Le problème des deux corps en relativité générale

Thibault Damour

Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette, France)
The Problem of Motion in General Relativity

Solve

\[R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

\text{e.g.} \quad T^{\mu\nu} = (e + p) u^\mu u^\nu + p g^{\mu\nu}

and extract physical results, e.g.

- Lunar laser ranging
- timing of binary pulsars
- gravitational waves emitted by binary black holes
Various issues

Approximation Methods

• post-Minkowskian (Einstein 1916) $g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x), \ h_{\mu\nu} \ll 1$

• post-Newtonian (Droste 1916) $h_{00} \sim h_{ij} \sim \frac{v^2}{c^2}, \ h_{0i} \sim \frac{v^3}{c^3}, \ \partial_0 h \sim \frac{v}{c} \partial_i h$

• Matching of asymptotic expansions body zone / near zone / wave zone

• Numerical Relativity

One-chart versus Multi-chart approaches

Coupling between Einstein field equations and equations of motion (Bianchi $\Rightarrow \nabla^\nu T_{\mu\nu} = 0$)

Strongly self-gravitating bodies: neutron stars or black holes: $h_{\mu\nu}(x) \sim 1$

Skeletonization: $T_{\mu\nu} \longrightarrow$ point-masses? δ-functions in GR

Multipolar Expansion

Need to go to very high orders of approximation

Use a “cocktail”: PM, PN, MPM, MAE, EFT, an. reg., dim. reg., …
Motion of two point masses

\[S = \int d^Dx \frac{R(g)}{16\pi G} - \sum_A \int m_A \sqrt{-g_{\mu\nu}(y_A)} dy_A^\mu dy_A^\nu \]

Dimensional continuation: \(D = 4 + \varepsilon \), \(\varepsilon \in \mathbb{C} \)

Dynamics: up to 3 loops, i.e. 3 PN

- Jaranowski, Schäfer 98
- Blanchet, Faye 01
- Damour, Jaranowski Schäfer 01
- Itoh, Futamase 03
- Blanchet, Damour, Esposito-Farèse 04

Radiation: up to 3 PN

- Blanchet, Iyer, Joguet, 02,
- Blanchet, Damour, Esposito-Farèse, Iyer 04
- Blanchet, Faye, Iyer, Sinha 08
2-body Taylor-expanded 3PN Hamiltonian [JS98, DJS00, 01]

\[H_N(x_a, p_a) = \sum \frac{p_a^2}{2m_a} - \frac{1}{2} \sum_{a \neq b} \sum_{b \neq a} G m_a m_b \frac{r_{ab}}{r_{ab}} \]

\[H_{1PN}(x_a, p_a) = -\frac{1}{8} \frac{p_a^2}{m_a^2} + \frac{1}{8} \frac{G m_a m_b}{r_{12}} \left[-12 \frac{p_a^2}{m_a^2} + 14 \frac{(p_{12} \cdot p_a)}{m_1 m_2} + \frac{2}{m_1 m_2} (n_{12} \cdot p_a)(n_{12} \cdot p_1) \right] + \frac{1}{4} \frac{G m_1 m_2}{r_{12}} \frac{G (m_1 + m_2)}{r_{12}} + (1 \rightarrow 2). \]

\[H_{2PN}(x_a, p_a) = -\frac{1}{8} \frac{p_a^2}{m_a^2} + \frac{1}{8} \frac{G m_a m_b}{r_{12}} \left[-12 \frac{p_a^2}{m_a^2} + 11 \frac{p_a^2}{m_a^2} \frac{m_a + m_b}{m_a + m_b} + \frac{1}{4} \frac{G^2 m_1 m_2}{r_{12}^3} \right] \]

\[\left(\frac{10}{m_1} + \frac{10}{m_2} \right) - \frac{1}{2} \frac{G m_1 m_2}{m_1 m_2} \left(1 + \frac{m_1 + m_2}{m_1 m_2} \right) \]

