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New and simple numerical criteria based on a codon adaptation index are applied to the complete genomic sequences of 80
Eubacteria and 16 Archaea, to infer weak and strong genome tendencies toward content bias, translational bias, and strand
bias. These criteria can be applied to all microbial genomes, even those for which little biological information is known,
and a codon bias signature, that is the collection of strong biases displayed by a genome, can be automatically derived. A
codon bias space, where genomes are identified by their preferred codons, is proposed as a novel formal framework to
interpret genomic relationships. Principal component analysis confirms that although GC content has a dominant effect on
codon bias space, thermophilic and mesophilic species can be identified and separated by codon preferences. Two more
examples concerning lifestyle are studied with linear discriminant analysis: suitable separating functions characterized by
sets of preferred codons are provided to discriminate: translationally biased (hyper)thermophiles from mesophiles, and
organisms with different respiratory characteristics, aerobic, anaerobic, facultative aerobic and facultative anaerobic.
These results suggest that codon bias space might reflect the geometry of a prokaryotic ‘‘physiology space.’’ Evolutionary
perspectives are noted, numerical criteria and distances among organisms are validated on known cases, and various
results and predictions are discussed both on methodological and biological grounds.

Introduction

Statistical analysis of DNA sequences and in
particular of codon bias were performed from the moment
that long chunks of DNA sequences were publicly avail-
able in the early eighties (Grantham et al. 1980; Wada et al.
1990), and the roots for these studies can be traced back to
the sixties (Sueoka 1962; Zuckerkandl and Pauling 1965).
However, with the increasing number of bacterial genome
sequences from a broad diversity of species, this field of
research has been revivified in the last 5 years (Koonin and
Galperin 1997; Lin and Gerstein 2000; Radomski and
Slonimski 2001; Knight, Freeland, and Landweber 2001;
Sicheritz-Pontén and Andersson 2001; Daubin, Gouy, and
Perrière 2002; Lin et al. 2002; Lobry and Chessel 2003;
Sandberg et al. 2003). Pioneer work in inferring bacterial
similarity relationships using large chunks of genomic
sequences is attributable to Karlin. In a series of papers
starting with (Karlin 1994; Karlin, Ladunga, and Blaisdell
1994), Karlin et al. showed how dinucleotide relative
abundance values (profiles) of different DNA sequences
samples of size � 50 kb from the same organism are
generally much more similar to each other than they are to
profiles from other organisms, and that closely related
organisms generally have more similar profiles than do
distantly related ones.

The interest of comparing organisms leads to the
problem of defining biologically meaningful spaces from
which to extract new insight into organism similarities.
Spaces rising from a direct statistical analysis of genomic
sequences, based on dinucleotide frequencies (Karlin
1994; Karlin, Ladunga, and Blaisdell 1994; Karlin and
Mrázek 1998), as well as codon usage, synonymous

codon usage, and amino-acids usage (Kreil and Ouzounis
2001; Tekaia, Yeramian, and Dujon 2002) organize
organisms roughly in a similar manner: relative distances
among most phylogenetic genuses are preserved across
spaces. There are pairs of organisms though, whose relative
distance may vary considerably depending on the space one
chooses (see later). The main motivation for this work was to
define a space whose coordinates are mathematically well
defined as well as justifiable by biological intuition, and to
revisit organism distances within this framework. The
mathematical rigor is a particularly important requirement
for genome comparison; suitable biological properties can
then be tested, validated, and possibly predicted across
organisms.

An organism is defined through the set of preferred
codons shaping its genome. The basic idea is simple and
goes back to two main facts: first, the genetic code
associates a set of sibling codons to the same amino acid,
and some codons occur more frequently than others in
gene sequences (Grantham et al. 1980; Wada et al. 1990);
second is the hypothesis, formulated by Sharp (Sharp and
Li 1987), that for each genome sequence G, there is a set
of coding sequences S, constituting roughly the 1% of the
genes in G, which is representative of the dominating
codon bias in G. Many observations support this hypoth-
esis: for bacteria and small eukaryotes like Saccharo-
myces cerevisiae, Caenorhabditis elegans, and Drosophila
melanogaster for instance, which are governed by trans-
lational bias, this set is constituted mainly by ribosomal,
glycolytic, heat-shock proteins, and elongation factors; for
Pseudomonas aeruginosa, the set contains the proteins
with the highest GC3 content; for Borrelia burgdorferi the
set is constituted solely by genes lying in leading strands
(Carbone, Zinovyev, and Képès 2003). Combining the two
facts together, one can define weights for codons on genes
in S, which are representatives of codon preferences, as
follows. Given an amino-acid j, its synonymous codons
might have different frequencies in S; if xi, j is the number
of times that the codon i for the amino acid j occurs in S,
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then one associates to i a weight wi, j relative to its sibling
of maximal frequency yj in S

wi;j ¼
xi;j

yj

: ð1Þ

Such weights have been successfully used by Sharp to
correlate expression levels to translational codon bias
(Sharp and Li 1987). (Notice that weights equal to 1 do not
correspond to codons which are the most frequent over the
entire genome: more than 10 amino acids in Bacillus
subtilis, for instance, are preferentially coded with codons
other than those which are the most frequent over the entire
genome.) Weights calculated over S allow us to define the
codon adaptation Index (CAI) (Sharp and Li 1987), which
produces a rank of all genes in a genome agreeing with
dominating codon bias: genes ranking the highest are the
most biased and those ranking lowest are the less affected
by selective bias. More generally, it has been shown that
CAI correlates to any kind of dominating bias in genomes
(like GC-content, preference for codons with G or C at the
third nucleotide position, a leading strand richer in G 1 T
than a lagging strand), and not just to translational bias
(Carbone, Zinovyev, and Képès 2003). Moreover, an
algorithm for the automatic detection of S from the
collection of all genes in a genome has been proposed in
(Carbone, Zinovyev, and Képès 2003); since the algorithm
is not based on any biological knowledge of the organism,
it allows us to determine weights for those genomes for
which not much biological information is available.

Weights are highly specific to a genome, they can be
defined for any microorganism, they are good indicators of
the evolutionary process under which the organism has
gone, and they seem shaped by the metabolic constraints
of the organism during evolution (Wagner 2000). For these
reasons, we use codon weights to represent genomes (a
genome becomes a [normalized] vector of 64 weights).

In the first part of this article, we present new and
simple statistical criteria that correlate a bias of a given
origin (content bias, translational bias, strand bias) to CAI
values of genes. Each criterion, being bias specific, allows us
to infer weak or strong tendencies of a genome toward the
bias, and possibly provides a numerical evaluation of the
strength. Suitable numerical thresholds are proposed, and
they allow for an automatic detection of a codon bias
signature, that is the collection of strong biases displayed by
a genome. Two of the criteria allow us to determine whether
an organism is affected by some (weak or strong) form of
translational bias, and in this case to infer putative gene
expression levels for the organism. This is done with no use
of gene expression data (Jansen et al 2003) nor of gene
classification and protein class comparison (Karlin and
Mrázek 2000; Mrázek et al. 2001; Karlin et al. 2003). Our
criteria can be applied to any genome for which no
biological knowledge is yet available. All numerical criteria
have been validated on previously established analysis of
codon bias; contrary to what has been claimed by Anderson
and Sharp (1996), a tendency toward translational bias has
been detected for Rickettsia prowazekii. Predictions on
newly sequenced genomes have been deduced.

