R>0 and the left-hand integral gives

∑

p≥0,q≥1

apbq

∫

0≤x≤1

e2iπ(p−q)xdx

∫ ∞

0

e−2π(p+q)yys+m−2dy

It converges for Re(s) large. After doing the x integral, only the terms with p = q
survive, and the previous expression reduces to

(4π)−(s+m−1)Γ(s + m − 1)
∑

n≥1

anbn

ns+m−1
.

�

Corollary 11.12. Suppose that f = E2a is the Hecke normalised Eisenstein series
of weight 2a and g is a Hecke normalised cusp form of weight 2c. Then, for any
m ≥ 2a, 2c, and writing s′ = s + m, we have

(11.14) ζ(2s′ − 2a − 2c)〈fEs
m−2a,m−2c, g〉 = (4π)−(s′−1)Γ(s′ − 1)

× L(g, s′ − 1)L(g, s′ − 2a) .

Proof. Assume Re(s) is large. For any Hecke eigenform f of weight k, let us write

L(f, s) =
∑

n≥1

an(f)

ns
=

∏

p

1

(1 − αf
pp−s)(1 − βf

p p−s)

where {αf
p , βf

p } are solutions to the equations: αf
p + βf

p = af
p and αf

pβf
p = pk−1. It is

well-known that for f, g Hecke normalised eigenfunctions of weights k, ℓ,

∑

n≥1

an(f)an(g)

ns
= ζ(2s + 2 − k − ℓ)−1L(f ⊗ g, s)

where the tensor product L-function is defined by

L(f ⊗ g, s) =
∏

p

1

(1 − αf
pαg

pp−s)(1 − αf
pβg

pp−s)(1 − βf
p αg

pp−s)(1 − βf
p βf

g p−s)

On the other hand, for an Eisenstein series of weight 2a, we have:

L(E2a, s) = ζ(s)ζ(s − 2a + 1) =
∏

p

1

(1 − p−s)(1 − p2a−1p−s)
.

In particular,

L(E2a ⊗ g, s) = L(g, s)L(g, s− 2a + 1)

Therefore if f = E2a and g has weight 2c, we have

∑

n≥1

an(f)an(g)

ns
= ζ(2s + 2 − 2a− 2c)−1L(g, s)L(g, s− 2a + 1)

Since a Hecke eigenfunction has real Fourier coefficients, applying this formula to the
conclusion of the previous proposition gives the statement of the corollary. �
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11.4.1. Proof of theorem 11.1. Putting all the pieces together, we let a, b, k and g be
as in the statement of theorem 11.1. Then Ik

2a,2b = ∂kD2a,2b and so

{Ik
2a,2b, Cg} = 6

∫

D

J2a,2b − (−1)kJ2b,2a

by corollary 11.6 and lemma 11.7, where J2a,2b is given by

(11.15) J2a,2b = (2πi)2a−1 (2a − 2)!k!

(2a − 2 − k)!

(
π−1ζ(2b)(2b − 2)!

)

× (2i)2a+2b−k−4
(
y2a+2b−k−4E2a(z)E1

2b−k−2,k(z)g(z)
)
dxdy

using (11.10). Now plug m = 2a + 2b − k − 2, 2c = 2a + 2b − 2k − 2, and s = 1, into
the statement of corollary 11.12. It gives

ζ(2b) 〈fE1
2b−k−2,k, g〉 = 2−mΛ(g, m)L(g, 2b − k − 1)

using the fact that Λ(g, s) = (2π)−sΓ(s)L(g, s). Using this same expression to replace
L(g, 2b− k − 1) with Λ(g, 2b − k − 1) and combining with the above gives

J2a,2b = (2πi)m−1 (2a − 2)!k!(2b − 2)!

(2a − 2 − k)!(2b − 2 − k)!
× Λ(g, m)Λ(g, 2b− k − 1)

Finally, writing m = w + k, and using the functional equation

Λ(g, 2b − k − 1) = (−1)a+b−k−1Λ(g, 2a − k − 1)

since g is of weight w = 2a + 2b − 2k − 2, gives

J2a,2b =
1

2
(2πi)w+k−1Ak

a,bΛ(g, m)Λ(g, 2a− k − 1)

By the remark following theorem 11.1, the quantity (−1)k−1J2b,2a gives an identical
contribution.