\[\frac{1}{8} \frac{G m_1 m_2}{r_{12}} \left(\frac{10}{m_1} + \frac{10}{m_2} \right) + (1 \rightarrow 2). \]

\[H_{3PN}(x_a, p_a) = -\frac{5}{128} \frac{p_a^4}{m_a^4} + \frac{1}{32} \frac{G m_a m_b}{r_{12}} \left[-14 \frac{p_a^4}{m_a^4} + \left(\frac{(p_a \cdot p_1)^3 + 4(p_a \cdot p_1)^2}{m_1 m_2} + \frac{(p_a \cdot p_1)^2 - 2(p_a \cdot p_1) + 2}{m_1 m_2} \right) \right] \]

\[\left(\frac{10}{m_1} + \frac{10}{m_2} \right) - \frac{1}{2} \frac{G m_1 m_2}{m_1 m_2} \left(\frac{1}{m_1} + \frac{1}{m_2} \right) \]

\[\frac{1}{8} \frac{G^2 m_1 m_2}{r_{12}^3} \left(\frac{10}{m_1} + \frac{10}{m_2} \right) + \frac{1}{16} \frac{G m_1 m_2}{r_{12}} \left(\frac{10}{m_1} + \frac{10}{m_2} \right) + \frac{1}{8} \frac{G m_1 m_2}{r_{12}} \left(\frac{10}{m_1} + \frac{10}{m_2} \right) \]

\[\frac{1}{8} \frac{G m_1 m_2}{r_{12}} \left(\frac{10}{m_1} + \frac{10}{m_2} \right) + \frac{1}{8} \frac{G m_1 m_2}{r_{12}} \left(\frac{10}{m_1} + \frac{10}{m_2} \right) + \frac{1}{8} \frac{G m_1 m_2}{r_{12}} \left(\frac{10}{m_1} + \frac{10}{m_2} \right) \]
Taylor-expanded 3PN waveform

Blanchet, Iyer, Joguet 02, Blanchet, Damour, Esposito-Farese, Iyer 04, Kidder 07, Blanchet et al. 08

\[h^2 = -8 \sqrt{\frac{\pi}{5}} \frac{G \nu m}{c^2 R} e^{-2i\phi} x \left(1 - x \left(\frac{107}{42} - \frac{55}{42} \nu \right) + x^{3/2} \left[2\pi + 6i \ln \left(\frac{x}{x_0} \right) \right] - x^2 \left(\frac{2173}{1512} + \frac{1069}{216} \nu - \frac{2047}{1512} \nu^2 \right) \right.

\left. - x^{5/2} \left[\left(\frac{107}{21} - \frac{34}{21} \nu \right) \pi + 24i\nu \left(\frac{107i}{7} - \frac{34i}{7} \nu \right) \ln \left(\frac{x}{x_0} \right) \right] \right)

+ x^3 \left[\frac{27027409}{646800} - \frac{856}{105} \gamma_E + \frac{2}{3} \pi^2 - \frac{1712}{105} \ln 2 - \frac{428}{105} \ln x \right]

- 18 \left[\ln \left(\frac{x}{x_0} \right) \right]^2 - \left(\frac{278185}{33264} - \frac{41}{96} \pi^2 \right) \nu - \frac{20261}{2772} \nu^2 + \frac{114635}{99792} \nu^3 + \frac{428i}{105} \pi + 12i \pi \ln \left(\frac{x}{x_0} \right) \right] + O(\epsilon^{7/2}) \right].

\[x = (M \Omega)^{2/3} \sim \nu^2 / c^2 \]

\[M = m_1 + m_2 \]

\[\nu = \frac{m_1 m_2}{(m_1 + m_2)^2} \]
Renewed importance of 2-body problem

- Gravitational wave (GW) signal emitted by binary black hole coalescences: a prime target for LIGO/Virgo/GEO

- GW signal emitted by binary neutron stars: target for advanced LIGO...

