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Abstract

We investigate, in any spacetime dimension > 3, the problem of consistent cou-
plings for a finite collection of massless, spin-2 fields described, in the free limit,
by a sum of Pauli-Fierz actions. We show that there is no consistent (ghost-free)
coupling, with at most two derivatives of the fields, that can mix the various “gravi-
tons”. In other words, there are no Yang-Mills-like spin-2 theories. The only possible
deformations are given by a sum of individual Einstein-Hilbert actions. The impos-
sibility of cross-couplings subsists in the presence of scalar matter. Qur approach
is based on the BRST-based deformation point of view and uses results on the so-
called “characteristic cohomology” for massless spin-2 fields which are explained in
detail.

L“Chercheur F.R.I.LA.”, Belgium



1 Introduction

A striking feature of the interactions observed in Nature is that most of them (if we weigh
them by the number of helicity states) are described by nonlinearly interacting multiplets
of massless spin-1 fields, i.e., by Yang-Mills’ theory. By contrast, the gravitational inter-
action (Einstein’s theory) involves only a single massless spin-two field. In this paper we
shall show that there is a compelling theoretical reason underlying this fact: there exists
no consistent (in particular, ghost-free) theory involving a (finite) multiplet of interacting
massless spin-2 fields. In other words, there exists no spin-2 analog of Yang-Mills’ theory.
This no-go result gives a new argument (besides the usual one based on the problems of
having particles of spin > 2) for ruling out N > 8 extended supergravity theories, since
these would involve gravitons of different types.

It was shown by Pauli and Fierz [1] that there is a unique, consistent? action describing
a pure spin-2, massless field. This action happens to be the linearized Einstein action.
Therefore, the action for a collection {hj,} of N non-interacting, massless spin-2 fields
in spacetime dimension n (¢ = 1,---, N, g, =0,---,n — 1) must be (equivalent to) the
sum of N separate Pauli-Fierz actions, namely®

= 3 [ [0 @)+ @) (00

— (D) (9,h7) + 5 (0, (8“h“”p)] ) (1.1)
It is invariant under the following linear gauge transformations,
ochy, = due;, + y€, (1.2)

where the €2 are n x N arbitrary, independent functions. These transformations are
abelian and irreducible.
The equations of motion are

;}ZOU = —2H" =0 (1.3)
where H, is the linearized Einstein tensor,
: L.
Hy = Ky = 5K 1. (1.4)
Here, K5, is the linearized Riemann tensor,
Kp,, = —%(aauh‘ly + by, — Oarhy, — OsuhY,) (1.5)

2All over this paper, we follow the standard field theory tenets which tell us that “consistent” theories
should be free of: negative-energy (ghost) propagating excitations, algebraic inconsistencies among field
equations, discontinuities in the degree-of-freedom content, etc.

3We use the signature “mostly plus”: — + 4 + ---. Furthermore, spacetime indices are raised and
lowered with the flat Minkowskian metric n,,. Finally, we take the spacetime dimension n to be strictly
greater than 2 since otherwise, the Lagrangian is a total derivative. Gravity in two dimensions needs a
separate treatment.



K, is the linearized Ricci tensor,

1
K;, =K, =—=(8h, +--), (1.6)

ny . pov 2
and K" is the linearized scalar curvature, K = n*” K, . The Noether identities expressing
the invariance of the free action (1.1) under (1.2) are

0, H™ =0 (1.7)

(linearized Bianchi identities). The gauge symmetry removes unwanted unphysical states.

The problem of introducing consistent interactions for a collection of massless spin-2
fields is that of adding local interaction terms to the action (1.1) while modifying at the
same time the original gauge symmetries if necessary, in such a way that the modified
action be invariant under the modified gauge symmetries. We shall exclusively consider
interactions that can formally be expanded in powers of a deformation parameter ¢ (“cou-
pling constant”) and that are consistent order by order in g. The class of “consistent
interactions” for (1.1) studied here could thus be called more accurately “perturbative,
gauge-consistent interactions” (since we focus on compatibility with gauge-invariance or-
der by order in g), but we shall just use the terminology “consistent interactions” for
short.

Since we are interested in the classical theory, we shall also demand that the interac-
tions contain at most two derivatives* so that the nature of the differential equations for
k3, is unchanged. On the other hand, we shall make no assumption on the polynomial
order of the fields in the Lagrangian or in the gauge symmetries.

In an interesting work [2], Cutler and Wald have proposed theories involving a mul-
tiplet of spin-2 fields, based on associative, commutative algebras. These authors arrived
at these structures by focusing on the possible structures of modified gauge transforma-
tions and their algebra. However, they did not analyse the extra conditions that must
be imposed on the modified gauge symmetries if these are to be compatible with a La-
grangian having the (unique, consistent) free field limit prescribed above. [Their work
was subsequently extended to supergravity in [3].] Some explicit examples of Lagrangians
that realize the Cutler-Wald algebraic structures have been constructed in [4] and [5], but
none of these has an acceptable free field limit. Indeed, their free field limit does involve
a sum of Pauli-Fierz Lagrangians, but some of the “gravitons” come with the wrong sign
and thus, the energy of the theory is unbounded from below. To our knowledge, the ques-
tion of whether other examples of (real) Lagrangians realizing the Cutler-Wald structure
(with a finite number of gravitons) would exist and whether some of them would have a
physically acceptable free field limit was left open.

Motivated by these developments, we have re-analyzed the question of consistent in-
teractions for a collection of massless spin-2 fields by imposing from the outset that the
deformed Lagrangian should have the free field limit (1.1). As we shall see, it turns out
that this requirement forces one additional condition on the Cutler-Wald algebra defining

*in the sense of the usual power counting of perturbative field theory. Thus we allow only terms that

are quadratic in the first derivatives of hj,, or linear in their second derivatives.



the interaction, namely, that it be “symmetric” with respect to the scalar product defined
by the free Lagrangian (see below for the precise meaning of “symmetric”). This extra con-
straint is quite stringent and implies that the algebra is the direct sum of one-dimensional
ideals. This eliminates all the cross-interactions between the various gravitons®. Let us
state the main (no-go) result of this paper, spelling out explicitly our assumptions :

Theorem 1.1 Under the assumptions of: locality, Poincaré invariance, Eq.(1.1) as free
field limit and at most two derivatives in the Lagrangian, the only consistent deformation
of Eq.(1.1) involving a finite collection of spin-2 fields is (modulo field redefinitions) a
sum of independent Finstein-Hilbert (or possibly Pauli-Fierz) actions,

2
Slop) = Y0 = [ da(R = 20)W=g", gl =+ KR, (1.8)

where R* is the scalar curvature of g, g* its determinant, £* > 0 a self-coupling constant
and A" independent cosmological constants. [A term with k* = 0 is a Pauli-Fierz action;
the corresponding cosmological term reads \*h*,.]

There are no other (perturbatively gauge-consistent) possibilities under the assump-
tions stated. Note, however, that Ref. [6] has shown that there exists a consistent,
interacting theory involving an infinite number of spin-2 fields. We shall explicitly discuss
below how, indeed, the case of an infinite collection can evade our no-go theorem.

We have also investigated how matter couplings affect the problem of the (non- )ex-
istence of cross-interactions between gravitons. We have taken the simplest example of
a scalar field and have verified that the scalar field can only couple to one type of gravi-
tons. Thus, even the existence of indirect cross-couplings (via intermediate interactions)
between massless spin-2 particle is excluded. The interacting theory describes parallel
worlds, and, in any given world, there is only one massless spin-2 field. This massless
spin-2 field has (if it interacts at all) the standard graviton couplings with the fields living
in its world (including itself), in agreement with the single massless spin-2 field studies of
[7,8,9, 10, 11, 12, 13, 14, 15, 16].

The above theorem relies strongly on the assumption that the interaction contains at
most two derivatives. If one allows more derivatives in the Lagrangian, one can construct
cross-interactions involving the linearized curvatures, which are manifestly consistent with
gauge invariance. An obvious cubic candidate is

Jare K5, Kﬁjﬁ Fcuveo (1.9)

where gqp. are arbitrary constants. This candidate can be added to the free Lagrangian
and defines an interacting theory with the same abelian gauge symmetries as the original
theory since (1.9) is invariant under (1.2). It contains six derivatives. Other deformations
of the original free action that come to mind are obtained by going to the Einstein theory
and adding then, in each sector, higher order polynomials in the curvatures and their
covariant derivatives.

>The extra condition is in fact also derived by different methods in [3], (Egs. (3.38) and (A.55)), but
its full implications regarding the impossibility of cross-interactions have not been investigated.



All these deformations have the important feature of deforming the algebra of the
gauge symmetries in a rather simple way: the deformed algebra is the direct sum of
independent diffeomorphism algebras (in each sector with k, # 0) and abelian algebras.
This is not an accident. The possibilities of deformations of the gauge algebra are in fact
severely limited even in the more general context where no constraint on the number of
derivatives is imposed (except that it should remain bounded). One has the theorem :

Theorem 1.2 Under the assumptions of locality, Poincaré invariance and Fq.(1.1) as
free field limit, the only consistent deformations of the action (1.1) involving a finite
collection of spin-2 fields are such that the algebra of the deformed gauge-symmetries
is given, to first order in the deformation parameter, by the direct sum of independent
diffeomorphism algebras. [Some terms in the direct sum may remain undeformed, i.c.,

abelian.]

This theorem strengthens previous results in that it does not assume off-shell closure
of the gauge algebra (this is automatic) or any specific form of the gauge symmetries
(which are taken to involve only one derivative in most treatments).

In order to prove these results, we shall begin the analysis without making any as-
sumption on the number of derivatives, except that it is bounded. We shall see that this
is indeed enough to completely control the algebra. We shall then point out where the
derivative assumptions are explicitly needed, at the level of the gauge transformations
and of the deformation of the Lagrangian. We shall discuss in section 11 the new features
that appear in the absence of these assumptions.

Our approach is based on the BRST reformulation of the problem, in which con-
sistent couplings define deformations of the solution of the so-called “master equation”.
The advantage of this approach is that it clearly organizes the calculation of the non-
trivial consistent couplings in terms of cohomologies which are either already known or
easily computed. These cohomologies are in fact interesting in themselves, besides their
occurence in the consistent interaction problem. One of them is the “characteristic co-
homology”, which investigates higher order conservation laws involving antisymmetric
tensors (see below). The use of BRST techniques somewhat streamlines the derivation,
which would otherwise be more cumbersome.

In the next section, we review the master-equation approach to the problem of con-
sistent interactions. We then recall some cohomological results necessary for solving the
problem. In particular, we discuss at length the characteristic cohomology (section 4).
Section 5 constitutes the hard core of our paper. We show how the structure of an asso-
ciative, commutative algebra introduced first in this context by Cutler and Wald arises
in the cohomological approach, and derive the further crucial condition of “symmetry”
(explained in the text) that emerges from the requirement that the deformation not only
defines consistent gauge transformations, but also can be extended to a consistent defor-
mation of the Lagrangian. We then show that all the requirements on the algebra force
it to be trivial (section 6), which implies that there can be no cross-interaction between
the various spin-2 fields. In the next section (section 7), we complete the construction
of the consistent Lagrangians and establish the validity of (1.8). In section 8, we discuss
the possibility to evade the above no-go theorem by allowing for an infinite number of
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massless spin-2 fields. Section 9 shows that the coupling to matter does not allow the dif-
ferent types of gravitons to “see each other” through the matter. In section 10 we briefly
generalize the discussion to the presumably physically unacceptable case of non-positive
metrics in the internal space of the gravitons. This is done solely for the sake of com-
parison with the work of [2, 4], where there are propagating ghosts. Section 11 discusses
the new features that arise when no restriction is imposed on the number of derivatives
in the Lagrangian. A brief concluding section is finally followed by a technical appendix
that collects the proofs of the theorems used in the core of the paper.

