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Abstract. A long-standing conjecture in quantum field theory due to Broadhurst
and Kreimer states that the amplitudes of the zig-zag graphs are a certain explicit
rational multiple of the odd values of the Riemann zeta function. In this paper
we prove this conjecture by constructing a certain family of single-valued multiple
polylogarithms. The zig-zag graphs therefore provide the only infinite family of
primitive graphs in φ4

4
theory (in fact, in any renormalisable quantum field theory

in four dimensions) whose amplitudes are now known.

To David Broadhurst, a pioneer, for his 65th birthday

1. Introduction

In 1995 Broadhurst and Kreimer [4] conjectured a formula for the amplitudes of a
well-known family of graphs in φ4 theory called the zig-zag graphs. We give a proof
of this conjecture using the second author’s theory of graphical functions [22] (see also
[12]) and a variant of the first author’s theory of single-valued multiple polylogarithms
[5]. The proof makes use of a recent theorem due to Zagier [26, 19] on the evaluation of
the multiple zeta values ζ(2, . . . , 2, 3, 2, . . . , 2) in terms of the numbers ζ(2m + 1)π2k.

1.1. Statement of the theorem. For n ≥ 3, let Zn denote the zig-zag graph with n
loops (and zero external momenta), pictured below.

Z5

Its scheme independent contribution to the beta function in φ4
4 theory (a period in

the sense of [17]), can be written in parametric space as follows. Number the edges of
Zn from 1 to 2n, and to each edge e associate a variable αe. The period of Zn is given
by the convergent integral in projective space [24]:

(1.1) IZn
=

∫

∆

Ω2n−1

Ψ2
Zn

∈ R

where ∆ = {(α1 : . . . : α2n) : αi ≥ 0} ⊂ P2n−1(R) is the standard coordinate simplex,

Ω2n−1 =

2n∑

i=1

(−1)iαi dα1 ∧ . . . d̂αi . . . ∧ dα2n ,

1
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and ΨZn
∈ Z[α1, . . . , α2n] is the graph, or Kirchhoff [15], polynomial of Zn. It is

defined more generally for any graph G by the formula

ΨG =
∑

T⊂G

∏

e/∈T

αe

where the sum is over all spanning trees T of G. Since the degree of ΨZn
is equal to n,

it follows that the integrand of (1.1) is a homogeneous 2n− 1-form on the complement
of the graph hypersurface V (ΨG) in P2n−1.

For n = 3, 4 the zig-zag graphs Zn are isomorphic to the wheels with n spokes
Wn, whose periods are known for all n by Gegenbauer polynomial techniques [3]. For
n ≥ 5, the graphs Wn are unphysical, and different from the Zn. The period for Z5

was computed by Kazakov in 1983 [14], for Z6 by Broadhurst in 1985 [2] (see also [23]),
and the cases Zn for n ≤ 12 can now be obtained by computer [22] using single-valued
multiple polylogarithms [5]. The period of Zn is a priori known to be a multiple zeta
value of weight 2n − 3 either by this method, or by the general method of parametric
integration of [6]. The precise formula for its period was conjectured in [4].

Theorem 1.1. (Zig-zag conjecture [4]). The period of the graph Zn is given by

(1.2) IZn
= 4

(2n − 2)!

n!(n − 1)!

(
1 −

1 − (−1)n

22n−3

)
ζ(2n − 3)

Using the well-known fact that the period of a two-vertex join of a family of graphs
is the product of their periods, we immediately deduce:

Corollary 1.2. Any product of odd zeta values
∏N

i=1 ζ(2ni + 1), for ni ≥ 1, occurs as
the period of a primitive logarithmically-divergent graph in φ4

4 theory.

The strategy of our proof is to compute the amplitude of the zig-zag graphs in posi-
tion space by direct integration. At each integration step, one has to solve a unipotent
differential equation in ∂/∂z and ∂/∂z on P1\{0, 1,∞}(C), whose solution is necessar-
ily single-valued. Such a method was first introduced by Davidychev and Ussyukina
in [11] for a family of ladder diagrams. The functions they obtained are single-valued

versions of the classical polylogarithms Lin(z) =
∑

k≥1
zk

kn . A broad generalisation of

this method was recently found independently by Schnetz [22] and Drummond [12],
and works for a large class of graphs. It uses the fact that any unipotent differential
equation on P1\{0, 1,∞} can be solved using the single-valued multiple polylogarithms
constructed in [5]. Unfortunately, the definition of these functions is complicated and
not completely explicit, so the best one can presently do by this method is to prove the
zig-zag conjecture modulo products of multiple zeta values [21], [22]. Therefore this
approach fails to predict the most important property of the zig-zag periods, which is
that they reduce to a single Riemann zeta value. Experimental evidence suggests that
the zig-zags may be the only φ4 periods with this property [20].

In this paper we take a different approach, and modify the construction of the single-
valued polylogarithms of [5] to write down a specific family of single-valued functions
which are tailor-made for the zig-zag graphs. It does not generalise to all multiple
polylogarithms, although we expect that some extensions of the present method are
possible. The construction relies on some special properties of the Hoffman multiple
zeta values ζ(2, . . . , 2, 3, 2, . . . , 2) and uses a factorization of various non-commutative
generating series into a ‘pure odd zeta’ and ‘pure even zeta’ part.

1.2. Two families of single-valued multiple polylogarithms. Most of the paper
(§3 and §4) is devoted to constructing the following explicit families of functions.
Recall that R〈〈x0, x1〉〉 denotes the ring of formal power series in two non-commuting
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variables x0 and x1. For any element S ∈ R〈〈x0, x1〉〉, let S̃ denote the series obtained
by reversing the letters in every word which occurs in S. For any word w ∈ {x0, x1}

×,
let Lw(z) denote the multiple polylogarithm in one variable, defined by the equations

d

dz
Lwxi

(z) =
Lw(z)

z − i
for all i = 0, 1,

and the condition Lw(z) ∼ 0 as z → 0 for all words w not of the form x
n
0 , and

Lx
n
0
(z) = 1

n!
logn(z). The Lw(z) are multi-valued functions on P1\{0, 1,∞}(C).

Definition 1.3. Define a formal power series S ∈ R〈〈x0, x1〉〉 by

S = 1 + S0
0,0 + S1

0,1 + S1
1,0 + S1

0,0 ,

where S1
0,1 = S̃1

1,0 , and

S0
0,0 = −4

∑

n≥1

ζ(2n + 1) (x0x1)
n
x0(1.3)

S1
1,0 = −4

∑

m≥1,n≥0

(
2m + 2n

2m

)
ζ(2m + 2n + 1) (x1x0)

m
x0(x1x0)

n

S1
0,0 =

1

2

(
S0

0,0 S
0
0,0 + S0

0,0 S
1
1,0 + S1

0,1 S
0
0,0

)
.

