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Euler’s theorem (~ 1740’s)

(2mi)?" Ba,
2n) = — >1
¢(2n) 2 (2n)! m=

1
b(x) = =
=3+ ]
1 1 1 B
b(X) == 4 —x+ ——x3 4 . o

x 12 720 (2n)!

2/37



Euler’s theorem (~ 1740’s)

(2mi)?" Ba,
2n) = — > 1
¢(2n) 2 (2n)! m=
1
b(x) = =
) =5+a—71 ]
1 1 1 Bon o
b(x) = = + —x + ——x3 + ... ny2n-l
)= T T T Ty T

Expect ((3),¢(5),... algebraically independent over Q[r], so no
such formula should exist for ¢(2n + 1).
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Reformulation

Consider the generating series

ZO=3"¢(mx"' € R[]

n>2
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Reformulation

Consider the generating series

ZO=3"¢(mx"' € R[]

n>2

Let
oont1 = “coefficient of ((2n+ 1)"

T = Z “coefficient of (27i)%""

n>0
oo (ZM) = X
1 b(x)
zOy — - 7\
(Z7) ox 2
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Reformulation

Improvement if we allow a simple pole in x:

ZO =3 ¢(mx"t e R[]

n>0

where we define

¢1)=0 , ¢(0)=-1/2.
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Reformulation

Improvement if we allow a simple pole in x:

ZO =3 ¢(mx"t e R[]

n>0

where we define

¢1)=0 , ¢(0)=-1/2.

oang1(ZW) = X

7-(2(1)) — @
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Define the generating series of depth r Multiple Zeta Values:
z = Z C(npy.on ) x =t Xl

n,...,nr21

where, for n, > 2,

1
ny,...,n ) = P P
C( 1 r) Z kM k,{"

1<ki<ko<..<ky L1 °°°
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Define the generating series of depth r Multiple Zeta Values:
z = Z C(npy.on ) x =t Xl

where, for n, > 2,

C(nlw-'»nr): Z n L

kit kL
1<ki<kp<...<kr
Ultimate goal
Write down homogeneous polynomials
Oé;)-l—l = O'2,,+1(Z(r)) E Q[xl,...,xr]

of degree 2n+ 1 — r, and power series:

) .— T(z(r)) c Q[[x1, .- -, x]]
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Problem - totally unreasonable!
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This makes no sense! The 02,41, 7 depend on a choice of basis for
multiple zeta values, and inaccesible transcendence conjectures.
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This makes no sense! The 02,41, 7 depend on a choice of basis for
multiple zeta values, and inaccesible transcendence conjectures.
Nonetheless,

Theorem
There exists a canonical and explicit choice of elements

(65,:1)") € Qlxa, - -, %] for1<r<4

(7)) € Qllxa, - - - x]] for1<r<3

with all the required properties.
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Problem - totally unreasonable!

This makes no sense! The 02,41, 7 depend on a choice of basis for
multiple zeta values, and inaccesible transcendence conjectures.
Nonetheless,

Theorem
There exists a canonical and explicit choice of elements

(65,:1)") € Qlxa, - -, %] for1<r<4

(7)) € Qllxa, - - - x]] for1<r<3

with all the required properties.

Modular forms, monodromy of 71 of universal elliptic curve.
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“Standard” relations for MZV's



Stuffle equations
1
Z Z /oo ( + Zk: )kmgn

k>1 >1 1§k<€ 1<i<k

A

»
>

¢(m)¢(n) = ¢(m, n) +¢(n, m) +((m+n) .
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Stuffle equations

Y

¢(m)¢(n) = ¢(m,n) +((n,m)+{(m+n).
Stuffle equations in depth 3:
¢(n1)¢(n2, n3) = ((n1 + n2, n3) + ((n2, n1 + n3)
+C(n17 np, n3) + C(I'IQ, ni, n3) + C(n27 ns, nl)
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Shuffle relations

1@ = | ot LR

o<n<n<i 1=t B2 Jocg<sn<11l—51 %2
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Shuffle relations

1@ = | _dte *

o<n<n<i 1=t B2 Jocg<sn<11l—51 %2

Decompose region of summation into six sets, including

/ dty ds; @ @
0

=((1,3) .
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Shuffle relations

1@ = | ot LR

o<n<n<i 1=t B2 Jocg<sn<11l—51 %2

Decompose region of summation into six sets, including

/ dty ds; d52 dtz
0

=((1,3) .

We deduce the equation

€(2)¢(2) = 4¢(1,3) +2¢(2,2)

Generalises to an infinite family of relations: shuffle relations.