2 Cohomological reformulation

2.1 Gauge symmetries and master equation

The central idea behind the master equation approach to the problem of consistent de-

formations is the following. Consider an arbitrary irreducible gauge theory with fields ®¢,

action S[®'], gauge transformations®

5.0' = R (®)e”, (2.1)
and gauge algebra
: SR (D) 4 SR (® ; i 68
R]a ((I)) ﬁT - R]ﬁ ((I)) % — zﬁ ((I)) RW ((I)) ‘|‘ Ma]ﬁ ((I)) W (22)

We have allowed the gauge transformations to close only on-shell. The coefficient functions
M are (graded) antisymmetric in both o, # and 7, j. The Noether identities read

68
5P

R, =0. (2.3)

One can derive higher order identities from (2.2) and (2.3) by differentiating (2.2) with
respect to the fields and using the fact that second-order derivatives commute. These
identities, in turn, lead to further identities by a similar process.

It has been established in [17, 18] that one can associate with S a functional W
depending on the original fields ®' and on additional variables, called the ghosts C'* and
the antifields ® and C, with the following properties:

1. W starts like
. 1 1 y
W=S+®R C+ 50;@5050& + 5@;@;Mafﬁcacﬁ + “more” (2.4)

where “more” contains at least three ghosts;

5Throughout this section, we use De Witt’s condensed notation in which a summation over a repeated
index implies also an integration. The R? (®) stand for R’ (z, z') and are combinations of the Dirac delta
function d(x, z') and some of its derivatives with coefficients that involve the fields and their derivatives,
so that Rle® = [ d"¢' R (x,2')e%(2') is a sum of integrals of ¢* and a finite number of its derivatives.



2. W tulfills the equation
(W,W)=0 (2.5)

in the antibracket (, ) that makes the fields and the antifields canonically conjugate
to each other. This antibracket structure was first introduced by Zinn-Justin™[19]
and was denoted originally by a x ((A, B) = Ax B). It is defined by

FAS'B  $RASTB | GPAGIB §RAGB
5O 60T 307 601 | 6C 5Cx  6Cx 0

(Av B) = (2.6)

where the superscript R ( L) denotes a right ( left) derivative, respectively.
3. W is bosonic and has ghost number zero.

To explain this last statement, we recall that all fields belong to a Grassmann algebra G:
the fields ® and C* belong to the even part of G (i.e. they commute with everything),
while the fields C* and ®F belong to the odd part of G (i.e. they anticommute among
themselves). [Instead of “commuting” or “anticommuting”, we shall simply say “bosonic”,
or “fermionic”, respectively. Note, however, that we work in a purely classical framework.]
Moreover, in addition to the above “fermionic” Z grading (odd or even) one endows the
algebra of the dynamical variables with a Z-valued “ghost grading” defined such that
the original fields ®°, the ghosts C'®, the antifields ®7 and the antifields ®* have ghost
number zero, one, minus one and minus two, respectively. The statement that W has
ghost number zero means that each term in W has a zero ghost number. Note that the
antibracket increases the ghost number by one unit, i.e., gh((A, B)) = gh(A) +gh(B)+ 1
(we refer to the book [20] for more information).

It is also useful to introduce a second Z-valued grading for the basic variables, called
the “antifield” (or “antighost”) number [20]. This grading is defined by assigning antifield
number zero to the fields ® and the ghosts C'®, antifield number one to the antifields @7
and antifield number two to the antifields CZ. The antifield number thus counts the
number of antifields ®7 and C7, with weight two given to the antifields C conjugate
to the ghosts. There are different ways to achieve a fixed ghost number by combining
the antifields and the ghosts. For instance, ®;C*, C=C*C¢, ®@:C=C*C°C? all have ghost
number zero; but the first term has antifield number one, the second has antifield number
two and the third has antifield number three. The antifield number keeps track of these
different possibilities. By introducing it, one can split an equation with definite ghost
number into simpler equations at each value of the antifield number. This procedure will
be amply illustrated in the sequel.

In our irreducible case where there is only one type of ghosts, the antifield number can
also be viewed as an indirect way of keeping track of the number of explicit ghost fields C'¢
entering any expression. Indeed, if we define the “pureghost number” of any expression
as the number of explicit C%’s in it, it is easy to see from the antighost attributions above
that the (net) ghost number is given by: gh = puregh — antigh.

The equation (2.5) is called the master equation while the function W is called the
(minimal) solution of the master equation. It is easily seen that, because of the Zy-grading

“In Zinn-Justin’s work the antifields appear as “sources” K;, L.



of the various fields (the “canonically conjugate” fields in the antibracket have opposite
fermionic gradings), (A, B) is symmetric for bosonic functions A and B, (A, B) = (B, A).
One can also check that the antibracket satisfies the (graded) Jacobi identity (see, e.g.,
[20]). This fact will play an important role in the work below.

The master equation is fulfilled as a consequence of the Noether identities (2.3), of
the gauge algebra (2.2) and of all the higher order identities alluded to above that one
can derive from them. Conversely, given some W, solution of (2.5), one can recover
the gauge-invariant action as the term independent of the ghosts in W, while the gauge
transformations are defined by the terms linear in the antifields @7 and the structure
functions appearing in the gauge algebra can be read off from the terms quadratic in the
ghosts. The Noether identities (2.3) are fulfilled as a consequence of the master equation
(the left-hand side of the Noether identities is the term linear in the ghosts in (W, W);
the gauge algebra (2.2) is the next term in (W, W) = 0).

In other words, there is complete equivalence between gauge invariance of S and the
existence of a solution W of the master equation. For this reason, one can reformulate the
problem of consistently introducing interactions for a gauge theory as that of deforming
W while maintaining the master equation [21].

2.2 Perturbation of the master equation
Let Wy be the solution of the master equation for the original free theory,
Wo = So+ @R, C*, (W, Wy) = 0. (2.7)

Because the gauge transformations are abelian, there is no further term in Wy ( C7; =

0, M3 =0). Let W be the solution of the master equation for the searched-for interacting

theory,
W = S+<I)fR;Ca+O(02), (2.8)
S = Sp+ interactions, (2.9)
R; = Réa + deformation terms, (2.10)
(W, W) = o. (2.11)

As we have just argued, W exists if and only if S = Sy + “interactions” is a consistent
deformation of Sy.
Let us now expand W and the master equation for W in powers of the deformation

parameter g. With

the equation (W, W) = 0 yields, up to order ¢*

O(g”):  (Wo,Wp) =0 (2.13)
O(g"):  (Wo,W1) =0 (2.14)
O() . (W, W) = —%(Wl,Wl). (2.15)



The first equation is fulfilled by assumption since the starting point defines a consistent
theory. To analyse the higher order equations, one needs further information about the
meaning of W.

2.3 BRST transformation, first order deformations, obstruc-
tions

It turns out that Wy is in fact the generator of the BRST transformation s of the free
theory through the antibracket?®, i.e.

sA = (W, A). (2.16)

The nilpotency s* = 0 follows from the master equation (2.13) for W, and the (graded)
Jacobi identity for the antibracket. Thus, Eq. (2.14) simply expresses that W; is a
BRST-cocycle, i.e. that it is “closed” under s: sW; = 0.

Now, not all consistent interactions are relevant. Indeed, one may generate “fake” in-
teractions by making non-linear field redefinitions. Such interactions are trivial classically
and quantum-mechanically [22]. One can show [21] that the physically trivial interactions
generated by field-redefinitions that reduce to the identity at order ¢°,

' = " = + g=(D,00,---) + O(¢%) (2.17)

precisely correspond to cohomologically trivial solutions of (2.16), i.e.,correspond to “ex-
act” A’s (also called “coboundaries”) of the form

A=sB (2.18)

for some B. We thus come to the conclusion that the non-trivial consistent interactions are
characterized to first order in g by the cohomological group® H(s) at ghost number zero.
In fact, since Wi must be a local functional, the cohomology of s must be computed in
the space of local functionals. Because the equation s [« = 0 is equivalent to sa +dm = 0
(where d denotes Cartan’s exterior differential) for some m, and [ a = s [ bis equivalent to
a = sb+dn for some n, one denotes the corresponding cohomological group by H%"(s|d)"
(0 is the ghost number and n the form-degree: a and b are n-forms).

The redundancy in Wy is actually slightly bigger than the possibility of adding trivial
cocycles, since one can admit changes of field variables ® — @’ that do not reduce to
the identity at zeroth order in g, but reduce to a global symmetry of the original theory,
i.e., leave the free action invariant. Two distinct BRST cocycles Wy and W] that can be
obtained from one another under such a transformation should be identified. In practice,

8We denote the BRST transformation for the free theory by s, rather than sy because this is the only
BRST symmetry we shall consider so no confusion can arise.

® We recall that, given some nilpotent s, s> = 0, H(s) denotes the equivalence classes of “closed” A’s,
modulo “exact” ones, i.e. the solutions of s4 = 0, modulo the equivalence relation A’ = A + sB.

10More generally, we shall use in this paper the notation H" to denote a cohomological group for
p—forms having a fixed ghost number ¢, and a fixed “antifield” number j (see below). If we indicate only
one superscript, it will always refer to the form degree p.



however, only a few of these transformations are to be taken into account (if any) since
only a few of them preserve the condition on the number of derivatives of the deformation.
This will be explicitly illustrated in the graviton case.

Once a first-order deformation is given, one must investigate whether it can be ex-
tended to higher orders. It is a direct consequence of the Jacobi identity for the an-
tibracket that (Wi, W1) is BRST-closed, (Wy, (Wi, W;)) = 0. However, it may not be
BRST-exact (in the space of local functionals). In that case, the first-order deformation

W1 is obstructed at second-order, so, it is not a good starting point. If, on the other hand,
(W1, Wy) is BRST-exact, then a solution W5 to (2.15), which may be rewritten

1
SW2 = —§(W1,W1), (219)

exists. As (W, W) has ghost number one (since the antibracket increases the ghost num-
ber by one unit), we see that obstructions to continuing a given, first-order consistent
interaction are measured by the cohomological group H'"(s|d). Furthermore, the am-
biguity in Wy (when it exists) is a solution of the homogeneous equation (Wy, W3) = 0.
Among these solutions, those that are equivalent through field redefinitions should be iden-
tified. O(g*)-redefinitions of the fields yield trivial BRST-cocycles, so again, the space of
equivalent Wy's is a quotient of H%"(s|d). Further identifications follow from O(¢°) and
O(g")-redefinitions that leave the previous terms invariant. These identifications will be
discussed in more details below.

The same pattern is found at higher orders : obstructions to the existence of Wi
are elements of H'"(s|d), while the ambiguities in W}, (when it exists) are elements of
appropriate quotient spaces of H%"(s|d).

Since the identifications of equivalent solutions will play an important role in the
sequel, let us be more explicit on the precise form that the equations describing these
identifications take. Two solutions of the master equation are equivalent if they differ by
an anti-canonical transformation in the antibracket. These correspond indeed to field and
gauge parameter (ghost) redefinitions [23, 24, 20]. Infinitesimally, two solutions W and
W + AW are thus equivalent if

AW = (W, K) (2.20)

for some K of ghost number —1. If we expand this equation in powers of g, we get

AWO - (Wo, ](0), (221)
AWy = (W, Ki) + (Wi, Ko), (2.22)
AW, = (Wo, Ky) + (Wi, Ky) + (Ws, Ko), (2.23)

Since Wy is given, one must impose AWy = 0, and thus, from (2.21),
(Wo, [(0) = 0 . (224)

Ky defines a global symmetry of the free theory [25, 26]. The first term on the right-
hand side of (2.22) is a BRST-coboundary and shows that indeed, one must identify two
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BRST-cocycles that are in the same cohomological class of H%"(s|d). There is a further
identification implied by the term (Wi, Ky). Similarly, besides the BRST-coboundary
(Wo, K3), there are extra terms in the right-hand side of (2.23).

The cohomological considerations that we have just outlined are equivalent to the
conditions for consistent interactions derived in [27] without use of ghosts or antifields.
The interest of the master equation approach is that it organizes these equations in a
rather neat way. Also, one can use cohomological tools, available in the literature, to
determine these interactions and their obstructions.

In the sequel, we shall compute explicitly H%"(s|d) for a collection of free, massless
spin-2 fields, i.e., we shall determine all possible first-order consistent interactions. We
shall then determine the conditions that these must fulfill in order to be unobstructed at
order g. These conditions turn out to be extremely strong and prevent cross interactions
between the various types of gravitons.

