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Member IAS, Princeton

New geometric structures in scattering amplitudes,
Oxford University, 23rd September 2014

1 / 31



Overview
Coaction conjecture
Motivic amplitudes

Overview and goals

The main goals:

1 Formulate O. Schnetz’ coaction conjecture for scalar massless
amplitudes. Explain its remarkable predictive power for
high-loop amplitudes.

2 Define motivic amplitudes. This a vast generalisation of the
notion of ‘symbol’, but contains more information.

3 Prove a version of the coaction conjecture. The small graphs
principle allows one to deduce all-order results in perturbation
theory from a finite computation.

Point (3) states that there is a hidden recursive structure in the
amplitudes of quantum field theories: information about low-loop
amplitudes propagates to all higher loop orders.
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A simple analogy

An analogy is Erastosthenes’ sieve. Suppose that we have a set S
of natural numbers with the following property:

If n ∈ S , and m is a divisor of n, then m ∈ S .

Write the natural numbers in a table:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

Now suppose that we have some low-order information:

2 /∈ S . Cross off all multiples of 2

3 /∈ S . Cross off all multiples of 3

The fact that S has few low-order elements means that S is full of
holes at all orders.
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What happens for amplitudes?

Let P be the vector space of amplitudes of, e.g. massless φ4. The
coaction conjecture predicts the following property for amplitudes.

If ξ ∈ P, and ξ′ is a Galois conjugate of ξ, then ξ′ ∈ P.

At low loop orders, the amplitudes are multiple zeta values. Write
a basis for multiple zeta values in a table.

1 ζ(2) ζ(3) ζ(2)2 ζ(5) ζ(3)2 ζ(7) ζ(3, 5)
ζ(3)ζ(2) ζ(2)3 ζ(5)ζ(2) ζ(3)2ζ(2)

ζ(3)ζ(2)2 :.

Now look at amplitudes of small graphs (with ≤ 4 loops). There
are very few of them. We see that:

ζ(2) /∈ P. Cross off all linear terms in ζ(2)

ζ(2)2 /∈ P. Cross off all quadratic terms in ζ(2)

A finite calculation leads to constraints at all higher loop orders.
4 / 31
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Amplitudes in parametric form

General form of Feynman amplitude:

IG (q,m)

Γ(NG − hG d/2)
=

∫
[0,∞]NG

Ψ
NG−(hG +1)d/2
G

(ΨG

∑
e m2

eαe − ΦG (q))NG−hG d/2
δ(

∑
e

αe−1)

for a graph G with NG edges, hG loops in d ∈ 2Z space-time
dimensions, internal masses me . Symanzik polynomials:

ΨG =
∑
T⊂G

∏
e /∈ET

αe

ΦG =
∑

T1∪T2

∏
e /∈T1∪T2

αe(qT1)2

where the first sum is over spanning trees of G , the second over
spanning 2-trees, and qT1 is momentum flow through T1.

Almost everything that follows is valid for such integrals. I will
focus on the massless, single-scale case.

5 / 31



Overview
Coaction conjecture
Motivic amplitudes

Amplitudes
Motivic MZVs
The coaction conjecture

Amplitudes in parametric form

General form of Feynman amplitude:

IG (q,m)

Γ(NG − hG d/2)
=

∫
[0,∞]NG

Ψ
NG−(hG +1)d/2
G

(ΨG

∑
e m2

eαe − ΦG (q))NG−hG d/2
δ(

∑
e

αe−1)

for a graph G with NG edges, hG loops in d ∈ 2Z space-time
dimensions, internal masses me . Symanzik polynomials:

ΨG =
∑
T⊂G

∏
e /∈ET

αe

ΦG =
∑

T1∪T2

∏
e /∈T1∪T2

αe(qT1)2

where the first sum is over spanning trees of G , the second over
spanning 2-trees, and qT1 is momentum flow through T1.

Almost everything that follows is valid for such integrals. I will
focus on the massless, single-scale case.

5 / 31



Overview
Coaction conjecture
Motivic amplitudes

Amplitudes
Motivic MZVs
The coaction conjecture

Amplitudes in parametric form

General form of Feynman amplitude:

IG (q,m)

Γ(NG − hG d/2)
=

∫
[0,∞]NG

Ψ
NG−(hG +1)d/2
G

(ΨG

∑
e m2

eαe − ΦG (q))NG−hG d/2
δ(

∑
e

αe−1)

for a graph G with NG edges, hG loops in d ∈ 2Z space-time
dimensions, internal masses me . Symanzik polynomials:

ΨG =
∑
T⊂G

∏
e /∈ET

αe

ΦG =
∑

T1∪T2

∏
e /∈T1∪T2

αe(qT1)2

where the first sum is over spanning trees of G , the second over
spanning 2-trees, and qT1 is momentum flow through T1.

