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Facts and ideas presented in this short review are addressed to those computer
scientists and mathematicians that want to learn about some open questions on the
bioinformatics of microbial organisms. We present some recent results of our group on
the statistical analysis of microbial genomes involving the formalization of microbial
spaces, metabolic network comparison, minimal gene sets, host-phage adaptation
and gene chromosomal organization. The guideline to all results presented here is to
derive insights on microbial physiology and habitat directly from genome sequences
by means of a purely statistical analysis and an appropriate design of algorithms.
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1.1 SOME BACKGROUND, MOTIVATION AND OPEN QUESTIONS

Life mechanisms have been addressed in microbiology with a model-organism ap-
proach that has dominated the history of biology of the past century. Today, the
large availability of genomic data coming from genome sequencing and from new
high-throughput technologies changed radically the nature of investigations that are
envisaged in molecular biology. For the first time, an organism and its changing
environment can be considered together and in concert with a multitude of other
organisms. Evolutionary hypothesis start to be tested at large scale.

Even though the experimental power is present, our understanding of microbe-
environment interactions is still in its infancy, and upcoming discoveries and advances
in geomicrobiology are likely to come from all areas of this discipline. This is a par-
ticularly good time for experimentalists to interact together with bioinformaticians,
biomathematicians and biophysicists for defining new experimental questions, ana-
lyze large amount of data, model phenomena that characterize the new dimension
within which microbiology lives today.

Microorganisms, genome sequences and comparative genomics. The availability of
a large number of genomes provides the possibility to study biodiversity between
species, within species and even within strains by comparing what is missing and
what is common at a genetic level. Satisfactory formal methods and models to study
similarities within the diversity have been developed but methods to study differences
within a diversity are much harder to envisage. On the experimental level we expe-
rience a similar situation. Interaction and back-and-forth between experimentalists
and bioinformaticiens/modelers which can direct both experiments and modeling is
demanded in such a setting.

Evolutionary questions concerning chromosomal integrity, genomic expansion,
chromosomal rearrangements, mobility of genetic elements, lateral gene transfer,
gene share and gene loss among strains and across species, gene creation, evolution
of duplicated genes, modular gene organization, gene essentiality and chromosomal
organization, sexual proliferation are at the heart of microbiology today and are ques-
tions that we need to address. In fact, any question concerning the way that non-coding
information in genomes, genes and genome architecture influence and direct the biol-
ogy of the microbe, such as its virulence or adaptiveness under specific environmental
conditions, constitutes a major preoccupation in the field of microbiology. Adaptive
and non-adaptive processes in a cell, including genomic adaptiveness (for bacteria,
viruses and eventually eukaryotic unicellular organisms), networks adjustment under
changes in environmental conditions, modular rearrangements in genome architecture
are other key questions for microbiology. Together with this, the understanding of
structural and functional relations in proteins, the fate of duplicated protein sequences,
speciation via divergent evolution of duplicated genes, are also key concerns.

Microorganisms and their organisation. What information can we extract from
genomes concerning the biology of the organism? Statistical analysis has lead to
identify statistical conditions (purely based on composition and on no biological in-
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formation about the life of the organism) to determine the optimal growth temperature
of a bacteria, to organize bacteria with respect to their ecological niche, to determine
which genes are essential for the life of a unicellular organism, to determine essential
metabolic networks etc. These results are intimately connected to the evolutionary
processes that the organism has undergone and any insight on the origins of evolution-
ary pressures are most useful for a correct understanding of the evolutionary history
of the organism. It is this history that justifies the today life of the organism.

Several types of measures, that induce organismal classifications might be intro-
duced. Some of these measures try to detect environmental organization, some other
physiological similarities and others phylogenetic proximity. Differences between
phylogenetic, physiological and environmental information lead to different classi-
fications of the microbial world. Such organizational differences are bound to be
important for the understanding of evolution. In this respect, it might be that the
understanding of the metagenomic data (that is, DNA data coming from environ-
mental genomic analysis, corresponding to multispecies communities of organisms
which usually either they have not being attempted to culture or they have been re-
sistant to culturing efforts) will be possible only if these three conceptually different
classification paradigms for organisms will be cleared out.