BUT

- Breakdown of analytical approach in such strong-field situations? Expansion parameter during coalescence!?

\[x \sim \frac{v^2}{c^2} \sim O(1) \]

- Give up analytical approach, and use only Numerical Relativity?
Binary black hole coalescence

Image: NASA/GSFC
Templates for GWs from BBH coalescence

(Brady, Craighton, Thorne 1998)

Inspiral (PN methods)

Merger: highly nonlinear dynamics. (Numerical Relativity)

Ringdown (Perturbation theory)

Numerical Relativity, the 2005 breakthrough: Pretorius, Campanelli et al., Baker et al. ...

(Buonanno & Damour 2000)
An improved analytical approach

EFFECTIVE ONE BODY (EOB)
approach to the two-body problem

Buonanno, Damour 99 (2 PN Hamiltonian)
Buonanno, Damour 00 (Rad. Reac. full waveform)
Damour, Jaranowski, Schäfer 00 (3 PN Hamiltonian)
Damour, 01 (spin)
Damour, Nagar 07, Damour, Iyer, Nagar 08 (factorized waveform)
Importance of an analytical formalism

Theoretical: physical understanding of the coalescence process, especially in complicated situations (arbitrary spins)

Practical: need many thousands of accurate GW templates for detection & data analysis; need some “analytical” representation of waveform templates as $f(m_1, m_2, S_1, S_2)$

Solution: synergy between analytical & numerical relativity
Structure of EOB formalism

PN dynamics
- DD81, D82, DJS01, IF03, BDIF04

PN rad losses
- WW76, BDWW95, BDEI05

PN waveforms
- BD89, B95, B05, ABIQ04, BCGSHH07, DN07, K07, BFI08

BH perturbation
- RW57, Z70, T72

Resummed
- BD99, DISS98, DN07, DIN08

EOB Hamiltonian H_{EOB}

EOB Rad reac Force F_ϕ

EOB Dynamics

$$\frac{dr}{dt} = \left(\frac{A}{B} \right)^{1/2} \frac{\partial H_{EOB}}{\partial p_r},$$

$$\frac{dp_r}{dt} = - \left(\frac{A}{B} \right)^{1/2} \frac{\partial H_{EOB}}{\partial r},$$

$$\Omega = \frac{d\phi}{dt} = \frac{\partial H_{EOB}}{\partial p_\phi},$$

$$\frac{dp_\phi}{dt} = \mathcal{F}_{\phi}.$$

EOB Waveform

$$H_{22}^{EOB}(t) = \theta(t_m - t) H_{22}^{insplunge}(t) + \theta(t - t_m) H_{22}^{ringdown}(t)$$

Factorized waveform

$$h_{\ell m} = h_{\ell m}^{(N, \epsilon)} h_{\ell m}^{(\epsilon)}$$

$$h_{\ell m}^{(\epsilon)} = S_{\ell m}^{\epsilon} T_{\ell m} e^{i\delta_{\ell m} \rho_{\ell m}}$$

Matching around t_m

QNM spectrum

$$\sigma_N = \alpha_N + i\omega_N$$

$$h_{22}^{ringdown}(t) = \sum_N C_N^+ e^{-\sigma_N^+ (t-t_m)}$$
Historical roots of EOB

- H_{EOB}: QED positronium states [Brezin, Itzykson, Zinn-Justin 1970]
 “Quantum” Hamiltonian $H(I_a)$ [Damour-Schäfer 1988]

- Padé resummation [Padé1892]

- $h(t)$: [Davis, Ruffini, Tiomno 1972]
 CLAP [Price-Pullin 1994]

Discovery of the structure:
Precursor (plunge)-Burst (merger)-Ringdown

- F_ψ [DIS1998]
 $A(r)$ [DJS00]

Factorized waveform [DN07]

Burst: the particle crosses the “light ring”, $r=3M$

Ringdown, quasi-normal mode (QNMs) tail.
Precursor: Quadrupole formula (Ruffini-Wheeler approximation)