2.4 Solution of the master equation for a collection of free, spin-
2, massless fields

We rewrite the free action (1.1) as

So = [d ku [—%(@h“yp) (0°h70) + (9,h72) (9,0
1
2

— (9,h°%) (9, + = (9,h") (8%62)] , (2.25)

with a quadratic form k,; defined by the kinetic terms. In the way of writing the Pauli-
Fierz free limit above, Eq.(1.1), k. was simply the Kronecker delta d,,. What is essential
for the physical consistency of the theory (absence of negative-energy excitations, or
stability of the Minkowski vacuum) is that k,; defines a positive-definite metric in internal
space; it can then be normalized to be d,, by a simple linear field redefinition.

Following the previous prescriptions, the fields, ghosts and antifields are found to be

e the fields hf g, with ghost number zero and antifield number zero;
o the ghosts C?, with ghost number one and antifield number zero;
o the antifields ~7*”, with ghost number minus one and antifield number one;
o the antifields €7, with ghost number minus two and antifield number two.

The solution of the master equation for the free theory is, reverting to notations where
integrals are all explicitly written,

Wo = So -+ /d”:z; 280, + 9500), (2.26)
from which we get the BRST differential s of the free theory as

s=0+7 (2.27)

10



where the action of v and § on the variables is zero except (note in particular that

yC =50 = 0)!!

vhis = 2005 (2.28)
650

Shie? = 2.2

; ey (2.29)

SO = —205h7% (2.30)

The decomposition of s into § plus v is dictated by the antifield number: § decreases the
antifield number by one unit, while v leaves it unchanged. Combining this property with
5?2 =0, one concludes that,

=0, 6y+v5=0, 4> =0. (2.31)

3 Cohomology of v

To compute the consistent, first order deformations, i.e., H(s|d), we shall see in Section
5 that we need H(v) and H(é|d). We start with H(v), which is rather easy.

As it is clear from its definition, v is related to the gauge transformations. Acting on
anything, it gives zero, except when it acts on the spin-2 fields, on which it gives a gauge
transformation with gauge parameters replaced by the ghosts.

The only gauge-invariant objects that one can construct out of the gauge fields A,
and their derivatives are the linearized curvatures K, , and their derivatives.

The antifields and their derivatives are also v-closed. The ghosts and their derivatives
are y-closed as well but their symmetrized first order derivatives are v-exact (see Eq.
(2.28)), as are all their subsequent derivatives since

a 1 a a a
OosCy = 57 (Duhily, + Ophts, — 05h%5) . (3.1)

It follows straightforwardly from these observations that the v-cohomology is generated
by the linearized curvatures, the antifields and all their derivatives, as well as by the ghosts
(' and their antisymmetrized first-order derivatives a[ucg]. More precisely, let {w!} be a
basis of the space of polynomials in the ('} and 8[MC§] (since these variables anticommute,
this space is finite-dimensional). One has:

ya=0=a=a; ([K],[".[C)w’ (C2,0,05) +1b. (3.2)

where the notation f([m]) means that the function f depends on the variable m and its
subsequent derivatives up to a finite order. If a has a fixed, finite ghost number, then a can

I We denote tap) = %(ta@ +15a), and t[a5 = %(ta@ —t8a).
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only contain a finite number of antifields. If we assume in addition that « has a bounded
number of derivatives, as we shall do from now on, then, the a; are polynomials'?.

In the sequel, the polynomials oy ([K], [2*],[C*]) in the linearized curvature Kgg,,, the
antifields 2;* and CF*, as well as all their derivatives, will be called “invariant polynomi-
als”. They may of course have an extra, unwritten, dependence on dz*, i.e., be exterior
forms. At zero antifield number, the invariant polynomials are the polynomials in the
linearized curvature K, and its derivatives.

We shall need the following theorem on the cohomology of d in the space of invariant

polynomials.

Theorem 3.1 In form degree less than n and in antifield number strictly greater than 0,
the cohomology of d is trivial in the space of invariant polynomials.

That is to say, if « is an invariant polynomial, the equation da = 0 with antigh(a) > 0
implies o = df# where (3 is also an invariant polynomial. To see this, treat the antifields as
“foreground fields” and the curvatures as “background fields”, as in [28]. Namely, split d
as d = dy +dp, where d; acts only on the antifields and dy acts only on the curvatures. The
so-called “algebraic Poincaré lemma” states that d; has no cohomology in form degree
less than n (and in antifield number strictly greater than 0) because there is no relation
among the derivatives of the antifields. By contrast, dy has some cohomology in the space
of polynomials in the curvatures because these are constrained by the Bianchi identities.
From the triviality of the cohomology of dy, one easily gets do = 0 = a = dF + u, where 3
is an invariant polynomial, and where u is an invariant polynomial that does not involve
the antifields. However, since antigh(a) > 0, v must vanish. qed.

4 Characteristic cohomology — cohomology of 4§ mod-

ulo d

4.1 Characteristic cohomology

It has been shown in [29] that H(d|d) is trivial in the space of forms with positive pure
ghost number. Thus the next cohomology that we shall need is H(d|d) in the space of
local forms that do not involve the ghosts, i.e., having puregh = 0. This cohomology has
an interesting interpretation in terms of conservation laws, which we first review [25] (see
also [26] for a recent review).

Conserved currents j* are defined through the condition

D, ~ (4.1)

1ZA term like exp kK, where K is the linearized scalar curvature, does not have a bounded number of
derivatives since it contains arbitrarily high powers of K, and since the number of derivatives in K™ is
2m. Note, however, that the coefficient at each order in the coupling & is of bounded derivative order -
just by dimensional analysis - so that in our perturbative approach where we expand the interactions in
powers of the coupling constant and work order by order, the assumption of bounded derivative order is
not a restriction.
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where ~ means “equal when the equations of motion hold”, or, as one also says, “weakly
equal to”. These currents may carry further internal or spacetime indices that we shall
not write explicitly. Among the conserved currents, those of the form

Jtriv A 0 S (4.2)

where S* is antisymmetric in g and v, S* = —S* are sometimes called (mathe-
matically) trivial (although they may not be physically trivial), because they can be
constructed with no information on the equations of motion. We shall adopt this termi-
nology here. If we call k the (n — 1)-form dual to j#, and r the (n — 2)-form dual to S*,
the conditions (4.1) and (4.2) can be rewritten as

dk ~ 0 (4.3)
and
ktriv ~ dr7 (44)

respectively. These conditions define the characteristic cohomology H75-!(d) in degree
n — 1 [30, 31]. One may define more generally the characteristic cohomology HY _ (d) in
any form degree p < n, by the same conditions (4.3) and (4.4). Again, k may have extra
internal or spacetime unspecified indices.

4.2 Cohomology of § modulo d

A crucial aspect of the differential ¢ defined through (2.29) and (2.30) is that it is related
to the dynamics of the theory. This is obvious since 6k ™ reproduces the Euler-Lagrange

derivatives of the Lagrangian. In fact, one has the following important (and rather direct)
results about the cohomology of § [32, 29, 20]

1. Any form of zero antifield number which is zero on-shell is d-exact;

2. HP(8) = 0 for ¢ > 0, where ¢ is the antifield number, in any form-degree p. [The
antifield number is written as a lower index; the ghost number is not written because
it is irrelevant here.]

Because of the first property, one can rewrite the cocycle condition and coboundary
condition of the characteristic cohomology as

dkb + Sk =0 (4.5)

and

kfrivO = drg_l + 57{77 (46)

respectively, where all relevant degrees have been explicitly written (recall that there is
no ghost here, i.e., puregh = 0 throughout section 4). Thus, we see that the characteristic
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cohomology is just H{(d|d). Using HF () = 0 for ¢ > 0, one can then easily establish the
isomorphisms HE(d|8) ~ HIT (8|d) (n > p > 0 ) and Hg(d|d)/R ~ H{(5|d) [28, 25]"°
Finally, using the isomorphism H!(8|d) ~ H;1{(8|d) [25], we conclude
Hi2(d) ~ HJ(6|d),0<p<n (4.7)

char

Hoyor(d)/ R~ HJ(3]d).

char

The following vanishing theorem on [ (d]d) (and thus also on H} "(d) or H3,.(d)/R)

can be proven:

Theorem 4.1 The cohomology groups H)(|d) vanish in antifield number strictly greater
than 2,
H}(d]d) =0 forp>2. (4.9)

The proof of this theorem is given in [25] and follows from the fact that linearized gravity
is a linear, irreducible, gauge theory. In terms of the characteristic cohomology, this
means that all conservation laws involving antisymmetric objects of rank > 2 are trivial,
aMSMM"'Mk ~ () = SHIH2BE oy auo Rrotibk with k > 27 SH1p e — S[M1M2~~~Mk]7 RHopr ke —
Rleom=m] [This result holds whether or not S#1#2# carries extra indices.]

In antifield number two, the cohomology is given by the following theorem (which will
be proven below),

Theorem 4.2 A complete set of representatives of Hy(6|d) is given by the antifields C**
conjugate to the ghosts, i.e.,

day + daT_l =0=a; = )\ZC;“d:pOdwl cedx™ 4 oby + dbg—l (4.10)
where the )\Z are constant.

In order to interpret this theorem in terms of the characteristic cohomology (using
Eq.(4.7) and recalling that n > 2), we note that the equations of motion H** = 0 of the
linearized theory can be rewritten as

HE = 9,0 (4.11)

with
Qe = 85\112“’“5 = —¢rre, (4.12)

The tensor W+*# is explicitly given by

\I}Zwozﬁ _ _nuahauﬁ . nuﬁhap,oz T nuﬁhauoz T nuahap,ﬁ T naunﬁuha . naunﬁuha (413)

13The quotient H{(d|d)/R is taken here in the sense of vector spaces: the set R of real numbers is
naturally identified with a vector subspace of H{(d|d) since de = 0 for any constant ¢ and ¢ # J(something)
+d(something’) unless ¢ = 0. The constants occur in the isomorphism H{(d|§)/R ~ H{(d|d) because
the cohomology of d is non trivial in form degree zero, H%(d) ~ R (see [28] for details). The relation
HQ(d|§)/R ~ H{(8|d) implies in particular that if H](d|d) = 0, then HJ(d|d) ~ R.
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(where 2 is the trace A% ) and has the symmetries of the Riemann tensor. The equations
of motion can thus be viewed as conservation laws involving antisymmetric tensors S*”
of rank two, parametrized by further indices (o and a). These conservation laws are
#eas the divergence 0,0 of a tensor O
that would be completely antisymmetric in g, v and A (U7 does not have the required
symmetries). Theorem 4.2 states that these are the only non-trivial conservation laws,

uvAo

uvAo
a a

non-trivial because one cannot write ®

le.,

0,5" 70, SH = — 5 = §H AL LU, N = 1, (4.14)

Let us now turn to the proof of Theorem 4.2. Let a be a solution of the cocycle
condition for H}(é|d), written in dual notations,

Sa+ V" =0. (4.15)

Without loss of generality, one can assume that « is linear in the undifferentiated antifields,
since the derivatives of C'** can be removed by integrations by parts (which leaves one in
the same cohomological class of H}(d|d)). Thus,

a:ij;“—l—/,L (4.16)

where p is quadratic in the antifields £7*” and their derivatives, and where the [} are
functions of Af, and their derivatives. Because oy ~ 0, the equation (4.15) implies the
linearized Killing equations for f,

0, + 0,1 ~ 0. (4.17)

If one differentiates this equation and uses the similar equations obtained by appropriate
permutations of the spacetime indices, one gets, in the standard fashion

Mo, f, ~ 0. (4.18)

This implies, using the isomorphism H{(d|6)/R ~ H!(5|d) and the previous theorem
H™(6|d) =0 (n > 2)

o fy =1, (4.19)
where the ¢, are constants. If one splits ¢f,, into symmetric and antisymmetric parts,
i, = sh, +al,, s, = s, a,, = —a,,, one gets from the linearized Killing equation

(4.17) si, = 0 and thus s}, = 0 (any constant weakly equal to zero is strongly equal
to zero). Let fi be fi = fi — af, z”. One has from (4.19) d,f; ~ 0 and thus, using
again H{(d[6) ~ R, fi ~ X} for some constant A%. This implies fi ~ X 4 af,x": fi is
one-shell equal to a Killing field of the flat metric. If one does not allow for an explicit
coordinate dependence, as one should in the context of constructing Poincaré invariant
Lagrangians, one has f; ~ Aj. Substituting this expression into (4.16), and noting that
the term proportional to the equation of motion can be absorbed through a redefinition
of p, one gets

a = )\ZC;“ + 4 (4.20)
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(up to trivial terms). Now, the first term in the right-hand side of (4.20) is a solution of
da + 9,V* = 0 by itself. This means that u’, which is quadratic in the A" and their
derivatives, must be also a é-cocyle modulo d. But it is well known that all such cocycles
are trivial [25]. Thus, a is given by

a = )\ZC;“ + trivial terms (4.21)

as we claimed. This proves the theorem.

