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Perturbative Quantum Field Theory

A Quantum Field Theory describes the interactions between
fundamental particles. Interactions are represented by Feynman
graphs, built out of certain types of edges and vertices:

QED :

To every graph G in the theory, one associates an amplitude

G −−− > IG (qi ,me)

which is a function of particle momenta qi , and particle masses
me . When all masses are zero, and all but one qi vanish, e.g.,

IG ∼ number× |q|−2

We get a map from graphs to some very interesting numbers. A
huge effort goes into computing the quantities IG (qi ,me).
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The graph polynomial

Let G be a connected graph with no self-edges. A graph is deemed
to be ‘physical’ if all its vertices have degree at most 4, written

G ∈ φ4

Definition (Kirchhoff 1847)

The graph polynomial ΨG ∈ Z[αe , e ∈ E (G )] is defined by

ΨG =
∑
T⊂G

∏
e /∈T

αe

where the sum is over all spanning trees T of G .

A subgraph T ⊂ G is a spanning tree if it is a tree (it is connected,
and simply connected), and if it spans G . This means that it
meets every vertex of G , or V (T ) = V (G ).
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Example

Consider the following graph with 4 edges, and 3 vertices.

Its spanning trees are the subgraphs given by the sets of edges

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4}

The graph polynomial is therefore

ΨG = α3α4 + α2α4 + α2α3 + α1α4 + α1α3

In general, ΨG is homogeneous of degree hG , the first Betti
number of G (also known as the ‘loop number’ of G ).

deg ΨG = hG NG = #E (G )
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Feynman integrals

In order to get convergent integrals, we shall assume that

G is overall log-divergent: NG = 2hG

G is primitive: Nγ > 2hγ for all γ ( G .

The Feynman amplitude is defined by the convergent integral

IG =

∫
σ

ΩG

Ψ2
G

∈ R

where

ΩG =

NG∑
i=1

(−1)iαidα1 ∧ . . . ∧ d̂αi ∧ . . . dαNG

and the domain of integration σ is the real coordinate simplex

σ = {(α1 : . . . : αNG
) ∈ PNG−1(R) such that αi ≥ 0}
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Graphs and numbers

The result is that we get a map from graphs to numbers:

I : {Primitive, log-divergent graphs in φ4} −→ R

The whole problem is to try to understand this map.

Trivial example: consider the graph

It satisfies ΨG = α1 + α2. We can compute the integral on the
affine chart α2 = 1 in P1, where it reduces to

IG =

∫ ∞
0

dα1

(α1 + 1)2
= 1
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The Zoo

Some selected examples of primitive, log-divergent graphs in φ4

theory, at 3, 4, 5 and 6 loops, and their amplitudes:

IG : 6ζ(3) 20ζ(5) 36ζ(3)2 N3,5

The number N3,5 is given by

N3,5 = 27
5 ζ(5, 3) + 45

4 ζ(5)ζ(3)− 261
20 ζ(8)

The amplitudes IG are very hard to compute: in the first example,
ΨG is of degree 3 in 6 variables, and has 16 terms.
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Multiple Zeta Values

Let n1, . . . , nr−1 be integers ≥ 1, and let nr ≥ 2. Euler defined

ζ(n1, . . . , nr ) =
∑

1≤k1<k2<...<kr

1

kn1
1 . . . knr

r
∈ R

When r = 1, these are values of the Riemann zeta function ζ(n).

The weight is the quantity n1 + . . .+ nr .

Multiple zeta values form an algebra: for example

ζ(n1)ζ(n2) = ζ(n1, n2) + ζ(n2, n1) + ζ(n1 + n2)

In general, the product of any two MZV’s is equal to a sum of
MZV’s of the same total weight.
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The Zoo II

IG : 6ζ(3) 20ζ(5) 36ζ(3)2 N3,5

weight : 3 5 6 8

NG − 3 : 3 5 7 9

One can show that the weight is bounded above by NG − 3. The
last two examples have weight drop: the true weight is strictly
lower than the expected weight.
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Main folklore conjecture

In the 90’s, Broadhurst and Kreimer made very extensive
computations of IG , and found that for all graphs G for which IG
can be computed (e.g. hG ≤ 6), it is numerically an MZV.