Spacetime oscillations
Some key references

PN
Wagoner & Will 76
Damour & Deruelle 81,82;
Blanchet & Damour 86
Damour & Schafer 88
Blanchet & Damour 89;
Blanchet, Damour Iyer, Will, Wiseman 95
Blanchet 95
Jaranowski & Schafer 98
Damour, Jaranowski, Schafer 01
Blanchet, Damour, Esposito-Farese & Iyer 05
Kidder 07
Blanchet, Faye, Iyer & Sinha, 08

NR
Brandt & Brugmann 97
Baker, Brugmann, Campanelli, Lousto & Takahashi 01
Baker, Campanelli, Lousto & Takahashi 02
Pretorius 05
Baker et al. 05
Campanelli et al. 05
Gonzalez et al. 06
Koppitz et al. 07
Pollney et al. 07
Boyle et al. 07
Scheel et al. 08

EOB
Buonanno & Damour 99, 00
Damour 01
Damour Jaranowski & Schafer 00
Buonanno et al. 06-09
Damour & Nagar 07-09
Damour, Iyer & Nagar 08
Real dynamics versus Effective dynamics

Real dynamics

\[G \]
1 loop

\[G^2 \]

\[G^3 \]
2 loops

\[G^4 \]
3 loops

Effective dynamics

\[g_{\mu\nu}^{\text{eff}} \]

\[S = - \int \mu ds + \ldots \]

\[H = H_0 + \left(G H_1 + \frac{G^2}{c^2} H_2 + \frac{G^3}{c^4} H_3 + \frac{G^4}{c^6} H_4 \right) \left(1 + \frac{1}{c^2} + \ldots \right) \]

Effective metric

\[ds_{\text{eff}}^2 = -A(r)dt^2 + B(r)dr^2 + r^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \]
Two-body/EOB “correspondence”: think quantum-mechanically (Wheeler)

Real 2-body system \((m_1, m_2) \) (in the c.o.m. frame)

an effective particle of mass \(\mu \) in some effective metric \(g_{\mu \nu}^{\text{eff}}(M) \)

Figure 1: Sketch of the correspondence between the quantized energy levels of the real and effective conservative dynamics. \(n \) denotes the ‘principal quantum

Sommerfeld “Old Quantum Mechanics”:

\[
\begin{align*}
J &= \ell \hbar = \frac{1}{2\pi} \oint p_\varphi \, d\varphi \\
N &= n \hbar = I_r + J \\
I_r &= \frac{1}{2\pi} \oint p_r \, dr
\end{align*}
\]

\[
E_{\text{quantum}}(I_a = n_a \hbar) = f^{-1} \left[\mathcal{E}_{\text{eff}}(I_a^{\text{eff}} = n_a \hbar) \right]
\]
The 3PN EOB Hamiltonian

Real 2-body system \((m_1, m_2)\) (in the c.o.m. frame)

\[
\text{1:1 map}
\]

an effective particle of mass \(\mu = \frac{m_1 m_2}{m_1 + m_2}\) in some effective metric \(g_{\mu\nu}^{\text{eff}}(M)\)

Simple energy map

\[
\mathcal{E}_{\text{eff}} = \frac{s - m_1^2 - m_2^2}{2M}
\]

\[
H_{\text{EOB}} = M \sqrt{1 + 2\nu \left(\hat{H}_{\text{eff}} - 1\right)}
\]

\[
s = E_{\text{real}}^2
\]

\[
M = m_1 + m_2
\]

\[
\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}
\]

Simple effective Hamiltonian

\[
\hat{H}_{\text{eff}} = \sqrt{p_{r*}^2 + A \left(1 + \frac{p_\varphi^2}{r^2} + z_3 \frac{p_{r*}^4}{r^2}\right)}
\]

crucial EOB “radial potential” \(A(r)\)

\[
p_{r*} = \left(\frac{A}{B}\right)^{1/2} p_r
\]
Explicit form of the effective metric