Regularisation relation (Hoffman): Example ((1,2) = ((3).
Involves making sense of ((ny,...,n,) for n, = 1 (divergent case).
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In weight 4 there are four MZV's, ((4), ¢(1,3), ¢(2,2) and
¢(1,1,2). We have the equations:

C(2? = 2¢(2,2) +¢(4) (stuffle)

C(2? = 4¢(1,3) +2¢(2,2) (shuffle)

C(1,3)+¢(4) = 2¢(1,3) +¢(2,2) (reg.)
2¢(1,1,2) 4+ ¢(2,2) + ¢(1,4) = 3¢(1,1,2) (reg.)
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In weight 4 there are four MZV's, ((4), ¢(1,3), ¢(2,2) and
¢(1,1,2). We have the equations:

C(2? = 2¢(2,2) +¢(4) (stuffle)

C(2? = 4¢(1,3) +2¢(2,2) (shuffle)

C(1,3)+¢(4) = 2¢(1,3) +¢(2,2) (reg.)
2¢(1,1,2) 4+ ¢(2,2) + ¢(1,4) = 3¢(1,1,2) (reg.)

Exercise: deduce that ((4) = 2¢(2)? (Euler).
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Double shuffle ring

Define

zF =Pz}

n>0

to be the graded Q-algebra generated by symbols 1 and

¢(ny. o inyp)

modulo the shuffle, stuffle and regularisation equations.
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Double shuffle ring

Define

zF =Pz}

n>0

to be the graded Q-algebra generated by symbols 1 and
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given by the weight ny 4+ ...+ n,.
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Double shuffle ring

Define

zF =Pz}

n>0

to be the graded Q-algebra generated by symbols 1 and

Cf(nl,...,n,)

modulo the shuffle, stuffle and regularisation equations. Grading is
given by the weight ny 4+ ...+ n,.

There is a canonical homomorphism ¢f(ny,...,n,) — ¢(n1,...,n,)
zf R

Zagier conjectured that this map is injective.
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Two problems

Given a set of equations one wants to know: 1) how many
solutions there are, and 2) what are the solutions?
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Two problems

Given a set of equations one wants to know: 1) how many
solutions there are, and 2) what are the solutions?

© Compute the dimensions

dimg Zf

@ Find the solutions over QQ to the double shuffle equations.

Only discuss 2 here.
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Reformulation of the second problem

Goal
Write down a homomorphism
r: 2z — Q
@ ~ %
and linear maps of weight 2n + 1:

Zf
f7>0f Q
Z>OZ>O
fen+1) — 1

O2n+1 -



Reformulation of the second problem
Goal

Write down a homomorphism

r: 2z — Q
f 1
@ = =
and linear maps of weight 2n + 1:
Zf
f7>0f — Q
Z>OZ>O
fen+1) — 1

O2n+1 -

Furusho = 7 defines a ‘rational associator’ (Drinfeld: 7 exists).

Applications: knot invariants, deformation quantization,
Kashiwara-Vergne problem, Mixed Tate motives over Z.



(1) _ .4
0-5 _Xl.
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aél) = xf. In depth 2,

9 11
aéz) = —3x + §x12x2 — 7x1x22 +2x3
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aél) = xf. In depth 2,

2 9 11
O'é):—3X13+§X12X2—? 2 3
The coefficients encode the information:

32 = 2c6) - 2%B)K)

(23) = 5B +3BKE)
¢(1.4) = 2(5) - ¢B3)(2)
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aél) = xf. In depth 2,

9 11
aéz) = —3x + §x12x2 — 7x1x22 +2x3

The coefficients encode the information:
9
((3:2) = 5¢(5)-2(3)()

(23) = 5B +3BKE)
¢(1.4) = 2(5) - ¢B3)(2)

These formulae were obtained by solving the double shuffle
equations in weight 5.
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[ll-definedness

The maps 7 and 02,11 are ill-defined in general!

¢f(3,5) = 5¢F(3)¢"(5) — =¢f(6,2) + (2im)®

7
2764800
versus

2im)®

1
¢"(3,5) = =¢"(3)¢"(5) = ¢ (5.3) + 575505 (

They depend on choice of generating family. A priori not a
reasonable problem.
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Theorem
There is an explicit homomorphism

D32 — Q
and linear maps of weight 2n + 1

D, 2Zf
ARYAR)

—Q

02n+1 -

defined only in terms of Bernoulli numbers.
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Theorem
There is an explicit homomorphism

D32 — Q
and linear maps of weight 2n + 1

D, 2Zf
ARYAR)

—Q

02n+1 -

defined only in terms of Bernoulli numbers.