12. Examples and the depth-defect for double zeta values

The following highly schematic picture may give an intuitive picture of the peri-
ods which occur as coefficients of double Eisenstein integrals. By equation (10.5), a
double Eisenstein integral of E2m and E2n can be written using notation (11.2) as an
uninteresting part (which depends on a choice of rational cochain e0

2m,2n):

e0
2m,2n − b2m ∪ e0

2n + e0
2m ∪ b2n

plus further terms corresponding to the right-hand side of (10.6), whose coefficients
are Q-linear combinations of (2iπ)2m+2n−2, (2iπ)2n−1ζ(2m − 1), (2iπ)2m−1ζ(2n − 1),
and ζ(2m − 1)ζ(2n − 1) plus a cocycle in

Z1
cusp(Γ; V2m−2 ⊗ V2n−2 ⊗ C) .

Break up the latter group into its various pieces via the isomorphism

(12.1) V2m−2 ⊗ V2n−2
∼= V2m+2n−4 ⊕ . . . ⊕ V2m−2n

and use the fact that the Hecke-equivariant splitting §7.5 gives an isomorphism

Z1
cusp(Γ; V2r) = δ0Y 2rQ ⊕ H1

cusp(Γ; V2r) .

Thus for every piece of the decomposition (12.1) we obtain a single ‘coboundary pe-
riod’ (right-most column below) corresponding to the coefficient of δ0Y 2r, and a pair
of periods (in the columns λ+

g , λ−
g ) for each Hecke-eigenclass g ∈ H1

cusp(Γ; V2r)
±.
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These periods (ignoring powers of 2πi and rational pre-factors to avoid clutter) are
schematically depicted in the table below. Explanations follow below.

r ∂r(V2m−2 ⊗ V2n−2) λ+
g λ−

g f (r)

0 V2m+2n−4 cg,wg L(g, wg) f2m−1f2n−1

1 V2m+2n−6 L(g, wg + 1) cg,wg+1 f2m+2n−3

2 V2m+2n−8 cg,wg+2 L(g, wg + 2) 0
3 V2m+2n−10 L(g, wg + 3) cg,wg+3 f2m+2n−5

4 V2m+2n−12 cg,wg+4 L(g, wg + 4) 0
...

...
...

...
2m − 4 V2n−2m+4 cg,wg+2m−4 L(g,wg +2m−4) 0
2m − 3 V2n−2m+2 L(g, wg+2m−3) cg,wg+2m−3 f2n+1

2m − 2 V2n−2m cg,wg+2m−2 L(g,wg +2m−2) f2m−1f2n−2m+1

Figure 3. A schematic depiction of the ‘non-trivial’ periods occurring
as coefficients of double Eisenstein integrals.

Using the action of the real Frobenius §5.4 the periods in the λ+
g and f (r) columns

are real (resp. imaginary) for r even (resp. r odd), and the opposite is true for the λ−
g

column. The imaginary periods are canonical, the real periods depend on the choice
of cochain e0

2m,2n and hence lie in R/(2πQ)t for appropriate t.
In the middle columns we find all special values of L-functions of cusp forms g at

the edge, or to the right of the critical strip. The weight wg of the cusp form in the rth

row is 2m + 2n− 2r. The L-value is the regulator of an extension of Q by the motive
h(g)(wg +r) of the corresponding modular form twisted by wg +r; the number cg,wg+r

is an ill-defined ‘extended regulator’ and is a different period of the same extension.
We expect the periods of the right-hand column to be periods of mixed Tate motives

unramified over Z. Our description of Gκ and the computations of §10.1 give the action
of the Tannaka group of a category of Betti-de Rham realisations on the Betti-motivic
periods of double Eisenstein integrals. Dualizing gives a formula for the coproduct:
for example in the top row it is simply given by deconcatenation. In this way we
expect that the periods in rows r = 1, . . . , r = 2m − 2 to correspond to elements of
Ext1MT (Z)(Q, Q(2m + 2n− r − 2)), which are odd or even single Riemann zeta values.
The even zeta values are rational up to powers of 2πi and can be absorbed into the
choice of element e0

2m,2n. For this reason they are simply denoted by 0 in the table.
The top and bottom entries, which are boxed, correspond to biextensions and should

also be periods of mixed Tate motives. Using the results of [6], there is a canonical
isomorphism of the ring H of motivic multiple zeta values with a shuffle algebra

(12.2) H
∼
−→ Q〈f3, f5, . . .〉 ⊗Q Q[ζm(2)]

which is compatible with the action of the motivic Galois group. In particular

ζm(2n + 1) corresponds to f2n+1 .

