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Expect ζ(3), ζ(5), . . . algebraically independent over Q[π], so no
such formula should exist for ζ(2n + 1).
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Reformulation

Consider the generating series

Z (1) =
∑

n≥2

ζ(n)xn−1 ∈ R[[x ]]
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Reformulation

Improvement if we allow a simple pole in x :

Z̃ (1) =
∑

n≥0

ζ(n)xn−1 ∈ R[x−1][[x ]]

where we define

ζ(1) = 0 , ζ(0) = −1/2 .
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Goal

Define the generating series of depth r Multiple Zeta Values:

Z (r) =
∑

n1,...,nr≥1

ζ(n1, . . . , nr ) xn1−1
1 . . . xnr−1

r

where, for nr ≥ 2,

ζ(n1, . . . , nr ) =
∑

1≤k1<k2<...<kr

1

kn1
1 . . . knr

r

5 / 37



Goal

Define the generating series of depth r Multiple Zeta Values:

Z (r) =
∑

n1,...,nr≥1

ζ(n1, . . . , nr ) xn1−1
1 . . . xnr−1

r

where, for nr ≥ 2,

ζ(n1, . . . , nr ) =
∑

1≤k1<k2<...<kr

1

kn1
1 . . . knr

r

Ultimate goal

Write down homogeneous polynomials

σ
(r)
2n+1 := σ2n+1(Z

(r)) ∈ Q[x1, . . . , xr ]

of degree 2n + 1− r , and power series:

τ (r) := τ(Z (r)) ∈ Q[[x1, . . . , xr ]]
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Problem - totally unreasonable!
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This makes no sense! The σ2n+1, τ depend on a choice of basis for
multiple zeta values, and inaccesible transcendence conjectures.
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This makes no sense! The σ2n+1, τ depend on a choice of basis for
multiple zeta values, and inaccesible transcendence conjectures.
Nonetheless,

Theorem

There exists a canonical and explicit choice of elements

(σc
2n+1)

(r) ∈ Q[x1, . . . , xr ] for 1 ≤ r ≤ 4

(τ c)(r) ∈ Q[[x1, . . . , xr ]] for 1 ≤ r ≤ 3

with all the required properties.

Modular forms, monodromy of π1 of universal elliptic curve.
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“Standard” relations for MZV’s
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Stuffle equations

∑

k≥1

1

km

∑

ℓ≥1

1

ℓn
=

( ∑

1≤k<ℓ

+
∑

1≤ℓ<k

+
∑

1≤k=ℓ

) 1

kmℓn

ζ(m)ζ(n) = ζ(m, n) + ζ(n,m) + ζ(m + n) .
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∑

ℓ≥1

1

ℓn
=

( ∑

1≤k<ℓ

+
∑

1≤ℓ<k

+
∑

1≤k=ℓ

) 1

kmℓn

ζ(m)ζ(n) = ζ(m, n) + ζ(n,m) + ζ(m + n) .

Stuffle equations in depth 3:

ζ(n1)ζ(n2, n3) = ζ(n1 + n2, n3) + ζ(n2, n1 + n3)

+ζ(n1, n2, n3)+ ζ(n2, n1, n3)+ ζ(n2, n3, n1)
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Shuffle relations

ζ(2)ζ(2) =

∫

0≤t1≤t2≤1

dt1

1− t1

dt2

t2

∫

0≤s1≤s2≤1

ds1

1− s1

ds2

s2
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ζ(2)ζ(2) =

∫

0≤t1≤t2≤1

dt1

1− t1

dt2

t2

∫

0≤s1≤s2≤1

ds1

1− s1

ds2

s2

Decompose region of summation into six sets, including

∫

0≤t1≤s1≤s2≤t2≤1

dt1

1− t1

ds1

1− s1

ds2

s2

dt2

t2
= ζ(1, 3) .

We deduce the equation

ζ(2)ζ(2) = 4 ζ(1, 3) + 2 ζ(2, 2)

Generalises to an infinite family of relations: shuffle relations.