Almost everything that follows is valid for such integrals. I will
focus on the massless, single-scale case.

5 / 31



Overview
Coaction conjecture
Motivic amplitudes

Amplitudes
Motivic MZVs
The coaction conjecture

Massless single-scale amplitudes

Suppose d = 4. Assume

G is overall log-divergent: NG = 2hG

G is primitive: Nγ > 2hγ for all γ ( G .

The Feynman amplitude reduces to the convergent integral

IG =

∫
σ

ΩG

Ψ2
G

∈ R

It is the coefficient of ε−1 in dim. reg. Here

ΩG =

NG∑
i=1

(−1)iαidα1 ∧ . . . ∧ d̂αi ∧ . . . dαNG

and the domain of integration σ is the real coordinate simplex

σ = {(α1 : . . . : αNG
) ∈ PNG−1(R) such that αi ≥ 0}

If subdivergences: either renormalize under integral (B. - Kreimer)
or work in dim. reg. (Panzer) to get convergent period integrals.
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Examples in massless φ4

Examples of primitive, log-divergent graphs in φ4 theory, at 3, 4, 5
and 6 loops, and their amplitudes (Broadhurst-Kreimer):

IG : 6ζ(3) 20ζ(5) 36ζ(3)2 N3,5

where N3,5 = 27
5 ζ(5, 3) + 45

4 ζ(5)ζ(3)− 261
20 ζ(8). Multiple Zeta

Values are defined for integers n1, . . . , nr−1 ≥ 1, and nr ≥ 2 by

ζ(n1, . . . , nr ) =
∑

1≤k1<k2<...<kr

1

kn1
1 . . . knr

r
∈ R
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Known results

1 Calculus of weights. Combinatorial criteria for graphs to have
maximal weight or weight-drop (B.-K. Yeats, B.-Doryn).

2 Sufficient combinatorial conditions for graphs to be multiple
zeta values (B.).

3 Modular counter-examples. There exist graphs with ≥ 8 loops
whose amplitudes are periods of a mixed modular motive
(expected not to be an MZV) (B.-Schnetz).

4 Polylogarithms at roots of unity. Amplitudes at ≥ 7 loops
which are analogues of MZV’s but with 2nd or 6th roots of
unity in numerator (Panzer and Schnetz).

5 Effective algorithms for the symbolic computation of
amplitudes at high loop orders (Panzer, Bogner-B. for
linearly-reducible graphs; Schnetz, using graphical functions).

6 Explicit results for an infinite family of graphs. Proof of
zig-zag conjecture (B. -Schnetz).
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zeta values (B.).

3 Modular counter-examples. There exist graphs with ≥ 8 loops
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(expected not to be an MZV) (B.-Schnetz).
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Motivic multiple zeta values

Algebra of motivic multiple zeta values ζm(n1, . . . , nr )

H =
⊕
n≥0

Hn

It is equipped with a period homomorphism

per : H −→ R

which sends ζm(n1, . . . , nr ) to ζ(n1, . . . , nr ). We gain an action of
a motivic Galois group on H. This is equivalent to a coaction

∆ : H −→ A⊗H

where A = H/〈ζm(2)〉. It respects all algebraic relations between
motivic MZV’s, and is effectively computable (Goncharov, B.).

9 / 31



Overview
Coaction conjecture
Motivic amplitudes

Amplitudes
Motivic MZVs
The coaction conjecture

Motivic multiple zeta values

Algebra of motivic multiple zeta values ζm(n1, . . . , nr )

H =
⊕
n≥0

Hn

It is equipped with a period homomorphism

per : H −→ R

which sends ζm(n1, . . . , nr ) to ζ(n1, . . . , nr ). We gain an action of
a motivic Galois group on H. This is equivalent to a coaction

∆ : H −→ A⊗H

where A = H/〈ζm(2)〉. It respects all algebraic relations between
motivic MZV’s, and is effectively computable (Goncharov, B.).

9 / 31



Overview
Coaction conjecture
Motivic amplitudes

Amplitudes
Motivic MZVs
The coaction conjecture

Structure of motivic multiple zeta values

We have a model for H. Let

U ′ = Q〈f3, f5, f5, . . .〉
denote the graded Q-vector space spanned by words in f2i+1,
where f2i+1 has degree 2i + 1, with shuffle product. Set

U = U ′ ⊗Q[f2]

where f2 has degree 2, and commutes with all f2i+1. Coaction

∆ : U −→ U ′ ⊗ U

fi1 . . . fim f r
2 7→

m∑
k=0

fi1 . . . fik ⊗ fik+1
. . . fim f r

2

Structure theorem (B.)