Another important paradigm for classification that is rising in these last years
is induced by chromosomal rearrangements. It has been observed that it does not
correspond to phylogenetic organization. What sort of biological information is
associated to genome reorganization? Is it dependent on environmental pressure? or
perhaps on physiological constraints?

Microorganisms, metagenomics and comparative genomics. In recent years it became
clear that comparative genomics will include soon metagenomic data and metage-
nomic reconstruction of partial metabolic information for different ecological niches.
This new incoming information will no doubt bring a fresh view on more classical
model organisms. The study of the relations microbe-environment demands to take
into consideration the fact that the 99% of the microorganisms visualized microscop-
ically in environmental samples are not cultivated by routine techniques. This reality
underlies the difficulty to make sound ecological inferences based on metabolic prop-
erties of a few cultivable species.

Even if this point should be addressed, we need to keep in mind that cultivable
species propose a setting where environmental conditions and changes in environ-
mental conditions can be tested and where the behavior of microbial populations can
be modeled and analyzed. The hemiascomycetes (to which bakery yeast belongs)
for instance, constitute a group of species which are very useful for learning because
characterized by a compact genome, by very different ecological niches, and by an
easy experimental handling of several of the species.

Microorganisms and population genetics. The fundamental principle underpinning
microbial population dynamics is that the survival of a given individual microorganism
is ultimately dependent upon the metabolic activity of others in its ecosystem. In this
respect, the inclusion of the view of population genetics within the approaches to
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genome analysis for understanding diversity of microbial communities and cultures,
seems necessary. The interaction microbe-environment might turn out to be entangled
with population processes in microbial species, such as natural selection, demography
and migrations, and the population genetics perspectives might turn out to provide
the conceptual tools for this understanding.

Microorganisms, metabolism and environment. Micro-organisms are intimately in-
volved in transforming inorganic and organic compounds to meet their nutritional
and energetic needs. Because the metabolic waste from one type of species nearly
always provides substrate for another, there is an interdependence between species
growing in close proximity to one another, or alternatively, the communities can be
spatially separated, and elemental cycling may take on more complex and convoluted
pathways. The power of microbial communities is fundamental for life and today, ex-
periments can be conceived to meaningfully study microbial communities at different
scales.

Questions concerning networks response to environmental changes affecting mi-
crobial eukaryotic and/or prokaryotic communities might be addressed. The func-
tioning of regulation networks will be understood in terms of population biology and
interactions (competition or collaboration) among species.

Adaptiveness is another important phenomena concerning microbial organisms
interacting with their environment. It might be addressed in silico within the con-
text of genetic variability for bacterial/viral species/strains based on available data.
Questions around genetic exchanges within species and across species might be also
ground for interdisciplinary work.

In this paper, we shall look at microbial organisms with available complete ge-
nomic sequences and demonstrate that we can read evolution signals out of them and
derive meaningful biological information about an organism. The approach is not
comparative. We start from a genome, realize a statistical analysis of its genes and
derive insights on the biology of the organism guided by statistical biases of codon
usage. We aim to find a general method that can be applied to organisms whose
genome is known but for which not much biological information is available. One of
the main motivations for this work is to search for a pool of genes that are essential for
an organism. This question is fundamental if we think of synthesizing a genome from
scratch and of attaining genome minimization conditioned by specific environmental
conditions and metabolic activities (Venter et al. 2003; Zimmer 2003; Smith et al.
2003).