The elements in the two boxed entries in the table are the periods for the elements in H
corresponding to f2m−1f2n−1 + ζm(2)m+n−1Q and f2m−1f2n−2m+1 + ζm(2)nQ respec-
tively. The rational pre-factors are determined by our computations of the group Gκ:

for example, the top right-hand boxed entry occurs with a coefficient (2m−2)!
2

(2n−2)!
2 ,

the bottom right boxed entry involves the coefficient λm,n
k of theorem 10.1.
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Finally, the transference principle for double Eisenstein integrals relates, in partic-
ular, the bottom right boxed entry for the iterated integral ∂2m−2Ce2me2n

to the top
right boxed entry of a different iterated integral, namely ∂0Ce2me2n−2m

.
The above structure for the periods was checked numerically for all double Eisenstein

integrals Ce2me2n
where 2m + 2n ≤ 18 to between 50 and 100 digits. However, I did

not find any mention in the literature for the extended regulators cg,wg+k, so it was
not possible to compare these periods with any previously known quantities.

12.1. Modular depth defect for double zeta values. Let S =
⊕

n Sn and E =⊕
n En denote the graded vector spaces of cusp and Eisenstein forms as in §2. For

every k ≥ 0, the Rankin-Selberg computation of §11 defines a surjective map

µk
2 : E ⊗ E −→−→ Hom(S, C)

E2a ⊗ E2b 7→
(
g 7→ {Ik

a,b, Cg}
)

which sends pairs of Eisenstein series of total weight N to S∨
N−2k−2 ⊗ C. This map

is antisymmetric for k even, and symmetric for k odd. The surjectivity follows from
theorem 11.1 and the non-vanishing of the special values of the L-function of g outside
the critical strip. The case k = 0 is the most interesting.

It gives rise to an exact sequence of graded vector spaces

(12.3) 0 −→ K ⊗ C −→ (
∧2

E) ⊗ C
µ0

2−→ S∨ ⊗ C −→ 0

where K ⊂
∧2E is a rational subspace we shall describe presently.

12.1.1. Reminders on depth-graded double zeta values [8]. Consider the map

(12.4) Z1
cusp(Γ; Vn) −→ Vn −→ XY Q[X, Y ]

where the first map is evaluation of a cocycle on S ∈ Γ, and the second map is the
inclusion Vn ⊂ Q[X, Y ] followed by f(X, Y ) 7→ f(X, Y ) − f(0, Y ) − f(X, 0). The
composite (12.4) has the effect of sending δ0Y 2k to zero and gives an embedding

P cusp = H1
cusp(Γ; V∞)

s
−→ Z1

cusp(Γ; Vn)
(12.4)
−→ XY Q[X, Y ]

where s is the splitting of lemma 7.3. The image of this map is the space of period
polynomials. These are homogeneous polynomials P satisfying

P (X, Y ) + P (X − Y, X) + P (−Y, X − Y ) = 0 .

and we retrieve the well-known fact that cuspidal cohomology classes for Γ can be
identified with period polynomials.

Since the previous maps are equivariant with respect to ǫ, we obtain an embedding
of P cusp,+ into the space of even period polynomials:

(12.5) P cusp,+ −→ X2Y 2Q[X2, Y 2] .

The latter are antisymmetric with respect to Sǫ : (X, Y ) → (Y, X).
Now let grDH be the space of depth-graded motivic multiple zeta values [8].