There is an isomorphism H ∼−→ U , and A ∼−→ U ′ of algebra
comodules, i.e., respecting the coactions.
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The theorem says that to every motivic MZV, we can uniquely
associate a linear combination of words in f2i+1, f2:

ζm(2n + 1) ↔ f2n+1

ζm(2)r ↔ f r
2

By shuffle product:

ζm(3)ζm(5) ↔ f3f5 + f5f3

A more complicated example:

ζm(3, 5) ↔ −5f3f5 + 1586
4725 f 4

2

The (de Rham) Galois conjugates of a motivic MZV ξ ∈ H are
elements of the comodule generated by ξ under ∆. They spanned
by right factors of the corresponding elements in U . Examples:

ζm(3)ζm(5) has Galois conjugates ∈ 〈1, ζm(3), ζm(5), ζm(3)ζm(5)〉Q
ζm(3, 5) has Galois conjugates ∈ 〈1, ζm(5), ζm(3, 5)〉Q
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Coaction conjecture

O. Schnetz’ coaction conjecture states that the amplitudes IG in
φ4 theory are closed under the coaction.

Tested by Schnetz for ∼ 250 amplitudes up to 11 loops.

Recent work of Panzer and Schnetz gave first explicit
computation of amplitudes in φ4 which are not MZV’s but
polylogarithms at 2nd and 6th roots of unity. Deligne proved
analogue of the structure theorem for such numbers. The
coaction conjecture still holds true for such examples.

Equivalent formulation: if Pφ4 is the algebra generated by the
(motivic) amplitudes of φ4 theory then it is stable under the
action of the motivic Galois group G :

G × Pφ4 −→ Pφ4

Action of G factorizes through a quotient Gφ4 , which is an
enormous group of hidden symmetries of φ4 theory.
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The coaction conjecture in action I

Look at all graphs with 1, 3, 4, 5, 6 loops. By an earlier theorem,
we know they are MZV’s. The coaction conjecture unravels much
of the structure of the possible amplitudes:

Loops Weights Possible MZV’s

1 1 1

3 3 f3

4 5 f5 f3f2

5 7 f7 f5f2 f3f 2
2

wd 6 f 2
3 f 3

2

6 9 f9 f7f2 f5f 2
2 f3f 3

2 f 3
3

wd 8 f3f5 f5f3 f 2
3 f2 f 4

2

No amplitudes of weights 2 and 4 ⇒ no f2, f
2

2 .
We know which graphs have weight-drops (B.- Yeats) ⇒ no f 3

2 .
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The coaction conjecture in action II

The coaction conjecture imposes stronger and stronger constraints
as we increase the loop order.

At 6 loops and weight 8, one expects to see f3f5, f5f3 and f 4
2 but

because there are few graphs, only these combinations occur:

f3f5 + f5f3 , f3f5 + αf 4
2

At 7 loops: we expect a vector space of MZV’s of dimension 9. In
reality, we only have a vector space of dimension 4 of amplitudes.
The terms f3f3f5, f3f5f3, f3f 4

2 must occur in the linear combination

f3f3f5 + f3f5f3 , f3f3f5 + αf3f 4
2

There are many more striking examples. At each loop order, there
are new constraints (‘holes’ in the set of amplitudes) which in turn
propagate to all higher loop orders.
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Swiss cheese

The amplitudes Pφ4 are stable under a group Gφ4 (coaction
conjecture). But Pφ4 is full of holes (there are few small graphs).

Each hole engenders infinitely many more holes. 1

1
Of course, it is better to speak about which numbers actually occur rather than don’t occur. There is a

precise, but technical mathematical formulation to express this. For the exposition, I will keep talking about holes.
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Part II: Plan

The previous picture is a conjectural prototype for the general
structure of any perturbative quantum field theory. In order to turn
it into a theory, we must modify the problem slightly. We must:

1 Enlarge the class of amplitudes considered.

2 Define ‘motivic’ versions of these amplitudes. With the right
definition, there is automatically a coaction, and furthermore,
the coaction conjecture is true for this class.

3 There is an underlying operad structure. It is the same
structure which governs the renormalisation group equation.

4 Using the theory of weights in mixed Hodge theory, we reduce
the calculation of the Galois conjugates to studying motivic
amplitudes of small graphs.