For all w ∈ {x0, x1}
×, let Sw be the coefficient of w in S. It is either an integer

multiple of an odd single zeta value ζ(2n+1), n ≥ 1, or an integral linear combination
of products of two odd single zeta values ζ(2n + 1)ζ(2m + 1), for m, n ≥ 1.

Let B0 denote the set of words w ∈ {x0, x1}
× which contain no subsequences of the

form x1x1 or x0x0x0, and have at most one subsequence of the form x0x0. These prop-
erties are clearly stable under reversing the letters in a word, or taking a subsequence.
For every w ∈ B0, define a series

(1.4) Fw(z) =
∑

w=u1u2u3

Leu1
(z)Su2

Lu3
(z)

where w̃ denotes a word w written in reverse order. A priori Fw(z) is a multivalued,
real analytic function on P1\{0, 1,∞}. In §3 we prove the following theorem.

Theorem 1.4. If w ∈ B0, the function Fw(z) is single-valued, and satisfies

Fw(z) = F ew(z) .

Let i, j ∈ {0, 1}. If xiwxj ∈ B0, then

(1.5)
∂2

∂z∂z
Fxiwxj

(z) =
Fw(z)

(z − i)(z − j)
.

The second family of functions is defined as follows.

Definition 1.5. Define a formal power series Ŝ ∈ R〈〈x0, x1〉〉 by

Ŝ = 1 + Ŝ0
0,0 + Ŝ1

0,1 + Ŝ1
1,0 + Ŝ1

0,0 ,

where Ŝ0
0,0 = S0

0,0 , Ŝ1
0,1 =

˜̂
S1

1,0 , and

(1.6)

Ŝ1
1,0 = −4

∑

m≥0,n≥1

(1 − 2−2n−2m)

(
2m + 2n

2m + 1

)
ζ(2m + 2n + 1) (x1x0)

m
x1(x1x0)

n

Ŝ1
0,0 =

1

2

(
Ŝ0

0,0 Ŝ
1
1,0 + Ŝ1

0,1 Ŝ
0
0,0

)
.
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Note that, contrary to the previous case, the coefficients of the odd single zeta values
and their products in Ŝ now have large powers of 2 in their denominators.

Now let B1 denote the set of words w obtained from B0 by interchanging x0 and
x1. Thus words w ∈ B1 contain no x0x0, no x1x1x1 and at most one x1x1. For every
w ∈ B1, define a series

(1.7) F̂w(z) =
∑

w=u1u2u3

Leu1
(z)Ŝu2

Lu3
(z) .

In §4 we prove the following theorem.

Theorem 1.6. If w ∈ B1, the function F̂w(z) is single-valued, and satisfies

(1.8) F̂w(z) = F̂ ew(z) .

Let i, j ∈ {0, 1}. If xiwxj ∈ B1, then

(1.9)
∂2

∂z∂z
F̂xiwxj

(z) =
F̂w(z)

(z − i)(z − j)
.

Remark 1.7. It is worth noting that the definition of S in (1.3) is compatible with the

definition of Ŝ in (1.6), i.e., Sw = Ŝw for all w ∈ B0∩B1. This means that it is possible
to combine the previous theorems into a single generating series

Fw(z) =
∑

w=u1u2u3

Leu1
(z)Tu2

Lu3
(z) ,

for w ∈ B0 ∪ B1, where T = S + Ŝ − 1 − S0
0,0 . However, this ansatz does not give

single-valued functions for all words w in {x0, x1}
×. Since the two previous theorems

are rather different in character, and play completely different roles in the zig-zag
conjecture, we decided to keep their statement and proofs separate.

The zig-zag conjecture itself is proved in §5 using the two previous theorems to deal
with the case when n is even, or odd, respectively.

1.3. Some remarks. All available data suggests [20] that the zig-zag graphs play the
same role in φ4 theory as the odd single zeta values ζ(2n+1) in the theory of multiple
zeta values. The latter are the primitive elements in the algebra of motivic multiple
zeta values and correspond to the generators of the Lie algebra of the motivic Galois
group of mixed Tate motives over Z. Corollary 1.2 has the important consequence
that the periods of φ4 theory are closed under the action of the motivic Galois group,
to all known weights [10]. It would therefore be very interesting to prove by motivic
methods that IZn

is an odd single zeta value. The fact that the multiple zeta values
ζ(2, . . . , 2, 3, 2, . . . , 2) appear in the analytic calculation may give some insight into a
long hoped-for formula for the motivic coaction on φ4 amplitudes. At present, this
is out of reach, but a small step in this direction was taken in [9], where we gave an
explicit formula for the class of the zig-zag graph hypersurfaces V (ΨZn) ⊂ P2n−1 in
the Grothendieck ring of varieties. It is a polynomial in the Lefschetz motive.

Note that it is known by the work of Rivoal and Ball-Rivoal [1] that the odd zeta
values span an infinite dimensional vector space over the field of rational numbers.
Thus the same conclusion holds for the periods of primitive graphs in φ4 theory. In
the early days of quantum field theory, the hope was often expressed that the periods
would be rational numbers, so corollary 1.2 forms part of an increasing body of evidence
(see also [9]), that this is very far from the truth.
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2. Preliminaries

2.1. Reminders on shuffle algebras and formal power series. Let R be a com-
mutative unitary ring. The shuffle algebra R〈x0, x1〉 on two letters is the free R-module
spanned by all words w in the letters x0, x1, together with the empty word 1. The shuffle
product is defined recursively by w x 1 = 1xw = w and

xiw x xjw
′ = xi(w x xjw

′) + xj(xiw xw′)

for all i, j ∈ {0, 1}, and w, w′ ∈ {x0, x1}
×. The shuffle product, extended linearly

to all words, makes R〈x0, x1〉 into a commutative unitary ring. The deconcatenation
coproduct is defined to be the linear map

∆ : R〈x0, x1〉 −→ R〈x0, x1〉 ⊗R R〈x0, x1〉

∆(w) =
∑

uv=w

u ⊗ v

and the antipode is the linear map defined by w 7→ (−1)|w|w̃, where |w| ∈ N denotes
the length of a word w which defines a grading on R〈x0, x1〉. With these definitions,
R〈x0, x1〉 is a commutative, graded, Hopf algebra over R.