Lemma 12.1. There is an exact sequence of graded vector spaces

0 −→ grD2 H/(grD1 H)2 −→
∧2(⊕

m≥1 f2m+1Q
)
−→ (P cusp,+)∨ −→ 0

where the second map is induced by (12.2), and the third map is the dual of (12.5),
where we identify the dual of

⊕
a,b≥1 X2aY 2bQ with

⊕
a,b≥1 f2a+1 ⊗ f2b+1Q via

〈X2rY 2s, f2a+1 ⊗ f2b+1〉 = δr,aδs,b
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Proof. This is the dual of the exact sequence (where D1
∼= X2Q[X2]),

0 −→ P cusp,+ −→
∧2

D1 −→ D2 −→ 0

for the depth-graded motivic Lie algebra stated in [8], equation (7.8). �

12.1.2. Ihara-Takao relations from multiple modular values. Consider the isomorphism∧2
E ∼=

∧2( ⊕
m≥1 f2m+1Q

)
induced by the following isomorphism:

E
∼
−→

⊕

n≥1

f2n+1Q(12.6)

E2n 7→
2

(2n − 2)!
f2n−1 for n ≥ 2

By the previous lemma, grD2 H/(grD1 H)2 is isomorphic to the vector space

K ′ = ker
(∧2( ⊕

m≥1 f2m+1Q
)
−→ (P cusp,+)∨

)

of linear relations between coefficients of even period polynomials. Define

K ⊂
∧2

E

such that K ′ ∼= K via (12.6). One has to verify that K ⊗ C is contained in the kernel
of µ0

2. This follows from the explicit formula (11.3) since, by §7.2, the appropriate
generating function of Λ(g, 2a − 1) is proportional to an even period polynomial.

Corollary 12.2. The kernel of µ0
2 is equal to K⊗C, and K is isomorphic to the space

of indecomposable depth-graded motivic double zeta values:

K ∼= grD2 H/(grD1 H)2 .

Proof. Count dimensions using the previous lemma. By Eichler-Shimura dimQ Sw =
dimQ P cusp,+

w . Since µ0
2 is surjective, we deduce that dimC K ⊗ C = dimC µ0

2. �

Example 12.3. In weight 12, the image of the space of indecomposable double motivic
zeta values in

∧2( ⊕
m≥1 f2m+1Q

)
is 1-dimensional, spanned by

(12.7) 3f3 ∧ f9 + f5 ∧ f7

For example, ζm(3, 9) 7→ −9(3f3 ∧ f9 + f5 ∧ f7) and ζm(4, 8) 7→ 16(3f3 ∧ f9 + f5 ∧ f7)
under the map (12.2). The equation (12.7) is dual to the well-known relation found
by Ihara and Takao in the depth-graded motivic Lie algebra of MT (Z).

On the other hand, (12.7) corresponds via (12.6) to a multiple of

9E4 ∧ E10 + 14E6 ∧ E8

which spans kerµ0
2. In other words, the L-value L(∆, 12) of the cusp form ∆ of weight

12 cancels out of the linear combination of iterated integrals ∂0(9 Ce4e10 + 14 Ce6e8).

In this way, double motivic multiple zeta values are isomorphic to the subspace
of double Eisenstein integrals which are orthogonal to all cusp forms. This precisely
explains the cuspidal defect [20, 8] for double zeta values in depth 2.

These calculations suggest that it is possible to read off the motivic version of the
Broadhurst-Kreimer conjecture [8] from the structure of Hodge-motivic versions of
multiple modular values, as mentioned in the introduction. I hope to return to this
question shortly.



48 FRANCIS BROWN

Remark 12.4. The kernel K can be interpreted as the length two component of the
affine ring of the Lie algebra called ueis of [26]. There is a direct way to relate it
to double zeta values as follows. The double elliptic polylogarithms defined in [10]
can be restricted to the zero section of the universal elliptic curve to obtain certain
functions called double elliptic zeta values, which are functions on the punctured q-
disc. They can be expressed as certain linear combinations of double iterated integrals
of Eisenstein series which correspond exactly to the subspace K. Their regularised
limit at q = 0 can be computed in terms of iterated integrals on P1\{0, 1,∞} of depth
2, and hence evaluate to double zeta values. This is a joint project with A. Levin.

12.2. Final remarks. Multiple modular values for SL2(Z) should simultaneously give
a new construction of the periods of MT (Z) as certain coefficients of iterated integrals
of Eisenstein series, and also explain the vagaries of the modular relations which are
visible on multiple zeta values when graded by depth. It remains to study in greater
detail the relation between the action of our automorphism group on cocycles and the
mixed Hodge structure on relative unipotent completion. I hope that one can construct
a genuine mixed Tate motive over Z (in the technical sense of [16]) out of this relative
completion (for example, by some relative variant of a simplicial construction as in
[39]) and deduce a new construction of MT (Z). The question of determining which
mixed modular (i.e. non-Tate) motives are generated by SL2(Z) is a fascinating one.