Comments

(1) The above theorems provide a complete description of H(é|d) for k > 1. These
groups are zero (k > 2) or finite-dimensional (k = 2). In contrast, the group H7(d|d),
which is related to ordinary conserved currents, is infinite-dimensional since the theory is
free. To our knowledge, it has not been completely computed. Fortunately, we shall not
need it below.

(2) One can define a generalization of the characteristic cohomology using the endo-
morphism defined in [33], which fulfills D* = 0 (rather than d* = 0; for more information,
see [34]). In the language of [33], the Bianchi identities can be written as D - H = 0
and follow from the fact that H = D? - ¥ (just as the Noether identities dM = 0 for
the Maxwell equations M = 0 follow from M = d*F'). The equations of motion read
D?* - V¥ ~ 0 and define a non-trivial element of a generalized characteristic cohomology
involving D rather than d, since one cannot write U as the D of a local object (just as
one cannot write *F as the d of a local object). There is thus a close analogy between
gravity and the Maxwell theory provided one replaces the standard exterior derivative d
by D, and the standard cohomology of d by the cohomologies of D. Note, however, that
¥ is not gauge-invariant, while *F' is.

4.3 Invariant cohomology of 4 modulo d

We have studied above the cohomology of § modulo d in the space of arbitary functions
of the fields A7, the antifields, and their derivatives. One can also study H}'(é|d) in the
space of invariant polynomials in these variables, which involve A}, and its derivatives
only through the linearized Riemann tensor and its derivatives (as well as the antifields
and their derivatives). The above theorems remain unchanged in this space. This is a
consequence of

Theorem 4.1 Lel a be an invariant polynomial. Assume that a is 6 trivial modulo d in
the space of all (invariant and non-invariant) polynomials, a = db + dec. Then, a is §
trivial modulo d in the space of invariant polynomials, i.e., one can assume without loss
of generality that b and ¢ are invariant polynomials.

The proof is given in the appendix A.2.
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5 Construction of the general gauge theory of inter-
acting gravitons by means of cohomological tech-
niques

Having reviewed the tools we shall need, we now come to grips with our main problem: to

compute H%"(s|d). To do this, the main technique is to expand according to the antifield
number, as in [35]. Let a be a solution of

sa+db=0 (5.1)
with ghost number zero. One can expand « as
a=ag+a+---ag (5.2)

where a; has antifield number ¢ (and ghost number zero). [ Equivalently, a; has puregh = i,
i.e. contains i’s explicit ghost fields C'%’s.] Without loss of generality, one can assume
that the expansion (5.2) stops at some finite value of the antifield number. This was
shown in [35] (section 3), under the sole assumption that the first-order deformation of
the Lagrangian ag has a finite (but otherwise arbitrary) derivative order.

The previous theorems on the characteristic cohomology imply that one can remove all
components of ¢ with antifield number greater than or equal to 3. Indeed, the (invariant)
characteristic cohomology in degree k measures precisely the obstruction for removing
from a the term ay of antifield number k (see appendix A.3). Since H}(é|d) vanishes for
k > 3 by Theorem 4.1, one can assume

a=ag+a; + ay. (5.3)
Similarly, one can assume (see appendix A.3)

Inserting the expressions (5.3) and (5.4) in (5.1) we get

5@1 + Yo = dbo (55)
5@2 + Y1 = dbl
vyaz = 0. (5.7

Recall the meaning of the various terms in a : ag is the deformation of the Lagrangian;
ay captures the information about the deformation of the gauge transformations; while a,
contains the information about the deformation of the gauge algebra. We shall first deal
with ay, and then “descend” to a; and ag.

5.1 Determination of as

As we have seen in section 3, the general solution of (5.7) reads, modulo trivial terms,

ay =Y oy’ (5.8)
J
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where the ay are invariant polynomials (see (3.2)). A necessary (but not sufficient)
condition for ay to be a (non-trivial) solution of (5.6), so that a; exists, is that oy be a (non-
trivial) element of H}(é|d) (see appendix A.3) Thus, by Theorem 4.2, the polynomials o
must be linear combinations of the antifields C'*,. The monomials w’ have ghost number
two; so they can be of only three possible types

Cgcg, 028[503], a[acg]ahcg] (59)

They should be combined with C** to form ay. By Poincaré invariance, the only possibility
is to take Cgaw(}g], which yields!?

ay = —CPC 9, Chai. + vbs. (5.10)

Here we have introduced constants af. that parametrize the general solution ay of equa-
tions (5.6), (5.7). The trivial “y-exact” additional term in Eq.(5.10) will be normalized
to a convenient value below.
The af. can be identified with the structure constants of a N-dimensional real algebra
A. Let V be an “internal” (real) vector space of dimension N; we define a product in V
through
(z-y)" = ala’y®, Yo,y e V. (5.11)

The vector space V equipped with this product defines the algebra A. At this stage, A has
no particular further structure. Extra conditions will arise, however, from the demand
that a (and not just as) exists and defines a deformation that can be continued to all
orders. We shall recover in this manner the conditions found in [2], plus one additional
condition that will play a crucial role.

It is convenient (to simplify later developments) to fix the y—exact term in Eq.(5.10)
to the value by = %C;ﬁcabhgﬁagc. Using vh3 5 = 20(,Cf, we then get,

ag = CPC*9;C%af, . (5.12)

In terms of the algebra of the gauge transformations, this term a, implies that the gauge
parameter (** corresponding to the commutator of two gauge transformations with pa-
rameters £** and n** is given by

¢ = a. e 0T (5.13)

where [,] is the Lie bracket of vector fields. It is worth noting that at this stage, we have
not used any a priori restriction on the number of derivatives (except that it is finite).
The assumption that the interactions contain at most two derivatives will only be needed
below. Thus, the fact that a stops at az, and that as is given by (5.12) is quite general.

1 Actually, for particular values of the dimension n, there are also solutions of (5.6), (5.7) built with
the ¢ tensor. If one imposes PT invariance, these possibilities are excluded. Furthermore, they lead to
interaction terms with three derivatives. The corresponding theories will be studied elsewhere [36]. As
often in the sequel, we shall switch back and forth between a form and its dual without changing the
notation when no confusion can arise. So the same equation for a is sometimes written as sa + db = 0
and sometimes written as sa + 9,0% = 0.
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Differently put: to first-order in the coupling constant, the deformation of the alge-
bra of the spin-2 gauge symmetries is universal and given by (5.12). There is no other
possibility. In particular, there is no room for deformations of the algebra such that the
new gauge transformations would close only on-shell (terms quadratic in h* are absent
from (5.12)). This strengthens the analysis of [2] where assumptions on the number of
derivatives in the gauge transformations were made. No such assumption is in fact needed.

5.2 Determination of «;

In order to find a; we have to solve equation (5.6),

Saz +ya, = db, . (5.14)
We have
Say = —20,h5"C05C8at, = —20, (B2 C05C2ar,) +
200,095 Clal, + 20 C*05,CC al, . (5.15)

The term with two derivatives of the ghosts is y-exact (see Eq.(3.1), thus, for a; to exist,
the term 243770, C**05C¢af, should be y-exact modulo d. But this can happen only if is
zero. Indeed, we can rewrite it in terms of the generators of H(v) by adding a y-exact
term, as

200, C*05Caf, = 207° Wahca%awc;]agc +y(...). (5.16)

It is shown in appendix B that this term is trivial only if it vanishes. Since
2070 OOV Cear, = 2077 0D C VPOl (5.17)

the vanishing of this term yields
Ape = Ahey s (5.18)

namely, the commutativity of the algebra A defined by the af’s. This result is not
surprising in view of the form of the commutator of two gauge transformations since
(5.13) ought to be antisymmetric in £* and n®. When (5.18) holds, day becomes

Say = =20, (B C05C5as,) + 7 (RO (0,hE 5 + Oh, — DuhZglag,) — (5.19)

which yields a;
ay = —h;C (0,02 + Opht,, — Duhsy) aj, (5.20)

up to a solution of the “homogenous” equation ya; 4+ db; = 0.

As we have seen, the solutions of the homogeneous equation do not modify the gauge
algebra (since they have a vanishing az), but they do modify the gauge transformations.
By a reasoning analogous to the one given in the appendix, one can assume by = 0 in
yay + dby = 0. Thus, a; is a y-cocycle. Tt must be linear in 3" and in U or a[ucg]. By
Lorentz invariance, it must contain at least one linearized curvature since the Lorentz-
invariant hif“’a[MCf] vanishes. But this would lead to an interaction term aq that would
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contain at least three derivatives and which is thus excluded by our derivative assumptions.
Thus, the most general a; compatible with our requirements is given by (5.20). This is the
first place where we do need the derivative assumption. [We believe that this derivative
assumption is in fact not needed here in generic spacetime dimensions, if one takes into
account the other conditions on a;: Poincaré invariance, existence of ag, etc. However,
we do not have a proof. More information on this in section 11.]

5.3 Determination of q

We now turn to the determination of ag, that is, to the determination of the deformed
Lagrangian at first order in g. The equation for aq is (5.5),

Say + yag = dby . (5.21)
We have
Ja; = ;hSO O (Duhly, + Dshe,, — 0,h%,) @i =
—(OR% 5 + Duph® — Dud’h; — D50°h%, + 1apOsph™”
—1ag DR Y (97 WP + P — 0h) g, (5.22)
where we have defined
Aape = kaady, , (5.23)

where k,; i1s the quadratic form defined by the free kinetic terms. Now we prove that
(as in Yang-Mills theory) these “structure constants” with all indices down, a4, must be
fully symmetric, ayp. = @(abe) for (5.21) to have a solution.

The polynomial da; is trilinear in da,a,h%, ., Oashly,,, and CS . There exist twenty-
three different ways to contract the Lorentz indices in the product 8a1a2 ® oy Oashl o CF

to form a Lorentz scalar. These are, in full details (and dropping the internal indices),
{Qa} = {Ohd,hC*,0R3%h,s C*, Ohp, dR° C Ohg., uh? C*, Dhg, 0,0 C7,

Ohgy 0°h C7, 00sh™® 0,0 C7, Dygh™® 0" hyy C7) Oph™ awhﬁu c*,

Ooph™? auhﬁw C*, Dogh™ 0,0 C.), 00ph™ 0P by, O, Dysh™ 0°h C.,,

Dagh® O"h CP 0,50 0"heyy CF L Dygh 058P C7) Dyphiy OTHE O,

Ouph aﬁh%(ﬂ,aaﬁhw I°hCH, Doph 0,h™ CP L0, ghny, Vh CP,

Duph 0°h C°, 0ygh, OB CPY (5.24)
(A =1,...,23). These polynomials are independent: if a®Qa = 0, then a® = 0; this
can be easily verified. Consequently, these polynomials form a basis of the vector space
under consideration. In particular, two polynomials a®Qa and S2Qa are equal if and
only if all their coefficients are equal, a® = 32.