The dual of R〈x0, x1〉 is the R-module of non-commutative formal power series

R〈〈x0, x1〉〉 = {S =
∑

w∈{x0,x1}×

Sww , Sw ∈ R}

equipped with the concatenation product. It is the completion of R〈x0, x1〉 with respect
to the augmentation ideal ker ε, where ε : R〈x0, x1〉 → R is the map which projects
onto the empty word. Then R〈〈x0, x1〉〉 is a complete Hopf algebra with respect to the
(completed) coproduct

Γ : R〈〈x0, x1〉〉 −→ R〈〈x0, x1〉〉⊗̂RR〈〈x0, x1〉〉

for which the elements x0, x1 are primitive: Γ(xi) = 1 ⊗ xi + xi ⊗ 1 for i = 0, 1. The
antipode is as before. Thus R〈〈x0, x1〉〉 is cocommutative but not commutative.

By duality, a series S ∈ R〈〈x0, x1〉〉 defines an element S ∈ HomR−mod(R〈x0, x1〉, R)
as follows: to any word w associate the coefficient Sw of w in S.

An invertible series S ∈ R〈〈x0, x1〉〉
× (i.e., with invertible leading term S1) is group-

like if Γ(S) = S ⊗S. Equivalently, the coefficients Sw of S define a homomorphism for
the shuffle product: Sw xw′ = SwSw′ for all w, w′ ∈ {x0, x1}

×, where S• is extended
by linearity on the left-hand side. By the formula for the antipode, it follows that for
such a series S = S(x0, x1), its inverse is given by

(2.1) S(x0, x1)
−1 = S̃(−x0,−x1) .

2.2. Multiple polylogarithms in one variable. Recall that the generating series
of multiple polylogarithms on P1\{0, 1,∞} is denoted by

L(z) =
∑

w∈{x0,x1}×

Lw(z) .

It is the unique solution to the Knizhnik-Zamolodchikov equation [16]

(2.2)
d

dz
L(z) = L(z)

(
x0

z
+

x1

z − 1

)
,
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which satisfies the asymptotic condition

(2.3) L(z) = exp(x0 log(z))h0(z)

for all z in the neighbourhood of the origin, where h0(z) is a function taking values
in C〈〈x0, x1〉〉 which is holomorphic at 0 and satisfies h(0) = 1. Note that we use
the opposite convention to [5] in this paper: differentiation of Lw(z) corresponds to
deconcatenation of w on the right. The series L(z) is a group-like formal power series.
In particular, the polylogarithms Liw(z) satisfy the shuffle product formula

(2.4) Lwxw′(z) = Lw(z)Lw′(z) for all w, w′ ∈ {x0, x1}
× .

We have

(2.5) −L
x1x

n−1

0

(z) = Lin(z) =
∑

k≥1

zk

kn
,

for all n ≥ 1, which expresses the classical polylogarithms as coefficients of L(z).
Denote the generating series of (shuffle-regularized) multiple zeta values, or Drin-

feld’s associator, by

Z(x0, x1) =
∑

w∈{x0,x1}×

ζ(w)w ∈ C〈〈x0, x1〉〉 .

It is the regularized limit of L(z) at the point z = 1. In other words, there exists a
function h1(z) taking values in series C〈〈x0, x1〉〉, which is holomorphic at z = 1 where
it takes the value h(1) = 1, such that

(2.6) L(z) = Z(x0, x1) exp(x1 log(z − 1))h1(z) .

The series Z(x0, x1) is group-like, so in particular we have

(2.7) Z(x0, x1)
−1 = Z̃(−x0,−x1) .

When no confusion arises, we denote Z(x0, x1) simply by Z. Its coefficients are (shuffle-
regularized) iterated integrals

ζ(xi1 . . . xin
) =

∫ 1

0

ωi1 . . . ωin
for all i1, . . . , in ∈ {0, 1}

where the differential forms are integrated starting from the left, ω0 = dz
z and ω1 = dz

z−1
.

For i ∈ {0, 1}, let Mi denote analytic continuation around a path winding once
around the point i in the positive direction. The operators Mi act on the series L(z)
and L(z), commute with multiplication, and commute with ∂

∂z and ∂
∂z .

Lemma 2.1. [18]. The monodromy operators M0,M1 act as follows:

M0L(z) = e2πix0 L(z)(2.8)

M1L(z) = Ze2πix1Z−1L(z) .

Proof. The formula for the monodromy at the origin follows immediately from (2.3)
and the equation M0 log(z) = log z + 2iπ. From (2.6) we obtain

(2.9) M1L(z) = M1

(
Z exp(x1 log(z − 1))h1(z)

)

= Z exp(2iπx1) exp(x1 log(z − 1))h1(z) = Z exp(2iπx1)Z
−1L(z) .

�
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2.3. Hoffman multiple zeta values. We need to consider a certain family of multiple
zeta values similar to those first considered by Hoffman [13].

If n1, . . . , nr ≥ 1, define the following shuffle-regularized multiple zeta value:

ζk(n1, . . . , nr) = (−1)rζ(xk
0x1x

n1−1
0 . . . x1x

nr−1
0 ) .

In the non-singular case k = 0, nr ≥ 2, it reduces to the multiple zeta value

ζ(n1, . . . , nr) =
∑

0<k1<k2<...<kr

1

kn1

1 . . . knr
r

∈ R ,

and we shall drop the subscript k whenever it is equal to 0. Henceforth, let 2{n} denote
a sequence 2, . . . , 2 of n two’s. Certain families of multiple zeta values will repeatedly
play a role in the sequel. The first family corresponds to alternating words of type
(x1x0)

n and reduce to even powers of π:

(2.10) ζ(2{n}) =
π2n

(2n + 1)!
.

The following identity, for words of type x0(x1x0)
n, is corollary 3.9 in [7], and is

easily proved using standard relations between multiple zeta values:

(2.11) ζ1(2
{n}) = 2

n∑

i=1

(−1)iζ(2i + 1)ζ(2{n−i}) .

Next, define for any a, b, r ∈ N,

(2.12) Ar
a =

(
2r

2a + 2

)
and Br

b =
(
1 − 2−2r

)( 2r

2b + 1

)
.

The following theorem is due to Zagier [26], recently reproved in [19].

Theorem 2.2. Let a, b ≥ 0. Then

(2.13) ζ(2{a}32{b}) = 2
a+b+1∑

r=1

(−1)r(Ar
a − Br

b ) ζ(2r + 1) ζ(2{a+b+1−r}) .