Folklore conjecture

The numbers IG are Q-linear combinations of multiple zeta values.

Analogies with 2-dimensional Quantum Field Theories, and
deformation quantization. Cartier’s Cosmic Galois group.1

First, in the positive direction, I proved in 2009 that

Theorem 1

The conjecture is true for all graphs of ‘vertex width’ vw(G ) ≤ 3.

1
c.f., Cartier, Connes-Marcolli, Kontsevich,. . .
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An explicit family: the zig-zag graphs

Consider the following family of zig-zag graphs Zn with n loops:

In 1995 Broadhurst and Kreimer made the following conjecture:

Theorem (with O. Schnetz 2012)

IZn = 4 (2n−2)!
n!(n−1)!

(
1− 1−(−1)n

22n−3

)
ζ(2n − 3) .

This is the only infinite family of primitive graphs in φ4 whose
amplitude is known, or even conjectured.

The proof uses a theorem of Zagier on ζ(2, . . . , 2, 3, 2, . . . , 2)

Experimentally, the zig-zag graphs are the only graphs in φ4

whose amplitudes can be written as single zeta values.
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Some Identities

1 (Partial multiplication law). When G1 and G2 each have two
trivalent vertices connected by an edge, we can form the
two-vertex join G1 : G2. Then IG1:G2 = IG1 IG2 .

2 (Completion) Every non-trivial primitive log-divergent graph
G in φ4 theory has exactly 4 trivalent vertices. Let Ĝ be the
graph obtained by connecting them to a single new vertex.

If Ĝ1
∼= Ĝ2 then IG1 = IG2 .
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Counting points over finite fields (Kontsevich)

The affine graph hypersurface is the zero locus

XG = V (ΨG ) ⊂ ANG

of the graph polynomial. It is usually irreducible (e.g., when G is
primitive log-divergent), and is highly singular in general.

Let p be a prime, and q = pn. Since ΨG has integer coefficients,
we can consider the point-counting function

[G ]q : q 7→ #X (Fq)

It is a function from the set of prime powers q to N.

Conjecture (Kontsevich 1997)

The point counting function [G ]q is a polynomial in q.
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Point-counting examples

Consider the following three graphs:

W3 W4 NP5

Their point-counting functions over finite fields Fq:

Graph IG [G ]q

W3 6ζ(3) q5 − q3 − q2

W4 20ζ(5) q7 + 3q5 − 6q4 + 4q3 − q2

NP5 36ζ(3)2 q9 + 4q7 − 7q6 + 3q5
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Motivic Philosophy

The idea is that the amplitude IG , and the point-counting function
[G ]q should be different aspects of the same object, called the
‘motive’ of G , denoted mot(G ).

We have the following heuristic picture:

IG ←−− mot(G ) −−→ [G ]q
∈ ∈ ∈

MZV ←−− MT (Z) −−→ Z[q]

MT (Z) denotes the category of mixed Tate motives2 over Z. The
dashed arrows going to the left are the Hodge realization (period
map), the arrows to the right the `-adic realization.

This is just an analogy. We cannot a priori infer information about
IG from [G ]q and vice-versa.

2
Levine, Deligne-Goncharov building on Voevodsky, Hanamura, Levine, Bloch, Beilinson, Soulé, Borel, . . .
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The graph motive (Bloch-Esnault-Kreimer 2007)

Recall that

IG =

∫
σ

ωG where ωG =
ΩG

Ψ2
G

How to interpret this as a period? Consider the graph hypersurface, and
coordinate hyperplanes in projective space:

X G = V (ΨG ) ⊂ PNG−1 , Bi = V (αi ) ⊂ PNG−1

σ

X G

B1

B2

B3

ωG ∈ ΩNG−1(PNG−1\X G ) and ∂σ ⊂ B = ∪iBi .
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The graph motive (II)