Regularisation relation (Hoffman): Example ζ(1, 2) = ζ(3).
Involves making sense of ζ(n1, . . . , nr ) for nr = 1 (divergent case).
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Example

In weight 4 there are four MZV’s, ζ(4), ζ(1, 3), ζ(2, 2) and
ζ(1, 1, 2). We have the equations:

ζ(2)2 = 2ζ(2, 2) + ζ(4) (stuffle)

ζ(2)2 = 4ζ(1, 3) + 2ζ(2, 2) (shuffle)

ζ(1, 3) + ζ(4) = 2ζ(1, 3) + ζ(2, 2) (reg.)

2ζ(1, 1, 2) + ζ(2, 2) + ζ(1, 4) = 3ζ(1, 1, 2) (reg.)
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Example

In weight 4 there are four MZV’s, ζ(4), ζ(1, 3), ζ(2, 2) and
ζ(1, 1, 2). We have the equations:

ζ(2)2 = 2ζ(2, 2) + ζ(4) (stuffle)

ζ(2)2 = 4ζ(1, 3) + 2ζ(2, 2) (shuffle)

ζ(1, 3) + ζ(4) = 2ζ(1, 3) + ζ(2, 2) (reg.)

2ζ(1, 1, 2) + ζ(2, 2) + ζ(1, 4) = 3ζ(1, 1, 2) (reg.)

Exercise: deduce that ζ(4) = 2
5ζ(2)2 (Euler).
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Double shuffle ring

Define
Z f =

⊕

n≥0

Z f
n

to be the graded Q-algebra generated by symbols 1 and

ζ f (n1, . . . , nr )

modulo the shuffle, stuffle and regularisation equations.

11 / 37



Double shuffle ring

Define
Z f =

⊕

n≥0

Z f
n

to be the graded Q-algebra generated by symbols 1 and

ζ f (n1, . . . , nr )

modulo the shuffle, stuffle and regularisation equations. Grading is
given by the weight n1 + . . . + nr .

11 / 37



Double shuffle ring

Define
Z f =

⊕

n≥0

Z f
n

to be the graded Q-algebra generated by symbols 1 and

ζ f (n1, . . . , nr )

modulo the shuffle, stuffle and regularisation equations. Grading is
given by the weight n1 + . . . + nr .

There is a canonical homomorphism ζ f (n1, . . . , nr ) 7→ ζ(n1, . . . , nr )

Z f −→ R

11 / 37



Double shuffle ring

Define
Z f =

⊕

n≥0

Z f
n

to be the graded Q-algebra generated by symbols 1 and

ζ f (n1, . . . , nr )

modulo the shuffle, stuffle and regularisation equations. Grading is
given by the weight n1 + . . . + nr .

There is a canonical homomorphism ζ f (n1, . . . , nr ) 7→ ζ(n1, . . . , nr )

Z f −→ R

Zagier conjectured that this map is injective.
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Two problems

Given a set of equations one wants to know: 1) how many
solutions there are, and 2) what are the solutions?
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Two problems

Given a set of equations one wants to know: 1) how many
solutions there are, and 2) what are the solutions?

1 Compute the dimensions

dimQZ
f
n

2 Find the solutions over Q to the double shuffle equations.

Only discuss 2 here.
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Reformulation of the second problem

Goal

Write down a homomorphism

τ : Z f −→ Q

ζ f (2) 7→ 1
24

and linear maps of weight 2n + 1:

σ2n+1 :
Z f

>0

Z f
>0Z

f
>0

−→ Q

ζ f (2n + 1) 7→ 1
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Goal

Write down a homomorphism

τ : Z f −→ Q

ζ f (2) 7→ 1
24

and linear maps of weight 2n + 1:

σ2n+1 :
Z f

>0

Z f
>0Z

f
>0

−→ Q

ζ f (2n + 1) 7→ 1

Furusho ⇒ τ defines a ‘rational associator’ (Drinfeld: τ exists).