In the second part of this article we describe a codon
bias space where genomes are identified by their specific

64 codon weights, and we introduce a linear distance
between genomes, which is new to comparative analysis.
Distances among organisms are validated on known cases
of strains, species, and established phylogenetic branches.
Codon bias space is proposed as a novel formal framework
to interpret genomic relationships and biologically impor-
tant features including lifestyle and evolutionary trends.
Principal component analysis is applied to codon bias
space and confirms that although GC content has a
dominant effect, optimal growth temperature explains the
second principal component (Lynn, Singer, and Hickey
2002). As a consequence, thermophilic and mesophilic
species can be identified and sharply separated by codon
preferences. Using linear discriminant analysis, two more
examples concerning lifestyle are studied, and suitable
separating functions characterized by sets of preferred
codons are provided to discriminate translationally biased
(hyper)thermophiles from mesophiles, and organisms with
different respiratory characteristics: aerobic, anaerobic, fac-
ultative aerobic, and facultative anaerobic. These results
suggest that codon bias space might reflect the geometry of
a prokaryotic ‘‘physiology space.’’ Evolutionary perspec-
tives are noted, and various results are discussed both on
methodological and biological grounds.

Materials and Methods
Genomes and Replication Origins

Genomes, along with gene annotation, were retrieved
from the Genomes directory of the GenBank FTP (see
table 1). All coding sequences (CDS) were considered, in-
cluding those annotated as hypothetical and those pre-
dicted by computational methods only. From each CDS,
we excluded initiation and stop codons.

Information on the replication origin and terminus for
38 bacteria has been taken from the following web site,
http://pbil.univ-lyon1.fr/emglib/emglib.html, where the pre-
diction of these locations was based on the work of Lobry
(1996). For most organisms in table 1, this information is
still unknown.

Mesophilic, Thermophilic, and Hyperthermophilic
Genomes

Mesophiles are organisms with an optimum growth
temperature (OGT) near 378C; thermophiles have OGT
between 45 and 658C, and hyperthermophiles have OGT
� 658C, preferably around 808C or higher (http://
www.mblab.gla.ac.uk/dictionary).

Nucleotide Frequencies: Some Definitions

GC-content is the frequency of G 1 C base pairs
(bps); GC3-content is the frequency of G 1 C bps at the
codons third position (excluding Met, Trp, and termination
codons); XY-skew is defined as ðNX � NYÞ=ðNX þ NYÞ,
where NX, NY represent the frequencies of the nucleotides
X, Y 2 fA, T, G, Cg, with X 6¼ Y.

Computation of CAI Values

The algorithm proposed by Carbone, Zinovyev, and
Képès (2003) is used to detect a set S of genes which are
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Table 1
Thermophilic, Hyperthermophilic, and Mesophilic
Eubacteria and Archaea

AQUIFICAE
1H Aquifex aeolicus

CYANOBACTERIA
2 Nostoc sp
3 Synechocystis PCC6803
4 Thermosynechococcus elongatus

ACTINOBACTERIA
5 Bifidobacterium longum
6 Corynebacterium efficiens YS-314
7 Corynebacterium glutamicum
8 Mycobacterium leprae
9 Mycobacterium tuberculosis CDC1551

10 Mycobacterium tuberculosis H37Rv
11 Streptomyces coelicolor

FIRMICUTES Bacillales
12 Bacillus halodurans
13 Bacillus subtilis
14 Listeria innocua
15 Listeria monocytogenes
16 Oceanobacillus iheyensis
17 Staphylococcus aureus Mu50
18 Staphylococcus aureus MW2
19 Staphylococcus aureus N315

FIRMICUTES Clostridia
20 Clostridium acetobutylicum
21 Clostridium perfringens
22H Thermoanaerobacter tengcongensis

FIRMICUTES Lactobacillales
23 Lactococcus lactis
24 Streptococcus agalactiae 2603
25 Streptococcus agalactiae NEM316
26 Streptococcus mutans
27 Streptococcus pneumoniae R6
28 Streptococcus pneumoniae TIGR4
29 Streptococcus pyogenes
30 Streptococcus pyogenes MGAS315
31 Streptococcus pyogenes MGAS8232

FIRMICUTES Mollicutes
32 Mycoplasma genitalium
33 Mycoplasma pneumoniae
34 Mycoplasma pulmonis
35 Ureaplasma urealyticum

FUSOBACTERIALES
36 Fusobacterium nucleatum

SPIROCHAETALES
37 Borrelia burgdorferi
38 Treponema pallidum
39 Leptospira interrogans

CHLAMYDIALES
40 Chlamydia muridarum
41 Chlamydia trachomatis
42 Chlamydophila pneumoniae AR39
43 Chlamydophila pneumoniae J138

PROTEOBACTERIA alpha
44 Agrobacterium tumefaciens C58 Cereon
45 Agrobacterium tumefaciens C58 UWash
46 Brucella melitensis
47 Brucella suis 1330
48 Caulobacter crescentus
49 Mesorhizobium loti
50 Rickettsia conorii
51 Rickettsia prowazekii
52 Sinorhizobium meliloti

Table 1. Continued

PROTEOBACTERIA beta
53 Neisseria meningitidis MC58
54 Neisseria meningitidis Z2491
55 Ralstonia solanacearum

PROTEOBACTERIA epsilon
56 Campylobacter jejuni
57 Helicobacter pylori 26695
58 Helicobacter pylori J99

PROTEOBACTERIA gamma
59 Buchnera aphidicola Sg
60 Buchnera sp
61 Escherichia coli K12
62 Escherichia coli O157H7
63 Escherichia coli O157H7 EDL933
64 Haemophilus influenzae
65 Pasteurella multocida
66 Pseudomonas aeruginosa
67 Salmonella thyphi
68 Salmonella thyphimurium LT2
69 Shewanella oneidensis
70 Shigella flexneri 2a
71 Wigglesworthia brevipalpis
72 Vibrio cholerae
73 Xanthomonas campestris
74 Xanthomonas citri
75 Xylella fastidiosa
76 Yersinia pestis CO92
77 Yersinia pestis KIM

CHLOROBIALES
78 Chlorobium tepidum TLS

DEINOCOCCUS/THERMUS
79 Deinococcus radiodurans

THERMOTOGALES
80H Thermotoga maritima

ARCHEOGLOBALES
81H Archaeoglobus fulgidus

METHANOBACTERIALES
82H Methanobacterium thermoautotrophicum

METHANOPYRALES
83H Methanopyrus kandleri

SULFOLOBALES
84H Sulfolobus solfataricus
85H Sulfolobus tokodaii

THERMOPLASMALES
86T Thermoplasma acidophilum
87T Thermoplasma volcanium

DESULFUROCOCCALES
88H Aeropyrum pernix

HALOBACTERIALES
89 Halobacterium sp

METHANOCOCCALES
90H Methanococcus jannaschii

METHANOSARCINALES
91T Methanosarcina acetivorans
92T Methanosarcina mazei

THERMOCOCCALES
93H Pyrococcus abyssi
94H Pyrococcus furiosus
95H Pyrococcus horikoshii

THERMOPROTEALES
96H Pyrobaculum aerophilum

Signatures, Microbial Codon Space, and Lifestyle 549



representative of the dominating codon bias in a given
genome. This reference set S contains the 1% of the most
biased genes of the genome (the size of S corresponds to the
one suggested in Sharp’s original work (Sharp and Li
1987)). From S, one computes weights wi,j for codon i and
organism j as in equation (1). These weights wi,j are then
used to compute the CAI for all genes, CAI(g)¼(�L

k¼1wk)
1/L,

where g is a gene, wk is the weight of the kth codon in g, and L
is the number of codons in g (Sharp and Li 1987).

Notice that the ‘‘preference’’ of a codon among
synonymous ones is identifiable by codon weight equal to
1. Theoretically speaking, multiple synonymous codons
(possibly all n synonymous codons of a n-fold degenerate
amino acid) might take value 1, and one can think of those
as being equally preferred. In practice, no equally preferred
codons ever occurred in our analysis of 96 organisms. In
particular, it should be noticed that equal codon prefer-
ences represent a possible, but merely theoretical, con-
dition under which homogeneous codon composition—
that is the absence of compositional bias, strand bias, and
translational bias—can take place.