We denote the corresponding generating series by:

Zπ =
∑

n≥0

(−1)nζ(2{n}) (x1x0)
n(2.14)

Z0 =
∑

n≥1

(−1)nζ1(2
{n}) x0(x1x0)

n

ZH =
∑

m,n≥0

(−1)m+n+1ζ(2{m}32{n}) (x1x0)
m+1

x0(x1x0)
n

Zs =
∑

m,n≥0

(−1)m+n+1ζ1(2
{m}32{n}) x0(x1x0)

m+1
x0(x1x0)

n

The coefficients of Zπ are even powers of π by (2.10), and the coefficients of Z0 and ZH

are products of odd zeta values with even powers of π by (2.11) and (2.13). However,
the values of the ‘singular’ Hoffman elements ζ1(2

{m}32{n}) are not known. Luckily,
these numbers will drop out of our proofs.

Remark 2.3. It turns out that the Galois coaction on the corresponding motivic mul-
tiple zeta values ζm

1 (2{m}32{n}) can be computed explicitly using the motivic version
of theorem 2.2 given in ([7], theorem 4.3), and that they have ‘motivic depth’ at most
two. It follows from the method of [8] that the numbers ζ1(2

{m}32{n}) are completely
determined up to an unknown rational multiple of π2m+2n+4.
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2.4. Duality relations. The automorphism z 7→ 1 − z of P1\{0, 1,∞} interchanges
the two forms ω0 = dz

z and ω1 = dz
z−1

, and reverses the canonical path from 0 to 1.
The following well-known ‘duality relation’

(2.15) ζ(xi1 . . . xin
) = (−1)nζ(x1−in

. . . x1−i1) for all i1, . . . , in ∈ {0, 1}

follows from their interpretation as iterated integrals. Some analogous series to (2.14)
obtained by summing over sets of words in B1, will appear in §4.3. By (2.15) their
coefficients can be expressed in terms of the multiple zeta values considered above.

3. Proof of theorem 1.4

3.1. The coalgebra of 1-Hoffman words.

Definition 3.1. Let IH ⊂ C〈〈x0, x1〉〉 denote the (complete) ideal generated by

w1x
2
1w2 , w1x

3
0w2 , w1x

2
0w2x

2
0w3

for all w1, w2, w3 ∈ C〈〈x0, x1〉〉.

Likewise, let H ⊂ C〈x0, x1〉 denote the subspace spanned by the set B0 of words w
which contain no word x1x1, no word x0x0x0 and at most a single subsequence x0x0.
It has an increasing filtration F given by the number of subsequences x0x0 (called the
‘level’ filtration in [7]) which satisfies F−1H = 0 and F1H = H. Thus F0H is the
complex vector space spanned by the empty word and alternating words of the form

(3.1) w = . . . x1x0x1x0 . . . ,

(with any initial and final letter) and grF
1 H is isomorphic to the vector space spanned

by 1-Hoffman words of the form

(3.2) w = . . . x1x0x0x1x0 . . . ,

where the letters denoted by three dots are alternating (again with any initial and final
letters). Clearly H is stable under the deconcatenation coproduct:

∆ : H → H ⊗C H ,

and the filtration is compatible with deconcatenation: ∆FiH ⊂
⊕

j+k=i FjH ⊗C FkH ,

where i, j, k ∈ {−1, 0, 1}. The coalgebra H is dual to C〈〈x0, x1〉〉/IH .

Definition 3.2. Let T ⊂ C〈〈x0, x1〉〉 denote any non-commutative formal power series
T =

∑
w∈{x0,x1}× Tww. For all i, j ∈ {0, 1}, let Ti,j denote the series

(3.3) Ti,j = Txi
xi δij +

∑

w∈xi{x0,x1}×
xj

Tww

where the sum is over words beginning in xi and ending in xj . Thus

T = T1 · 1 + T0,0 + T1,0 + T0,1 + T1,1

where T1 ∈ C. Likewise, for k = 0 or k = 1, let

(3.4) T k =
∑

w∈B0

k

Tww

where B0
0 ⊂ B0 is the set of words (3.1), and B0

1 ⊂ B0 is the set of words (3.2).
Combining (3.3) and (3.4) gives rise to eight series T k

i,j for all i, j, k ∈ {0, 1}.
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For any series T ⊂ C〈〈x0, x1〉〉, we have

(3.5) T ≡ T1 · 1 +
∑

0≤i,j,k≤1

T i
j,k (mod IH)

Let A, B ⊂ C〈〈x0, x1〉〉 be any two series. It follows from the definition of IH that

(3.6) A1
∗,∗B

1
∗,∗ ≡ A1

∗,0B
0
0,∗ ≡ A0

∗,0B
1
0,∗ ≡ A∗

∗,1B
∗
1,∗ ≡ 0 (mod IH)

where a ∗ denotes any index equal to 0 or 1. We will often use the fact that

(3.7) T ≡ 0 (mod IH) ⇐⇒ T i
j,k = 0 for all i, j, k ≤ 1 .

The following series plays an important role.

Definition 3.3. Let V = Zx1Z
−1 ∈ C〈〈x0, x1〉〉 and V− = V (−x0,−x1).

3.2. Solutions to (1.5) and their monodromy equations. We wish to construct
functions Fw(z) satisfying the conditions of theorem 1.4. For this, define a generating
series F (z) =

∑
w∈{x0,x1}× Fw(z)w by the ansatz

(3.8) F (z) = L̃(z)SL(z) ,

where S ⊂ C〈〈x0, x1〉〉 is a constant series which is yet to be determined. It follows
immediately from (3.8) and equation (2.2) that

∂2

∂z∂z
Fxiwxj

(z) =
Fw(z)

(z − i)(z − j)

for all i, j ∈ {0, 1}, and all words w ∈ {x0, x1}
×. Note that it is not possible to choose S

in such a way that (3.8) is single-valued in general. However, we are only interested in
the coefficients Fw(z) of F for words w which satisfy the conditions of theorem 1.4, i.e.,
those words which are basis elements of the coalgebra H . This gives rise to a weaker
set of conditions on the series S modulo the ideal IH , which do admit a solution.

Proposition 3.4. The functions Fw(z) defined by (3.8) are single-valued and satisfy
Fw(z) = F ew(z) for every such word w if and only if the series S satisfies

(i) [S, x0] ≡ 0 (mod IH)

(ii) V−S + SV ≡ 0 (mod IH)

(iii) S ≡ S̃ (mod IH) .

Equation (i) implies that S∗
1,1 = S0

1,0 = S0
0,1 = 0.

Proof. Since the ideal IH is the annihilator of the coalgebra H , it is enough to find
conditions on S so that the following equations hold

M0F (z) ≡ F (z) (mod IH)(3.9)

M1F (z) ≡ F (z) (mod IH) .

For the monodromy at 0, lemma (2.1) yields

(3.10) e−2iπx0Se2iπx0 ≡ S (mod IH) .