Let us single out the terms in (5.22) containing two traces h%; there is only one such
term, along the first element of the basis,

— Oh* C) DA aape (5.25)
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By counting derivatives and ghost number, one easily sees that the solution ag of (5.21)
must be a sum of terms cubic in the fields 275, with two derivatives (y brings in one deriva-
tive). The only monomials which give terms with two traces h* by applying the v operator
are h*heOhS | hEO*RED,h/ 8“”hfwhehf, a“hﬁya”hehf, hfwa“heal’hf and hdhfwa*“’hf. Some
of these terms are equivalent modulo integrations by parts; only three of them are inde-
pendent, which can be taken to be h49*h°d,h’, hfwa“heal’hf and hdhfwa*“’hf. The piece

in ag that we are considering is then
ap = ...+ h'0"h°9,h! by, + B, 0" R0 hT by, + hOhS,0 R b, (5.26)
with béef being constants with the symmetries
bglef = bglfe b?lef = b?lfe : (527)

Then we apply v to ap, and integrate by parts. The rationale behind the integrations by
parts that we perform is to require that the ghosts, which occur linearly, should carry no
derivatives, as in da;. Proceeding in this manner and focusing only on the terms with two

traces h* in yag — dby = —day, we easily get the condition
DR CL0"he (4bly, — 203,.) + CLo™ h'd,he (—4bl,, + 4bl,, +4bL,, — 202, — 20%,,) +
h*CEB0” he (4bY,, — 2b%,.) = Oh*CLO”he ag. . (5.28)

From this equation, we obtain

202

abc

= 4AbL, — dpge, B2, = 20L, 0 —AbL, 4 ey = 0. (5.29)

a abe?
In particular we find that
— e = —4by, = —4by,, = —aepa (5.30)
and thus
Aabe = U(abe) (531)

where we have used the symmetry relations of b%, = bi(bc) and dqpe = @q(pe) previously
derived. An algebra which fulfills @y, = aep, 1s called Hilbertian, or, in the real case
considered here, “symmetric”.

Now we prove that aup. = a(ase) is a sufficient condition for the (5.21) to have solution.
This is simply done by explicitly exhibiting a solution. Substituting the expression

1 a & a [0} & 1 acy &
@ = (Zh O Ouh" = DR — OO,

1
£ 60 hThT = O hPh By — SO R R b,

pytaf

1 viagb c 1 a bBy qa g c 1 viapbajc
SO R LR+ ST RS, — SO R,

FO,h R OB, — 0, O, R RE A+ R, ) e
(5.32)
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With @gpe = @(ape) in the equation (5.21) one finds that it is satisfied. The expression (5.32)
has been derived by considering initially the case with one spin two field. In this case,
general relativity with ¢,5 = 1.5+ ghag 1s a solution and the corresponding ag is the term
of the Einstein—Hilbert lagrangian cubic in h,z. We verified that this expression satisfies
day + vag = dbg, and found that the proof remains valid if we take the same expression
with different fields contracted by a symmetric tensor.

We have therefore proven that a gauge theory of interacting spin two fields, with a
non trivial gauge algebra, is first-order consistent if and only if the algebra A defined by
ai., which characterizes az, is commutative and symmetric.

Again, there is some ambiguity in ag since we can add to (5.32) any solution of the
“homogeneous” equation vag + dby = 0 without ay. If one requires that ag has at most
two derivatives, there is only one possibility, namely

— 2A(pe (5.33)
where the A1)’s are constant. This term fulfills
YAWRY) = 9, (2A ) (5.34)

and is of course the (linearized) cosmological term. There is no other non-trivial term.
Indeed, the Euler-Lagrange derivatives S* = §ag/8h,, of any ag fulfilling yag 4 0,65 = 0
is an invariant, symmetric tensor fulfilling the contracted Bianchi identities 9,5 = 0 and
containing at most two derivatives. Now, the only such tensors are n** and the linearized
Einstein tensor. The first corresponds to the cosmological term; the second vanishes on-
shell and derives from a piece in the Lagrangian that can be absorbed through redefinitions
of the fields; it is trivial.

If one does not restrict the derivative order of ag, there are further possibilities, e.g.,
any polynomial in the linearized Riemann tensor and its derivatives is a solution. This is
the second place where the derivative assumption is explicitly used in the analysis. We
shall come back to this point in section 11.

The extra consistency condition (5.31) arises because we demand that ag, the first-
order deformation of the Lagrangian, should exist. Its form explicitly depends on the
original Lagrangian through the metric k,; defined in internal space by the kinetic term.

The condition (5.31) does not appear in [2] (although it is mentioned in [3], but not
discussed in the context of the free limit). As we shall see, it is this condition that
is responsible for the impossibility to have consistent cross-couplings between a finite
collection of (non-ghost) gravitons.

It is interesting to note that a similar phenomenon appears in the construction of the
Yang-Mills theory from a collection of free spin-1 particles. If one focuses only on a; and
az, one finds that the deformations are characterized by a Lie algebra [16]. But if one
requires also that ag exist, the Lie algebra should have a further property: it should admit
an invariant metric, and that metric should be the metric defined by the Lagrangian of
the free theory (see e.g. [26] and references therein). In the spin-1 case, of course, this
extra condition does not prevent cross-interactions.
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5.4 The associativity of the algebra from the absence of obstruc-
tions at second order

The master equation at order two is
(Wl, Wl) = —28W2 (535)

with
W1 == /dnl' (Clo + aiy + Clz) . (536)

One can expand (Wy, Wy) according to the antifield number. One finds
(Wl, Wl) = /dnl'(Oéo —|— aq —|— Oég) (537)

where the term of antifield number two a3 comes from the antibracket of [ d"x ay with
itself and reads explicitly (using (5.12))

as = — (20:70,C1 + 900 CE) O 7 CE (aal, ). (5.38)

If one also expands W; according to the antifield number, one gets from (5.35) the
following condition on ay (it is easy to see, by using the arguments given in the ap-
pendix, that the expansion of Wy can be assumed to stop at antifield number three,
Wy = [d"x(co + ¢1 + ¢2 + ¢3) and that ¢3 may be assumed to be invariant, ye; = 0)

Qg = —2(’)/02 + 503) + dbz . (539)

It is impossible to get an expression with three ghosts, one C* and no fields, by applying
d to c3, so we can assume without loss of generality that cs vanishes, which implies that
a9 should be y—exact modulo total derivatives.

Integrating by parts and adding y—exact terms, one finds

ay = —20;56[503]Cia[gca]cag[ba?]c + trivial terms. (5.40)

This expression has the standard form (3.2). It is simple to prove, as in the proof of
appendix B, that it is not a mod-d y-coboundary unless it vanishes. This happens if and
only if

agpaf. =0, (5.41)

which is the associative property for the algebra A defined by the aj.. Thus, A must be
commutative, symmetric and associative.

It is quite important to note that this result holds even if we allow more general a;’s
or a’s involving more derivatives, since these terms will not contribute to ay. So, the
absence of obstructions at order ¢* will lead to the same associativity condition and the
same triviality of the algebra which we establish now.
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6 Impossibility of cross-interactions

Finite-dimensional real algebras that are commutative, symmetric and associative have a
trivial structure: they are the direct sum of one-dimensional ideals.

To see this, one proceeds as follows. The algebra operation allows us to associate to
every element of the algebra u € A a linear operator

Alu) : A— A (6.1)
defined by
Alw)p =u-v. (6.2)
In a basis (e1,...,€n), one has v = v, and
A(u)s, = uag, . (6.3)

Because of the associativity property, the operators A(u) provide a representation of the

algebra
A(u)A(v) = A(u - v) (6.4)

and so, since the algebra is commutative,
[A(u), A0)] = 0. (6.5)

Now, the free Lagrangian endows the algebra A (viewed as an N-dimensional vector
space) with an Euclidean structure, defined by the scalar product (u,v) = kgu®v®. At
this point, it is convenient to normalize the Euclidean metric k,; in the standard way,

kap = Oap, 1.e. to endow A with the usual Euclidean scalar product

(u,v) = Saputv’. (6.6)
The symmetry property
Aabe = A(abe) (67)
expresses that the operators A(u) are all symmetric
(u, A(v)w) = (A(v)u,w), (6.8)
that is,
Alu) = A(u)T. (6.9)

Then the real, symmetric operators A(u), u € A are diagonalizable by a rotation in
A, viewed as an N-dimensional Euclidean space . Since they are commuting, they are
simultaneously diagonalizable. In a basis {ej,..., ¢, } in which they are all diagonal, one
has A(e,)e, = afa,b)e, for some numbers a(a, b) and thus

€, - € = Aleqg)ey = ala,b)ey = e - €, = Alep)e, = a(b,a)e, . (6.10)

So a(a,b) = 0 unless a = b. We set a(a,a) = #). By using the discrete symmetry

by, = —h}, of the free theory, we can always enforce that & > 0.
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Consequently, the structure constants aj. of the algebra A vanish whenever two in-
dices are different. There is no term in Wj coupling the various spin-2 sectors, which
are therefore completely decoupled. Only self-interactions are possible. The first-order
deformation Wj is in fact the sum of Einstein cubic vertices (one for each spin-2 field with
a(a,a) # 0) 4 (first-order) cosmological terms.

Technically, the passage from an arbitrary orthonormal basis in internal space to the
basis where the A(u)’s are all diagonal is achieved by exponentiating a transformation
AW = (W1, Ky) (see (2.22)), where K defines an infinitesimal rotation in internal space.
It is clear that these rotations leave the free Lagrangian invariant (< (Wy, Ko) = 0). So
we see that the extra identifications of the form AW; = (Wi, Ky) have a rather direct
and natural meaning in the present case.

When none of the #{!) vanishes, which is in a sense the “generic case”, the basis {e,}

is unique. The allowed redefinitions AW = (W, K') must fulfill
(Wo, [(0) — 0, (Wo, [(1) —|— (Wl, [(0) — 0 (611)

in order to preserve the given Wy and Wi. The term (W;, Ky) modify the structure
constants af. by a rotation and so, cannot be BRST-exact unless it is zero. So, we must
have separately (Wy, K1) = 0 and (Wy, Koy) = 0. Since the basis {e,} in which the af.
take their canonical form is unique, we infer from (Wi, Ky) = 0 that Ky is zero. We
can thus conclude that given Wy and Wy, the redefinition freedom is characterized by a

K= [(0 + 91(1 + - with [(0 =0 and (Wo, [(1) =0.

7 Complete Lagrangian

With the above information, it is easy to complete the construction of the full Lagrangian
to all orders in the coupling constant. This is because one knows already one solution
, namely the Einstein-Hilbert action. So, the only point that remains to be done is to
check that there are no others. In other words, given Wy and Wy, equal to the standard
Einstein terms, how unique are W, W5 etc?

One has
W =Wy + gW (ED) + g Wo + - (7.1)
where we emphasize the dependence of W[ on the constants #(!). The equation deter-
mining W, is, as we have seen, sW, = —(1/2)(WE, WE). A particular solution is the

functional WP ((#(V)?) corresponding to the sum of second-order Einstein deformations,
which we know exists. Thus, Wy, = WE + W, where W} is a solution of the homo-
geneous equation sW, = 0. The general solution to that equation is W, = Wl(bzc),
where Wl(bzc) = W, has been determined in section 5 and involves at this stage arbitrary
constants bj. fulfilling b7, = b% and bupe = b(ape).

The equation for Wj is then

sWa = —(Wy, W) (7.2)
i.e., setting W5 = W + W), where WF is the Einsteinian solution of sW¥ = —(WF WE),
sWh = —(Wy, WE). (7.3)
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Now, (Wl, WEYis s-exact if and only if the constants ¢, are subject to ag[bbjf]c—l—bg[ba?]c =0.
But this condition expresses that aj. + gbj. defines an associative algebra (to the relevant
order). Therefore, one can repeat the argument of the previous section: by making an
order-g rotation of the fields, i.e., by choosing appropriately the term K in K, one can
arrange that the only non-vanishing components of bj, are those with three equal indices,
and we set b2, = &), When this is done, we see that the term W is equal to W} (%)
and that W is equal to WF(2&(M%2)) plus a solution W2 of the homogeneous equation
sW¥ = 0. Continuing in the same way, one easily sees that WY = WF (&) and the
higher order terms are determined to follow the same pattern.