The effective metric $g_{\mu\nu}^{\text{eff}}(M)$ at 3PN

$$ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2(d\theta^2 + \sin^2\theta d\varphi^2).$$

where the coefficients are a ν-dependent “deformation” of the Schwarzschild ones:

$$A_{\text{3PN}}(R) = 1 - 2u + 2\nu u^3 + a_4 \nu u^4$$

$$a_4 = \frac{94}{3} - \frac{41}{32} \pi^2 \approx 18.6879027$$

$$(A(R)B(R))_{\text{3PN}} = 1 - 6\nu u^2 + 2(3\nu - 26)\nu u^3$$

$A(u; a_5, a_6, \nu) = P_5^1[A_{\text{3PN}}(u) + \nu a_5 u^5 + \nu a_6 u^6]$

- Compact representation of PN dynamics
- Bad behaviour at 3PN. Use Padé resummation of $A(r)$ to have an effective horizon.
- Impose [by continuity with the $\nu=0$ case] that $A(r)$ has a simple zero [at $r\approx2$].
- The a_5 and a_6 constants parametrize (yet) uncalculated 4PN corrections and 5PN corrections.

![Graph showing the effective metric function](image-url)
2-body Taylor-expanded 3PN Hamiltonian [JS98, DJS00,01]

\[
H_N(x_a, p_a) = \sum_a \frac{p_a^2}{2m_a} - \frac{1}{2} \sum_{a \neq b} \frac{G m_a m_b}{r_{ab}}
\]

\[
H_{1PN}(x_a, p_a) = -\frac{1}{8} \frac{(p_1 \cdot p_2)}{m_1^2 m_2^2} \frac{G m_1 m_2}{r_{12}} \left[-12 \frac{(p_1 \cdot p_2)}{m_1 m_2} + 14 \frac{(p_1 \cdot p_2)}{m_1 m_2} + 2 \frac{(m_1 \cdot p_1)(m_2 \cdot p_2)}{m_1 m_2} \right]
\]

\[
H_{2PN}(x_a, p_a) = -\frac{1}{16} \frac{(p_1 \cdot p_2)}{m_1^2 m_2^2} \frac{G m_1 m_2}{r_{12}} \left[\frac{(p_1 \cdot p_1)^2}{m_1^2 m_2} + \frac{11 (p_1 \cdot p_2)^2}{m_1^2 m_2} + \frac{(p_1 \cdot p_2)^2}{m_1^2 m_2} + \frac{6 (m_1 \cdot p_1)(m_2 \cdot p_2)}{m_1^2 m_2} \right]
\]

\[
H_{3PN}(x_a, p_a) = -\frac{5}{128} \frac{(p_1 \cdot p_2)}{m_1^2 m_2^2} \frac{G m_1 m_2}{r_{12}} \left[-14 \frac{(p_1 \cdot p_2)^2}{m_1^2 m_2} + \frac{(p_1 \cdot p_1) (p_2 \cdot p_2) (p_1 \cdot p_2) + (p_1 \cdot p_2) (p_2 \cdot p_1) (p_1 \cdot p_1)}{m_1^2 m_2} \right]
\]

1PN

2PN

3PN
Hamilton's equation + radiation reaction

\[
\frac{dr}{dt} = \left(\frac{A}{B} \right)^{1/2} \frac{\partial \hat{H}_{\text{EOB}}}{\partial p_{r^*}},
\]

\[
\frac{dp_{r^*}}{dt} = - \left(\frac{A}{B} \right)^{1/2} \frac{\partial \hat{H}_{\text{EOB}}}{\partial \varphi},
\]

\[
\Omega \equiv \frac{d\varphi}{dt} = \frac{\partial \hat{H}_{\text{EOB}}}{\partial p_{\varphi}},
\]

\[
\frac{dp_{\varphi}}{dt} = \hat{\mathcal{F}}_{\varphi}.
\]

The system must lose mechanical angular momentum

Use PN-expanded result for \textit{GW angular momentum flux} as a starting point. \textit{Needs resummation} to have a better behavior during late-inspiral and plunge.

