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THE SHARP THRESHOLD FOR THE DUARTE MODEL

BÉLA BOLLOBÁS, HUGO DUMINIL-COPIN, ROBERT MORRIS, AND PAUL SMITH

Abstract. The class of critical bootstrap percolation models in two dimensions

was recently introduced by Bollobás, Smith and Uzzell, and the critical threshold

for percolation was determined up to a constant factor for all such models by the

authors of this paper. Here we develop and refine the techniques introduced in

that paper in order to determine a sharp threshold for the Duarte model. This

resolves a question of Mountford from 1995, and is the first result of its type for

a model with drift.

1. Introduction

In this paper we resolve a 20 year old problem of Mountford [20] by determining

the sharp threshold for a particular monotone cellular automaton related to the

classical 2-neighbour bootstrap percolation model. This model was first studied

by Duarte [11], and is the most fundamental model for which a sharp threshold

had not yet been determined. Indeed, our main theorem is the first result of its

type for a critical bootstrap model that exhibits ‘drift’, and is an important step

towards a complete understanding of sharp thresholds in two-dimensional bootstrap

percolation.

We will begin by stating our main result, and postpone a discussion of the back-

ground and history to Section 1.1. The Duarte model1 is defined as follows. Let

D :=
{

{

(−1, 0), (0, 1)
}

,
{

(−1, 0), (0,−1)
}

,
{

(0, 1), (0,−1)
}

}

,

denote the collection of 2-element subsets of
{

(−1, 0), (0, 1), (0,−1)
}

, and let Z
2
n

denote the two-dimensional discrete torus. Given a set A ⊂ Z
2
n of initially infected

sites, set A0 = A, and define for each t > 0,

At+1 := At ∪
{

x ∈ Z
2
n : x+X ⊂ At for some X ∈ D

}

.

Thus, a site x becomes infected at time t + 1 if the translate by x of one of the

sets of D is already entirely infected at time t, and infected sites remain infected

forever. The set of eventually infected sites is called the closure of A, and is denoted

by [A]D :=
⋃

t>0 At. We say that A percolates if [A]D = Z
2
n.
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Let us say that a set A ⊂ Z
2
n is p-random if each of the sites of Z2

n is included

in A independently with probability p, and denote the corresponding probability

measure by Pp. The critical probability is defined to be

pc(Z
2
n,D) := inf

{

p ∈ [0, 1] : Pp

(

[A]D = Z
2
n

)

> 1/2
}

; (1)

that is, the value of p at which percolation becomes likely.

Mountford [20] determined the critical probability of the Duarte model up to a

constant factor. Here we determine the following sharp threshold.

Theorem 1.1.

pc
(

Z
2
n,D

)

=

(

1

8
+ o(1)

)

(log logn)2

log n
as n → ∞.

Our proof of Theorem 1.1 relies heavily on the techniques introduced in [5], where

we proved a weaker result in much greater generality (see Theorem 1.5, below). The

key innovation of this paper is the use of non-polygonal ‘droplets’ (see Section 3),

which seem to be necessary for the proof, and significantly complicate the analysis.

In particular, we will have to work very hard in order to obtain sufficiently strong

bounds on the probabilities of suitable ‘crossing events’ (see Section 4). On the

other hand, by encoding the growth using a single variable, these droplets somewhat

simplify some other aspects of the proof.

1.1. Background and motivation. The study of bootstrap processes on graphs

goes back over 35 years to the work of Chalupa, Leath and Reich [10], and numerous

specific models have been considered in the literature. Motivated by applications to

statistical physics, for example the Glauber dynamics of the Ising model [15,19] and

kinetically constrained spin models [7], the underlying graph is often taken to be d-

dimensional, and the initial set A is usually chosen randomly. The most extensively-

studied of these processes is the classical ‘r-neighbour model’ in d dimensions, in

which a vertex of Zd becomes infected as soon as it acquires at least r already-

infected nearest neighbours. The sharp threshold for this model in full generality

was obtained by Balogh, Bollobás, Duminil-Copin and Morris [3] in 2012, building

on a series of earlier partial results in [1, 4, 8, 9, 17, 21]. Their result stated that

pc
(

Z
d
n,N d

r

)

=

(

λ(d, r) + o(1)

log(r−1) n

)d−r+1

as n → ∞, for some explicit constant λ(d, r), where the left-hand side is defined

as in (1), except replacing D by N d
r , the collection of the

(

2d
r

)

r-element subsets of

the neighbourhood of 0 in Z
d. The special case d = r = 2, a result analogous to

Theorem 1.1 for the 2-neighbour model in Z
2, was obtained by Holroyd [17] in 2003,

who showed that in fact λ(2, 2) = π2/18.

More recently, a much more general family of bootstrap-type processes was in-

troduced and studied by Bollobás, Smith and Uzzell [6]. To define this family (for
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simplicity, in two dimensions), let U = {X1, . . . , Xm} be a finite collection of finite

subsets of Z2 \ {0}, and replace D by U in each of the definitions above. The key

discovery of [6] was that the family of such monotone cellular automata can be

partitioned into three classes, each with completely different behaviour. Roughly

speaking, one of the following holds:

• U is ‘supercritical’ and has polynomial critical probability.