Applications: knot invariants, deformation quantization,
Kashiwara-Vergne problem, Mixed Tate motives over Z.
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The coefficients encode the information:
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2
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σ
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1 +
9

2
x2
1 x2 −

11

2
x1x

2
2 + 2x3

2

The coefficients encode the information:

ζ(3, 2) =
9

2
ζ(5)− 2ζ(3)ζ(2)

ζ(2, 3) = −
11

2
ζ(5) + 3ζ(3)ζ(2)

ζ(1, 4) = 2ζ(5) − ζ(3)ζ(2)

These formulae were obtained by solving the double shuffle
equations in weight 5.
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Ill-definedness

The maps τ and σ2n+1 are ill-defined in general!

ζ f (3, 5) = 5ζ f (3)ζ f (5)−
5

2
ζ f (6, 2) +

−7

2764800
(2iπ)8

versus

ζ f (3, 5) = −ζ f (3)ζ f (5)− ζ f (5, 3) +
1

2419200
(2iπ)8

They depend on choice of generating family. A priori not a
reasonable problem.

15 / 37



Main theorem

Theorem

There is an explicit homomorphism

τ c : D3Z
f −→ Q

and linear maps of weight 2n + 1

σ2n+1 :
D4Z

f

Z f
>0Z

f
>0

−→ Q

defined only in terms of Bernoulli numbers.
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Main theorem

Theorem

There is an explicit homomorphism

τ c : D3Z
f −→ Q

and linear maps of weight 2n + 1

σ2n+1 :
D4Z

f

Z f
>0Z

f
>0

−→ Q

defined only in terms of Bernoulli numbers.

They should correspond to a canonical generating set of MZV’s in
depths ≤ 3, 4. I have no idea what this is.

Challenge: extend to all depths.
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Commutative generating series

Consider the (•-regularized) generating series in depth r

Z
(r)
• (x1, . . . , xr ) =
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n1,...,nr≥1
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Commutative generating series

Consider the (•-regularized) generating series in depth r

Z
(r)
• (x1, . . . , xr ) =

∑

n1,...,nr≥1

ζ•(n1, . . . , nr ) xn1−1
1 . . . xnr−1

r

Relations between MZV’s ←→ Functional equations for Z (•)
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Double shuffle equations in depth 2

f
(1)
∗ (x1)f

(1)
∗ (x2) = f

(2)
∗ (x1, x2) + f

(2)
∗ (x2, x1) +

f
(1)
∗ (x1)− f

(1)
∗ (x2)

x1 − x2

f (1)(x1)f
(1)(x2) = f (2)(x1, x1 + x2) + f (2)(x2, x1 + x2)

Where

f (1) = f
(1)
∗ and f

(2)
∗ = f (2) +

1

48
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Where

f (1) = f
(1)
∗ and f

(2)
∗ = f (2) +

1

48

Examples of solutions:

(f
(1)
• , f

(2)
• ) = (Z

(1)
• ,Z

(2)
• ) ∈ R[[x1]]× R[[x2]]

(τ (1), τ (2)) ∈ Q[[x1]]×Q[[x1, x2]]
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The equations modulo products

0 = f
(2)
∗ (x1, x2) + f

(2)
∗ (x2, x1) +

f
(1)
∗ (x1)− f

(1)
∗ (x2)

x1 − x2

0 = f (2)(x1, x1 + x2) + f (2)(x2, x1 + x2)

Where

f (1) = f
(1)
∗ and f

(2)
∗ = f (2) +

1

48
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Where
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(1)
∗ and f
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∗ = f (2) +

1

48

Examples of solutions:

(σ
(1)
2n+1, σ

(2)
2n+1) ∈ Q[x1]×Q[x1, x2]
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Strategy

1 Write down explicit solutions with poles in the xi

2 Cancel out the poles.
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Strategy

1 Write down explicit solutions with poles in the xi

2 Cancel out the poles.

In (2) use group/torsor structure of solutions.