PN calculations are done in the circular approximation

\[
\hat{\mathcal{F}}_{\varphi}^{\text{Taylor}} = - \frac{32}{5} \nu \Omega^5 r^{4 \omega} \hat{F}_{\text{Taylor}}(v_{\varphi})
\]

Parameter-dependent
\textit{EOB 1.*} [DIS 1998, DN07]

Parameter-free:
\textit{EOB 2.0} [DIN 2008, DN09]
Taylor-expanded 3PN waveform

Blanchet, Iyer, Joguet 02, Blanchet, Damour, Esposito-Farese, Iyer 04, Kidder 07, Blanchet et al. 08

\[h^{22} = -8\sqrt{\frac{\pi}{5}} \frac{G\nu m}{c^2 R} e^{-2i\phi} x \left[1 - x \left(\frac{107}{42} - \frac{55}{42} \nu \right) + x^{3/2} \left(\frac{2\pi}{3} + 6i \ln \left(\frac{x}{x_0} \right) \right) - x^2 \left(\frac{2173}{1512} + \frac{1069}{216} \nu - \frac{2047}{1512} \nu^2 \right) \right. \\
\left. - x^{5/2} \left(\frac{107}{21} - \frac{34}{21} \nu \right) \pi + 24i \nu + \left(\frac{107}{7} - \frac{34i}{7} \nu \right) \ln \left(\frac{x}{x_0} \right) \right] \\
+ x^3 \left[\frac{27027409}{646800} - \frac{856}{105} \gamma_E + \frac{2}{3} \pi^2 - \frac{1712}{105} \ln 2 - \frac{428}{105} \ln x \right. \\
\left. - 18 \left[\ln \left(\frac{x}{x_0} \right) \right]^2 - \left(\frac{278185}{33264} - \frac{41}{96} \pi^2 \right) \nu - \frac{20261}{2772} \nu^2 + \frac{114635}{99792} \nu^3 + \frac{428i}{105} \pi + 12i \pi \ln \left(\frac{x}{x_0} \right) \right] + O(e^{7/2}). \]

\[x = (M\Omega)^{2/3} \sim \nu^2 / c^2 \]

\[M = m_1 + m_2 \]
\[\nu = m_1 m_2 / (m_1 + m_2)^2 \]
EOB 2.0: new resummation procedures (DN07, DIN 2008)

- Resummation of the waveform **multipole by multipole**
- **Factorized** waveform for any (l,m) at the highest available PN order (start from PN results of Blanchet et al.)

\[h_{lm} = h_{lm}^{(N)} \hat{h}_{lm}^{(e)} f_{lm}^{\text{NQC}} \]

Effective source:
- EOB (effective) energy (even-parity)
- Angular momentum (odd-parity)

\[\hat{h}_{lm}^{(e)} = \hat{S}_{\text{eff}}^{(e)} T_{lm} e^{i\delta_{lm}} \rho_{lm}^{\ell} \]

The “Tail factor”
- Next-to-Quasi-Circular correction
- Remnant phase correction
- Remnant modulus correction:
 - l-th power of the (expanded) l-th root of \(f_{lm} \)
 - improves the behavior of PN corrections

\[T_{lm} = \frac{\Gamma(\ell + 1 - 2i\hat{k})}{\Gamma(\ell + 1)} e^{\pi\hat{k} e^{2i\hat{k} \log(2kr_0)}} \]

resums an infinite number of leading logarithms in tail effects
Radiation reaction: parameter-free resummation

\[F_\varphi \equiv - \frac{1}{8\pi \Omega} \sum_{\ell=2}^{\ell_{\text{max}}} \sum_{m=1}^{\ell} (m \Omega)^2 |R h^{(e)}_{\ell m}|^2 \]

\[h_{\ell m} = h^{(N)}_{\ell m} \hat{h}^{(e)}_{\ell m} f_{\ell m}^{\text{NQC}} \]

\[\hat{h}^{(e)}_{\ell m} = \hat{S}_\text{eff}^{(e)} T_{\ell m} e^{i\delta_{\ell m}} \rho_{\ell m} \]