They should correspond to a canonical generating set of MZV's in
depths < 3,4. | have no idea what this is.

Challenge: extend to all depths.

16 /37



Commutative generating series
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Commutative generating series

Consider the (e-regularized) generating series in depth r

Z.(r)(xl,...,xr): Z C.(nl,...,nr)xfl_l...x,”’_l

ny,...,n>1
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Commutative generating series

Consider the (e-regularized) generating series in depth r

Z.(r)(xl,...,xr): Z Co(npyoooyn )Xt xrl

ny,...,n>1

Relations between MZV’s «—— Functional equations for z(*)
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Double shuffle equations in depth 2

(1) _ (@)
00 00) = £ 0u,00) + £ 00, x) + ) = B 0e)
X1 — X2
f(l)(xl)f(l)()Q) = f(2)(X1,X1 +x) + 7c(2)(X2,X1 + x2)
Where i
O =D and £ =04 o
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Double shuffle equations in depth 2

(1) _ (@)
00 00) = £ 0u,00) + £ 00, x) + ) = B 0e)
X1 — X2
f(l)(xl)f(l)()Q) = f(2)(X1,X1 +x) + 7c(2)(X2,X1 + x2)
Where i
O =D and £ =04 o

Examples of solutions:

(D, £y = (29, 2) e Rpa]] x RlDe]]

(W, 7)) € Qlball x Qb x]]
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The equations modulo products

£00a) = £ 00)
X1 — X2
0 = f(2)(X1,X1 + X2) + f(2)(X2,X1 + X2)

0 = ﬁk(z)(XLXz)-i-ﬂ(z)(Xz,Xl)-i-

Where
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The equations modulo products

£00a) = £ 00)
X1 — X2
0 = f(2)(X1,X1 + X2) + f(2)(X2,X]_ + X2)

0 = ﬁk(z)(XLXz)-i-ﬂ(z)(Xz,Xl)-i-

Where i
(1) _ £(1) () _ (2 4 =
f » and f. f\< + 15

Examples of solutions:

(01,082 1) € QPa] x Qlxa, x]

19/37



© Write down explicit solutions with poles in the x;

© Cancel out the poles.
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© Write down explicit solutions with poles in the x;

© Cancel out the poles.

In (2) use group/torsor structure of solutions.

Related to Ecalle’s ARI/GARI?
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Group structure
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A Lie algebra

Work in a graded ring of rational functions

Q= @@(xl,...,xr)

r>1

The agz)ﬂ lie in subspace €, Q[x1,...,x.]. For 7, work in some
completed version Q.
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A Lie algebra

Work in a graded ring of rational functions
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The agz)ﬂ lie in subspace €, Q[x1,...,x.]. For 7, work in some
completed version Q. Define a Lie algebra stucture
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A Lie algebra

Work in a graded ring of rational functions

Q= @@(xl,...,xr)

r>1

The agz)ﬂ lie in subspace €, Q[x1,...,x.]. For 7, work in some
completed version Q. Define a Lie algebra stucture

{7}:QXQ—>Q

f =fog—gof where
8 &8

0:@xQ—Q
fog Zf( ogl)
i+j=m

22/37



“Linearized” lhara action

o :@(X]_,...7Xr) X @(X17°°°7XS) _>@(X17---7Xr+s)
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“Linearized” lhara action

o :@(X]_,...7Xr) X @(X17°°°7XS) _>@(X17---7Xr+s)

fgg(xlw' '7XI’+S) =
s

E f(X,'+1—X,',...,X,'+r—X,')g(X1,...,X,',X,'+r+1,...,X,—+5) +
i=0

s
(—1)deg Fr Z f(Xf+r+1_Xi7 s ,x,-+1—x,-)g(x1 sy Xi—1y Xigry o et 7Xr+s)
i=1
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“Linearized” lhara action

o :@(X]_,...7Xr) X @(X17°°°7XS) _>@(X17---7Xr+s)

fgg(xlw' '7XI’+S) =
s

E f(X,'+1—X,',...,X,'+r—X,')g(X1,...,X,',X,'+r+1,...,X,—+5) +
i=0

s
(—1)deg it Z f(Xi+r+1_Xi7 e aXi+1—Xi)g(X1 sy X1, Xigry - ,xr+5)
i=1

Proposition: (Q,{}) is a graded Lie algebra. )
Likewise, we get a left action:

0:QxQ—Q
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Variant of Racinet’s theorem:
© The solutions (e.g. o2,41) of the double shuffle equations
modulo products in Q form a Lie algebra under {, }.