Regrouping all the terms in W, one finds that W is a sum of Einsteinian solutions,
one for each massless spin-2 field, with coupling constants

v = gD + P 4 R 4 (7.4)

For simplicity of notation, we assumed that the cosmological constant was vanishing at
each order. Had we included it, we would have found possible cosmological terms for each
massless, spin-2 field, with cosmological constant given by

A= gAD + AP+ g* A + - (7.5)

We can thus conclude that indeed, the most general deformation of the action for a
collection of free, massless, spin-2 fields is the sum of Einstein-Hilbert actions, one for

each field,
2
Sl = X = [ el = 20)V=5, gl = + 1R, (7.6)

as we announced. There is thus no cross-interaction, to all orders in the coupling con-
stants. This action is invariant under independent diffeomorphisms,

1
;(Lgiy = GZ;U + EZ;M (77)

and so has manifestly the required number of independent gauge symmetries (as many
as in the free limit). Cosmological terms can arise in the deformation because they
are compatible with the gauge symmetries. One may view the diffeomorphisms (7.7) as
algebra-valued diffeomorphisms of a manifold of the type considered by Wald [4], but in
the present case where the algebra is completely reducible and given by the direct sum
of one-dimensional ideals, the structure of the manifold is rather trivial. In the case of a
single massless spin-2 field, we recover the known results on the uniqueness of the Einstein
construction.

If some coupling constants k* vanish, the corresponding free action is undeformed at
each order in g and the full action coincides, in those sectors, with the free action plus
a possible linearized cosmological term —2A,h% ; the gauge symmetry (7.7) reduces of
course to the original one. This situation is non-generic and unstable under arbitrary
deformations. By contrast, the Einstein action is stable under arbitrary deformations
(with at most two derivatives) [37].
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8 Infinite-dimensional algebras

The absence of cross-interactions between the various massless spin-2 fields relies heavily
on the fact that all finite-dimensional associative, commutative and symmetric algebras
are trivial. This property, demonstrated in section 6 is no longer valid in the nfinite-
dimensional case, for which the operators A(u) may not be diagonalizable. Thus for
a system with an infinite number of massless spin-2 fields, one may construct cross-
interactions that are not removable by field redefinitions. Actually, an example where
this happens was given in [6]. The infinite-dimensional algebra that occurs in that precise
example is that of the complex functions on the 2-sphere. This example was arrived at
by dimensionally reducing the six-dimensional Lovelock theory to four dimensions with a
sphere as internal space. A simpler example would be the algebra of real functions on the
circle endowed with the natural L? metric. One uses as algebra-product the usual point-
wise product of functions: (f - ¢)(¢) = f(¢)g(w). This algebra is clearly commutative
and associative. It is also symmetric for the scalar product

(f:9)= [ de J (o) 9(9) (8.1)

since

(A(f)g:h) = [ de(F(2)geDh(e) = [ dog(@)(F(2Ihle) = (9, AL (3:2)

To work with a discrete basis it is enough to use any orthonormal basis for A, such as the
functiogs {\/Lz_w’ ﬁ cos mep, ﬁ sin‘ me} (m > 0). The operators A(f) are no‘t diagone%l in
that basis. To be able to diagonalize A(f), one should find square-integrable eigenfunctions
g(p) such that

(A(N)g)w) = f(w)gle) = As g(p). (8.3)

When f(¢) # const, there is no non identically vanishing function g(¢) belonging to L?
that fulfills this condition. Thus, one cannot diagonalize'® the A(f). Consequently, one
can avoid the no-go theorem and construct an algebraically consistent interacting theory
by considering an infinite number of massless, spin-2 fields [6].

9 Coupling to matter

We have shown that a (finite) collection of massless spin-2 fields alone cannot have direct
cross-interactions. One may wonder whether the inclusion of matter fields could change
this picture: if a given matter field was able to couple to two different gravitons simul-
taneously, we would have, at least, some indirect (non local) cross-interactions. It is of
course impossible to consider exhaustively all possible types of matter fields. We shall
consider here only the couplings to a scalar field and show that within this framework,
cross-interactions remain impossible. Our analysis does not exclude possibilities based

15 The formal solutions of Eq.(8.3) are Dirac delta functions, {§(¢ — ¢o)}, which are not square
integrable.
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on a more complicated matter sector, but we feel that the simple scalar case is a good
illustration of the general situation and of the difficulties that should be overcome in order
to get consistent cross-interactions through matter couplings.

So, we want to consistently deform the free theory consisting in N copies of linearised
gravity plus a scalar field

L= Ly — 50"60,0. (9.1)

The BRST differential in the spin-2 sector is unchanged while, for the scalar field, it
reads
45

Because the matter does not carry a gauge invariance of its own, Theorems 4.1 and
4.2 on the characteristic cohomology remain valid. This implies that ay is unchanged and
still given by

ay = a3 = CPC*93CC af, (9.3)

even in the presence of the scalar field. The scalar field variables can occur only in a; and
do.

Because ay is unchanged, a; will be given by the expression found above plus the
general solution a@; of the homogeneous equation va; + dby = 0,

a1 = Clcl)ld + Ell (94)
with
acl)ld = _hzﬁwcab (8%@5 ‘|‘ 85hiw - aahiﬁ) CLZC. (95)

Without loss of generality, we can assume ya; = 0 (see appendix). The only possibility
compatible with Lorentz-invariance and leading to an interaction with no more than two
derivatives is

iy = —5 PO (8). (9.6)
Indeed, by integrations by parts, one can assume that no derivative of ¢* occurs, while the
term aﬁ(}g is y-exact. Also, the termh*PC? 95V, (¢) ~—dsh:PC VA (d)—h:PCP V()
is trivial.

Requiring ag to exist forces the functions U%(¢) to be constants, so we set U*(¢) = 2&,,
where the ¢, are constants. Indeed, in the equation da, + vyao + J,k* = 0, one may
assume that ag is linear in h,g since a; is linear in the variables of the gravitational sector
(ghosts). One may also assume that h,s appears undifferentiated since derivatives can
be absorbed through integrations by parts. This yields ag = hiﬁlllgﬁ where W27 involves
the scalar field and two of its derivatives, W2 = 3°¢3°4P,(¢) + 170" 40, 0Q.(d) +
0P PR (¢) + n°POpS(¢), where P,(d), Qu(d), R*($) and S%($) are some functions of
the undifferentiated scalar field. Substituting this expression into da; + vao + 9,k* = 0
and taking the variational derivative with respect to the ghosts gives the desired result

Ue =0.
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This leads to the following expression for the complete ay,

ag = Clgld—l-flo (9.7)
ao = t*’h%s¢, (9.8)

where 17 is the stress-energy tensor of the scalar field
1
pof (aa¢aﬁ¢ _ §naﬁau¢au¢) ) (9.9)

We thus see that the coupling to the gravitons takes the form t*°h,5. This is not an
assumption, but follows from the general consistency conditions. Of course, we can also
add to the deformation of the Lagrangian non-minimal terms of the form V,(¢)K*®, which
are solutions of the “homogeneous equation” vag + dby = 0 without source da;. However,
such terms vanish on (free) shell and thus can be absorbed through field-redefinitions in
the adopted perturbative scheme.

The previous discussion completely determines the consistent interactions to first or-
der. In order not to have an obstruction at order 2 in the deformation parameter, (Wy, W)

should be BRST exact. Now, one has
(Wi, Wh) = /d”:z;((al, ar) + (az, az) + 2(ao, ar) + 2(a1, az)) (9.10)

with obvious meaning for the notation (a;,a;). This should be equal to —2sW; and
again, without loss of generality, we can assume that W, stops at antifield number 2,
—2Wy = [d"x(bg+ b1+ b2). When expanded according to antifield number, the condition
(W1, Wy) = —2sW, yields (in this precise case)

(CLQ, Clz) == ’)/bz + dmg, (911)
(Cll, Cll) + 2(@1, Clz) == (sz + ’)/bl + dml, (912)
2(@0, Cll) = (Sbl + ")/bo + dmo. (913)

Taking into account the fact that a; = a$!® and ' fulfill these conditions, one gets the

following requirement on a;
2(&1, Clz) + (Ell, Ell) == 5[;2 + ’)/[;1 + dﬁ”bl, (914)
where by can be assumed to fulfill vb; = 0. Computing the left-hand side of (9.14) we get
807 $C5E.07 (¢ Che&) — 46707 HC 05 CLa5 16,
= Qg% — 890 9CLI"C3E.6 — 4970 pC " DpClay it (9.15)

Inserting in this expression dzC? = a(ﬁcz)—l—a[ﬁcz], we see that the term with symmetrized
derivatives is v-exact, while the term with antisymmetrized derivatives defines a cocycle
of the v-cohomology which reads explicitly

— 467200 pC Lo, Ol (26,6 — ag e (9.16)
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This term is trivial in H(y|d) if and only if its coefficient is zero,
25(1&) - agafc =0 (917)

(the term b, contains more derivatives and cannot play a role here). In the basis where
ay, = 0 if a # b, one gets £, = 0 when a # b, which means that ¢ can couple to only
one graviton, as announced.

10 Non positive-definite metric in internal space

A crucial assumption in the above derivation of the absence of couplings mixing two dif-
ferent massless spin-2 fields was that the metric in internal space is positive-definite. This
requirement follows from the basic tenets of (perturbative) field theory, as it is necessary
for the stability of the Minkowski vacuum (absence of negative-energy excitations, or of
negative-norm states). However, for completeness (and for making a link with Ref.[2]),
we shall now formally discuss the case where d,, is replaced by a non positive-definite, but
still non-degenerate, metric k,; in internal space. In this case, the algebra A does not need
to be trivial, and one can construct interacting multi-“graviton” theories, as first shown
by Cutler and Wald in the paper [2] that initiated our study. As proven above, these are
determined by a commutative, associative and symmetric algebra A (where “symmetric”
refers to the condition a5 = a(qpe), the index a being lowered with a non-positive-definite
Eab).

As shown in [4], irreducible, commutative, associative algebras can be of either three
types:

1. A contains no identity element and every element of A is nilpotent (v™ = 0 for
some m).

2. A contains one (and only one) identity element e and no element j such that j? = —e.
In that case, A contains a (N — 1)-dimensional ideal of nilpotent elements and one
may choose a basis {e,v;} (k=1,---, N — 1) such that all v;’s are nilpotent.

3. A contains one identity element e and an element j such that j2 = —e. The algebra
A is then of even dimension N = 2m, and there exists a (2(m — 1))-dimensional
ideal of nilpotent elements. One can choose a basis {e, v, 7,j- v} (k=1,---,m—1)
such that all v,’s are nilpotent.

One can view the third case as a m-dimensional complex algebra with basis {e, v;}. This
is what we shall do in the sequel to be able to cover simultaneously both cases 2 and
3. So, when we refer to the dimension, it will be understood that this is the complex
dimension in case 3.

We now show that in cases 2 and 3, the symmetry condition on the algebra implies
that the most nilpotent subspace must be at most one-dimensional. This condition was
used in [38] in order to write down Lagrangians.
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The most nilpotent subspace of A is the subspace of elements x that have a vanishing
product with everything else, except the identity. More precisely, one has

ec-x=uwx, vp-x=0. (10.1)

Let us now compute the scalar product (vg, ). One has (vg, 2) = (vg-e,2) = (A(vi)e

, ).
(e,v - x) =

Using the symmetry property, this becomes (A(vi)e,x) = (e, A(vg)x)
(e,0) = 0. Thus, one has
(vg,2) =0, (e,a)#0 (10.2)
where the last equality follows from the fact that the scalar product defined by k., must be
non-degenerate. However, if the most nilpotent subspace has a dimension greater than or
equal to two, one gets a contradiction since if (e, 1) = my and (e, x2) = my, the non-zero
vector maexy — myxy has a vanishing scalar product with everything else, implying that
k. 1s degenerate. QED.
When the most nilpotent subspace is precisely one-dimensional, one can write real
Lagrangians [2, 3, 4, 38], so there exist interacting theories with cross-interactions which

are consistent from the point of view of gauge invariance but which do not have the free
field limit (1.1). We refer to these works for further information.

11 Analysis without derivative assumptions

The derivative assumption was used at two places in the derivation. First, in the deter-
mination of ay; second, in the determination of ag. In both cases, the solution was found
to be unique only if one restricts the number of derivatives.

11.1 Ambiguities in «;

Let us examine first a;. If one allows more derivatives in a;, one can add to a; terms of
the form ©5C? + @gﬁa[a(}g] where ©2 and 0% = —©7 have antifield number one and
are annihilated by ~.