1.2 A FIRST STATISTICAL GLIMPSE TO GENOMIC SEQUENCES

Proteins are formed out of 20 amino-acids which are coded in triplets of nucleotides,
called codons. The four nucleotides (A, T, C, G) define 64 codons used in the cell.
Codons are not uniformly employed in the cell, but at the contrary, certain codons are
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preferred and we speak about codon bias. There are several kinds of codon biases and
some of them are linked to specific biological functions. Statistical analysis of DNA
sequences and in particular of codon bias were performed from the moment that long
chunks of DNA sequences were publicly available in the early eighties (Grantham et
al. 1980; Wada et al. 1990), and the roots for these studies can be traced back to the
sixties (Sueoka 1962; Zuckerkandl and Pauling 1965). However with the increasing
number of bacterial genome sequences from a broad diversity of species, this field of
research has been revivified in the last few years (Koonin and Galperin 1997; Lin and
Gerstein 2000; Radomski and Slonimski 2001; Knight et al. 2001; Sicheritz-Pont´en
and Andersson 2001; Daubin et al. 2002; Lin et al. 2002; Lobry and Chessel 2003;
Sandberg et al. 2003; Jansen et al. 2003).
Biased codon usage may result from a diversity of factors: GC-content, preference
for codons with G or C at the third nucleotide position (Lafay et al. 1999), a leading
strand richer in G + T than a lagging strand (Lafay et al. 1999), horizontal gene
transfer which induces chromosome segments of unusual base composition (Moszer
et al. 1999), and in particular, translational bias which has been frequently noticed
in fast growing prokaryotes and eukaryotes (Sharp and Li 1987; Sharp et al. 1986;
M´edigue et al. 1991; Shields and Sharp 1987; Sharp et al. 1988; Stenico et al.
1994). Three main facts support the idea of "translational impact": highly expressed
genes tend to use only a limited number of codons and display a high codon bias
(Grantham et al. 1980; Sharp and Li 1987), preferred codons and isoacceptor tRNA
content exhibit a strong positive correlation (Ikemura 1985; Bennetzen and Hall 1982;
Bulmer 1987; Gouy and Gautier 1982), and tRNA isoacceptor pools affect the rate of
polypeptide chain elongation (Varenne et al. 1984; Buckingham and Grosjean 1986).

To study the effect of translational bias on gene expression, Sharp & Li (Sharp and
Li 1987) proposed to associate to each gene of a given genome a numerical value,
called Codon Adaptation Index or CAI for short, which expresses its synonymous
codon bias (see appendix for the definition). The idea is to compute a weight (repre-
senting relative adaptiveness) for each codon from its frequency within a chosen small
pool of highly expressed genes S, and combine these weights to define the CAI(g)
value of each gene g in the genome. For Sharp et al., the hypothesis driving the choice
of S is that, for certain organisms, highly expressed genes in the cell have highest
codon bias, and these genes, made out of frequent codons, are representative for the
bias. Based on this rationale, one can select a pool of ribosomal proteins, elonga-
tion factors, proteins involved in glycolysis, possibly histone proteins (in eukaryotes)
and outer membrane proteins (in prokaryotes) or other selections from known highly
expressed genes, to form the representative set S. Then, CAI values are computed
and are checked to be compatible with genes known to be highly or lowly expressed
in the cell. If this is the case, then predictions are drawn with some confidence on
expression levels for genes and open reading frames, even with no known homo-
logues. Even if conceptually clear, this framework has been misused several times
in the literature and incorrect biological consequences have been derived for gene
expression levels of organisms which do not display a dominant translational bias, as
discussed in (Grocock and Sharp 2002). This confusion motivated us to search for a



6 ENVIRONMENTAL AND PHYSIOLOGICAL INSIGHTS FROM MICROBIAL GENOME SEQUENCES

methodology based on a precise mathematical formulation of the problem to detect
the existence of translational bias.

But the main motivation for us came from the recognition that an increasing number
of genome sequences will be available for organisms for which biological knowledge
consists merely of a sketched morphological and ecological description. For these
organisms, it might not be evident how to define the reference set S, nor how to identify
a reliable testing set which can ensure that predictions meet a satisfiable confidence
level. Still, one would like to detect if translational bias holds for these genomes and
if so, to predict their gene expression levels. If not, one would like to know the origin
of their dominating bias and use this information for genome comparison.

1.3 AN AUTOMATIC DETECTION OF CODON BIAS IN GENES

We proposed a simple algorithm to detect dominating synonymous codon usage bias
in genomes (Carbone et al. 2003). The algorithm is based on a precise mathematical
formulation of the problem that leads to use the Self-Consistent Codon Index (SCCI)
(strongly correlated to the CAI measure in translationally biased organisms) as a
universal measure of codon bias, that is a measure for biases of possibly different
origins (and not only for translational bias, as CAI was originally introduced for).
The formal definitions of SCCI and CAI are given in the Appendix.