© The solutions (e.g. 7) of reg. double shuffle equations in Q
are stable under the the left action for o, of even solutions to
double shuffle modulo products.

24 /37



Variant of Racinet's theorem:

© The solutions (e.g. o2,41) of the double shuffle equations
modulo products in Q form a Lie algebra under {, }.

© The solutions (e.g. 7) of reg. double shuffle equations in Q
are stable under the the left action for o, of even solutions to
double shuffle modulo products.

Idea: construct explicit solutions by bootstrapping using the
operation o.

24 /37



Bootstrapping solutions
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Define
1
n - -
° 2 X1
1,1 1
2 - =
s 6 (X1X2 + X2(X1 — Xz))
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STEP |

Define
1
n - -
° 2 X1
1,1 1
2 - =
s 6 (X1X2 + X2(X1 — Xz))

s solve double shuffle mod. products in depths < 2.

s of weight 0, so ‘corresponds’ to ((0). Has no reason to be there.
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STEP |

Define

1
n = -
° 2 X1

1,1 1
@ = =
s 6 (X1X2 + X2(X1 — Xz))

s solve double shuffle mod. products in depths < 2.
s of weight 0, so ‘corresponds’ to ((0). Has no reason to be there.
It is surprising that there exists such a solution at all. Can be

extended to all higher depths, but in infinitely many different ways!
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STEP II

(1) _ . 2n
Recall 05,7 1 = x{".
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STEP II

Recall ag,)ﬂ = x2". Set

_ 2n
§2n+1 = X1

. 2
§2n+1 - {5 ’Xln}

n 1 n
S = P87+ 50, (D, 4
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STEP II

Recall ag,)ﬂ = x2". Set

_ 2n
§2n+1 = X

_ 2
§2n+1 = {sW, X"

n 1 n
G = 1@+ W, {547

& solve double shuffle mod. products with poles in depths < 3.
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STEP II

Recall ag,)ﬂ = x2". Set

§2n+1 = X12n
§2n+1 = {5(1), Xlzn}

n 1 n
§2n+1 = {5(2)’Xf } + 5{5(1)7 {5(1)7X]? }}

& solve double shuffle mod. products with poles in depths < 3.

&_1 of weight —1, so ‘corresponds’ to ((—1). There exist infinitely
many possible generalisations to all higher depths.

27 /37



STEP Il

Heresy!
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STEP Il

Heresy! Rescale

¢(2n+1) to (‘29—;)7!«% +1)
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STEP Il

Heresy! Rescale

2n)!
C(2n + 1) to ﬂC(2n + 1)
B2n
Define the heretical normalisations
1
£, = o §-1
B2n
Sopr1 = @n)! Eony1 forn>1

28/37



Canonical 05,11's
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Canonical 05,11's

Define

1
Tons1 = Son1 T Z %{§23+1’ &opy0 €11

a+b=n
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Canonical 05,11's

Define

c 1
Tont1 = &opp1 T Z %{§2a+1’ &opy0 €11

a+b=n

Theorem

The o5, ., have no poles in depths < 4 (with the exception of o),
and are solutions to double shuffle mod. products .
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Canonical 05,11's

Define

c 1
Tont1 = &opp1 T Z %{§2a+1’ &opy0 €11

a+b=n

Theorem

The o5, ., have no poles in depths < 4 (with the exception of o),
and are solutions to double shuffle mod. products .

The formula for g5, should extend to an infinite series in terms

of Lie brackets of the §2n+1.

Challenge: guess the correct formula?
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If we use canonical, instead of heretical normalisations, then the
. . )
coefficients in 05, ; involve products

which are coefficients in the regularised Eichler integral

/ E2n+2(T)(X + TY)2ndT
0
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Bootstrapping for 7
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Double Bernoulli series

Think of
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Double Bernoulli series

Think of

1,1 1
()
s 6 (X1X2 + X2(X1 — Xz))
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Double Bernoulli series

Think of

Recall the element

1,1 1
()
s 6 (X1X2 + X2(X1 — Xz))

It motivates the double Bernoulli series

ba(oa,x2) = 5 (BG)be) + BOa)ba — 2))
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STEP IV

Set

A
=)
E
I

_bl
4@ = —by+ibob
8v®) = byobs — tbio(biobr)
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STEP IV

Set

A
=)
E
I

_bl
4@ = —by+ibob
8v®) = byobs — tbio(biobr)