\[\rho_{22}(x; \nu) = 1 + \left(\frac{55 \nu}{84} - \frac{43}{42} \right) x + \left(\frac{19583 \nu^2}{42336} - \frac{33025 \nu}{21168} - \frac{20555}{10584} \right) x^2 \]
\[+ \left(\frac{10620745 \nu^3}{39118464} - \frac{6292061 \nu^2}{3259872} + \frac{41\pi^2 \nu}{192} - \frac{48993925 \nu}{9779616} - \frac{428}{105} \text{eulerlog}_2(x) + \frac{1556919113}{122245200} \right) x^3 \]
\[+ \left(\frac{99202}{2205} \text{eulerlog}_2(x) - \frac{387216563023}{160190110080} \right) x^4 + \left(\frac{439877}{55566} \text{eulerlog}_2(x) - \frac{16094530514677}{533967033600} \right) x^5 + O(x^6), \]

- Different possible representations of the residual amplitude correction [Padé]
- The “adiabatic” EOB parameters \((a_5, a_6)\) propagate in radiation reaction via the effective source.
Test-mass limit ($\nu=0$): circular orbits

Parameter free resummation technique!
EOB 2.0: Next-to-Quasi-Circular correction: EOB \textit{U} NR

Next-to quasi-circular correction to the \textit{l=m=2} amplitude

\[f_{22}^{\text{NQC}}(a_1, a_2) = 1 + a_1 \frac{p_{r,z}}{(r \Omega)^2} + a_2 \frac{\dot{r}}{r \Omega^2} \]

\(a_1\) & \(a_2\) are determined by requiring:

- The maximum of the (Zerilli-normalized) EOB metric waveform is equal to the maximum of the NR waveform
- That this maximum occurs at the EOB “light-ring” [i.e., maximum of EOB orbital frequency].
- Using two NR data: maximum

\[\varphi(\nu) \simeq 0.3215 \nu \left(1 - 0.131 (1 - 4\nu) \right) \]

- NQC correction is added consistently in RR. \textit{Iteration until} \(a_1\) & \(a_2\) stabilize

Remaining EOB 2.0 flexibility:

\[A(u; a_5, a_6, \nu) \equiv P_5^1 [A_3^{\text{PN}}(u) + \nu a_5 u^5 + \nu a_6 u^6] \]

Use Caltech-Cornell [inspiral-plunge] data to constrain \((a_5, a_6)\)

A wide region of correlated values \((a_5, a_6)\) exists where the phase difference can be reduced at the level of the numerical error (<0.02 radians) during the inspiral
EOB *metric* gravitational waveform: merger and ringdown

EOB approximate representation of the merger (DRT1972 inspired):

- sudden change of description around the “EOB light-ring” \(t = t_m \) (maximum of orbital frequency)
- “match” the insplunge waveform to a superposition of QNMs of the final Kerr black hole
- matching on a 5-teeth comb (*found efficient in the test-mass limit, DN07a*)
- comb of width around 7M centered on the “EOB light-ring”
- use 5 positive frequency QNMs (found to be near-optimal in the test-mass limit)
- Final BH mass and angular momentum are computed from a fit to NR ringdown (*5 eqs for 5 unknowns*)

\[
\Psi_{22}^{\text{ringdown}}(t) = \sum_{N} C_{N}^{+} e^{-\sigma_{N}^{+} t}.
\]

Total EOB waveform covering inspiral-merger and ringdown

\[
h_{22}^{\text{EOB}}(t) = \theta(t_m - t) h_{22}^{\text{insplun}g}(t) + \theta(t - t_m) h_{22}^{\text{ringd}own}(t)
\]
Early inspiral

- Late inspiral and merger is non perturbative
- Only describable by NR?
Comparison Effective-One-Body (EOB) vs NR waveforms