The idea of the algorithm is simple. It is an iterative algorithm that at iteration i+1
computes codon weights based on a set S of genes selected at iteration i, then ranks
all genes with respect to their SCCI value and selects a new set S, which has half the
cardinality of the set determined at iteration i (if at the i-th iteration the selected set
is already constituted by the 1% of all genes, then the new set will also be constituted
by 1% of genes) and whose genes score the highest. The process is repeated until 1%
of genes have been selected and convergence is reached. At the start, S is the set of
all genes.

With the set of coding sequences as a sole source of biological information, the
algorithm provides a reference set S of genes which is highly representative of the
dominant codon bias. This set is used to compute the SCCI of genes not only for or-
ganisms whose biology is well known but also for those whose functional annotation
is not yet available. An important application concerns the detection of a reference
set characterizing translational bias which is known to correlate to expression levels
in many bacteria and small eukaryotes; it detects also leading-lagging strands bias,
GC-content bias, GC3 bias, and horizontal gene transfer. In general, the algorithm
becomes a key tool to predict gene expression levels and to compare species. The
approach has been validated on 96 slow-growing and fast-growing bacteria and ar-
chaeal genomes, Saccharomyces cerevisiae, Plasmodium falciparum, Caenorhabditis
elegans and Drosophila melanogaster.
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1.4 GENOMIC SIGNATURES AND A SPACE OF GENOMES FOR
GENOME COMPARISON

Based on this analysis, we propose a novel formal framework to interpret genomic
relationships derived from entire genome sequences rather than individual loci. This
space allows to analyze sets of organisms related by a common codon bias signature
(at times, more than one kind of bias influences the same genomic sequence and
the ensemble of these overlapped biases defines what we call the signature of a
genome) (Carbone et al. 2004). We give a number of numerical criteria to infer
content bias, translational bias and strand bias for genome sequences. We show
in a uniform framework that genomes of quite different phylogenetic relationship
share similar codon bias; other genomes grouped together by various phylogenetic
methods, appear to be subdivided in finer subgroups sharing different codon bias
characteristics; Archaea and Eubacteria share the same codon preferences when AT3
or GC3 bias is their dominant bias; archaeal genomes satisfying translational bias use
a sharply distinguished set of preferred codons than bacterial genomes. Our analysis,
based on 96 eubacterial and archaeal genomes, opens the possibility that this space
might reflect the geometry of a prokaryotic “physiology space”. If this turns out to
be the case, the combination of the upcoming sequencing of entire genomes and the
detection of codon bias signatures will become a valuable tool to infer information
on the physiology, ecology and possibly on the ecological conditions under which
bacterial and archaeal organisms evolved. For many organisms, this information
would be impossible to be detected otherwise. More recently, our algorithm has been
applied to more than 300 genomes and our hypothesis of environmental signature has
been supported at larger scale (Willenbrock et al. 2006).

Spaces for environmental and physiological classification represent a bacterial
classification alternative to phylogeny and they are closer to the living conditions of
the organism. With a growing number of genomic data available, it becomes more and
more important to have new alternative organizational schemes to understand bacterial
populations and the biology of single organisms within their living environment. The
algorithmic idea working for bacteria should be revisited for metagenomic sequences
for instance and adapted for viral genomes. On such spaces, hypotheses such as
adaptability of a virus to the codon bias of its host can be checked and preliminary
analysis support this hypothesis (see later).

1.5 STUDY OF METABOLIC NETWORKS THROUGH SEQUENCE
ANALYSIS AND TRANSCRIPTOMIC DATA

Genes with high codon bias describe in meaningful ways the biological character-
istics of the organism and are representative of specific metabolic usage (Carbone
and Madden 2005). In silico methods exploiting this basic principle are expected to
become important in learning about the lifestyle of an organism and explain its evo-
lution in the wild. We demonstrate that besides high expressivity during fast growth
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or glycolytic activities which have been very often reported, the necessity for survival
under specific biological conditions has its traces in the genetic coding (Carbone and
Madden 2005). This observation opens the possibility to predict rare but necessary
metabolic activities from genome analysis.