Codon weights, reference set S and CAI values are cal-
culated with the program CAIJava written by the authors,
which uses parsers of GenBank flat files from the Biojava
(http://www.biojava.org) programming package. The idea
of the algorithm is simple. It is an iterative algorithm that at
iteration i 1 1 computes codon weights based on a set S of
genes selected at iteration i, then ranks all genes with
respect to CAI value and selects a new set S, which has half
the cardinality of the set determined at iteration i (if at the
ith iteration the selected set is already constituted by the 1%
of all genes, then the new set will also be constituted by 1%
of genes) and whose genes score the highest. The process is
repeated until 1% of genes have been selected and con-
vergence is reached. At the start, S is the set of all genes. A
description of the algorithm and a validation of the
approach is reported in Carbone, Zinovyev, and Képès
(2003). The program CAIJava is available at http://www.
ihes.fr/;carbone/data.htm.

Plasmids

A chromosome is distinguished from a plasmid by
assuming that it contains genes which are essential for
metabolism under all growth conditions, i.e., housekeep-
ing genes; plasmids generally provide gene product that
can benefit the bacterium under certain conditions, such as
resistance to antibiotics (Madigan, Martinko, and Parker
2000). Some prokaryotes contain more than one chromo-
some, such as Methanococcus jannaskii (3), Vibrio cholerae
(2), members of the genus Agrobacterium (2) and Brucella
(2). Of the organisms we considered, 22 contain plasmids,
but for only 6 of them the ratio P/C, where P is the number of
bps in the plasmids and C is the number of bps in the
chromosome(s), is .10%. In particular, B. burgdorferi
which has a linear chromosome and 21 circular and linear
plasmids, has P/C¼ 66%.

The calculation of t-values, concerning leading and
lagging strand bias, is done considering chromosomal
CDSs only. This is particularly important to correctly eval-
uate those genomes like B. burgdorferi whose P/C is large.

Space of Organisms and Its Visualization

An organism is represented by a 64-dimensional
vector, whose entries correspond to the 64 codon weights
wi of the organism computed for a set of genes S, which is
representative of the dominating codon bias of the or-
ganism. (Stop codons UAA, UAG, UGA, and UGG, AUG
with no synonymous codons could be disregarded. No
substantial difference in the determination of the reference
set S nor in the 3D visualization occurs.)

Hence, an organism is a point in the 64-dimensional
space [0. . .1]64, where no special assumption is made on the
space nor on the coordinate system. The set of points is
visualized in 3 dimensions by using principal components
analysis (PCA) (Hotelling 1933; Hand, Mannila, and Smyth
2001): first, every coordinate is normalized on unity
standard deviation to take into account equally dominating
as well as rare codons (following the standard procedure
employed in PCA, the normalized weight wk*

i for codon i in
organism k is defined as (wk

i 2 �wi)/ri, where wk
i is the

weight of i in k, �wi is the average weight of i computed with
respect to all organisms k, andri is the standard deviation for
the set of weights wk

i , for all organisms k); then, three
principal components for the cloud of points are calculated;
finally, the cloud of points is projected orthogonally in the
subspace of the three selected vectors and visualized by
means of a 3D viewer. The projection of the points in the
principal plane (defined by the first two principal axes)
explains 58% of the variance (with the first component that
explains 45% of the variance; this ensures that the PCA
projection reflects well the total information embedded in
the original data matrix). The three principal axes explain
65% of the variance.

Principal components analysis and the visualization
of the space of organisms are done in VidaExpert, a tool
developed by A.Z. A specialized 3D viewer is provided
with VidaExpert. All software is available at http://
www.ihes.fr/;carbone/data.htm. The interactive version
of figure 1 (top) can be found at http://www.ihes.fr/
;materials/organisms/htmlview.html.

Linear Analysis of the Space of Organisms

Linear discriminant analysis (LDA) (Fisher 1936) has
been used to detect relevant patterns in the high-
dimensional space of organisms: (1) hyperthermophiles,
thermophiles, and mesophiles; (2) translationally biased
(hyper)thermophiles and mesophiles; and (3) organisms
with different respiratory characteristics. For each appli-
cation, we construct a linear discriminant function
f ðkÞ ¼ a0 þ

P64
i¼1 aiw

k
i , where wk

i is the weight of codon
i in organism k, and where the separation coefficients ai 2
(21, 11) are computed with the LDA algorithm. The
purpose of LDA is to determine the coefficients ai that
discriminate best a set X from a set Y, that is optimize the
ratio (mean difference)2/variance. For applications 1 and
3, we find a linear discriminant function f such that the set
of k’s with f(k) . 0 is exactly X (all true positives and no
false negatives appear); for application 2, translationally
biased mesophiles can be separated with 94 true positives
and 2 false negatives, specificity Sp ¼ 97.78, sensitivity
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FIG. 1.—Top: Principal components analysis principal plane representation of the distribution of 96 organisms according to codon weights
(numbers as in table 1). Archaea (squares) and Eubacteria (circles) are colored with a preferential order of codon biases: translational bias (red), GC3-
bias (green), AT3-bias (blue), strand (orange), AT-skew bias (light blue), no bias (black). Bottom: Two-dimensional plot of the 96 organisms with the
�zRib scale on the y-axis and the d(wG, wS) scale on the x-axis. The organisms with d(wG, wS) .8 are all translationally biased by the ribosomal criterion
with the exception of X. fastidiosa (75), a GC3 biased genome, with d(wG, wS)¼ 10.43; other two organisms, T. volcanium (87) and T. pallidum (38),
which are AT3 and strand biased but not translationally biased, approximate closely the threshold d(wG, wS) ’ 8.
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Sn ¼ 97.78. Even if it is the full set of ai values that
defines f, the largest positive (smallest negative) values ai

defining f indicate codons that are preferentially used in
X (Y). For 3, we trained (with leave-one-out cross-valida-
tion) the linear discriminant function f and tested predic-
tion performance on the remaining data. We did this on
organisms represented in 64 dimensions and on 2 dimen-
sions after having applied PCA to the data set. We
obtained 13.5% errors in the first case and 15.6% errors in
the second. As expected, the number of variables required
for optimal discrimination is greater in 64 dimensions (20)
than in 2 (7). LDA was done in VidaExpert, and the
training of the LDA function was done in R.

Distances

Let us consider two kinds of point sets representing
a genome: the set of codon weights wi, and its binarized
form �wi, where for each codon i, we approximate to 0 all
weights wi 6¼ 1, i.e., for those codons which are not
preferred. Hence, this second set of points is constituted by
values 0 and 1 only.

Distances between pairs of organisms are measured as
‘‘1

2
‘1-distances’’ in codon space. Given two genomes G1, G2

and two collections �w1,�w2 of binarized weights �w1
i ,�w2

i , we
define the binarized distance between G1 and G2 to be

dbðG1;G2Þ ¼
P64

i¼1 j�w1
i � �w2

i j
2

¼ 1

2
‘1ð�w1; �w2Þ ð2Þ

The coefficient 1
2

in front of the usual ‘1-distance is
considered because we want to count amino acids having
different preferred codons exactly once. Intuitively, this
distance represents the number of amino acids with different
preferred codons. We speak about ‘‘binarized 1

2
‘1-distance.’’

Similarly, we use d(G1,G2) ¼ 1
2
‘1(w1,w2) when collections

of weights w1
i , w2

i are considered. If not otherwise specified,
with ‘‘1

2
‘1-distance’’ we refer to d(G1, G2).