For such additional terms, say d;, to be still compatible with the existence of an aq,
one must have

day + yao + 0,k" = 0. (11.1)
One may expand £* in derivatives of the ghosts as follows,
k= 1000 + 4577 0,Ch + more (11.2)

where “more” contains a(pC;) and higher derivatives of (7. Using the ambiguity k* —
k# 40,5 with S* = —S" one can assume t47 = 0 (take S* = ®,**C'% and adjust
Qrvr = — Ui gppropriately). Substituting this expression for & (with 477 equal to zero)
in (11.1) yields the following conditions upon equating the coefficients of €' and 8[00;]
(which do not occur in yao),

ot = 502, (11.3)
el = 5027, (11.4)
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The second of these equations implies that one can get rid of t{*l by adding trivial terms.
So we see that the interactions defined by the new terms in a; are determined by
symmetric tensors ¥ which are conserved modulo the equations of motion (Jst2° =
—8§02 ~ 0) and which are such that 95t27 is gauge-invariant!®.
Equivalently, in view of Noether’s theorem, these interactions are determined by rigid
symmetries with a vector index and an internal index,

Suhis = mAils([K]) (11.5)

which commutes with the gauge transformations since the coefficients Ay7 ([K]) involve
the gauge-invariant linearized curvatures and their derivatives. The connection between
Ap5([K]) and ©] is simply [25] ©] = hz*PA}7([K]). To be compatible with Lorentz
invariance, the Aj7;([K]) should transform as indicated by their Lorentz indices. Iur-
thermore, the corresponding Noether charges tzyﬁ should be symmetric in o and 3, and
two sets of Aj75’s that differ on-shell by a gauge transformation (with gauge parameters
involving the curvatures and their derivatives) should be identified, since they lead to a1’s
that differ by trivial terms.

The determination of all the non trivial rigid symmetries with these properties (if any)
appears to be a rather complicated problem whose resolution goes beyond the scope of this
paper. Let us simply point out that there exists a similar problem in the case of massless
spin-1 fields, where these conditions turn out to be so restrictive that they admit no non-
trivial solution in spacetime dimension 4 (and presumably > 4 also). The corresponding
problem there is that of determining the gauge-invariant conserved currents j*([F']), which
are Lorentz-vectors. These lead to interactions of the form A,j7* which do modify the
gauge transformations but not their algebra (ay = 0 because j*([F]) is gauge invariant).
Equivalently, one must determine the non-trivial rigid symmetries which commute with
the gauge transformations and the Lorentz transformations. In 3 spacetime dimensions,
there is a solution, which yields the Freedman-Townsend vertex (with j# ~ f,,.c#*f [ “F
where ] is the 1-form dual to the 2-form F55) [39, 40]. In four (and presumably higher)
spacetime dimensions, there is no solution according to a theorem by Torre [41]. If
one believes that the spin-1 case is a good analogy, one would expect no non-trivial a,
of the type discussed in this section except perhaps in particular spacetime dimensions
(furthermore, there are further restrictions at order ¢* that these a;’s would have to
satisfy). If this expectation is correct, the most general a; would be the one given above
(subsection 5.2), associated with the unique ay determined in subsection 5.1.

16Presumably, this implies that %7 itself can be assumed to be gauge-invariant, so that the correspond-

ing interaction is just hgﬁtgﬁ. This interaction has the same form as the Einstein self-coupling hgﬁtgi,

where tgi is the energy-momentum tensor of the a-th massless spin-2 field. But neither tgi nor 3@1%@
is gauge-invariant. This is why the Einstein self-coupling leads to a non-vanishing as, i.e., modifies the
algebra of the gauge transformations. As we have seen, it is the only coupling with this property (up
to redefinitions). Note that couplings of the form hgﬁtgﬁ, with t%¢ gauge-invariant (if they exist), are
equivalent to strictly gauge-invariant couplings that do not modify the gauge transformations (i.e., are
such that @ can be redefined away) if 128 = 3u3qu“ﬁV for some Q2*7Y with the symmetries of the
Riemann tensor, since then [ hgﬁtgﬁ = Kguﬁng‘“ﬁ”. So we see that the (gauge-invariant) generalized
(characteristic) cohomology of [33] is also relevant here.
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11.2 Ambiguities in ay

We now turn to the ambiguity in ag. Assuming, in view of the previous discussion, that
ap is given by (5.20), we see that the most general aq is given by the particular solution
(5.32) plus the general solution ag of the equation without ai-source

yao + d,p" = 0. (11.6)

The addition of such deformations to the Lagrangian do not deform the gauge transfor-
mations.

There are two types of solutions to (11.6): those for which p* vanishes (or can be made
to vanish by redefinitions); and those for which the divergence term d,p* is unremovable.
Examples of the second type are the cosmological term, the Lagrangian itself and, more
generally, the leading non-trivial orders of the Lovelock terms [42]. The first type is given
by all strictly gauge-invariant expressions, i.e., by the polynomials in the linearized Rie-
mann tensors K, 5 and their derivatives (without inner contractions since the linearized
Ricci tensors vanish on-shell and can be eliminated by field redefinitions).

If some of the a?,’s occuring in ay vanish, it is clear that cross-interactions involving
any polynomial in the corresponding curvatures are consistent to all orders. If all a2,’s
are not vanishing, however, - which is in some sense the “generic case” -, there appear
non trivial consistency conditions at order ¢g?. These conditions read

(ag,a1) =~vf + dh + Sh.. (11.7)

Although we have not investigated in detail this equation for all possible agy’s, we anticipate
that it prevents cross-terms. Only terms of the form >~ f, where f, involves only the
curvature K, 5 and its derivatives, are expected to be allowed. These lead to consistent
interactions to all orders, obtained by mere covariantization.

12 Conclusions

In this paper, we have established no-go results on cross-interactions between a collection
of massless spin-2 fields. Our method relies on the antifield approach and uses cohomo-
logical techniques.

First, we have shown that the only possible deformation of the algebra of the gauge
symmetries is given by the direct sum of diffeomorphism algebras, one in each spin-2 field
sector (Eq. (7.7) with some £%’s possibly equal to zero). This result holds independently
of any assumption on the number of derivatives present in the deformation and is our main
achievement. It goes beyond previous studies which restricted the number of derivatives
in the modified gauge transformations and hence in the modified gauge algebra.

Under the assumption that the number of derivatives in the interactions does not
exceed two, we have then derived the most general deformation of the Lagrangian, which
is a sum of independent Einstein-Hilbert actions (with possible cosmological terms and
again with some k%’s possibly equal to zero), one for each spin-2 field (Eq. (7.6)). This
prevents cross-interactions. The impossibility to introduce even indirect cross-interactions
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(via the exchange of another sector) remains valid if one couples a scalar field (but we have
not explored all possible matter sectors). Thus, there is only one type of graviton that
one can see in each “parallel”, non-interacting world. In that sense, there is effectively
only one massless spin-2 field. The fact that the Einstein theory involves only one type of
graviton is therefore not a choice but a necessity that adds to its great theoretical appeal.

We have then discussed how this picture could change if one did not restrict the
derivative order of the interactions. Although the analysis gets then technically more
involved, we have provided arguments that cross-interactions remain impossible (apart
from the obvious interactions that do not modify the gauge transformations and involve
polynomials in the linearized curvatures and their derivatives). The only modification
appears to be the possible addition of higher order curvature terms in each sector.

Restricted to the case of a single massless spin-2 field, our study recovers and some-
what generalizes previous results on the inevitability of the Einstein vertex and of the
diffeomorphism algebra by relaxing assumptions usually made on the number of deriva-
tives in the gauge transformations and on the coupling of matter to the graviton through
the energy-momentum tensor.

The main virtue of no-go theorems is to put into clear light the assumptions that
underlie the negative result under focus. In our case, the key assumptions are, besides
locality: finite number of massless spin-2 fields and positive-definite metric in the internal
space of the gravitons. If either of these assumptions is relaxed, cross-interactions become
mathematically possible [6, 2]. While we think that, in the case of a finite collection
of fields, it is physically unacceptable to have a theory involving negative-energy (or
negative-norm) states, it would be interesting to study further the infinite-collection case
(such as [6], or its simpler “circle” analog sketched above) to check whether it defines a
fully consistent theory.
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A Cohomological results

The content of this appendix is based on [43].
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A.1 A consequence of Theorem 3.1

The following useful result follows from Theorem 3.1. If @ has strictly positive antifield
number, the equation

a+db=0 Al
v

is equivalent, up to trivial redefinitions, to
~a = 0. (A.2)

That is, one can add d-exact terms to a, « — ¢’ = a + dv such that va’ = 0.

In order to prove this theorem, we consider the descent associated with va + db = 0:
from this equation, one infers, by using the properties v = 0, yvd + dvy = 0 and the
triviality of the cohomology of d, that vb 4+ dc¢ = 0 for some ¢. Going on in the same way,
we introduce a “descent” ye+ de = 0, ye + df = 0, etc, in which each successive equation
has one less unit of form-degree. The descent ends with last two equations ym + dn = 0,
yn = 0 (the last equation is yn = 0 either because n is a zero-form, or because one stops
earlier with a vy-closed term).

Now, because n is y-closed, one has, up to trivial, irrelevant terms, n = ajw’. Inserting
this into the previous equation in the descent yields

d(ay)w” + aydw’ +~m = 0. A3
>

In order to analyse this equation, we introduce a new differential D, whose action on h,,,
k., €7 and all their derivatives is the same as the action of d, but whose action on the

ghosts is given by :

1
DC, = 5da'Cy
D(D,,.,.C.) = 0ifs>1. (AA)

The operator D coincides with d up to v-exact terms. It follows from the definitions that
Dw? = Ajw! for some constant matrix A7 that involves dz*.
One can rewrite (A.3) as

d(OéJ)CUJ + a;Dw’ +ym' =0 (A.5)

which implies,

d(OéJ)CUJ +ay;Dw’ =0 (A.6)

since a term of the form Byw’ (with 3; invariant) is y-exact if and only if it is zero. It is
convenient to further split D as the sum of an operator Dy and an operator Dy. Dy has
the same action as D on hy,, k7, C7} and all their derivatives, and gives 0 when acting
on the ghosts. D; gives 0 when acting on all the variables but the ghosts on which it
reproduces the action of D. The operator D; comes with a grading : the number of Cp, ;.
D, raises the number of (7, ,) by one unit, while Dy leaves it unchanged. We call this
grading the D-degree. The D-degree is bounded because there is a finite number of C7;, .

which are anticommuting.
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Let us expand (A.3) according to the D-degree. At lowest order, we get
dOéJO =0 (A?)

where .J; labels the w’ that contain zero derivative of the ghosts (Dw‘] = Dyw’ contains
at least one derivative). This equation implies, according to theorem 3.1, that o, = df,,
where 3j, is an invariant polynomial. Accordingly, one can write

agw’ = d(Bs,w0”) F By, Dw” + ~-exact terms. (A.8)

The term 3, Dw” has D-degree equal to 1. Thus, by adding trivial terms to the last
term n in the descent, we can assume that n contains no term of D-degree 0. One can
then successively removes the terms of D-degree 1, D-degree 2, etc, until one gets n = 0.
One then repeats the argument for m and the previous terms in the descent until one gets
b=0,ie., vya =0, as requested.

A.2 Invariant cohomology of § modulo d.

Throughout this subsection, there will be no ghost; i.e., the objects that appear involve
only the fields, the antifields and their derivatives.

Theorem A.1 Assume that the invariant polynomial ), (p = form-degree, k = antifield
number) is d-trivial modulo d,

af = Spuhpy +dui ™t (k> 1), (A9)
Then, one can always choose py_, and (i~ to be invariant.

To prove the theorem, we need the following lemma:

Lemma A.1 Ifa is an invariant polynomial that is d-exact, a = &b, then, a is d-exact in
the space of invariant polynomials. That is, one can take b to be also invariant.