One wonders if there is a direct analytic method to compute information about
the boundary periods (coefficients of Be2m1 ...e2mr

in (9.14)) of iterated integrals of
Eisenstein series. One interesting possibility is to try to generalise the Rankin-Selberg
method of §11 to work for multiple versions of Eisenstein series. Another way to
achieve this could be with the following extension of remark 12.4. There is a natural
morphism [25] from the Lie algebra of the relative Malcev completion of Γ, via ueis, to
the stable derivations of the Lie algebra of the fundamental group of the Tate curve.
Accordingly, the image of the cocycle C ∈ Z1(Γ, Π) under a similar map should be
related explicitly to the Drinfeld associator. This will give an evaluation of certain
combinations of coefficients of C in terms of multiple zeta values, which, combined
with the transference principle, should yield quite a lot of information about periods.
There is also a Hodge-theoretic analogue of this idea, which will yield information on
the image of the motivic Galois group in Gκ. All this needs to be incorporated into
the present framework.

As a final comment to amplify the discussion in the last section of [9], it seems
that the fundamental reason why the SL2(Z) story is in some sense simpler than the
projective line minus three points, is is that there are too many iterated integrals on
P1\{0, 1,∞} and hence a vast number of relations between them. A multiple zeta
value, expressed as an iterated integral on P1\{0, 1,∞}, has length equal to its weight,
which explains why the action of the motivic Galois group upon it is so complicated.
On the other hand, multiple zeta values should be expressible as iterated integrals
of Eisenstein series of length equal to their coradical degree and so the action of the
motivic Galois group on the latter is essentially as simple as it can be.

It is humbling, having reached this point, to read the words of Grothendieck [19],
16
17 , 17

18 and footnote 4, although he is no doubt referring to the profinite completion of
SL2(Z), as opposed to the relative unipotent completion considered here.

References

[1] A. Beilinson: Higher regulators and values of L-functions, J. Soviet Math. 30 (1985), 2036-2070.
[2] A. Beilinson: Higher regulators of modular curves, Applications of algebraic K-theory to alge-

braic geometry and number theory (Contemporary Mathematics 55 (1986)), 1-34.



MULTIPLE MODULAR VALUES 49

[3] G. Belyi: On Galois Extensions of a Maximal Cyclotomic Field, Math. USSR-Izvestija 14:247-
256 (1980)

[4] F. Brown: Anatomy of an Associator, preprint 2013, summary available at http://www.ihes.

fr/~brown/AnatomyBeamerPrintable.pdf

[5] F. Brown: Betti theory of relative Malcev completion and its automorphisms, in preparation.
[6] F. Brown: Mixed Tate motives over Z, Annals of Math., volume 175, no. 1, 949-976 (2012).
[7] F. Brown: Decomposition of motivic multiple zeta values, ‘Galois-Teichmuller theory and Arith-

metic Geometry’, Adv. Stud. Pure Math., 63, (2012) 31-58.
[8] F. Brown: Depth-graded motivic multiple zeta values, http://arxiv.org/abs/1301.3053.
[9] F. Brown: Motivic periods and P1 minus three points, proceedings of the ICM (2014).

[10] F. Brown, A. Levin: Multiple Elliptic Polylogarithms, arXiv:1110.6917v1 (2011), 1-40.
[11] P. Cartier: Fonctions polylogarithmes, nombres polyztas et groupes pro-unipotents, Sminaire

Bourbaki, Astrisque No. 282 (2002), Exp. No. 885, 137-173.
[12] K. T. Chen: Iterated path integrals, Bull. Amer. Math. Soc. 83, (1977), 831-879.
[13] P. Garett: Basic Rankin-Selberg, Notes available at www.math.umn.edu/~garrett/m/v/basic_

rankin_selberg.pdf

[14] P. Deligne: Le groupe fondamental de la droite projective moins trois points, Galois groups
over Q (Berkeley, CA, 1987), 79-297, Math. Sci. Res. Inst. Publ., 16 (1989)
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