A Tree Describing Distances

The tree of figure 2 has been constructed using the
unweighted pair group method with arithmetic mean
(UPGMA) as a distance method (with the program
Neighbor, integrated in the PHYLIP package, and avail-
able at http://evolution.genetics.washington.edu). Figure 2
is used to illustrate an approximated distance between
pairs of organisms (such a distance, read out of the tree by
adding up the values along the shortest path that connects
two leaves, is a priori neither an upper bound nor a lower
bound to the effective distance). No fact is inferred from
the tree in this article, besides the observation that it
organizes organisms in three classes reflecting AT, GC,
and translational bias. The same three groups of organisms
are found by using distance methods as NJ, BIO-NJ, and
NNET (from the SplitsTree 4.0 package).

Choice of Metrics and Over-Represented Families of
Organisms

To choose a meaningful metrics is non-trivial. The
1
2
‘1-metrics and its binarized version are justified by simple

intuition. Conclusions drawn using Euclidean metrics (less
obvious to justify) remain compatible with our results. The
three large families collecting GC rich, AT rich, and
translationally biased organisms, for example, which are
visualized in the tree of figure 2 for 1

2
‘1-distances, and in

the Supplementary Material online for 1
2
‘1-binarized and

Euclidean distances, are comparable. In particular, relative
distances among organisms in these codon spaces remain
coherent.

A few over-represented bacterial species, like c-
proteobacteria and firmicutes, bias the set of available
sequenced genomes. Also, Archaea are relatively few
compared to Eubacteria. As a consequence, a comparative
analysis of species drawn on such a sample needs to be
carefully evaluated. Namely, the clustering suggested by
figure 2 might not reveal some features of the organisation
due to over- and under- organism representation.

Prokaryotes Characteristics

For all references to the ecology, genetics, and
physiology of prokaryotic organisms we follow closely
the work of Balows et al. (1992) and Madigan, Martinko,
and Parker (2000).

Criteria to Detect Codon Bias Signatures and
Tendencies

It is commonly recognized that organisms might be
subjected to codon biases of different origins. There are
examples for which it is rather difficult to decide what is
the most dominant codon bias, if it exists at all, as for
Helicobacter pylori for instance, a rather homogeneous
genome (Lafay, Atherton, and Sharp 2000) or for Trepo-
nema pallidum, which displays both a strong GC-skew bias
(Lafay et al. 1999) and a strand bias. In fact, it seems more
appropriate to think of biases in a ‘‘continuum’’ way instead
of considering them as clear-cut properties, and to think that
different biases might be present at the same time, with
different strengths. Numerical criteria to detect the tendency
of a genome toward a bias and the strength of this bias are
desirable, and we shall provide a solution to this question.

The idea supporting our method is to correlate codon
biases of different origins with a common measure, the CAI
values of genes. The approach is justified by the fact that CAI
is a universal measure to study codon bias and it has been
proven to be highly correlated with dominant biases of
different nature (Carbone, Zinovyev, and Képès 2003). For
each genome and each kind of bias, we compute a correlation
coefficient that expresses the strength of the bias for the
genome. The numerical coefficients can be used to rank
different genomes with respect to a given bias, and to detect
whether a genome has a tendency for a bias (in this case, the
correlation coefficient is expected to be rather high) or not.

For each criterion, we suggest a threshold, that is an
indicator for strong bias; formally, if T . 0 is the threshold,
then for all genome G and bias B, B is a strong bias for G if
and only if the coefficient computed for the bias B is
bounded by T. Thresholds allow us to automatically iden-
tify strong biases and define the codon bias signature of an
organism to be the collection of its strong biases. The

552 Carbone et al.

http://evolution.genetics.washington.edu


FIG. 2.—Tree constructed from the 1
2
‘1-distance matrix for the organisms in table 1. A three-letter code describes whether the organism is an

Archaea (A, blue) or a Eubacteria (E, red), and its genus (shortened to two letters). Five consecutive positions occupied by the symbols 1, *, –, _,3 are
interpreted as follows: 1. 1 translational bias by ribosomal criterion, * translational bias by both strength and ribosomal criteria; 2. 1 GC3-content,
– AT3-content; 3. 1 strand bias, 3 no replication origin is known; 4. 1 GC-skew bias, – CG-skew bias; 5. 1 AT-skew bias, – TA-skew bias. The
symbol _ indicates that no bias is present.
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thresholds that we propose validate all strong biases that
have been detected for organisms previously studied in the
literature.

Even though a signature allows for an immediate
‘‘picture’’ of a genome, it is important to stress that
signatures provide only a partial description, and that the
most accurate one corresponds, in our view, to the entire
collection of numerical values associated to different biases
which highlights ‘‘tendencies.’’ We say that a genome has
a strong tendency toward a bias B if the coefficient computed
for B is bounded by T 2 �, for some small �� 0. If �¼0 then
we speak about a strong bias. Since the threshold T is defined
for all genomes, it gives the possibility to compare genomes
(and in particular to compare them through their signature).

If a genome presents no strong bias on nucleotide
frequencies, we say that it has a weak tendency toward the
content bias that presents the largest coefficient (in ab-
solute value). This notion describes the nucleotide evol-
utionary pressure of a genome, and it is best used in the
analysis of rather homogeneous genomes; for instance, it
allows us to say that H. pylori, despite its empty signature,
has a weak tendency toward GC-skew bias (in agreement
with Grigoriev [2000]).

Ribosomal Criterion

This simple statistical test detects translational bias
and it relies on the idea that for translationally biased
genomes, the pool of ribosomal proteins has high CAI score
compared to the average CAI value of all CDSs. In general,
ribosomal proteins are not expected to be highly biased,
and in particular, if bias exists, the interval within which
CAI scores for ribosomal proteins vary might be rather
different from genome to genome. We use this second
observation to measure translational bias strength for
a genome. More formally, we compute the average CAI
and the standard deviation rCAI for CAI values of all CDSs,
and define a z-score value for those CDS r annotated as
ribosomal proteins; i.e., (CAI(r) 2 CAI)/rCAI. We call �zRib

the average of z-scores for ribosomal proteins and define
the following criterion: an organism characterized by
translational bias is expected to have high �zRib, i.e., .1.

Because ribosomal protein coding genes are highly
conserved across species, they can easily be accessed by
homology in organisms not yet well investigated, and this
renders the criterion amenable.

Strength Criterion

This is an heuristic criterion for the detection of
translational bias, which does not use any information
coming from annotation of ribosomal proteins, and it
consists solely of statistical analysis of CDSs. Let wk

i (G)
be the weight calculated as in equation (1) over the whole
set G of CDS for organism k, and let wk

i be the weight
calculated over the set of most biased genes S for k.
Because of the existence of a particularly strong dominant
codon bias in organisms affected by translational bias (that
is, the frequency of a preferred codon compared to the
frequencies of its synonymous codons is much higher in
the set of most biased genes S than in the whole genome

G), one expects the difference between wk
i (G) and wk

i to be
large, and to use this quantity as a criterion to detect
translational bias. Thus, we use the 1

2
‘1-distance between

wk
i (G) and wk

i , defined as

dðwG;wSÞ ¼
P64

i¼1 jwk
i ðGÞ � wk

i j
2

¼ 1

2
‘1ðwG;wSÞ ð3Þ

to discriminate those organisms that likely are affected by
translational bias by requiring d(wG, wS) . 8 (where d(wG,
wS) 2 [1. . .13] for the 96 organisms in table 1; see
Supplementary Material). To explain the intuition behind
this formula, let us consider its binarized version, namely
the case where we set �wk

i (G) ¼ 0 if wk
i (G) 6¼ 1, and �wk

i ¼
0 if wi,j 6¼ 1. In this simplified form, equation (3) counts
the number of amino acids that have different preferred
codons in the entire genome and in the set of most biased
genes.