5 Since there are very few small graphs, we get lots of holes.
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Motivic periods

Let T be a Tannakian category over Q with two fiber functors:

ωB , ωdR : T −→ VecQ

Suppose that there is a canonical isomorphism

compB,dR : ωdR(M)⊗ C −→ ωB(M)⊗ C

for all M ∈ T . Define the ring of motivic periods Pm
T of T to be

the affine ring O(IsomT (ωdR , ωB)). The ring of de Rham periods
is PdR

T = O(AutT (ωdR)). There is a period homomorphism

per : Pm
T −→ C

and a coaction
Pm
T −→ PdR

T ⊗ Pm
T

The algebra H of motivic MZV’s ⊆ Pm
T , where T =MT (Z).
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Motivic amplitudes

Various possibilities for T . The weakest is to take a category of
realisations H. Objects are pairs:

(MB ,MdR) where MB ,MdR ∈ VecQ

with an isomorphism MdR ⊗ C ∼→ MB ⊗ C, and various filtrations
so that MB is a Q-mixed Hodge structure.

For a Feynman graph G one can associate an object

MG ∈ H

the ‘graph mixed Hodge structure’, and elements ωG ∈ ωdR(MG )
and σ ∈ ωB(M)∨. We will obtain a motivic amplitude

[M, ωG , σ]m ∈ Pm
H

It is the function φ :7→ 〈φ(ωG ), σ〉 : Isom(ωdR , ωB)(Q)→ Q.

per[M, ωG , σ]m =

∫
σ
ωG = Feynman amplitude

18 / 31
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Motivic amplitudes: what do we gain?

We gain:

1 A rigorous notion of weight. There is weight filtration on the
ring Pm

H . The ‘transcendental weight’ can be a half-integer.

2 A coaction from the general formalism.

3 The motivic amplitude (in the case when there are external
kinematics) knows everything about differential equations,
monodromy equations, etc. Recover symbol from coaction.

The graph mixed Hodge structure is known explicitly in the
following cases:

1 Subdivergence-free, massless amplitudes in φ4

(Bloch-Esnault-Kreimer)

2 Renormalised single-scale amplitudes (B.-Kreimer).

3 General sub-divergence free case not too hard (in progress).
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Coaction Theorem

Let Pm
φ4 denote the space of the specific motivic amplitudes I m

G of

sub-divergence free graphs in φ4 (as considered above).

Coaction conjecture (Schnetz)

Pm
φ4 is stable under the coaction, ∆ : Pm

φ4 −→ PdR
H ⊗ Pm

φ4

Idea: Enlarge the class of amplitudes. Let Pmeφ4
denote the space of

all the motivic amplitudes of the same class of graphs.

Theorem (B. available shortly)

Pmeφ4
is stable under the coaction, ∆ : Pmeφ4

−→ PdR
H ⊗ Pmeφ4

There are many more periods in Pmeφ4
⊃ Pm

φ4 .
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Generalising the amplitudes: φ4 versus φ̃4

The amplitudes we considered in φ4 are of the form

IG =

∫
σ
ωG where ωG =

ΩG

Ψ2
G

where ΨG is the graph polynomial. They are periods of motivic
amplitudes [MG , ωG , σ]m in Pm

φ4 .

The generalised motivic amplitudes we need are of the form

[MG , ω, σ]m ∈ Pmeφ4

where ω ∈ ωdR(MG ) is any differential form that can be integrated
along σ. This includes convergent integrals of the form

IG =

∫
σ
ω where ω =

P(αe)ΩG

ΨN
G

where P is any polynomial in the αe with rational coefficients.
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The graph MHS (Bloch-Esnault-Kreimer 2007)

Recall that

IG =

∫
σ

ωG where ωG =
ΩG

Ψ2
G

How to interpret this as a period? Consider the graph hypersurface, and
coordinate hyperplanes in projective space:

X G = V (ΨG ) ⊂ PNG−1 , Bi = V (αi ) ⊂ PNG−1

σ

X G

B1

B2

B3

ωG ∈ ΩNG−1(PNG−1\X G ) and ∂σ ⊂ B = ∪iBi .
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The graph mixed Hodge structure (II)

The naive mixed Hodge structure is

HNG−1(PNG−1\X G ,B\(B ∩ XG )

However, in reality, the domain of integration σ meets the singular
locus X G so we must do some blow-ups. B-E-K construct an
explicit local resolution of singularities π : P → PNG−1 and define

MG = HNG−1(P\X̃ G , B̃\(B̃ ∩ X̃ G ))

Theorem (Bloch-Esnault-Kreimer 2007)

The Feynman amplitude IG is a period of MG

However, MG has other periods. The coaction conjecture is true
when we include these new periods.
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Small graphs principle

The power of the method comes from two features: the coaction
and the fact that there are missing periods (holes).

