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A formal “small tension” expansion of D =11 supergravity near a spacelike singularity is shown to
be equivalent, at least up to 30th order in height, to a null geodesic motion in the infinite dimensional
coset space E1o/K (E1o), where K(E1o) is the maximal compact subgroup of the hyperbolic Kac-
Moody group Elo(R). For the proof we make use of a novel decomposition of Fj¢ into irreducible
representations of its SL(10,R) subgroup. We explicitly show how to identify the first four rungs of
the Fio coset fields with the values of geometric quantities constructed from D = 11 supergravity
fields and their spatial gradients taken at some comoving spatial point.
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The consideration of limits where some (possibly di-
mensionful) parameter is taken to be small is often a
way of revealing the hidden symmetry structure of phys-
ical theories. In [-'_],'], it was argued that the small tension
limit T; — 0 of string theory gives rise to an infinite num-
ber of relations between string scattering amplitudes, in-
dicating the presence of an enormous symmetry. In this
Letter, we shall consider the bosonic sector of M The-
ory, and more specifically its low energy limit, D = 11
supergravity [2], in a limit which can likewise be (in-
tuitively) thought of as a small tension limit T, — 0,
where T}, := ¢*(32mG )~ is the bulk tension governing
the propagation of small excitations (e.g. gravitational
waves) in the ten-dimensional spatial geometry. Indeed,
taking T, — 0 in the linearized Einstein-Hilbert action
S = %delex(pb(ﬁThij)Z — Tb(axhij)2) is equivalent
to taking the limit of vanishing velocity of propagation
¢ = \/Ts/ ps; alternatively, it may be viewed as a strong
coupling limit (Gy — o0) [g] Physically, this limit is
realized near a spacelike singularity, where the different
spatial points become causally disconnected as the hori-
zon scale £ ~ ¢T" becomes smaller than their spacelike
separation (T being the proper time), provided the time
derivatives of the fields dominate their spatial gradients.
As shown recently [:_4,5], this is indeed the case for the
massless bosonic sector of D =11 supergravity. Further-
more, as Tp — 0, the metric exhibits the chaotic oscilla-
tions originally discovered by Belinskii, Khalatnikov and
Lifshitz (BKL) for the generic cosmological solution to
Einstein’s equations in four dimensions ['ﬁ] The oscilla-
tory evolution of the metric at each spatial point can be
asymptotically described as a relativistic billiard taking
place in the fundamental Weyl chamber of some indefi-
nite Kac-Moody (KM) algebra [:4,'5] Chaos occurs when
this KM algebra is hyperbolic, in particular for Eqq [:z:]

In this Letter we extend these tantalizing results much
beyond the leading order by relating a BKL-type expan-
sion to an algebraic expansion in the height of the positive
roots of the Lie algebra of E1y. We show how to map, up
to height 30, geometrical objects of M theory onto coordi-
nates in the infinite-dimensional coset space F19/ K (F10),
where K(F1) is the maximal compact subgroup of the
canonical real form of Fqq. Under this correspondence,
the time evolution of the geometric M Theory data at
each spatial point is mapped, up to height 30, onto some
(constrained) null geodesic motion of E1q/K(F1g). Our
results underline the potential importance of F1q, whose
appearance in the reduction of D = 11 supergravity to
one dimension had been conjectured already long ago by
B. Julia E{], as a candidate symmetry underlying M the-
ory (see also [g], and [:_1-(_)‘] where E1; was proposed as a
fundamental symmetry of M Theory).

Introducing a zero-shift slicing (N? = 0) of the eleven-
dimensional spacetime, and a time-independent spatial
zehnbein 0%(z) = E%(z)dz’, the metric and four form

F = dA become
ds’ = =N(dz")* + Gaf6" (1)
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We choose the time coordinate z° so that the lapse

N = VG, with G = det Gy (note that z° is not the
proper time T = dea:O; rather, ° — oo as T'— 0). In
this frame the complete evolution equations of D = 11
supergravity read

80 (G0 Gep) = TGF PV Fyprs — LGFPV Fogsf
—2G'R% (T, C)

Oabe\ __ 1 _abcaiasazbibobzb
Do (GFPe) = petemraaashibababa Ty ras Foibababs



+%Gfde[abcc]de _ Gcedefdabc — (Gfdabc)
a0~7:vabcd == 6~7:'0(3|:(143761€cd] + 4a[a~7:06cd] (2)

where a,b € {1,...,10} and «,8 € {0,1,...,10}, and
Ra»(T, C') denotes the spatial Ricci tensor; the (frame)
connection components are given by 2G 4daT%e = Cape +
Cbca _Ccab+acha +acGab_aa Gbc with Cabc = Gadcdbc
being the structure coefficients of the zehnbein df% =
%C’abqﬁb/\ﬁc. The frame derivative is 9, = E',(z)0; (with
E® E*, = §7). To determine the solution at any given
spatial point z requires knowledge of an infinite tower of
spatial gradients: one should thus augment (;_2:) by evolu-
tion equations for 9,Gpe, O Fobed, OaFbede, etc., which in
turn would involve higher and higher spatial gradients.