In particular, S1,∗e
2iπx0 ≡ S1,∗ (mod IH). There is an invertible series T ∈ C〈〈x0, x1〉〉

such that e2iπx0 − 1 = x0T , so we deduce that

S1,∗ x0 ≡ 0 (mod IH) ,

which implies that (Sx0)
0
1,0 + (Sx0)

1
1,0 = 0. Removing the final letter x0 yields the

equations S0
1,0 = S0

1,1 = S1
1,1 = 0. By symmetry, we also have S0

0,1 = 0. Thus the
only surviving terms in S are of the form

(3.11) S = S1 · 1 + S0
0,0 + S1

1,0 + S1
0,1 + S1

0,0
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and so x
2
0S ≡ Sx

2
0 ≡ x0Sx0 ≡ x

2
0 (mod IH) by equations (3.6). Expanding out equation

(3.10), and using the fact that x
n
0 ∈ IH for n ≥ 3, we deduce that

x0S ≡ Sx0 (mod IH) .

Conversely, this equation clearly implies (3.10), so they are equivalent.
Now consider the monodromy at 1. Lemma 2.1 and (3.9) yield the equation

W̃SW ≡ S (mod IH) ,

where W = Ze2iπx1Z−1. Since x
2
1 ∈ IH , we have W ≡ 1 + 2iπV (mod IH), and the

previous equation is equivalent to

2iπ(−Ṽ S + SV ) − (2iπ)2Ṽ SV ≡ 0 (mod IH) ,

Since V 2 ≡ Z2
x
2
1Z

−2 ≡ 0 (mod IH), multiplying the previous expression on the right

by V yields Ṽ SV ≡ 0 (mod IH), and it is equivalent to the identity

−Ṽ S + SV ≡ 0 (mod IH) ,

which gives (ii) by equation (2.1).
Finally, the equivalence of (iii) with the equation F ew(z) = Fw(z) is obvious. �

We can reduce equation (ii) of the previous proposition further.

Lemma 3.5. If S∗
1,1 = S0

1,0 = S0
0,1 = 0 and S is real, the equation V−S + SV ≡ 0

(mod IH) is equivalent to three sets of equations:

(3.12) 2V 0
0,1 + S0

0,0 V 0
1,1 ≡ 0

involving only the alternating part S0
0,0 , an equation involving S1

0,1 ,S1
1,0 :

(3.13) 2V 1
1,1 − V 0

1,1 S
1
0,1 + S1

1,0 V 0
1,1 ≡ 0

and a final set of equations involving S1
0,0 also:

{V 0
0,1 ,S1

0,1 } + S0
0,0 (V 0

0,1 + V 1
1,1 ) ≡ −S1

0,0 V 0
1,1(3.14)

V sing + [S0
0,0 , V 0

0,0 ] − V 0
0,0 S

1
1,0 + S1

0,1 V 0
0,0 ≡ −V 0

0,1 S
1
0,0 − S1

0,0 V 0
1,0

where V sing = 2V 1
0,0 − V 1

0,1 S
0
0,0 + S0

0,0 V 1
1,0 , {x, y} = xy + yx and [x, y] = xy − yx.

Proof. Decompose the four equations (V−S + SV )i,j ≡ 0, for i, j ∈ {0, 1} into their
parts of odd and even weights. After killing terms using (3.6), this gives eight equations,
one of which vanishes, and the remaining seven are exactly the equations listed above
together with the three equations

2V 0
1,0 − V 0

1,1 S
0
0,0 ≡ 0

{V 0
1,0 ,S1

1,0 } + (V 0
1,0 + V 1

1,1 )S0
0,0 ≡ V 0

1,1 S
1
0,0

V 0
0,1 S

0
0,0 + S0

0,0 V 0
1,0 ≡ 0.

The first two of these equations follow from (3.12) and the first equation in (3.14),

respectively, upon reflection using Ṽ = −V− and S̃ = S. The last equation is an
immediate consequence of the first one and equation (3.12). �

In the sequel we show that our formula for S0
0,0 given by equation (1.3) is compatible

with (3.12). The non-trivial part is to check that our explicit expression for S1
1,0 and

S1
0,1 indeed gives a solution to (3.13). Finally, admitting (3.13), the first equation of

(3.14) defines S1
0,0 , and it is a simple matter to verify the second equation of (3.14).
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3.3. Decomposition of V . It follows from (3.6) and the inversion relation (2.7) that

(3.15) V ≡ (1 + Z0
0,0 + Z0

1,0 + Z1
0,0 + Z1

1,0 ) x1

(1 −Z0
0,0 + Z0

0,1 + Z1
0,0 −Z1

0,1 ) (mod IH) .

With the notations from (2.14), we find that

Z0 = Z0
0,0 , Zπ = 1 + Z0

1,0 , ZH = Z1
1,0 , Zs = Z1

0,0

and therefore by decomposition (3.15) and Z̃0 = Z0

V 0
0,0 = −Z0x1Z0 , V 0

0,1 = Z0x1Z̃π(3.16)

V 0
1,0 = −Zπx1Z0 , V 0

1,1 = Zπx1Z̃π

for the alternating words, and

V 1
0,0 = Z0x1Z̃s −Zsx1Z0 , V 1

0,1 = −Z0x1Z̃H + Zsx1Z̃π

V 1
1,0 = Zπx1Z̃s −ZHx1Z0 , V 1

1,1 = −Zπx1Z̃H + ZHx1Z̃π .

We now proceed with the verification of the equations of lemma 3.5.

3.4. Alternating words. The first task is to separate the elements V 0
∗,∗ into a pure

odd zeta part S0
0,0 , and a pure ‘powers of π’ part V 0

1,1 .

Lemma 3.6. We have

2Z0 = −S0
0,0 Zπ = −Z̃πS

0
0,0 .(3.17)

Proof. By the definition (2.14) of Zπ and (1.3) we have

−S0
0,0 Zπ = 4

∑

m≥1,n≥0

(−1)nζ(2m + 1)ζ(2{n})(x0x1)
m

x0(x1x0)
n

= 4

∞∑

n=0

n∑

m=1

(−1)n−mζ(2m + 1)ζ(2{n−m})(x0x1)
n
x0.

The first equation in the lemma follows immediately by (2.11). The second equation
follows from the first by reversing the order of the words. �

Corollary 3.7. All four series V 0 can be reduced to the single series V 0
1,1 :

4V 0
0,0 = −S0

0,0 V 0
1,1 S

0
0,0(3.18)

2V 0
0,1 = −S0

0,0 V 0
1,1

2V 0
1,0 = V 0

1,1 S
0
0,0 .

In particular, equation (3.12) holds.