The naive ‘motive’ (or rather, mixed Hodge structure) is

HNG−1(PNG−1\X G ,B\(B ∩ XG )

However, in reality, the domain of integration σ meets the singular
locus X G so we must do some blow-ups. B-E-K construct an
explicit local resolution of singularities π : P → PNG−1 and define

mot(G ) = HNG−1(P\X̃ G , B̃\(B̃ ∩ X̃ G ))

Theorem (Bloch-Esnault-Kreimer 2007)

The Feynman amplitude IG is a period of mot(G )

NB. The point-counting function depends on
∑

i (−1)iH i
c(X G ).

The amplitude IG depends on mot(G ). Not the same motive!
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The status of the point-counting problem

Kontsevich’s conjecture ([G ]q is polynomial in q) is therefore a
(rough) analogue of the folklore conjecture (IG is an MZV).

Theorem (Stembridge 1998)

The conjecture is true for all graphs with ≤ 12 edges.

The following result came as a great surprise:

Theorem (Belkale-Brosnan 2003)

The conjecture is false in general. In fact, [G ]q is of ‘general type’.

The proof uses Mnëv’s universality theorem in a very clever way.
Counter-examples constructed via their proof would give graphs
with huge numbers of edges, i.e., highly unphysical graphs.

Theorem (2009), effective version with Schnetz (2011)

The conjecture is true for all graphs of vertex width ≤ 3.
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c2-invariants of graphs (with O. Schnetz)

In reality, the point-counting function [G ]q contains a lot of junk.
We observe that for our graphs G , and prime powers q

[G ]q ≡ 0 mod q2 .

In particular, for each q there exists c2(G )q ∈ Z/Zq such that

[G ]q ≡ q2c2(G )q mod q3

Definition

The c2-invariant of a graph G is the element

c2(G ) = (c2(G )q) ∈
∏
q

Z/Zq

If [G ]q is a polynomial in q, c2(G )q is just the coefficient of q2 in
[G ]q, so there is a constant M ∈ Z such that c2(G )q ≡ M mod q.
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Point-counting examples II

Consider the following three graphs:

W3 W4 NP5

Graph IG [G ]q c2(G )q Wt drop

W3 6ζ(3) q5 − q3 − q2 −1 mod q No
W4 20ζ(5) q7 + 3q5 − 6q4 + 4q3 − q2 −1 mod q No
NP5 36ζ(3)2 q9 + 4q7 − 7q6 + 3q5 0 mod q Yes

It turns out that only the coefficient of q2 contains the relevant
information about the amplitude IG .
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Completion conjecture

All the relevant qualitative information about the amplitude IG is
contained in the c2-invariant. The philosophy is that

IG1 = IG2

Conj .
=⇒ c2(G1) = c2(G2)

In particular, we get the following very concrete conjecture:

Completion conjecture

If G1 and G2 have isomorphic completions (Ĝ1
∼= Ĝ2) then

c2(G1)q ≡ c2(G2)q for all q

The c2-invariants have many nice combinatorial properties which
makes them easy to compute.

c2(G ) = 0 ←→ G has weight-drop
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More identities for c2

Example of an identity (with K. Yeats). Double-triangle reduction

∼dt

G1 G2

If G1 ∼dt G2 are related as above then c2(G1) = c2(G2).

This identity, and others, enable us to compute the c2-invariant of
graph hypersurfaces in terms of hypersurfaces of smaller and
smaller dimensions. Idea: fiber in curves of genus 0 and use
Chevalley-Warning theorem.
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Modular counter-example

Let G8 be the following graph with 8 loops. It is primitive
log-divergent, in φ4 theory (and has vw(G ) = 4).

Theorem (with O. Schnetz, 2012) Uses Shioda-Inosé, Serre, Livné,. . . , Schütt

c2(G8)p ≡ ap mod p

where ap are the Fourier coefficients of the modular form(
η(z)η(z7)

)3
of weight 3 and level 7.