The geodesic Lagrangian on E1g/ K (FE10) is defined by
generalizing the standard Lagrangian on a finite dimen-
sional coset space GG/K, where K is a maximal compact
subgroup of the Lie group G. All the elements entering
the construction of £ have natural generalizations to the
case where (5 is the group obtained by exponentiation of
a hyperbolic KM algebra. We refer readers to [11] for
basic definitions and results of the theory of KM -alge—
bras, and here only recall that a KM algebra g = g(A)
is generally defined by means of a Cartan matrix A and
a set of generators {e;, fi, h;} and relations (Chevalley-
Serre presentation), where 4,j = 1,...,r = rankg(A4).
The elements {h;} span the Cartan subalgebra (CSA) b,
while the e; and f; generate an infinite tower of rais-
ing and lowering operators, respectively. The “maxi-
mal compact” subalgebra £ is defined as the subalge-
bra of g(A) left invariant under the Chevalley involution
w(hi) = —hi, w(e;) = —fi, w(fi) = —e;. In other words,
tis spanned by the “antisymmetric” elements £, , —Egys,
where EQT’S = —w(Eq, ;) 1s the “transpose” of some mul-
tiple commutator E, , of the e;’s associated with the
root a (le. [h,Ess] = a(h)Es,s for h € ). Here
s = 1,...mult(a) labels the different elements of g(A)
having the same root a.

The o-model is formulated in terms of a one-parameter
dependent group element V = V(t) € F1q and its Lie al-
gebra valued derivative

dy .
v(t) := Ev_l(t) € e10 = Lie Eqp (3)

In physical terms, V can be thought of as a vast extension
of the vielbein of general relativity (an “co-bein”), and
E1o and K(FEj0) as infinite dimensional generalizations
of the GL(d,R) and local Lorentz symmetries of general
relativity. The action is [ dtL with

L= n(t)™ (vsym (£) sy (¢) (4)

with a “lapse” function n(t) (not to be confused with
N), whose variation gives rise to the Hamiltonian con-
straint ensuring that the trajectory i1s a null geodesic.

The “symmetric” projection vsym := %(v + vT) elimi-
nates the component of v corresponding to a displace-
ment “along ¥’, thereby defining an evolution on the
coset space Fy10/K(F10). {(.|.) is the standard invariant
bilinear form on the KM algebra [:_l-l:] We note the ex-
istence of transcendental KM invariants [:_1-2_1] that might
be added to @:) to represent non-perturbative effects.

Because no closed form construction exists for the rais-
ing operators F, ;, nor their invariant scalar products
(Eas|Egr) = fotég_}_ﬁ, we have devised a recursive ap-
proach based on the decomposition of Fyq into irreducible
representations of its SL(10,1R) subgroup. Let aq, ..., ag
be the nine simple roots of Ag = sl(10) corresponding to
the horizontal line in the E;y Dynkin diagram, and aq
the “exceptional” root connected to as. Its dual CSA el-
ement hg enlarges Ag to the Lie algebra of GL(10). Any
positive root of F1y can be written as

9
a:£a0+2mjaj (¢, m? >0) (5)
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We call £ = £(«) the “level” of the root a. This defini-
tion differs from the usual one, where the (affine) level is
identified with m® and thus counts the number of appear-
ances of the over-extended root ag in a [:_1-3_;,:_1-4] Hence,
our decomposition corresponds to a slicing (or “grading”)
of the forward lightcone in the root lattice by spacelike
hyperplanes, with only finitely many roots in each slice,
as opposed to the lightlike slicing for the Eg representa-
tions (involving not only infinitely many roots but also
infinitely many affine representations for m® > 2 [:_1-3_;,:_1-41:])
The adjoint action of the Ag subalgebra leaves the
level £(a) invariant. The set of generators correspond-
ing to a given level £ can therefore be decomposed into
a (finite) number of irreducible representations of Ajg.
The multiplicity of a as a root of Eig is thus equal to
the sum of its multiplicities as a weight occurring in the
SL(10,R) representations. Each irreducible representa-
tion of Ag can be characterized by its highest weight A,
or equivalently by its Dynkin labels (p1,...,pg) where
pi(A) == (ax,A) > 0 is the number of columns with
k boxes in the associated Young tableau. For instance,
the Dynkin labels (001000000) correspond to a Young
tableau consisting of one column with three boxes, i.e.
the antisymmetric tensor with three indices. The Dynkin
labels are related to the 9-tuple of integers (m!, ..., m?)
appearing in (&) (for the highest weight A = —a) by