Proof. Immediate consequence of the formulae for V 0 in §3.3 and lemma 3.6. �

3.5. Singular Hoffman part. The next task is to gather all terms involving the
singular Hoffman series Zs, which fortunately drops out of the final calculation.

Lemma 3.8. The following identity holds:

(3.19) 2V sing = S0
0,0 V 1

1,1 S
0
0,0 .
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Proof. Rewrite the elements V 1
∗,∗ using the formulae in §3.3. The left-hand side gives

4(Z0x1Z̃s −Zsx1Z0) − 2(Zsx1Z̃π −Z0x1Z̃H)S0
0,0 + 2S0

0,0 (Zπx1Z̃s −ZHx1Z0)

which is equal to

(2Z0 + S0
0,0 Zπ)x1(2Z̃s + Z̃HS0

0,0 ) − (2Zs + S0
0,0 ZH)x1(2Z0 + Z̃πS

0
0,0 ) + S0

0,0 V 1
1,1 S

0
0,0 .

By equation (3.17) the result follows. �

3.6. Hoffman part. The main part of the calculation is the following separation of
V 1

1,1 into pure odd zeta and pure even zeta parts.

Lemma 3.9. The following identity holds

(3.20) 2 V 1
1,1 = V 0

1,1 S
1
0,1 − S1

1,0 V 0
1,1 .

Proof. With the definition

Y = 2ZH + S1
1,0 Zπ

we can rewrite equation (3.20) as

Y x1Z̃π = Zπx1Ỹ .

With definition 1.3 and notation (2.12), we have

S1
1,0 Zπ = −4

∑

m≥1;n,k≥0

Am+n
m−1 ζ(2m + 2n + 1)(−1)kζ(2{k}) (x1x0)

m
x0(x1x0)

n+k

= −4
∑

a≥1,b≥0

a+b∑

r=a

(−1)a+b−rAr
a−1ζ(2r + 1)ζ(2{a+b−r}) (x1x0)

a
x0(x1x0)

b.

Equation (2.13) implies that in 2ZH + S1
1,0 Zπ one binomial cancels

Y = −4
∑

a≥1,b≥0

a+b∑

r=b+1

(−1)a+b−rBr
b ζ(2r + 1)ζ(2{a+b−r}) (x1x0)

a
x0(x1x0)

b.

Right multiplication by x1Z̃π gives the following expression for −Y x1Z̃π/4:

∑

a≥1,b≥0

a+b∑

r=b+1

∞∑

s=0

(−1)a+b−r+sBr
b ζ(2r + 1)ζ(2{a+b−r})ζ(2{s}) (x1x0)

a
x0(x1x0)

b
x1(x0x1)

s

=
∑

α,β≥1

α−1∑

γ=0

β−1∑

δ=0

(−1)α+β−γ−δBγ+δ+1
δ ζ(2γ + 2δ + 3)ζ(2{α−γ−1})ζ(2{β−δ−1})

(x1x0)
α(x0x1)

β ,

by the change of variables (a, b, r, s) = (α, δ, γ + δ + 1, β − δ − 1). The last expression
is evidently invariant under letter reversal which completes the proof. �

3.7. Monodromy at zero. To prove the triviality of the monodromy at zero we need
the following lemma.

Lemma 3.10. [S, x0] = 0.

Proof. From the shape (3.11) of S, we find that [S, x0] ≡ 0 (mod IH) is equivalent to

(3.21) S0
0,0 x0 + S1

0,1 x0 = x0S
0
0,0 + x0S

1
1,0 .
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According to equation (1.3) we decompose

S0
0,0 =

∑

n≥1

S0
0,0 (n) (x0x1)

n
x0,(3.22)

S1
1,0 =

∑

m≥1,n≥0

S1
1,0 (m, n) (x1x0)

m
x0(x1x0)

n, and

S1
0,1 =

∑

m≥0,n≥1

S1
1,0 (n, m) (x0x1)

m
x0(x0x1)

n.

Projecting (3.21) onto words of the form (x0x1)
a
x0x0(x1x0)

b leads to identities between
the coefficients which must be verified. The case b = 0 leads to the identity S0

0,0 (a) =

S1
1,0 (a, 0) for all a ∈ N. For a, b > 0 we obtain S1

1,0 (a, b) = S1
1,0 (b, a). Both equations

hold trivially by (1.3). The case a = 0 holds by reflection symmetry. �

3.8. Proof of single-valuedness. To prove property (ii) of proposition 3.4 we need
to show that equation (3.14) holds. The proofs are straightforward applications of
(3.18), (3.19), and (3.20) to write all V ’s in terms of V 0

1,1 , and reduce to the definition

of S1
0,0 in (1.3). Property (i) is lemma 3.10, and property (iii) is immediately obvious

from the definition of S. This completes the proof of theorem 1.4.

4. Proof of theorem 1.6

This section proves the analogue of theorem 1.4 where zeros and ones are inter-
changed. It parallels to a large extend §3.

4.1. The coalgebra of dual 1-Hoffman words.

Definition 4.1. Let IĤ ⊂ C〈〈x0, x1〉〉 denote the (complete) ideal generated by

w1x
2
0w2 , w1x

3
1w2 , w1x

2
1w2x

2
1w3

for all w1, w2, w3 ∈ C〈〈x0, x1〉〉.

Likewise, let Ĥ ⊂ C〈x0, x1〉 denote the subspace spanned by words w which contain
no word x0x0 and at most a single subsequence x1x1. The filtration and the notation
will be the same as in §3 except that we use hat variables for quantities that live in Ĥ.

4.2. Solutions to (1.9) and their monodromy equations. We again construct

functions F̂w(z) by a generating series

(4.1) F̂ (z) = L̃(z)ŜL(z) .

The analogue of proposition 3.4 is

Proposition 4.2. Let Ŝ be real. The functions F̂w(z) defined by (4.1) are single-valued

and satisfy F̂w(z) = F̂ ew(z) for every word w in B1 if and only if the series Ŝ satisfies

(i) [Ŝ, x0] ≡ 0 (mod IĤ)

(ii) V−Ŝ + ŜV ≡ 0 (mod IĤ)

(iii) Ŝ ≡
˜̂
S (mod IĤ) .

Proof. Equation (i) is an immediate consequence of

(4.2) e−2iπx0Se2iπx0 ≡ S (mod IĤ) .