Such a numerical criterion, being based only on
a statistical analysis of CDSs, is highly desirable but it does
not provide a sufficient and necessary condition for
translational bias. In fact, not all organisms satisfying trans-
lational bias are detected, and some extra organism, like
Xylella fastidiosa, might be erroneously selected. We pro-
pose it though, because the combination of the two criteria
for translational bias detection allows us to discriminate
those genomes that are strongly translationally biased (that
is those satisfying both criteria) from those that are weakly
so (that is those that only satisfy the ribosomal criterion).

Content Criterion

GC3 bias is detected by comparing the GC3-content
of each CDS with the corresponding CAI value, and asking
the correlation coefficient (on all CDSs) be .0.7; cor-
relation ,20.7 detects AT3-bias. GC-skew bias is detec-
ted with a correlation coefficient .0.5; correlation ,20.5
detects CG-skew bias. Thresholds 0.5 and 20.5 define
AT-skew and TA-skew bias.

Strand Criterion

Strand bias says that most biased genes of a (circular
or linear with bidirectional replication) genome are
preferentially distributed in precisely one of its strands
(typically the leading strand). This definition does not
depend on gene function, and it allows us to detect strand
bias for genomes whose strongest bias is of any origin. In
particular, we make no hypothesis on high expressivity for
most biased genes, and this is in concert with the finding of
Rocha and Danchin (2003), who show that essential genes
more than highly expressed are located on leading strands.

To detect strand bias we verify the statistical hypo-
thesis on the two distributions of CAI values of genes in
leading and lagging strands of chromosomes (see discus-
sion on plasmids below). This has been done only for
those genomes whose replication origin is known. We
compute the t-value representative of the difference bet-
ween the means of the two distributions and say that or-
ganisms with average t-value (taken as an absolute value)
.0.25 have leading-lagging strand bias.

This criterion provides a way to check for strand bias
which is independent of that based on the co-existence
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between strand bias and GC-skew bias, proposed by
Sueoka (1962) and McLean, Wolfe, and Devine (1998).
(The use of this idea to detect replication sites is
envisageable but out of the scope of this study.)

The Number of Codon Bias Signatures Is Limited

Translational bias is strongly correlated with GC3
content (in the sense that GC3 is the most prominent
compositional content of a translationally biased organism),
and most strand biased genomes in our collection are either
AT3 or GC3. These observations justify the limited number
of signatures we found, as it appears in figure 2. Also, it is
worth mentioning that we detected three genomes with GC-
skew bias, three with CG-skew bias, and three with AT-skew
bias, but only 1 with a TA-skew bias.

Validation of Signatures and Tendencies

Tendencies and signatures obtained by applying the
simple numerical criteria above (see figure 2 and
Supplementary Material for the complete list of signatures
and tendencies for genomes in table 1) are validated on
known cases, and for some genomes, predictions have
been drawn:

Pseudomonas aeruginosa is GC3 biased but also strand
biased

Drawn from calculations of CAI values which were
based on misleading manual selections of sets of most
biased genes (Grocock and Sharp 2002; Gupta and Ghosh
2001; Kiewitz and Tümmler 2000), the dominating codon
bias of P. aeruginosa gave origin to controversial opinions
on the biology of this organism. This makes this genome a
good test case for our criteria, which are also based on CAI
analysis. In agreement with Grocock and Sharp (2002), we
detect that P. aeruginosa has a very strong GC3-bias (see
also Carbone, Zinovyev, and Képès [2003]), but also a
strong tendency toward GC-skew, and a strong strand bias.

Genomes with Strand Bias and No GC-Skew Bias

Strand bias (0.95) is detected for Haemophilus
influenzae, a genome with no GC-skew bias (0.05). Other
organisms also display strand bias but no GC-skew bias:
Mycoplasma pneumoniae, Buchnera sp., M. genitalium,
and Chlamydia trachomatis. Besides P. aeruginosa, other
organisms display strand bias and just a strong tendency
toward GC-skew: C. pneumoniae AR39, C. muridarum, C.
jejuni. Some others display both biases as strongly, like B.
burgdorferi (with strand bias at 1.89 and GC-skew bias at
0.77) (Lafay et al. 1999; Carbone, Zinovyev, and Képès
2003).

Translationally Biased Genomes

In figure 1 (bottom), �zRib and d(wG, wS) values show
that organisms known to be translationally biased are
separable from all others with respect to suitable thresh-
olds. Some of these organisms have been previously
reported in the literature and validate our separation (Gouy
and Gautier 1982; Sharp and Li 1987; Sharp et al. 1988;

Médigue et al. 1991; Shields and Sharp 1987; Carbone,
Zinovyev, and Képès 2003).

To validate the ribosomal criterion, we looked at the
sets of most biased genes S determined by the evaluation
of CAI values for each genome satisfying the ribosomal
criterion, for which we claim a translational bias. We
checked the annotation of the genes in the set of most
biased genes, and we positively verified that the genes
which typically are representative of translational bias,
such as ribosomal, glycolytic, dehydrogenase, enolase,
elongation factors, photo-system, heat-shock, and cold-
shock proteins were consistently present in the set.

Weak Forms of Translational Bias—Mycobacterium
tuberculosis

The coupled use of the two criteria detecting trans-
lational bias allows us to identify those genomes for which
translational bias is weakly present. An example is M.
tuberculosis, for which only one of the two strains H37Rv
(�zRib ¼ 1.14) and CDC 1551 (�zRib ¼ 0.87) is characterized
by translational bias, even though both strains have
comparable codon preferences. Translational bias for this
species cannot be detected by strength criterion, and this is
an indicator for weak detection. This observation is
compatible with the findings of de Miranda et al. (2000).

Tendencies Toward Translational Bias—Rickettsia
prowazekii

For those organisms which only tend to the threshold
T ¼ 1, i.e., �zRib ¼ 1 2 � for some small � � 0, one can
check whether ribosomal proteins are present in the set of
most biased genes or not. R. prowazekii, for instance, has
�zRib ¼ 0.98 and a set of most biased genes S whose 88% is
made of ribosomal proteins. We conclude that it has
a strong tendency toward translational bias, contrary to
what has been claimed by Anderson and Sharp (1996), on
the basis of a comparison of the amino acid composition
patterns of 21 R. prowazekii proteins with that of
a homologous set of proteins from Escherichia coli; there,
it has been argued that translational selection has been
ineffective in this species under the base that synonymous
codon usage patterns are roughly similar in the 21 proteins,
even though the data set includes genes expected to be
expressed at very different levels. A finer analysis of the
space of all R. prowakezii proteins indicates that the set of
ribosomal proteins in R. prowakezii is separable from all
other proteins by a linear discriminant function with no
false positive nor true negatives (Sn ¼ 100 and Sp ¼ 100).
This means that ribosomal proteins occupy a particular
location in codon bias space and that there is a pressure on
codon bias (especially on codons aaa, aga), even though
the set of ribosomal proteins has unusually broad dis-
persion (compared to the typical case where translational
bias is present).

Genomes with Empty Signature and Weak Tendencies

A few genomes display an empty codon bias
signature, indicating the absence of strong biases of any
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particular type, as for instance Helicobacter pylori (Lafay,
Atherton, and Sharp 2000), but also Thermosynechococcus
elongatus, Thermotoga maritima, and the Archaea Meth-
anosancina mazei. H. pylori has a weak tendency toward
GC-skew bias (Grigoriev 2000); T. maritima has a weak
tendency toward GC and GC3 (Zavala et al. 2002); T.
elongatus and M. mazei have weak tendencies toward GC3
and AT3 biases, respectively.