9
SPL =" SUpi=mi >0 (6)

j=1

where S% is the inverse Cartan matrix of Ag. This rela-
tion strongly constrains the representations that can ap-
pear at level £, because the entries of S/ are all positive,
and the 9-tuples (p1,...,pg) and (my, ..., mg) must both
consist of non-negative integers. In addition to satisfying



the Diophantine equations (6), the highest weights must
be roots of Fqq, which implies the inequality

All representations occurring at level £+ 1 are contained
in the product of the level-£ representations with the
£ = 1 representation. Imposing the Diophantine inequal-
ities (), () allows one to discard many representations
appearing in this product. The problem of finding a com-
pletely explicit and manageable representation of E1y in
terms of an infinite tower of Ag representations is thereby
reduced to the problem of determining the outer multi-
plicities of the surviving Ag representations, namely the
number of times each representation appears at a given
level £. The Dynkin labels (all appearing with outer mul-
tiplicity one) for the first six levels of E1q are

(=1 (001000000)

(=2 (000001000)

£=3 : (100000010)

=4 : (001000001), (200000000)

=5 : (000001001), (100100000)

(=6 (100000011) , (010001000} ,
(100000100) , (000000010) (8)

The level £ < 4 representations can be easily determined
by comparison with the decomposition of Fg under its
A7 subalgebra (see [346]) and use of the Jacobi iden-
tity, which eliminates the representations (000000001) at
level three and (010000000) at level four. By use of a
computer and the Fqg root multiplicities listed in [:_M:,:I’ﬂ,
the calculation can be carried much further [:_1-§:]

From (g) we can now directly read off the GL(10)
tensors making up the low level elements of Fqgq. At
level zero, we have the GL(10) generators K%, obeying
[K%, K] = K%40; — K°d5. The e1g elements at levels
¢ =1,2,3 are the GL(10) tensors F%1%2% F%1--%6 apd
Eaolai-as with the symmetries implied by the Dynkin
labels (for the first three levels these representions occur
for all E,, see [:_1-9_:,:_1-(2:]) The o-model associates to these
generators a corresponding tower of “fields” (depending
only on the “time” t): a zehnbein h%(t) at level zero,
a three form Agpc(t) at level one, a six-form Ag, 4, (%)
at level two, a Young-tensor A, |q, .4, (%) at level 3, ete.
Writing the generic E1g group element in Borel (triangu-
lar) gauge as V(1) = exp Xp(t) - exp X 4(t) with Xp(t) =
habj{ba and XA(t) = %AabcEabc + éAal...asEalmas +
%AGDMLHGSEG‘J'“'“GS + ..., and using the E1y commuta-
tion relations in GL(10) form together with the bilinear
form for E4q, we find up to third order in level

- gabng)g.abg.cd + %%DAalayzg,DAal(haa

29!

maGDAal...aa 4 lLDAaolalmasDAau|a1...a8 (9)

where g% = e.e’. with e%, = (exph)?,, and all “con-
travariant indices” have been raised by ¢%®. The “covari-
ant” time derivatives are defined by (with 04 = A)

DAgyazas = 0Aayazay (10)

DAq, . ag 7= 0Aa,. a6 + 10410, 050,00, a5a6]
DAg,las...a0 = OAajas...as + 4240, 050,0 A0, . a5)

—420A (a1 0305 Aas...a0) + 280A4(a1 0505 AasasacOAaragas)

Here antisymmetrization [...], and projection on the
£ = 3 representation (...), are normalized with strength
one (e.g. [[..]] = [..]). Modulo field redefinitions, all
numerical coefficients in (Z_):) and (:_I-Q:) are uniquely fixed
by the structure of E1y. Our expressions are reminiscent
of similar algebraic constructions in [[[3] and [[0]. How-
ever, this is the first time that an algorithmic scheme
based on a Lagrangian in terms of the invariant bilinear
form on the hyperbolic KM algebra has been proposed
and worked out to low orders. Likewise, the general for-
mulas ('6) and (f_f.), and the higher level representations in
(B:) have not been exhibited before.

The Lagrangian (:ﬁf) is invariant under a nonlinear real-
ization of E1q such that V(t) — kq(t)V(t)g with g € Eqg;
the compensating “rotation” k4(¢) being, in general, re-
quired to restore the “triangular gauge”. When g belongs
to the nilpotent subgroup generated by the E%¢, etc.,
this symmetry reduces to the rather obvious “shift” sym-
metries of (f_):) and no compensating rotation i1s needed.
The latter are, however, required for the transformations
generated by Fape = (E%€)T | etc. The associated infi-
nite number of conserved (Noether) charges are formally
given by J = M~'0M, where M = VTV. This can be

formally solved in closed form as
M(t) = M(0) - exp(tJ) (11)

The compatibility between (:fl_:) (indicative of the inte-
grability of ('g)) and the chaotic behavior of g45(¢) near a
spacelike singularity will be discussed elsewhere.