Considering the monodromy at 1, lemma 2.1 yields the equation

W̃ ŜW ≡ Ŝ (mod IĤ) ,
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where W ≡ 1 + 2iπV + 1
2
(2iπ)2V 2 (mod IĤ) and W̃ ≡ 1 + 2iπV− + 1

2
(2iπ)2V 2

−

(mod IĤ). Multiplication on the right by V 2 and taking the imaginary part gives

V−ŜV 2 ≡ 0 (mod IĤ), since V 3 ≡ 0 (mod IĤ). Likewise V 2
−ŜV ≡ 0 (mod IĤ). Ex-

panding and taking real and imaginary parts gives the two equations

V−Ŝ + ŜV ≡ 0

V−(V−Ŝ + ŜV ) + (V−Ŝ + ŜV )V ≡ 0

which are equivalent to (ii).

The equivalence of (iii) with the equation F̂ ew(z) = F̂w(z) is obvious. �

We use the expansions (where the upper index counts the number of x
2
1’s)

V =
∑

a,b,c∈{0,1}

V̂ a
b,c

in Ĥ to reduce equation (ii) of the previous proposition further.

Lemma 4.3. If Ŝ0
1,1 = Ŝ1

1,1 = Ŝ0
1,0 = Ŝ0

0,1 = 0 and Ŝ is real, the equation V−Ŝ+ŜV ≡
0 (mod IĤ) is equivalent to the equations:

2V̂ 0
0,1 + Ŝ0

0,0 V̂ 0
1,1 ≡ 0,(4.3)

2V̂ 1
1,1 − V̂ 0

1,1 Ŝ
1
0,1 + Ŝ1

1,0 V̂ 0
1,1 ≡ 0,

{V̂ 0
0,1 , Ŝ1

0,1 } + Ŝ0
0,0 V̂ 1

1,1 ≡ −Ŝ1
0,0 V̂ 0

1,1

V̂ sing − V̂ 0
0,0 Ŝ

1
1,0 + Ŝ1

0,1 V̂ 0
0,0 ≡ −V̂ 0

0,1 Ŝ
1
0,0 − Ŝ1

0,0 V̂ 0
1,0

where V̂ sing = 2V̂ 1
0,0 − V̂ 1

0,1 Ŝ
0
0,0 + Ŝ0

0,0 V̂ 1
1,0 .

Proof. The proof follows the proof of lemma 3.5. �

Now we show that (4.3) is consistent with Ŝ, as given by equation (1.6).

4.3. Decomposition of V̂ . The decomposition of V̂ ∗
∗,∗ into expressions in Z differs

slightly from the previous case in §3.3. We encounter two new types of series

Z0
0,1 = −ζ1(1) x0x1 + ζ1(2, 1) x0x1x0x1 + . . .(4.4)

Z0
1,1 = ζ1(2) x1x0x1 − ζ1(2, 2) x1x0x1x0x1 + . . .

Ẑ1
1,0 = ζ(3)x1x1x0 − ζ(2, 3)x1x1x0x1x0 − ζ(3, 2)x1x0x1x1x0 + . . .

where we used the duality §2.4 to relate Z0
1,1 to Z0 and Ẑ1

1,0 to ZH . A further series

Ẑ1
0,0 will only be needed in intermediate steps because it, like Zs, drops out of the

final calculation.
The decomposition of V̂ 0 = V 0 is unchanged and given by (3.16) whereas the

components of V̂ 1 are given by (using the fact that Z̃0
1,1 = Z0

1,1 ):

V̂ 1
0,0 = Z0x1

˜̂
Z1

0,0 − Ẑ1
0,0 x1Z0 + Z0x1Z̃0

0,1 −Z0
0,1 x1Z0,

V̂ 1
0,1 = −Z0x1

˜̂
Z1

1,0 + Ẑ1
0,0 x1Z̃π −Z0x1Z

0
1,1 + Z0

0,1 x1Z̃π

V̂ 1
1,0 = Zπx1

˜̂
Z1

0,0 − Ẑ1
1,0 x1Z0 + Zπx1Z̃0

0,1 −Z0
1,1 x1Z0,

V̂ 1
1,1 = −Zπx1Z

0
1,1 + Ẑ1

1,0 x1Z̃π −Zπx1
˜̂
Z1

1,0 + Z0
1,1 x1Z̃π .

We now proceed with the verification of the equations of lemma 4.3.

4.4. Alternating words. The first equation in (4.3) is the same as (3.12).



THE ZIG-ZAG CONJECTURE 15

4.5. Dual singular Hoffman part. The series of singular zetas Ẑ1
0,0 drops out of

the final calculation, by the following lemma.

Lemma 4.4. The following identity holds:

(4.5) 2V̂ sing = S0
0,0 V̂ 1

1,1 S
0
0,0 .

Proof. The calculation follows the proof of lemma 3.8. �

4.6. Dual Hoffman part. Again the most complicated part of the calculation is the
verification of the identity for V 1

1,1 in (4.3).

Lemma 4.5. The following identity holds

(4.6) 2 V̂ 1
1,1 = V 0

1,1 Ŝ
1
0,1 − Ŝ1

1,0 V 0
1,1 .

Proof. With the definition

Ŷ = 2Ẑ1
1,0 + 2Z0

1,1 + Ŝ1
1,0 Zπ

we can rewrite equation (4.6) as

Ŷ x1Z̃π = Zπx1
˜̂
Y .

With definition 1.5 and notation (2.12), we have

Ŝ1
1,0 Zπ = −4

∑

m,k≥0;n≥1

Bm+n
m ζ(2m + 2n + 1)(−1)kζ(2{k}) (x1x0)

m
x1(x1x0)

n+k

= −4
∑

a≥0,b≥1

a+b∑

r=a

(−1)a+b−rBr
aζ(2r + 1)ζ(2{a+b−r}) (x1x0)

a
x1(x1x0)

b

where we have set ζ(1) = 0. Equation (2.13) together with the duality transformation

§2.4 implies that in 2Ẑ1
1,0 + Ŝ1

1,0 Zπ one binomial cancels

2Ẑ1
1,0 + Ŝ1

1,0 Zπ = −4
∑

a≥0,b≥1

a+b∑

r=b

(−1)a+b−rAr
b−1ζ(2r + 1)ζ(2{a+b−r}) (x1x0)

a
x1(x1x0)

b.

The contribution of 2Z0
1,1 , after applying the duality transformation (2.15), is given

by (2.11)

2Z0
1,1 = −4

∑

a≥0

a∑

r=1

(−1)a−rζ(2r + 1)ζ(2{a−r})(x1x0)
a
x1.