“New” EOB formalism: $\text{EOB 2.0}_{\text{NR}}$

- Two unknown EOB parameters: 4PN and 5PN effective corrections in 2-body Hamiltonian, (a_5, a_6)
- NR calibration of the maximum GW amplitude
- Need to “tune” only one parameter
- Banana-like “best region” in the (a_5, a_6) plane extending from $(0, -20)$ to $(-36, 520)$ (where $\Delta \phi \leq 0.02$)

EOB 2.0 & NR comparison: 1:1 & 2:1 mass ratios

\[a_5 = 0, \quad a_6 = -20 \]

D, N, Hannam, Husa, Brügmann 08
EOB formalism: EOB 1.5 U NR

$h_{lm}^{[RWZ]}$ NR 1:1. EOB resummed waveform (à la DIN)

$a_5^{\nu_{pole}(\nu=1/4)} = 25.375$

$\Delta t^{22}_{match} = 3.0M$

$a_1 = -2.23$

$a_2 = 31.93$

$a_3 = 3.66$

$a_4 = -10.85$

$-0.02 \leq \Delta \phi \leq +0.02$ $-0.02 \leq DA/A \leq +0.02$ [l=m=2]

Here, 1:1 mass ratio (with higher multipoles)

Plus 2:1 & 3:1 [inspiral only] mass ratios
(Fractional) curvature amplitude difference EOB-NR

- Nonresummed: fractional differences start at the 0.5% level and build up to more than 60%! (just before merger)
- New resummed EOB amplitude+NQC corrections: fractional differences start at the 0.04% level and build up to only 2% (just before merger)
- Resum+NQC: factor ~30 improvement!

Shows the effectiveness of resummation techniques, even during (early) inspiral.
Tidal effects and EOB formalism

• tidal effects are important in late inspiral of binary neutron stars
 Flanagan, Hinderer 08, Hinderer et al 09, Damour, Nagar 09, Binnington, Poisson 09

 → a possible handle on the nuclear equation of state

• tidal extension of EOB formalism: non minimal worldline couplings

 \[\Delta S_{\text{nonminimal}} = \sum_A \frac{1}{4} \mu^2 A \int ds_A (u^\mu u^\nu R_{\mu\nu\alpha\beta})^2 + \ldots \]

 Damour, Esposito-Farèse 96, Goldberger, Rothstein 06, Damour, Nagar 09

 → modification of EOB effective metric + … :

 \[
 A(r) = A^0(r) + A^{\text{tidal}}(r) \\
 A^{\text{tidal}}(r) = -\kappa_2 u^6 (1 + \tilde{\alpha}_1 u + \tilde{\alpha}_2 u^2 + \ldots) + \ldots
 \]

• need accurate NR simulation to “calibrate” the higher-order PN contributions that are quite important during late inspiral
 Uryu et al 06, 09, Rezzolla et al 09
Conclusions (1)

- **Analytical Relativity**: though we are far from having mathematically rigorous results, there exist perturbative calculations that have obtained unambiguous results at a high order of approximation (3 PN ~ 3 loops). They are based on a “cocktail” of approximation methods: post-Minkowskian, post-Newtonian, multipolar expansions, matching of asymptotic expansions, use of effective actions, analytic regularization, dimensional regularization,…

- **Numerical relativity**: Recent breakthroughs (based on a “cocktail” of ingredients: new formulations, constraint damping, punctures, …) allow one to have an accurate knowledge of nonperturbative aspects of the two-body problem.

- There exists a complementarity between Numerical Relativity and Analytical Relativity, especially when using the particular resummation of perturbative results defined by the Effective One Body formalism. The NR- tuned EOB formalism is likely to be essential for computing the many thousands of accurate GW templates needed for LIGO/Virgo/GEO.
Conclusions (2)

• There is a synergy between AR and NR, and many opportunities for useful interactions: arbitrary mass ratios, spins, extreme mass ratio limit, tidal interactions,…

• The two-body problem in General Relativity is more lively than ever. This illustrates Poincaré’s sentence:

 “Il n’y a pas de problèmes résolus, il y a seulement des problèmes plus ou moins résolus”.