However, we added new periods to make the coaction conjecture
into a theorem. Have we inadvertently filled in all the holes too?

The answer is no. But now we need much stronger results to prove
that the holes are still there. We now need to understand the
amplitudes in φ̃4 up to a given weight.

This requires a detailed knowledge of the mixed Hodge structure.
Involves: the theory of weights, relative cohomology spectral
sequence, and some geometric properties of graph hypersurfaces
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Factorization property of graph polynomials

Let γ ⊂ G be any subgraph. Let G//γ be the quotient graph: it is
obtained by contracting γ.

Key factorisation property:

ΨG = ΨγΨG//γ + R1
γ,G

ΦG (q) = ΨγΦG//γ(q) + R2
γ,G

The polynomials R i
γ,G are of higher degree in the γ-variables.

α1α2 + α1α3 + α2α3︸ ︷︷ ︸
ΨG

= (α1 + α2)︸ ︷︷ ︸
Ψγ

α3︸︷︷︸
ΨΓ//γ

+α1α2︸ ︷︷ ︸
R1
γ,G

In the limit as the subgraph variables (here α1, α2) go to zero, the
graph polynomials factorise

ΨG ∼ ΨγΨΓ//γ
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The small graphs principle

Geometrically, each boundary facet is a product of graph
hyper-surfaces. Gives an operad structure on the cohomology.

Theorem (Small graphs principle)

The elements in the right-hand side of the coaction ∆[MG , ω, σ]m

can be expressed in the form∏
i

[Mγi , ωi , σ]m

where γi are sub and quotient graphs of G .

By general theorems on weights in mixed Hodge structures, the
weight ≤ k part of the RHS of the coaction come from sub and
quotient graphs with approx. k + 1 edges in total.
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Example: logarithms

Any logm(p) occurring in the RHS of the coaction come from
graphs with at most 3 edges. Write down all possibilities:

α1 + α2 + α3 α1α2 +α1α3 +α2α3 α1(α2 + α3) α1α2α3

The corresponding mixed Hodge structures are very simple. You
can never get log(p) as an integral with these denominators.

Corollary

There is no logm(p) in the right hand side of the coaction.

From these easy calculations + the theorems we actually deduce
highly non-trivial constraints at all loop orders using the coaction.
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Some immediate corollaries

Let G ∈ φ4 be primitive divergent.

Theorem

Suppose that I m
G is a motivic MZV at 2nd roots of unity. Then

logm(2) is not a Galois conjugate of I m
G .

Let ζ6 be a primitive 6th root of unity. Similarly, an inspection of
4-edge graphs immediately gives the following corollary.

Theorem

Suppose that I m
G is a motivic MZV at 6th roots of unity. Then

Lim2 (ζ6) is not a Galois conjugate of I m
G .

Recent examples (P7,11, P8,33,P9,136,P9,36,P9,108) due to Panzer
and Schnetz satisfy these conditions. We get strong a priori
constraints on the possible amplitudes at 7, 8, 9 loops from a
back-of-an envelope calculation.
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Non-appearance of ζm(2)

Expectation: There is no ζm(2) in φ̃4. To prove this, it suffices to
look at graphs γ with at most 6 edges:

. . .

and compute the mixed Hodge structures. One must show

grW4 Mγ = 0

for every 6-edge graph γ. If so, then there is no ζm(2) in φ̃4 and
this propagates to an infinite number of constraints at all loop
orders by the coaction theorem.

Remark: It appears that Pφ4 = Peφ4
in low weights. If it is true up

a given weight, then Schnetz’ coaction conjecture follows as a
consequence, up to some loop order.
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Generalizations

We can also look at processes depending on external parameters by
replacing mixed Hodge structures with variations of MHS. Expect
a coaction theorem and small graphs theorem.

Because there are very few small graphs, we expect to see many
holes in the space of amplitudes.

Many known physical results should be interpretable as describing
different pieces in the coaction (differential equations, monodromy,
Cutcosky rules, etc). In the special case when we have variations
of mixed Hodge-Tate structures (polylogarithms), then the symbol
is obtained from the motivic amplitude by sending all constants to
0. The coaction reduces to the coproduct on the symbol.
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Conclusion

The theory of motivic periods gives an organising principle for
much of the known structure of amplitudes.

Surprising new structural features such as the coaction
conjecture emerge. It gives extremely strong constraints on
the possible numbers which can occur as amplitudes.

By enlarging the space of amplitudes slightly, the coaction
conjecture becomes a theorem.

Programme: compute the mixed Hodge structures underlying
the amplitudes of small graphs. This lead to constraints to all
orders in perturbation theory.
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