Recall η(z) = z
1

24
∏

n≥1(1− zn) is the Dedekind eta function.
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A planar counter-example

We can show by the prime number theorem that the ap are highly
non-constant. Therefore G8 cannot be a polynomial in q.

The following counter-example at 9 loops has the same c2:

and shows that Kontsevich’s conjecture is false even for planar φ4

theory. But could it still be the case that mot(G ) is mixed-Tate?
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From point-counts to cohomology

Theorem (with D. Doryn, 2013) Uses Motivic CW theorem of Bloch-Esnault-Levine

The cohomology class of the Feynman integrand[ΩG8

Ψ2
G8

]
∈ grW24 H15

dR(P15\X G8)

is of Hodge type (13, 11). In particular, it is not Tate.

Recall that if M mixed Tate then MdR of type (n, n) only.

Corollary

The IG cannot factor through a category of mixed Tate motives.

A variant of Grothendieck’s standard transcendence conjecture for
periods implies that IG8 is not in the ring of multiple zeta values.

All variants of the folklore conjecture are completely false!
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More modular counter-examples

With O. Schnetz, we computed c2(G )p for the first 13 primes for
all ∼ 10, 000 graphs up to 10 loops. The following modular ‘hits’:

weight 2 3 4 5 6 7 8

level 11 7 8 5 8 4 9 3 8 3 9 2 10

14 8 8 6 9 7 4 9 7 3

15 11 7 10 8 5 8 5 10

17 12 9 8 11 6 11 6

19 15 9 12 7 9 15 7
20 15 10 15 8 15 8
21 16 12 15 9 16 8

24 19 13 9 19 10 10 19 9

26 20
... 20 10 20 10

26 20 17 10 20 10 20 12

The subscript is the first loop order it occurs. Only the first
example is proved. No modular forms of weight 2?
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Conclusion

All versions of the folklore conjecture are true for small graphs
(graphs with vertex-width ≤ 3) but completely false in general.

Even when we take the sum over all graphs (the physically
meaningful quantity), there is nothing for the modular
counter-examples to ‘cancel with’. They remain in physical answer.

The numbers IG coming from physics go beyond the realm of
multiple zeta values, but are nonetheless highly constrained (no
ζ(2), no modular forms of weight 2, . . . ). The situation is much
more complex, and interesting, than anyone imagined.

What is the class of motives that Quantum Field Theory chooses?
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Conjectural Trichotomy

For all graphs up to 10 loops it appears that we have 3 classes:

1 (Vanishing) c2(G ) = 0. These graphs should have
weight-drop and contribute to the Quantum Field Theory in a
special way. This class contains all non-primitive graphs.

2 (Tame) c2(G ) = −1. We found that all graphs in this class
are equivalent, modulo completion and double-triangle
reduction to a single graph, the wheel with 3 spokes:

3 (Wild) c2(G ) is non-constant. These start at 7 loops, contains
all the modular examples and most are unknown. These are
all counter-examples to the point-counting conjecture.

Furthermore, we expect that class 2 give a precise and strict
subspace of MZV’s, in which, e.g., no ζ(2n)’s (or ζ(a, b)’s) occur.
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Motivic versus Cosmic Galois group

Let Z denote the ring of MZV’s. We should think of Z/Q as a
‘Galois’ extension of transcendental numbers3 with a pro-algebraic
Galois group Gal(MT (Z)). Its Lie algebra is free, with one
generator in every odd degree corresponding to ζ(2n + 1).

Let P be the ring spanned by Feynman amplitudes IG for G ∈ φ4.
The counter-examples suggest P 6⊂ Z but also

P ∩ Z ( Z

i.e., only special linear combinations of MZV’s occur as amplitudes.

Miracle: Experimentally, P ∩ Z is preserved by GMZV

Holy grail would be a formula for the action of GMZV in terms of
graphs. Generators of Lie algebra ↔ the zig-zag graphs Zn.

Is P closed under the action of a bigger, ‘cosmic’ Galois group?
3

Grothendieck, André, Deligne, Ihara, Kontsevich-Zagier, Goncharov, . . .
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