Demonstration of the lemma : Any function f([A],[A],[C*]) can be viewed as a func-
tion f(h,[K],[h*],[C~]), where [K] denotes the linearized curvatures and their deriva-
tives, and where the A denote a complete set of non-invariant derivatives of A, ({h} =

{h%,,0,0%,,-+-}). (One can put the h in bijective correspondence with the ghosts and
their derivatives through +.) The K’s are not independent because of the linearized
Bianchi identities, but this does not affect the argument. An invariant function is just

a function that does not involve h, so one has (if f is invariant), f = f|ﬁ:0' Now, the

differential & commutes with the operation of setting h to zero. So, if @ = 6b and a is
invariant, one has @ = a5_ = (6b)5-g = 6(bj—o), which proves the lemma since bj;_, is
invariant. <

Demonstration of the theorem : We first derive a chain of equations with the

same structure as (A.9) [35]. Acting with d on (A.9), we get daj = —déduj,,. Using
the lemma and the fact that daf is invariant, we can also write da} = —5@%1} with aiii
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invariant. Substituting this in daj, = —ddy;, we get § aiii —duj | = 0. As H() is
trivial in antifield number > 0, this yields

aiii = 5/«‘21% + diteyq (A.10)

which has the same structure as (A.9). We can then repeat the same operations, until we
reach form-degree n,

az-l—n—p = 5/~LZ+n—p+1 + d/jl:-?lz—p- (A.11)

Similarly, one can go down in form-degree. Acting with § on (A.9), one gets da}, =

—d(6p2~"). If the antifield number k& — 1 of da? is greater than or equal to one (i.e.,

k > 1), one can rewrite, thanks to Theorem 3.1, da = —da?_} where a}_; is invariant.

(If £ = 1 we cannot go down and the bottom of the chain is (A.9) with & = 1, namely

al = §pub + d/ff_l.) Consequently d aij — (S/,Li_l = 0 and, as before, we deduce another

equation similar to (A.9) :

afy = pl T 4 dpg . (A.12)

Applying § on this equation the descent continues. This descent stops at form degree zero
or antifield number one, whichever is reached first, i.e.,

- 0 _ 5,0
either  ay =0y 4y

or al TR = SR gt (A.13)

Putting all these observations together we can write the entire descent as

az—l—n—p = 5qu+n—p—|—1 + d/lZ-T-?lz—p

A = SRl gy,
-1

a, = Oppi +dug
-1 -1 -2
ap_y = oy +duy

either a%_p = 5/,L2_p+1
or alT"tt = gpubR 4 qph (A.14)

where all the aiii are invariants.

Now let us show that when one of the p’s in the chain is invariant, we can actually
choose all the other p’s in such a way that they share this property. Let us thus assume
that pi~" is invariant. This pi ' appears in two equations of the descent :

G = O s,
a;Zy = dpyt A dpy (A.15)

(if we are at the bottom or at the top, us~' occurs in only one equation, and one should
just proceed from that one). The first equation tells us that duj, , is invariant. Thanks to
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Lemma A.1l we can choose pj | to be invariant. Looking at the second equation, we see
that du;™* is invariant and by virtue of theorem 3.1, z;~* can be chosen to be invariant
since the antifield number b is positive. These two u’s appear each one in two different
equations of the chain, where we can apply the same reasoning. The invariance property
propagates then to all the u’s. Consequently, it is enough to prove the theorem in form
degree n.

Now, let us prove the following lemma :

Lemma A.2 [f a} is of antifield number k > n, then the “u”s in (A.9) can be taken to
be invariant.

Demonstration : Indeed, if & > n, the last equation of the descent is af_, = 0puf_, ;-
We can, using Lemma A.1, choose i} _, ., invariant, and so, all the x’s can be chosen to
have the same property.c

It remains therefore to demonstrate Theorem A.1 in the case where the antifield num-
ber satisfies k& < n. Rewriting the top equation (i.e. (A.9) with p = n) in dual notation,
we have

ap — 5bk+1 + 6pj,f, (k 2 1) (A16)

We will work by induction on the antifield number, showing that if the property is true
for k+2 (with & > 0), then it is true for k. As we already know that it is true in the case
k > n, the theorem will be demonstrated. Let us take the Fuler-Lagrange derivatives of
(A.16). Since the E.L. derivatives with respect to the C* commute with §, we get first :

5Rak o
@ - 5Zk—1 (Al?)
with Z7 | = S?gjl. For the E.L. derivatives of by, with respect to hfw we obtain, after
a direct computation,
5Rak wy (w v)
ny

where X} = 5;;;,?1. Finally, let us compute the E.L. derivatives of a; with respect to the
v

fields. We get :

§fa
o = OV 0 Do X[ = 00, X[+ 0" 0, X[+ 0" 0, X[ a0 X o 070, X
ny
(A.19)
where Y| = Sizijl.
The E.L. derivatives of an invariant object are invariant. Thus, %Rca*k is invariant.
Therefore, by our lemma A.1 and Eq. (A.17), we have also
5R
56‘}5 =67, (A.20)
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for some invariant Z;*,. Similarly, one easily verifies that

5Rak

s = —OX 200 7 (A.21)
%%

and

5R
5hak = 5Yk/ili _nwaaﬁXl/gaﬁ_apale/cW+aualelcpy+ayalech_naﬁaWXl/caﬁ‘FnaﬁnWapale/caﬁ
wy
(A.22)

for some invariant X" and ;.
Now, since ay, is invariant, it depends on the fields only through the linearized Riemann

tensor and its derivatives. We can thus write

5Rak

= 48,5 A A.23
5 8 (A.23)

where A°*%" has the symmetries of the Riemann tensor. This implies
SY, N = Dag M7 (A.24)

with M°*%” having the symmetries of the Riemann tensor. The equation (A.24) tells us
that the Y;%" for given v are d-cocycles modulo d, in form degree n — 1 and antifield

number k + 1. There are thus §-exact modulo d (H7 (8|d) ~ Hp ,(8]d) ~ 0), VX' =
SAL, + 0,114 where TP1] is antisymmetric in p and p. By our hypothesis of induction,
Ak, and T[T can be assumed to be invariant. Since Y| is symmetric in g and v, we

have also 5‘4%—% + apT,fE;”] = 0. The triviality of H}, ,(d|é) implies again that AT and

f+2
T,f_Eiy] are trivial, in particular, T,f_Eiy] = 0Q5 + 0.5,11", where S. 7" is antisymmetric
in (o, p) and in (p, ), respectively. The induction assumption allows us to choose Q74
and S;71" to be invariant. Writing E;ﬁ;ﬁ =— fﬁlfﬁ + Szf*fa] and computing 8aﬁE£ﬂ'ﬁ,
we observe finally that
Y/ = 0P + 0up B (A.25)
with (S = B, B = B and B = B,
We can now complete the argument. Using the homotopy formula
1 5Rak 5Rak 5Rak
ap = | dt Hex+ ——()hl, + ——()h,, A.26
o= [, O+ G O+ o (D) (A.26)

that enables one to reconstruct a, from its E.L. derivatives, as well as the expressions

(A.17), (A.18), (A.19) for these E.L. derivatives, we get
1
ax = 0L (212405 + XEhos + i ] + O,k (A.27)
0

The first two terms in the argument of § are manifestly invariant. As to the third
term, we use (A.25). The §-exact term disappears (6§ = 0) while the second one yields
5[y dt[aaﬁEﬁ;ﬁhWH. Integrating by part twice gives Eﬂi;’ﬁ times the linearized Riemann
tensor, which is also invariant. This proves the theorem.
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A.3 Cohomology of s modulo d

We have now developed all the necessary tools for the study of the cohomology of s
modulo d in form degree n. A cocycle of H(s|d) must obey

sa+db=0. (A.28)
Let us expand a and b according to the antifield number :

= aptay+...+ag
b = by+b +..+10 (A.29)

where, as shown in [35], the expansion stops at some finite antifield number.
Writing s as the sum of v and 4, the equation sa 4+ db = 0 is equivalent to the system
of equations :

day + vap + dby =
das +vay +dby =

dap +yag—1 +dby_y = 0
(A.30)

Where the system ends depends on & and [, but, without loss of generality, we can
assume that [ = & — 1. Indeed, if [ > k — 1 the last equations look like db; = 0, (with
i > k) and imply that (because b is of form degree (n — 1)) b; = d¢;. We can thus absorb
these terms in a redefinition of b. The last equation is then ya; + dby = 0 which, using
the consequence of theorem 3.1 discussed in appendix A.1, can be written va; = 0.

We have then the system of equations (where some b; could be zero):

5@1 —|—’)/Cl0—|—dbo = 0

dap +yag—1 +dby_y = 0
~vap = 0. (A.31)

The last equation enables us to write a; = ajyw’. Acting with v on the second to last

equation and using v = 0, var = 0 , we get dyb,_; = 0 ; and then, thanks to the
consequence of theorem 3.1, by_; can also be assumed to be invariant, b,_; = Bjw’.
Substituting the invariant forms of a; and bg_; in the second to last equation, we get :

Sy’ + D[Bsw’] =~(...). (A.32)
As above, this equation implies

§[agw’] + D[Bsw’] = 0. (A.33)
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We now expand this equation according to the D-degree. The term of degree zero
reads

[6evg, + Dofgy]w”™ = 0. (A.34)

This equation implies that the coefficient of w’ must be zero, and as Dy acts on the
objects upon which 3; depends in the same way as d, we get :

(SO{JO + dﬁjo =0. (A35)

If the antifield number of ay, is strictly greater than 2, the solution is trivial, thanks to
our results on the cohomology of § modulo d:

ag, = (S/,LJO + dI/JO. (A36)

Furthermore, theorem A.1 tells us that g, and v can be chosen invariants. We thus
get :

a% = (5/“LJ0 + DOVJO )wJO
= S(ILLJOCUJO) + d(I/JOwJO) + “more” (A.37)
where “more” arises from dw/o , which can be written as dw’o = Aﬁw‘h + su’. The

term VJ0A§TWJ1 has D-degree one, while the term v, su” differs from the s-exact term
s(£vzu’) by the term £8(vy,)u’, which is of lowest antifield number. Thus, trivial
redefinitions enable one to assume that @) vanishes. Once this is done, 8 must fulfill
dB, = 0 and thus be d-exact in the space of invariant polynomials by theorem 3.1 , which
enables one to set it to zero through appropriate redefinitions.

We can then successively remove the terms of higher D-degree by a similar procedure,
until one has completely redefined away a; and by_;. One can next repeat the argument
for antifield number k£ — 1, etc, until one reaches antifield number 2. Consequently, we
can indeed assume that the expansion of a in Eq. (5.1) stops at antifield number 2 and
takes the form a = ag + a1 + az with b = by + by, as in (5.3) and (5.4). Furthermore,
the last term a5 can be assumed to involve only non-trivial elements of the characteristic

cohomology HJ (d|d).

B Proof of statement made in subsection 5.2

We answer in thls appendlx the question raised in subsection 5.2 as to whether the term
h*ﬁ 870 850 afyq 1s y-exact modulo d,

Wl P OO ag, g = y(u) + 9,k (B.1)

Both u and £* have antifield number one. Without loss of generality, we can assume that
u contains h*aﬁ)w undifferentiated, since derivatives can be removed through integration
by parts. As the Euler derivative of a total divergence is zero, we can reformulate the
question as to whether the following identity holds,

T B ahemaly O st
(Sh?ﬁ) (h(a)wawc( ) a[ﬁca] a([lbc]) = (Sh?ﬁ) (")/U) (BQ)
a)y a)y
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i.e.

o & st T o WOC O RO
oc® ]6[506(@)@[%] = W linear combination of ’y{ CGap (|- (B.3)
a)y

The notations ~*dC® L) and h*CP IR stand for all terms having these structures.
Now, since h* appears undifferentiated in v and hence also in yu, the Euler-Lagrange
derivative with respect to h* of vyu can be read off straightforwardly and is just the
coefficient of A* in u, i.e., a linear combination of y(AC® () and ~(C®GA). But
none of these terms has the required form to match ah(}“)a]awcij)afbc] since v(CI9A1)

contains second derivatives of the ghosts while v(9C®h() contains the product of sym-
metrized derivatives with anntisymmetrized derivatives. This establishes the result that
h(*f)wahC(b)a]a[ﬁcc(j)a‘[lbc] is not y-exact modulo d, unless it vanishes.
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