The elements 7 solve the ‘semi-homogeneous’ double shuffle
equations. In depth 2 these are:

YA (x1,xa + %) + 1P e, +x2) = PP (x)
Y xa,0) + P00, ) = AV P (x)

where %Ez) =~@ 4 %.
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STEP V

Set

00) = 4@ 4 W on@ 4 1@ o) 1 151 o () o 4(1))
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oW — M
00) = 4@ 4 W on@ 4 1@ o) 1 151 o () o 4(1))

Remove garbage term of degree —r in ©() to get a new element
(). They are solutions to the double shuffle equations with poles.
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oW — M
00) = 4@ 4 W on@ 4 1@ o) 1 151 o () o 4(1))

Remove garbage term of degree —r in ©() to get a new element
(). They are solutions to the double shuffle equations with poles.

Now we have to remove the poles.
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STEP VI
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STEP VI

Set 1
¢= Z Z{§—1’§2n+1}

n>1

35/37



STEP VI

Set
¢= Z {é 1’§2n+1
n>1
GO C)
2 _ 6@ 4 @

) = o0 1 @00 4 O
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STEP VI

Set
¢= Z {é 1’§2n+1}
n>1

F = M)

@ = @ 4 c®

B = oG 4 c@o0® 4 cB)
Theorem
The 7(") is a solution to double shuffle equations with no poles.
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Corollary

Goncharov computed the dimension of the space of solutions of
double shuffle equations in depth 3 (hard!).
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Corollary
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double shuffle equations in depth 3 (hard!).
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constructed explicitly out of 05,,,, 7¢, and o.
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Corollary

The tables for multiple zeta values in depths < 3 are redundant.
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Corollary

Goncharov computed the dimension of the space of solutions of
double shuffle equations in depth 3 (hard!).

Corollary

Every solution to the double shuffle equations in depths < 3 can be
constructed explicitly out of 05,,,, 7¢, and o.

ot

Corollary

The tables for multiple zeta values in depths < 3 are redundant.

Example:

—3319

((5.22) = —

2 25
C(9)+3¢ (3P +31¢(7)¢(2)—~C(5)¢(4)~ - <(3)¢(6)
All coefficients can be determined by the above recipe.
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Geometric interpretation

© The geometric meaning of the elements £5,41, in depths < 3
is clear. | have no geometric interpretation for 7.
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Geometric interpretation

© The geometric meaning of the elements £5,41, in depths < 3
is clear. | have no geometric interpretation for 7.

Q Infinitesimal Tate curve E 8/8 (fiber of universal punctured
elliptic curve at tangential base point at the cusp of M 1)

(3] Liew”"(Eax/aq, 11) is free Lie algebra LL(a, b).

Q 7m1(M11,0/9q) = SLa(Z). Relative completion SLy(Z)™ acts
on L(a, b) via derivations (Nakamura) in DerlL(a, b)

€an 1 a— ad(a)®"b and [a,b] — O
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Geometric interpretation

© The geometric meaning of the elements £5,41, in depths < 3
is clear. | have no geometric interpretation for 7.

Q Infinitesimal Tate curve Eax/aq (fiber of universal punctured
elliptic curve at tangential base point at the cusp of M 1)

(3] Liewf"(Eax/aq,Tl) is free Lie algebra LL(a, b).

Q 7m1(M11,0/9q) = SLa(Z). Relative completion SLy(Z)™ acts
on L(a, b) via derivations (Nakamura) in DerlL(a, b)

€an 1 a— ad(a)®"b and [a,b] — O

© Hain constructed a morphism of MHS (MT motives over Z)
Filn(Pl\{Q 17 OO}, 11) i ﬂf”(Eax/aq, 11)
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Geometric interpretation

© The geometric meaning of the elements £5,41, in depths < 3
is clear. | have no geometric interpretation for 7.

Q Infinitesimal Tate curve E 8/8 (fiber of universal punctured
elliptic curve at tangential base point at the cusp of M 1)

(3] Liew”"(Eax/aq, 11) is free Lie algebra LL(a, b).
Q 7m1(M11,0/9q) = SLa(Z). Relative completion SLy(Z)™ acts
on L(a, b) via derivations (Nakamura) in DerlL(a, b)
€an 1 a— ad(a)®"b and [a,b] — O

© Hain constructed a morph|sm of MHS (MT motives over Z)
4" (P{0,1, 00}, T1) — f"(E] o/0q" 1).

© Dictionary: s < Hain morphism, &,11 < €2542, and
&_1 <> bO/0a in sly. Only holds in depths < 3177
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