High expression of certain classes of genes, like those constituting the translational
machinery or those involved in glycolysis, are correlated particularly well in the case
of fast growing organisms. By shifting the paradigm towards metabolic pathways,
we notice that several energy metabolism pathways are correlated with high codon
bias in organisms known to be driven by very different physiologies, which are not
necessarily fast growing and whose genomes might be very homogeneous. More
generally, we derive a classification of metabolic pathways induced by codon analysis,
show that genetic coding for different organisms is tuned on specific pathways and that
this is a universal fact. The codon composition of enzymes involved in glycolysis
for instance, often required to be rapidly translated, is highly biased by dominant
codon composition across species (this is indicated by the high CAI value of these
enzymes). In fast growers, the numerical evidence is definitely far more striking than
for other organisms (that is, the absolute difference between the CAI value of these
enzymes and the average CAI value for genes in the genome is "large"), but even for
Helicobacter pylori, a genome of rather homogeneous codon composition, enzymes
involved in glycolytic pathways happen to be biased above average. In the same
manner, one detects the crucial role of photosynthetic pathways for Synechocystis or
of methane metabolism for Methanobacterium.

mRNA transcriptional levels collected during the Saccharomices cerevisiae cell
cycle under diauxic shift (deRisi et al. 1997) (here, glucose quantities decrease in
the media during cell cycle and yeast goes from fermentation to aerobic respiration),
have been used to analyze the yeast metabolic network in a similar spirit as done with
codon analysis. A classification of metabolic pathways based on transcriptomic data
has been proposed, and we show that the metabolic classification obtained through
codon analysis essentially "coincides" with the one based on (a large and differentiated
pool of) transcriptomic data. Such a result opens the way to explaining evolutionary
pressure and natural selection for organisms grown in the wild, and hopefully, to
explain metabolism for slow-growing bacteria, as well as to suggest best conditions
of growth in the laboratory.

It is open the question of whether this kind of analysis can contribute to reconstruct
metabolic information from metagenomics data.

1.6 FROM GENOME SEQUENCES TO GENOME SYNTHESIS:
MINIMAL GENE SETS AND ESSENTIAL GENES

The aim on creating a synthetic genome that, when inserted into a cell, can live and
replicate, possibly producing clean energy or curbing global warming (Venter 2003),
recently increased the interest on the fundamental question of determining which
genes are essential to a microbe.
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Computational and experimental attempts tried to characterize a universal core
of genes representing the minimal set of functional needs for an organism. Based
on the increasing number of available complete genomes, comparative genomics
(Mushegian and Koonin 1996, Makarova et al. 2003, Nesbø et al. 2001, Harris
et al. 2003, Brown et al. 2001, Koonin 2003, Charlebois and Doolittle 2004) has
concluded that the universal core contains less than 50 genes. In contrast, experiments
(Itaya 1995, Kobayashi et al. 2003, Hutchison et al. 1999, Glass et al. 2006,
Akerley et al. 2002, Gerdes et al. 2003, Hashimoto et al. 2005, Salama et al. 2004,
Ji et al. 2001, Forsyth et al. 2002, Thanassi et al. 2002, Winzeler et al. 1999,
Giavier et al. 2002, Kamath et al. 2003) suggest a much large set of essential genes
(certainly more than several hundreds, even under the most restrictive hypotheses)
which is dependent on the biological complexity and the environmental specificity
of the organism. Highly biased genes, which are generally also the most expressed
in translationally biased organisms, tend to be over-represented in the class of genes
deemed to be essential for any given bacterial species. Also, all functional classes are
represented by highly biased genes and within different species, highly biased genes
with the same functional role need not be homologous. This association between
highly biased genes and essential genes is far from perfect, nevertheless it allows to
propose a new computational method based on SCCI to detect to a certain extent
ubiquitous genes, non-orthologous genes, environment specific genes, genes involved
in stress response and genes with no identified function but highly likely to be essential
for the cell. Most of these groups of genes cannot be identified with previously
attempted computational and experimental approaches. Notice, for instance, that
comparative genomics infers conclusions only for homologous genes and that certain
non-homologous highly biased genes could not be identified by this approach. Also,
experiments are run under optimal living conditions for the organisms and stress
response genes cannot be identified by experiments. The large spread of lifestyles
and the unusually detectable functional signals characterizing translationally biased
organisms suggest to use them as reference organisms to infer essentiality in other
microbial species. In (Carbone 2006), we analyse in detail 27 organisms belonging to
a large variety of phylogenetic taxa, γ and δ proteobacteria, firmicutes, actinobacteria,
thermococcales and methanosarcinales; they do not display strong GC nor AT content
and they are characterized by different optimal growth temperatures (Carbone et al.
2004). We also discuss the case of small parasitic genomes, and data issued by the
analysis are compared to previous computational and experimental studies.