This equals the b = 0 term in the above sum. Multiplication by x1Z̃π yields for

−Ŷ x1Z̃π/4 the expression

∑

a,b≥0

a+b∑

r=b

∞∑

s=0

(−1)a+b−r+sAr
b−1ζ(2r + 1)ζ(2{a+b−r})ζ(2{s}) (x1x0)

a
x1(x1x0)

b
x1(x0x1)

s

=
∑

α,β≥0

α∑

γ=0

β∑

δ=0

(−1)α+β−γ−δAγ+δ
δ−1ζ(2γ + 2δ + 1)ζ(2{α−γ})ζ(2{β−δ}) x1(x0x1)

α(x1x0)
β
x1.

where the change of summation variables is given by (a, b, r, s) = (α, δ, γ + δ, β − δ).
The last expression is invariant under letter reversal which completes the proof. �
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4.7. Monodromy at zero. As previously, we need the following lemma.

Lemma 4.6. [Ŝ, x0] = 0.

Proof. By the general shape of Ŝ we find that [Ŝ, x0] ≡ 0 mod IĤ is equivalent to

(4.7) Ŝ1
0,1 x0 = x0Ŝ

1
1,0 .

According to equation (1.6) we decompose

Ŝ1
1,0 =

∑

m≥0,n≥1

Ŝ1
1,0 (m, n) (x1x0)

m
x1(x1x0)

n, and(4.8)

Ŝ1
0,1 =

∑

m≥1,n≥0

Ŝ1
1,0 (n, m) (x0x1)

m
x1(x0x1)

n.

Projecting (4.7) onto words of the form (x0x1)
a(x1x0)

b for a, b > 0 gives the single

condition Ŝ1
1,0 (a − 1, b) = Ŝ1

1,0 (b − 1, a) which can be verified in equation (1.6). �

4.8. Proof of single-valuedness. To prove property (ii) of proposition 4.2 we need to
show that the last two equations in equation (4.3) hold. The proofs are straightforward

applications of (3.18), (4.5), and (4.6) to write all V̂ ’s in terms of V 0
1,1 , and reduce to

the definition of Ŝ1
0,0 in (1.6). Property (i) is lemma 4.6, and property (iii) is obvious

from the definition of Ŝ. This completes the proof of theorem 1.6.

5. Proof of the zig-zag conjecture

We are now ready to prove the zig-zag theorem 1.1.

Definition 5.1. With the notation of equations (1.4) and (1.7) we define functions
fa,n, where a ∈ {0, 1} and n is a non-negative integer, by

(5.1) fa,n = (−1)n





Fw(z, z) − F ew(z, z)
z − z if a + n is odd,

F̂w(z, z) − F̂ ew(z, z)
z − z if a + n is even,

where
w = ux0x1ũ,

and
u = xa . . . x0x1x0x1 . . .︸ ︷︷ ︸

n

is the alternating n letter word starting with xa. For n = 0 we set f0 = f0,0 = f1,0.

Recall that the Bloch-Wigner dilogarithm (see e.g. [25]) is the single-valued version
of the dilogarithm Li2(z) (2.5) defined by:

(5.2) D(z) = Im(Li2(z) + log |z| log(1 − z)).

Proposition 5.2. The functions fa,n are real-valued, symmetric,

fa,n(z, z) = fa,n(z, z),

single-valued solutions to the system of differential equations

(5.3) −
1

z − z

∂2

∂z∂z
(z − z)fa,n(z, z) =

1

(z − a)(z − a)
f1−a,n−1(z, z)

for n ≥ 1, with the initial condition

(5.4) f0(z, z) =
2iD(z, z)

z − z
.
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Proof. From theorems 1.4 and 1.6, all statements except the last one are obvious. To
derive equation (5.4) we first observe that

(z−z)f0(z, z) = Lx1x0
(z)+Lx1

(z)Lx0
(z)+Lx0x1

(z)−Lx1x0
(z)−Lx1

(z)Lx0
(z)−Lx0x1

(z).

Then one can use the shuffle product (2.4) to convert this expression into the diloga-
rithm and logarithms via (2.5) yielding (5.4). �

From the theory of graphical functions [22] and [12], which in turn uses the existence
of the single-valued multiple polylogarithms [5], we have the following general theorem:

Theorem 5.3. The system of differential equations (5.3) with initial condition (5.4)
admits a unique real, symmetric, and single-valued solution fgraph

a,n . The period of the
zig-zag graphs (1.2) is

(5.5) IZn
= fgraph

1,n−2(0).

From proposition 5.2 we know that

fgraph
a,n = fa,n.

To prove the zig-zag conjecture we have to determine the (regular) value of f1,n−2 at
z = z = 0. If g is a single-valued function which vanishes at z = 0, then setting, for
example, z = iε and applying L’Hôpital’s rule to compute the limit as ε → 0, gives

lim
z→0

g(z, z)

z − z
=

1

2

(∂g

∂z
−

∂g

∂z

)
.

Applying this formula to (5.1) with the word w = x1vx1, where |v| = n− 2, we obtain

f1,n−2(0) =

{
−Fx1v(0) + Fvx1

(0) if n is even,

F̂x1v(0) − F̂vx1
(0) if n is odd,

where we have used theorems 1.4 and 1.6, and the fact that F
x1ev and Fevx1

are complex
conjugates of Fvx1

and Fx1v, respectively. By theorem 5.3 the value f1,n−2(0) is well-
defined. Hence we may use the regularized value of the multiple polylogarithms at zero
to evaluate this expression. Because the regularized value at zero (setting log(0) = 0)
of any non-constant multiple polylogarithm Lw(z), for w 6= 1, vanishes, the only non-

trivial contribution comes from the constant part in F or F̂ , which by definition (1.4)

or (1.5) is the pure S or Ŝ part. Thus

IZn
=

{
−Sx1v + Svx1

if n is even,

Ŝx1v − Ŝvx1
if n is odd.

Now, in the case of even n we find that Sx1v and Svx1
are summands in S1

1,0 and S1
0,1 ,

respectively. With notation (3.22) we have

IZn
= −S1

1,0

(
n − 2

2
,
n − 2

2

)
+ S1

1,0

(
n

2
,
n − 4

2

)

which evaluates by (1.3) to

−4

[
−

(
2n − 4

n − 2

)
+

(
2n − 4

n − 4

)]
ζ(2n − 3) = 4

(2n − 2)!

n!(n − 1)!
ζ(2n − 3)

as in theorem 1.1.
If n is odd then Ŝx1v and Ŝvx1

are summands in Ŝ1
1,0 and Ŝ1

0,1 , respectively. With
notation (4.8) we get

IZn
= Ŝ1

1,0

(
n − 1

2
,
n − 3

2

)
− Ŝ1

1,0

(
n − 3

2
,
n − 1

2

)
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which evaluates to

4(1 − 2−2n+4)
(2n − 2)!

n!(n − 1)!
ζ(2n − 3)

by exactly the same calculation. This completes the proof of the zig-zag theorem.
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