Related to Ecalle’s ARI/GARI?
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Group structure
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A Lie algebra

Work in a graded ring of rational functions

Q =
⊕

r≥1

Q(x1, . . . , xr )

The σ
(r)
2n+1 lie in subspace

⊕
r Q[x1, . . . , xr ]. For τ , work in some

completed version Q̂.
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A Lie algebra

Work in a graded ring of rational functions

Q =
⊕

r≥1

Q(x1, . . . , xr )

The σ
(r)
2n+1 lie in subspace

⊕
r Q[x1, . . . , xr ]. For τ , work in some

completed version Q̂. Define a Lie algebra stucture

{ , } : Q × Q −→ Q

{f , g} = f ◦ g − g ◦ f where

◦ : Q × Q −→ Q

(f ◦ g)(m) =
∑

i+j=m

f (i) ◦ g (j)
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“Linearized” Ihara action

◦ : Q(x1, . . . , xr )×Q(x1, . . . , xs) −→ Q(x1, . . . , xr+s)
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“Linearized” Ihara action

◦ : Q(x1, . . . , xr )×Q(x1, . . . , xs) −→ Q(x1, . . . , xr+s)

f ◦ g (x1, . . . , xr+s) =

s∑

i=0

f (xi+1−xi , . . . , xi+r−xi)g(x1, . . . , xi , xi+r+1, . . . , xr+s) +

(−1)deg f +r

s∑

i=1

f (xi+r+1−xi , . . . , xi+1−xi)g(x1 . . . , xi−1, xi+r , . . . , xr+s)
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“Linearized” Ihara action

◦ : Q(x1, . . . , xr )×Q(x1, . . . , xs) −→ Q(x1, . . . , xr+s)

f ◦ g (x1, . . . , xr+s) =

s∑

i=0

f (xi+1−xi , . . . , xi+r−xi)g(x1, . . . , xi , xi+r+1, . . . , xr+s) +

(−1)deg f +r

s∑

i=1

f (xi+r+1−xi , . . . , xi+1−xi)g(x1 . . . , xi−1, xi+r , . . . , xr+s)

Proposition: (Q, {}) is a graded Lie algebra.

Likewise, we get a left action:

◦ : Q × Q̂ −→ Q̂
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Variant of Racinet’s theorem:

1 The solutions (e.g. σ2n+1) of the double shuffle equations
modulo products in Q form a Lie algebra under {, }.

2 The solutions (e.g. τ) of reg. double shuffle equations in Q̂

are stable under the the left action for ◦ , of even solutions to
double shuffle modulo products.
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Variant of Racinet’s theorem:

1 The solutions (e.g. σ2n+1) of the double shuffle equations
modulo products in Q form a Lie algebra under {, }.

2 The solutions (e.g. τ) of reg. double shuffle equations in Q̂

are stable under the the left action for ◦ , of even solutions to
double shuffle modulo products.

Idea: construct explicit solutions by bootstrapping using the
operation ◦ .

24 / 37



Bootstrapping solutions
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STEP I

Define

s(1) =
1

2 x1

s(2) =
1

6

( 1

x1x2
+

1

x2(x1 − x2)

)
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s of weight 0, so ‘corresponds’ to ζ(0). Has no reason to be there.
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STEP I

Define

s(1) =
1

2 x1

s(2) =
1

6

( 1

x1x2
+

1

x2(x1 − x2)

)

s solve double shuffle mod. products in depths ≤ 2.

s of weight 0, so ‘corresponds’ to ζ(0). Has no reason to be there.

It is surprising that there exists such a solution at all. Can be
extended to all higher depths, but in infinitely many different ways!
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STEP II

Recall σ
(1)
2n+1 = x2n

1 .
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STEP II

Recall σ
(1)
2n+1 = x2n

1 . Set

ξ
(1)
2n+1 = x2n

1

ξ
(2)
2n+1 = {s(1), x2n

1 }

ξ
(3)
2n+1 = {s(2), x2n

1 }+
1

2
{s(1), {s(1), x2n

1 }}

ξ solve double shuffle mod. products with poles in depths ≤ 3.