1.7 A CHROMOSOMAL ORGANIZATION OF ESSENTIAL GENES

Patterns in chromosomal locations of essential genes have been examined and large
scale features of bacterial chromosomes were derived (Mathelier and Carbone, manu-
script, 2008). We wanted to check whether essential genes are organized in regularly
spaced groups within the genome, possibly depending on transcription regulation
patterns or on common functional activities of genes in the groups. Both these possi-
bilities explaining the distribution of genes as a product of structural periodicity are
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attractive. The localization of certain essential genes along structural chromosomal
"faces" would have the advantage of creating spatial subregions in which essential
genes could be accessed by limited diffusion of RNA polymerase or RNA polymerase
fixed in factories. The solenoid model (Képès and Vaillant 2003; Képès 2004) and the
rosettes model of chromosomes have been proposed as possible functional and spatial
organizations of the chromosome. The idea behind these models is to bring close in
space different genes through an encoded three dimensional genomic organization.
The solenoid model organizes loops of DNA along a solenoidal three-dimensional
arrangement and the rosettes model organizes DNA loops radially in a flower-like
three-dimensional structure.

(Képès 2004) has shown that groups of genes regulated by the same transcription
factors in Escherichia coli reveal chromosomal periodicity, and (Wright et al. 2007)
shows that evolutionarily conserved gene pairs in E. coli also reveal chromosomal
periodicity. We considered the pool of core genes detected by the methodology
described above and checked whether these genes are periodically spaced or not.
Genomic core’s genes have to be either highly expressed or rapidly expressed and we
wanted to test the hypothesis that a structured organization of their regulatory elements
could help to reach fast expression. We studied at large scale the chromosomal
organization of some tens of bacterial and archaeal organisms and find that most of
these genomes present periodic distribution of their core genes along the leading strand
(Mathelier and Carbone, manuscript, 2008). This property is not proved to hold for
all microbial genomes but, still, it generates important questions around the impact of
environmental pressures, selective bias, gene rearrangement constraints in microbes.
We observe that a genome might display several significant periods on the different
strands and that the amplitude of the signal can vary considerably from strand to
strand and from organism to organism. We computed a period of about 34kb between
essential genes on the leading strand of E. coli with a very pronounced amplitude of
the signal. The same amplitude does not appear for essential genes located over the
lagging strand. This seems to indicate that a chromosomal organization is hunted to
help the expression of essential genes within the leading strand. We also observed
that functional grouping of core genes explains chromosomal periodicity better than
shared transcription regulators.

Periods computation is based on a signal processing parameterized model and a
Fourier Transform analysis. Significance of the periods is established by comparing
the amplitude of this signal with a random model by generating appropriate random
genomes (with the same number of genes and the same distribution of distances
between pairs of adjacent genes). Further investigations on the impact of structural
organization on transcription mechanisms of bacterial organisms need to be addressed.

1.8 VIRAL ADAPTATION TO MICROBIAL HOSTS AND VIRAL
ESSENTIAL GENES

The notion of SCCI and the algorithmic approach used to study bacterial species have
been recently used to analyze viral genomes and adaptation to their host (Carbone
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2008). Size and diversity of bacteriophage population asks for methodologies to
quantitatively study the landscape of phage differences. Statistical approaches are
confronted with small genome sizes forbidding significant single phage analysis and
comparative methods analyzing full phage genomes represent an alternative of diffi-
cult interpretation due to Lateral Gene Transfer which creates a mosaic spectrum of
related phage species. Based on a large scale codon bias analysis of 116 DNA phages
hosted by 11 translationally biased bacteria belonging to different phylogenetic fami-
lies we observe that phage genomes are almost always under codon selective pressure
imposed by translationally biased hosts and we propose a classification of phages
with translationally biased hosts which is based on adaptation patterns.