Microbial Codon Space and Lifestyle

A 2-dimensional projection of the 64-dimensional
space of Eubacteria and Archaea organisms is illustrated in
figure 1 (top), where the first principal PCA component (x-
axis, explaining 45% of the variance) corresponds to GC
content and the second principal PCA component (y-axis,
explaining 13% of the variance) corresponds to optimal
temperature growth. A non-linear shape in the distribution
of points (as viewed best in 3D, not shown), roughly
resembling a ‘‘horseshoe,’’ splits the set of organisms into
two well-defined subsets: the top half of the horseshoe is
made by hyperthermophiles which lie ‘‘above’’ thermo-
philes (all Archaea in table 1 except the mesophilic Halo-
bacterium sp., and the three hyperthermophilic bacteria
Aquifex aeolicus, T. maritima, and Thermoanaerobacter
tencongensis), and the bottom half by mesophiles (all
Eubacteria in table 1 except the three hyperthermophilic
species indicated above, and the mesophilic Halobacterium
sp.). The division suggests a separation of the three lifestyle
domains (hyperthermophiles, thermophiles, and meso-
philes) based on codon bias in agreement with the division
observed by Lynn, Singer, and Hickey (2002) for 40
organisms, and by Kreil and Ouzounis (2001) and Tekaia,
Yeramian, and Dujon (2002) for 27 and 56 organisms, and
based on amino-acids composition. (See also Torres de
Farias and Manhães Bonato [2002] and Lobry and Chessel
[2003].)

Codon Bias and Optimal Growth Temperature

To study codon bias differences in (hyper)thermophilic
and mesophilic genomes, we used LDA and determined that
codons cgt, cgc are positive indicators for mesophiles, while
agg, ata, gga, cta, acg are negative indicators; agg is
a positive indicator for thermophiles; cta, agt, ggg, agg, cca,
ctc are positive indicators for hyperthermophiles, while cgc,
cat, ggc, tcg are negative indicators. These preferential
codons code for Arg1Ile1Gly1Leu and separate meso-
philes from (hyper)thermophiles; it is interesting to notice
that distinguished preferred codons coding for Arg separate
(hyper)thermophiles (agg) from mesophiles (cgt, cgc). The
small number (4) of thermophiles is detected with preferred
codon agg coding for Arg; hyperthermophiles are separated
on preferential codons coding for Leu1Gly1Ser1Arg.
There is no codon coding for Glu, Tyr or Val that is
preferential only in mesophiles and thermophiles, or only in
hyperthermophiles: the role played by these three amino
acids (Kreil and Ouzounis 2001; Tekaia, Yeramian, and
Dujon 2002) in hyperthermophilic proteins remains trans-
parent at the nucleotide level. We conclude that while the
division between (hyper)thermophiles and mesophiles is

sharply determined by preferential codon bias (on
Arg1Ile1Gly1Leu), the transition between hyperthermo-
philes and thermophiles is less clear and should be
understood as gradual. Our set of 96 organisms confirms
the hypothesis of gradual transition discussed in Tekaia,
Yeramian, and Dujon (2002).

Translational Bias for Hyperthemophiles and Mesophiles

As expected, regions in codon space that collect the
most GC3 and AT3 biased genomes, that is the two most
extreme regions of the genomes distribution along the first
principal PCA axis (interpreted by GC-content), contain
(hyper)thermophiles and mesophiles. It is surprising
though, to see that translationally biased organisms cluster
in two groups localized in distinguished sites of codon
space, one collecting (hyper)thermophiles and the other
mesophiles. Knowing that preferred codons and isoaccep-
tor tRNA content exhibit a strong positive correlation
(Ikemura 1985; Bulmer 1987; Gouy and Gautier 1982),
and that tRNA isoacceptor pools affect the rate of polypep-
tide chain elongation (Varenne et al. 1984; Buckingham
and Grosjean 1986), this means that the set of preferred
codons correlated with isoacceptors tRNA leading trans-
lational bias for (hyper)thermophiles is different than that
for mesophiles. Applying LDA, we observe that a positive
indicator for translationally biased (hyper)thermophiles
genomes is agg, that positive indicators for translationally
biased mesophiles are gct, ctt, ttc, cag, act, cga, gtt, cgg,
cat, tca, tat, cac, gtg, acc, aac and that negative indicators
are acg, tcc, agc, aca, ccg, cca, agt, gca, aga. If selection
depended merely on some property of mRNAs that is
important under conditions of high temperature (Lynn,
Singer, and Hickey 2002), like increased mRNA stability
at high temperature for instance, it is not clear whether
translational efficiency could be effectively distinguished
in hyperthermophiles. We showed that translational bias in
hyperthermophiles can be clearly detected through codon
analysis.

Aerobic and Anaerobic Respiration

Organisms sharing the same respiratory character-
istics tend to group together in codon space as illustrated in
figure 3. Linear discriminant analysis demonstrates that
clusters in the figure are not an artifact of the 2-
dimensional projection. Indeed, four groups are sharply
characterized by distinguished sets of preferred codons
with highly significant (positive and negative) separation
coefficients: tct, gtt, gcg are positive indicators, and ctt,
tca, tcg, gtc, agt, aag are negative indicators for facultative
anaerobism; tca, ctt, gac, tac, ttc, cac, aac are positive
indicators and tct, tgc, aga are negative indicators for
facultative aerobism; ccg, tta, gcg, cac, aaa, ctc, ctg, agt,
ggg, gga, gtc, cca, ggc are positive indicators and cgt, tcc,
ccc, cta, acc, gtg, tcg, cat, gaa are negative indicators for
anaerobism; cgc, gta, gaa, caa, tgc, ccc, cct, gtg are pos-
itive indicators and aaa, ccg, ata, ggg are negative indica-
tors for aerobism. Within thermophiles, facultative aerobic
are represented by Pyrobaculum aerophilum, and we
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expect new sequenced facultative aerobic thermophiles to
be grouped in the same part of codon space.

The only facultative anaerobic organisms in table 1 are
c-proteobacteria; their position in space is not due to their
phylogenetic closeness because all c-proteobacteria which
are aerobic are located in a sharply separated part of the
space (not shown). The same holds for facultative aerobic
represented solely by firmicutes; anaerobic firmicutes lie far
apart in our codon space. It is important to stress that the
transition between clusters should be considered as gradual
rather than a clear-cut separation. In particular, aerobic and
facultative aerobic organisms tend to be located closely as
well as anaerobic and facultative anaerobic organisms.

Validation of Distances with Respect to Genomic
Variability and Codon Bias

In our codon bias space, organisms distances vary
considerably in a scale from 0 to 24. At distance ,1 we
typically find different strains of the same organism, and,
usually, different species lie at distance .1. Distances
reflect the genomic variability within the same species or
within the same phylogenetic group, and they provide
a numerical description of important differences in codon
bias signatures among organisms within the same species
or phylogenetic branch. Roughly speaking, one might
estimate two organisms to be close in codon bias space,
weakly close, far and very far if their distance lies in the
intervals [0, 7), [7, 12), [12, 16), and [16, 24), respectively.
Largest distances are detected between pairs of organisms
which are AT3 and GC3 biased.

Organisms of Close Genomic Relationships: Some
Examples

Consistently with what one expects, Shigella flexneri
2a lies at distance ,0.5 from all strains of E. coli, while
the two strains of H. pylori lie at distance ’4, reflecting
a certain degree of genomic and allelic diversity among the

two strains (Wang, Humayun, and Taylor 1999), but not
a large one as observed by Alm et al. (1999). Similarly, the
three closely related Mycoplasma, known to have quite
different genome composition, lie at distance ’4–6.