ξ−1 of weight −1, so ‘corresponds’ to ζ(−1). There exist infinitely
many possible generalisations to all higher depths.
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STEP III

Heresy!
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STEP III

Heresy! Rescale

ζ(2n + 1) to
(2n)!

B2n
ζ(2n + 1)
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STEP III

Heresy! Rescale

ζ(2n + 1) to
(2n)!

B2n
ζ(2n + 1)

Define the heretical normalisations

ξ
−1

=
1

12
ξ−1

ξ
2n+1

=
B2n

(2n)!
ξ2n+1 for n ≥ 1

28 / 37



Canonical σ2n+1’s
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Canonical σ2n+1’s

Define

σc
2n+1 = ξ

2n+1
+

∑

a+b=n

1

2b
{ξ

2a+1
, {ξ

2b+1
, ξ

−1
}}
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Canonical σ2n+1’s

Define

σc
2n+1 = ξ

2n+1
+

∑

a+b=n

1

2b
{ξ

2a+1
, {ξ

2b+1
, ξ

−1
}}

Theorem

The σc
2n+1 have no poles in depths ≤ 4 (with the exception of σc

3),
and are solutions to double shuffle mod. products .
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Canonical σ2n+1’s

Define

σc
2n+1 = ξ

2n+1
+

∑

a+b=n

1

2b
{ξ

2a+1
, {ξ

2b+1
, ξ

−1
}}

Theorem

The σc
2n+1 have no poles in depths ≤ 4 (with the exception of σc

3),
and are solutions to double shuffle mod. products .

The formula for σc
2n+1 should extend to an infinite series in terms

of Lie brackets of the ξ
2n+1

.

Challenge: guess the correct formula?
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If we use canonical, instead of heretical normalisations, then the
coefficients in σc

2n+1 involve products

(
2a + 2b

2a

)
B2aB2b

which are coefficients in the regularised Eichler integral

∫ i∞

0
E2n+2(τ)(X + τY )2ndτ
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Bootstrapping for τ
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Double Bernoulli series

Think of

b(x) =
1

2
+

1

ex − 1

as a deformation of 1
x
. Recall s(1) = 1

2x1
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Double Bernoulli series

Think of

b(x) =
1

2
+

1

ex − 1

as a deformation of 1
x
. Recall s(1) = 1

2x1

Recall the element

s(2) =
1

6

( 1

x1x2
+

1

x2(x1 − x2)

)

It motivates the double Bernoulli series

b2(x1, x2) =
1

3

(
b(x1)b(x2) + b(x2)b(x1 − x2)

)
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STEP IV

Set

2γ(1) = −b1

4γ(2) = −b2 + 1
2b1 ◦ b1

8γ(3) = b2 ◦ b1 −
1
6b1 ◦ (b1 ◦ b1)
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STEP IV

Set

2γ(1) = −b1

4γ(2) = −b2 + 1
2b1 ◦ b1

8γ(3) = b2 ◦ b1 −
1
6b1 ◦ (b1 ◦ b1)

The elements γ solve the ‘semi-homogeneous’ double shuffle
equations. In depth 2 these are:

γ(2)(x1, x1 + x2) + γ(2)(x2, x1 + x2) = γ(1)(x1)γ
(1)(x2)

γ
(2)
∗ (x1, x2) + γ

(2)
∗ (x2, x1) = γ(1)(x1)γ

(1)(x2)

where γ
(2)
∗ = γ(2) + 1

48 .
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STEP V

Set

Θ(1) = γ(1)

Θ(2) = γ(2) + s(1) ◦ γ(1)

Θ(3) = γ(3) + s(1) ◦ γ(2) + 1
2s(2) ◦ γ(1) + 1

2 s(1) ◦ (s(1) ◦ γ(1))
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STEP V