The main result that we report in this letter is the
following: there exists a map between geometrical quan-
tities constructed at a given spatial point z from the su-
pergravity fields G, (2°, 2) and A, ,(2°, z) and the one-
parameter-dependent quantities gqp(?), Aase(t), - . . enter-
ing the coset Lagrangian (H), under which the super-
gravity equations of motion (:_Z) become equivalent, up
to 30th order in height, to the Euler-Lagrange equa-
tions of (B). In the gauge () this map is defined by
t=2"= de/\/(_; and

gas(1) = Gas(t, ) (12)
DAG1G2<13 (t) = ‘7:0@1G2G3 (t’ ‘E)
DA% a6 (t) — _%5@...a5b162b364f6162b364 (t, l‘)
DAb|a1 as (t) — %Edl...(lgblbz (Cbblbz (.Z‘) + %J[bblcctu]c(m))



The expansion in height ht(a) = ¢+~ m?, which controls
the iterative validity of this equivalence, 1s as follows: the
Hamiltonian constraint of the coset model ('g) contains an
infinite series of exponential coefficients exp ( — 2a(,8)),
where a runs over all positive roots of Fig, and where
B% = —h?, parametrize the CSA of Ei3. Previous work
has shown that, near a spacelike singularity (t — o0),
the dynamics of the supergravity fields and of truncated
versions of the Fig coset fields is asymptotically domi-
nated by the (hyperbolic) Toda model defined by keep-
ing only the exponentials involving the simple roots of
FE1. Higher roots introduce smaller and smaller correc-
tions as t increases. The “small tension expansion” of
the equations of motion is then technically defined as
a formal BKL-like expansion that corresponds to such
an expansion in decreasing exponentials of the Hamilto-
nian constraint. On the supergravity side, this expansion
amounts to an expansion in gradients of the fields in ap-
propriate frames. Level one corresponds to the simplest
one-dimensional reduction of (:2:), obtained by assuming
that both G, and Ay, depend only on time [4:] levels 2
and 3 correspond to configurations of Gy, and Ay, with
a more general, but still very restricted z-dependence, so
that e.g. the frame derivatives of the electromagnetic
field in (2) drop out [20]. When neglecting terms corre-
sponding to ht(a) > 30, the map (:_l-g.') provides a perfect
match between the supergravity evolution equations (:_Z)
and the F1y coset ones, as well as between the associated
Hamiltonian constraints. (In fact, the matching extends
to all real roots of level < 3.)

It is natural to view our map as embedded in a hierar-
chical sequence of maps involving more and more spatial
gradients of the basic supergravity fields. Our BKL-like
expansion would then be a way of revealing step by step
a hidden hyperbolic symmetry, implying the existence of
a huge non-local symmetry of Einstein’s theory and its
generalizations. Although the validity of this conjecture
remains to be established, we can at least show that there
is “enough room” in FEqg for all the spatial gradients.
Namely, the search for affine roots (with m® = 0) in ('ﬁ)
and (:_7:) reveals three infinite sets of admissible Ag Dynkin
labels (00100000n), (00000100r) and (10000001n) with
highest weights obeying A% = 2, at levels £ = 3n+1, 3n+2
and 3n + 3, respectively. These correspond to three infi-
nite towers of e1g elements

Eay 0, %2% | Eoy o000 Eay a0t (13)

which are symmetric in the lower indices and all ap-
pear with outer multiplicity one (together with three
transposed towers). Restricting the indices to a; =
1 and b; € {2,..,10} and using the decomposition
248 — 80+ 84+ 84 of Eg under its SL(9) subgroup
one easily recovers the affine subalgebra Ey C FEqg.
The appearance of higher order dual potentials (¢ la
Geroch) in the Fg-based linear system for D = 2 su-
pergravity [:_2-]_1'] indeed suggests that we associate the

E1q Lie algebra elements (d) to the higher order spa-
tial gradients 9% ---0% Ap pyp,, 0% -+ 0% Ap, b, and
0% 9% Ay, ..bs OF to some of their non-local equiva-
lents. Of course, the elements (:131) generate only a tiny
subspace of e1, suggesting the existence of further M the-
oretic degrees of freedom and corrections beyond D=11
supergravity. Finally, we note that our approach based
on a height expansion can be extended to other physically
relevant KM algebras, such as BF1q [:_3',:_2-2:] and AFE,, [.'_7:]
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