The codon bias measure used in the analysis is the SCCI. Namely, SCCI values
reflect codon composition of phage genes relative to host codon composition and pro-
vide a numerical index of the advantage taken by phage genes once translated in the
host environment. This advantage is expected to be higher when phage gene codon
composition is biased toward host codon composition. Through our computational
method based on SCCI, we compare phages sharing homologous proteins, possi-
bly accepted by different hosts, and observe that throughout phages, independently
from the host, capsid genes appear to be the most affected by host translational bias.
For coliphages, genes involved in virion morphogenesis, host interaction and ssDNA
binding are also affected by adaptive pressure. If phage genomes were to contain a
pool of essential genes, these functional classes could suggest appropriate candidate
genes. Adaptation affects in a significant way long and small phages. We analyze
in more details the Microviridae phage space to illustrate the potentiality of the ap-
proach. Surprisingly, we can reconstruct the phylogenetic tree of the large phage
pool defined around phage φX174 (Rokyta et al. 2006) using exclusively codon bias
information. Also, the adaptation analysis of the set of Microviridae phages defined
around phage φMH2K shows that phage classification based on adaptation does not
reflect bacterial phylogeny. This result highlights that adaptation patterns in phages
might be profitably used to unravel the intricate mosaic of phage speciation.

The numerical finding provided by this and future studies of phage-host coevo-
lution will hopefully be useful in clarifying the role of phages as therapeutic agents
against bacteria (Summers 2001) and in organizing metagenomic data.

Appendix

Some comments on the mathematical methods
In this text, a coding sequence is represented by a 64-dimensional vector, whose
entries correspond to the 64 relative codon frequencies in the sequence. Recall that
the frequency of a codon i in a sequence g is the number of occurrences of i in g
(where g is intended to be split in consecutive non-overlapping triplets corresponding
to amino-acid decomposition), and that the relative frequency of i in g is the frequency
of i in g divided by the number of codons in g. For each vector representing a coding
sequence, the sum of its entries must equal 1. Hence, a coding sequence is a point
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in the 64-dimensional space [0 · · · 1]64, where no special assumption is made on the
space nor on the coordinate system.

For each genome sequence G and some set of coding sequences S in G, codon
bias is measured with respect to its synonymous codon usage. Given an amino-acid
j, its synonymous codons might have different frequencies in S; if xi,j is the number
of times that the codon i for the amino-acid j occurs in S, then one associates to i a
weight wi,j relative to its sibling of maximal frequency yi in S

wi,j =
xi,j

yj
.

A codon with maximal frequency in S is called preferred among its sibling codons.
Self-Consistent Codon Index (SCCI) associated to g in G, is a value in [0, 1], defined
as

SCCI(g) = (ΠL
k=1wk)1/L

where L is the number of codons in the gene, and wk is the weight of the k-th codon
gene sequence. Genes with SCCI value close to 1 are made by highly frequent
codons.

When the reference set S is predefined to be a set of highly expressed genes
in the organism, then the index issued by the SCCI formula corresponds to the
known Codon Adaptation Index introduced by Sharp & Li (Sharp and Li 1987).
The computation of the reference set S in the definition of SCCI is based on a
pure statistical analysis of all genes in a genome and it does not rely on biological
knowledge of the organism. This allows us to compute weights for organisms of
unknown lifestyle.

The name SCCI was employed for the first time by (Carbone 2006), while in
(Carbone et al. 2003, Carbone et al. 2005) the notion is called CAI , even though
it does not exclusively refer to codon adaptation. Notice that CAI is always em-
ployed with a manual and explicit choice of S, while the formula SCCI (i.e., CAI
parameterized with S) turns out to be a universal measure to study codon bias. Codon
weights, reference set S, and SCCI values are calculated with the program CAIJava
(Carbone et al. 2003), available at www.ihes.fr/∼carbone/data.htm.

All results cited in this review are obtained using very simple mathematical and
algorithmic notions which are fully described in (Carbone et al. 2003; Carbone et al.
2004; Carbone and Madden 2005). The statistical analysis and numerical thresholds
we propose are realized in a 64-dimensional codon space. Multivariance statistical
methods have been employed as visualisation tools, but none of the formal results
nor the biological conclusions are inferred from the 3 dimensional projections. Both
space of genes and space of organisms in 64 dimensions, and distances between
organisms are defined as `1-distances.

Complete genomes available
In June 2008, 2623 viruses (of which 495 are phages), 56 eukaryots, 53 archaea, 729
bacteria are completely sequenced and present in the NCBI database at the address
http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome.
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