Set

Θ(1) = γ(1)

Θ(2) = γ(2) + s(1) ◦ γ(1)

Θ(3) = γ(3) + s(1) ◦ γ(2) + 1
2s(2) ◦ γ(1) + 1

2 s(1) ◦ (s(1) ◦ γ(1))

Remove garbage term of degree −r in Θ(r) to get a new element
Φ(r). They are solutions to the double shuffle equations with poles.
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STEP V

Set

Θ(1) = γ(1)

Θ(2) = γ(2) + s(1) ◦ γ(1)

Θ(3) = γ(3) + s(1) ◦ γ(2) + 1
2s(2) ◦ γ(1) + 1

2 s(1) ◦ (s(1) ◦ γ(1))

Remove garbage term of degree −r in Θ(r) to get a new element
Φ(r). They are solutions to the double shuffle equations with poles.

Now we have to remove the poles.

34 / 37



STEP VI
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STEP VI

Set

C =
∑

n≥1

1

2n
{ξ

−1
, ξ

2n+1
}
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STEP VI

Set

C =
∑

n≥1

1

2n
{ξ

−1
, ξ

2n+1
}

τ (1) = Φ(1)

τ (2) = Φ(2) + C (2)

τ (3) = Φ(3) + C (2) ◦Φ(1) + C (3)
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STEP VI

Set

C =
∑

n≥1

1

2n
{ξ

−1
, ξ

2n+1
}

τ (1) = Φ(1)

τ (2) = Φ(2) + C (2)

τ (3) = Φ(3) + C (2) ◦Φ(1) + C (3)

Theorem

The τ (r) is a solution to double shuffle equations with no poles.
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Corollary

Goncharov computed the dimension of the space of solutions of
double shuffle equations in depth 3 (hard!).
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constructed explicitly out of σc

2n+1, τ c , and ◦ .
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Corollary

Goncharov computed the dimension of the space of solutions of
double shuffle equations in depth 3 (hard!).

Corollary

Every solution to the double shuffle equations in depths ≤ 3 can be
constructed explicitly out of σc

2n+1, τ c , and ◦ .

Corollary

The tables for multiple zeta values in depths ≤ 3 are redundant.

Example:

ζ(5, 2, 2) =
−3319

72
ζ(9)+

2

3
ζ(3)3+31 ζ(7)ζ(2)−ζ(5)ζ(4)−

25

6
ζ(3)ζ(6)

All coefficients can be determined by the above recipe.
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Geometric interpretation

1 The geometric meaning of the elements ξ2n+1, in depths ≤ 3
is clear. I have no geometric interpretation for τ .
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on L(a, b) via derivations (Nakamura) in DerL(a, b)

ε2n : a 7→ ad(a)2nb and [a, b] 7→ 0

5 Hain constructed a morphism of MHS (MT motives over Z)

πun
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Geometric interpretation

1 The geometric meaning of the elements ξ2n+1, in depths ≤ 3
is clear. I have no geometric interpretation for τ .

2 Infinitesimal Tate curve E×

∂/∂q
(fiber of universal punctured

elliptic curve at tangential base point at the cusp of M1,1)

3 Lie πun
1 (E×

∂/∂q
,
→

11) is free Lie algebra L(a, b).

4 π1(M1,1, ∂/∂q) = SL2(Z). Relative completion SL2(Z)rel acts
on L(a, b) via derivations (Nakamura) in DerL(a, b)

ε2n : a 7→ ad(a)2nb and [a, b] 7→ 0

5 Hain constructed a morphism of MHS (MT motives over Z)

πun
1 (P1\{0, 1,∞},

→

11)→ πun
1 (E×

∂/∂q
,
→

11).

6 Dictionary: s ↔ Hain morphism, ξ2n+1 ↔ ε2n+2, and
ξ−1 ↔ b∂/∂a in sl2. Only holds in depths ≤ 3!??
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