Phylogenetic Groups Organization in Codon Space

It is instructive to analyze phylogenetic groups
through codon bias differences which can be detected in
codon space. For a first rough impression, one can look at
the tree in figure 2, which represents 1

2
‘1-distances among

genomes and groups—together three large families of
organisms that turn out to be characterized by GC rich, AT
rich, and translationally biased genomes. The sister tree
collecting translationally biased genomes separates Firmi-
cutes from c-Proteobacteria, and the sister subtree
corresponding to GC-rich genomes groups in different
subtrees translationally biased Archaea, GC3-biased Eu-
bacteria, and GC3-biased Archaea. A finer analysis leads
to the observation that for those phylogenetic branches that
present a variety of different signatures within the branch,
organisms displaying the same signature are localized in
the same region of codon space and are usually classified
within a known subfamily of the phylogenetic branch.

c-Proteobacteria

They split into 6 groups (see fig. 4), and the large
distance among some of the groups (at times . 15) is
reflected in the signature: subgroups G2 and G6 (Enterob-
acteriales), G3 (Pasteurellales), G5 (Vibrionales and
Alteromonadales) collect translationally biased genomes,
and G1 (Enterobacteriales), G4 (Xanthomonadales) are
AT3, GC3 biased.

a-, b- and �-Proteobacteria

�-Proteobacteria present a variety of codon biases;
Helicobacter strains are rather homogeneous genomes and
Campylobacter jejuni (at distance ’8 from Helicobacter
strains) displays AT3 bias and strand bias. Within the a-
proteobacteria group, Rickettsia are AT3 biased whereas
Caulobacterales and Rhizobiales are GC3 biased, and most
of them display translational bias as well. b-proteobacteria
are GC3 biased (see fig. 4).

Firmicutes and Actinobacteria

Mollicutes and Clostridia are AT3 biased or tend
toward AT3 bias. Lactobacillales and Bacillales are all
translationally biased, and Actinobacteria are either GC3
biased or tend toward GC bias.

Chlamydiales

Chlamydiales are at close distance and display
a common codon bias signature: they are strand biased,
and they all tend toward AT3 bias and translational bias.

Spirochaetales

Treponema pallidum and B. burgdorferi are charac-
terized by strand and CG-skew bias, while Leptospira
interrogans is AT3 biased. While B. burgdorferi and L.

FIG. 3.—Organisms and their respiration characteristics: aerobic
(rhomboids), anaerobic (circles), facultative aerobic (triangles), faculta-
tive anaerobic (squares). Prediction tables after LDA training (leave-one-
out cross-validation) on two dimensions after PCA (left, error rate 0.15)
and on 64 dimensions (right, error rate 0.13).
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interrogans group in the same sister subtree (fig. 2), T.
pallidum is far away from all species (see long branch in
fig. 2).

Archaeal subgroups

Because of the restrained number of available
complete archaeal genome sequences (16) we can only
try to consider Thermoplasmales, Sulfolobales, Thermo-
coccales, and Methanosarcinales. These species span
a large range of codon compositions and biases, going
from GC3 to AT3 along the first principal PCA component.
Sulfolobales (AT3 biased) are located within a small
relative distance ’3; Methanosarcinales have a rather
large relative distance ’11, and they lie in two distin-
guished subtrees in figure 2: M. mazei tends toward AT3
bias, and M. acetivorans is translationally biased and tends
toward GC3; Thermococcales are grouped in the same
subtree in figure 2 because either they have a AT3 biased
genome (Pyrococcus furiosus, P. horikoshii) or they tend to
be AT3 biased (P. abyssi, which displays a translational
bias). The Thermoplasmales, Thermoplasma acidophilum
is GC3 biased and T. volcanium is AT3 biased.

Discussion
Detection of Strong and Weak Forms of Bias

The numerical criteria that we have introduced to
detect codon bias allow us to treat genomes uniformly and
faithfully compare species and strains. Our numerical
methods allow for (1) a quantitative evaluation of whether
an organism has a strong or weak form of bias (by
computing the distance from the corresponding threshold)
and (2) the detection of co-existing multiple biases (by
using distinguished criteria). These features should be
compared with the analysis demanded by methods like
PCA and correspondence analysis, where principal com-
ponents might be far from being unambiguously interpret-
able giving origin to misleading conclusions as discussed

by Perrière and Thioulouse (2002). In particular, the
interpretation of more than the first two or three principal
components usually becomes quite difficult.

Thresholds are indicators of high bias, and their values
confirm all previous studies; however, one expects formal
statistical approaches to be employed for further tuning
once larger sets of organisms become available. Also, our
numerical approach provides, for each bias, quantitative
values ranging within a continuous interval. Based on these
values, we defined strong, weak, and absent forms of bias,
but finer classifications are envisageable and can be
introduced with the help of new appropriate definitions.

Codon Weights versus Codon Usage and Comparison
of Spaces

‘‘Preferred’’ codons, defined by high codon weights,
should not be confused with ‘‘most frequent codons,’’
defined by high codon usage. This is shown by Carbone,
Zinovyev, and Képès (2003) (fig. 2) through an analysis of
codon preferences for H. pylori, E. coli, and C. elegans. In
H. pylori, a rather homogeneous genome, preferred codons
are the most frequent codons, but for E. coli and C.
elegans, preferred codons calculated on the set of most
biased genes S are not the same as preferred codons com-
puted over the whole genome, that is, the most frequent
codons. We used codon weights to represent an organism
and to suitably define a space of organisms; codon usage
instead is not a good measure to accomplish this task. To
verify this, we constructed a distance tree (based on 1/2‘1

distance metric) among organisms represented as 64-
dimensional vectors of codon usage (CU)—i.e., frequen-
cies calculated over the whole genome, and of codon usage
calculated over the set of most biased genes S (CUS) (see
trees in the Supplementary Material online). The same
rough division among AT-rich, GC-rich, and translation-
ally biased genomes seen to be true for the tree based on
codon weights (fig. 2), holds true for the tree constructed
with CUS, but it is not satisfied by the tree based on CU. In

FIG. 4.—Proteobacteria a (white triangles), b (white rhomboids), � (white circles). c-proteobacteria (filled shapes) cluster into six sets (numbers as
in table 1). G1: B. aphidicola Sg, Buchnera sp, W. brevipalpis; G2: Salmonella, Escherichia, and S. flexneri 2a; G3: P. multocida, H. influenzae; G4: X.
fastidiosa, X. campestris, X. citri; G5: V. colerae, S. oneidensis; G6: Yersinia.
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particular, for this latter tree, closely related phylogenetic
groups sharing the same codon bias, like the three c-
proteobacteria Xantomonadales, X. fastidiosa, X. campes-
tris, and X. citri, are not grouped together, contrary to what
happens in our codon space (see G4 in figure 4). These
observations make it inappropriate to employ codon usage
for organism comparison. (Notice that the distinction
between preferred codon and most frequent codon was
also exploited in our analysis to define the strength
criterion.)

GC Bias and Translational Bias

Our codon space demonstrates that translational bias
is independent of GC bias. There are organisms for which
this is not the case, as for Drosophila (Kliman and Hey
1994) for instance, where GC content is uniformly higher
at silent sites in coding regions than in putatively neutrally
evolving introns. Figure 1 (top) shows a wide distribution
of translationally biased genomes (red) extending from the
GC-rich region (left) toward the AT-rich region (right) of
the space.

Codon Bias Space, Physiology and Habitat

Reasons supporting an evolutionary convergence of
codon bias for organisms sharing similar physiology and
living in similar habitats, might include (1) the need for
a successful exchange of genes by lateral transfer, (2) the
sharing of physical parameters such as temperature
(preferred amino acids and codons related to thermal
adaptation), (3) the sharing of chemical parameters such as
nutrient supply (that would differentially affect pyrimidine
and purine production), and (4) the sharing of biological
parameters such as, for pathogens, the management of
genetic variability through codon usage (to escape the
immune system for instance).

Examples supporting these reasons are several. The
bacterium Aquifex aeolicus, for instance, occupies the
hyperthermophilic niche otherwise dominated by Archaea.
After genome analysis, it seems likely that the archaeal
genes in Aquifex have been introduced by horizontal gene
transfer, on top of a typical bacterial gene repertoire, and
have been retained owning to the specific selective
advantage they provided by enabling the bacterium to
thrive in high-temperature habitat (Aravind et al. 1998). A
similar gene transfer has been observed for another
hyperthermophilic bacterium, Thermotoga maritima. This
transfer heavily influenced the codon bias of the two
bacterial genomes, Archaeoglobus fulgidus and Methano-
bacterium thermoautotrophicum, which are also close to
extreme thermophilic Archaea.

Other important examples are pathogens or sym-
bionts. Most Eubacteria collected in the sister subtree of
AT-rich genomes (Buchnera, Chlamydiae, Spirochaetes,
Mycoplasma, Rickettsia genera, �-proteobacteria; see
figure 2, and also Rocha and Danchin [2002]), rely on
their host for survival. A few other obligatory pathogens,
such as M. tuberculosis and M. leprae are GC3 biased, or
translationally biased, as Shigella flexneri, Haemophilus
influenzae, and Pasteurella multocida. For these latter

species, it might be that symbiosis genes are located in
‘‘islands’’ of lower G 1 C content, as it is the case for
Mesorhizobium loti, a GC3-biased pathogen hosted by
Lotus japonicus. The higher energy cost and limited
availability of G and C over A and T/U could be a basis for
the understanding of the differences of free-living bacteria
and obligatory pathogens (Rocha and Danchin 2002).

Sharing merely the habitat is not enough to be close
in codon space. In this respect, Staphylococcus aureus
shares common ecology but neither physiology nor
genetics with Neisseria meningitidis. These two commen-
sal bacteria have very different ways to survive outside
a host, to colonize it, and be toxic. We observe them to be
located rather far in our space (’ 13). On the other hand,
C. jejuni, an extracellular pathogen of the digestive tract,
and Rickettsia, an obligate intracellular parasite, would be
distantly related in this space if only habitat were to matter,
while they lie only at distance ’2.

These examples suggest that it makes sense to
investigate the connection between codon bias and
environmental and physiological conditions, but that the
task is far from being simple. A rigorous mathematical
analysis that could consolidate this intuition would require
the definition of a set of parameters to describe the physio-
logy and ecology of Eubacteria and Archaea. This may
include a description of the biotopes encountered by the
bacteria, the doubling time, the genome size, the number
of ribosomal operons, and so on. This characterization
would allow us to define a ‘‘physiology space’’ and a suitable
distance within it. Such a space could then be compared to
the codon bias space defined in this article and the
hypothesis could be tested. Notice that, if the intuition
were confirmed, the detection of codon bias signatures for
upcoming genome sequences could become a very impor-
tant tool with which to infer valuable information on the
physiology, ecology and possibly, the ecological conditions
under which bacterial organisms evolved. For some of these
organisms, this information cannot be otherwise obtained.
(See also Wagner [2000].) In particular, new biological
questions could arise, even on distantly related organisms
like Thermoplasma volcanium, which is known to resemble
bacterial mycoplasmas in that it lacks a cell wall and which
turns out to be close to the mycoplasmas M. genitalium,
M. pneumoniae, and M. pulmonis (’6) in our codon space.

Phylogenies and Codon Bias

Controversial phylogenies have been proposed sev-
eral times, and reasons for these misinterpretations are
several (Gribaldo and Philippe 2002). Many of the mis-
leading examples are due to codon bias which, at times,
depends on lateral gene transfer among phylogenetically
unrelated taxa thriving in the same ecological niches
(Ruepp et al. 2000). This is the case, for instance, for the
unexpected relationship among Thermoplasmales and
Crenarchaeota (Korbel, Huynen, and Bork 2002), which
we find are indeed close in codon space. Our analysis is
transversal to phylogenetic classifications and can help to
refine the analysis of phylogenetic branches. One example
are c-proteobacteria, which we have seen divided into six
distinct groups in codon space. Another example is
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Deinococcus radiodurans, positive to the Gram coloration
but deprived of the external membrane, unlike Gram-
positive organisms. It is located close to the Gram-positive
location in our space (with both a GC and a translational
bias), as well as in many phylogenetic reconstructions
(Daubin, Gouy, and Perrière 2002), while it is expected to
have a basal position among bacteria (Woese 1987). It is
possible that these controversial phylogenetic positions are
simply due to the high GC content of this genome, but it
might be also possible that two independent losses of the
external membrane have occurred in high-GC-content and
low-GC-content Gram-positive bacteria as argued by
Daubin, Gouy, and Perrière (2002). If codon space could
provide the opportunity to detect and study, in a systematic
way, those genomes that live in the same ecological
environment, which are susceptible to have similar
physiology and to have successfully exchanged genes by
lateral transfer, bacteria like D. radiodurans might be able
to finally find the right place within phylogenetic
classifications.

Supplementary Material

The file wdatcodonspace.xls contains basic statistics
and codon bias analysis for all organisms, wdistcodon-
space.xls contains ‘1-distances between organisms, LDA-
separationfunctions.xls contains all LDA separation
coefficients, Supplementary material.doc contains distance
trees and accession numbers. These files are also available
at http://www.ihes.fr/;carbone/data.htm.
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Mrázek, J., D. Bhaya, A. R. Grossman, and S. Karlin. 2001.
Highly expressed and alien genes of the Synechocystis
genome. Nucleic Acids Res. 29:1590–1601.

Perrière, G., and J. Thioulouse. 2002. Use and misuse of
correspondence analysis in codon usage studies. Nucleic
Acids Res. 30:4548–4555.

Radomski, J. P., and P. P. Slonimski. 2001. Genomic style of
proteins: concepts, methods and analysis of ribosomal
proteins from 16 microbial species. FEMS Microbiol. Rev.
25:425–435.

Rocha, E. P., and A. Danchin. 2002. Base composition bias
might result from competition for metabolic resources. Trends
Genet. 18:291–294.

Rocha, E. P., and A. Danchin. 2003. Essentiality, not
expressiveness, drives gene-strand bias in bacteria. Nature
Genet. 34:377–378.

Ruepp, A., W. Graml, M. L. Santos-Martinez, K. K. Koretke, C.
Volker, H. W. Mewes, D. Frishman, S. Stocker, A. N. Lupas,
and W. Baumeister. 2000. The genome sequence of the
thermoacidophilic scavenger Thermoplasma acidophilum.
Nature 407:508–513.

Sandberg, R., C. I. Bränden, I. Ernberg, and J. Cöster. 2003.
Quantifying the species-specificity in genomic signatures,
synonymous codon choice, amino-acids usage and G1C
content. Gene 311:35–42.

Sharp, P. M., and W-H. Li. 1987. The codon adaptation index—
a measure of directional synonymous codon usage bias, and
its potential applications. Nucleic Acid Res. 15:1281–1295.

Sharp, P. M., E. Cowe, D. G. Higgins, D. C. Shields, K. H.
Wolfe, and F. Wright. 1988. Codon usage patterns in
Escherichia coli, Bacillus subtilis, Saccharomyces pombe,
Drosophila melanogaster and Homo sapiens; a review of the
considerable within-species diversity. Nucleic Acids Res.
16:8207–8211.

Shields, D. C., and P. M. Sharp. 1987. Synonymous codon usage
in Bacillus subtilis reflects both traditional selection and
mutational biases. Nucleic Acids Res. 15:8023–8040.

Sicheritz-Pontén, T., and S. G. Andersson. 2001. A phylo-
genomic approach to microbial evolution. Nucleic Acids Res.
29:545–552.

Sueoka, N. 1962. On the genetic basis of variation and
heterogeneity of DNA base composition. Proc. Natl. Acad.
Sci. USA 48:582–592.

Tekaia, F., E. Yeramian, and B. Dujon. 2002. Amino acid
composition of genomes, lifestyles of organisms, and evo-
lutionary trends: a global picture with correspondence analysis.
Gene 297:5160.

Torres de Farias, S., and M. C. Manhães Bonato. 2002. Preferred
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