• U is ‘critical’ and has poly-logarithmic critical probability.

• U is ‘subcritical’ and has critical probability bounded away from zero.

We remark that the first two statements were proved in [6], and the third by Balister,

Bollobás, Przykucki and Smith [2]. Note that both the Duarte model and the 2-

neighbour model are critical, while the 1-neighbour model is supercritical and the

3-neighbour model is subcritical.2

For critical models, much more precise bounds were obtained recently by the

authors of this paper [5]. Since this paper should be seen as a direct descendent of

that work, we will spend a little time developing the definitions necessary for the

statement of the main theorem of [5].

Definition 1.2. For each u ∈ S1, let Hu := {x ∈ Z
2 : 〈x, u〉 < 0} denote the

discrete half-plane whose boundary is perpendicular to u. Given U , define

S = S(U) =
{

u ∈ S1 : [Hu]U = Hu

}

.

The model U is said to be critical if there exists a semicircle in S1 that has finite

intersection with S, and if every open semicircle in S1 has non-empty intersection

with S.

We call the elements of S stable directions. Note that for the Duarte model

S(D) =
{

u ∈ S1 : θ(u) ∈ {0} ∪ [π/2, 3π/2]
}

,

where θ(u) is the (canonical) angle of u in radians. Thus the open semicircle

(−π/2, π/2) contains exactly one stable direction, and every other open semicir-

cle contains an infinite number of stable directions. The next definition allows us to

distinguish between different types of stable direction.

Definition 1.3. Given a rational direction u ∈ S1, the difficulty of u is

α(u) :=

{

min
{

α+(u), α−(u)
}

if α+(u) < ∞ and α−(u) < ∞
∞ otherwise,

where α+(u) (respectively α−(u)) is defined to be the minimum (possibly infinite)

cardinality of a set Z ⊂ Z
2 such that [Hu ∪Z]U contains infinitely many sites of the

line ℓu := {x ∈ Z
2 : 〈x, u〉 = 0} to the right (resp. left) of the origin.

2There also exist many non-trivial examples of supercritical and subcritical models.
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Writing u+ for the isolated element of S(D) (so θ(u+) = 0), we have α(u+) = 1

and α(u) = ∞ for every u ∈ S(D) \ {u+}. More precisely, writing u∗ for the element

of S1 with θ(u∗) = π/2, we have

α+(u∗) = α−(−u∗) = 1 and α−(u∗) = α+(−u∗) = ∞,

and α+(u) = α−(u) = ∞ for every u ∈ S(D) \ {u+, u∗,−u∗}. Writing C for the

collection of open semicircles of S1, we define the difficulty of U to be

α = α(U) := min
C∈C

max
u∈C

α(u), (2)

so α(D) = 1. The final definition we need is as follows.

Definition 1.4. A critical update family U is balanced if there exists a closed semi-

circle C such that α(u) 6 α for all u ∈ C. It is said to be unbalanced otherwise.

Note that D is unbalanced, since every closed semicircle in S1 contains a point of

infinite difficulty. The main theorem of [5] was as follows.

Theorem 1.5. Let U be a critical two-dimensional bootstrap percolation update

family and let α = α(U).
(1) If U is balanced, then

pc
(

Z
2
n,U

)

= Θ

(

1

log n

)1/α

.

(2) If U is unbalanced, then

pc
(

Z
2
n,U

)

= Θ

(

(log logn)2

log n

)1/α

.

By the remarks above, it follows from Theorem 1.5 that pc
(

Z
2
n,D

)

= Θ
( (log logn)2

logn

)

,

as was first proved by Mountford [20]. Sharp thresholds (that is, upper and lower

bounds which differ by a factor of 1 + o(1)) are known in some special cases. For

example, Duminil-Copin and Holroyd [13] obtained such a result for symmetric,

balanced, threshold models (that is, balanced models in which U consists of the

r-subsets of some centrally symmetric set), and Duminil-Copin and van Enter [12]

determined the sharp threshold for the unbalanced model with update rule A con-

sisting of the 3-subsets of
{

(−2, 0), (−1, 0), (0, 1), (0,−1), (1, 0), (2, 0)
}

, proving that

pc
(

Z
2
n,A

)

=

(

1

12
+ o(1)

)

(log log n)2

log n

as n → ∞. This was, until now, the only sharp threshold result known for an

unbalanced critical bootstrap process in two dimensions.

The key property which makes the process with update rule A easier to deal with

than the Duarte model is symmetry, in particular the fact that α+(u∗) = α−(u∗) = 2.

As a result of this symmetry, the droplets are rectangles, and there is a natural way

to partition vertical growth into steps of size one. The Duarte model also exhibits
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symmetry, but of a weaker kind: there exists a set of four pairwise-opposite stable

directions. Theorem 1.1 is the first result of its kind for a model (balanced or

unbalanced) that only exhibits this weaker notion of symmetry.

The proof of Theorem 1.1 follows in outline that of Theorem 1.5 in the case

of unbalanced ‘drift’ models (that is, models for which α(u∗) = α(−u∗) = ∞),

with a few important differences. In particular, we will use the ‘method of iterated

hierarchies’ (see Section 3), but the droplets we use to control the growth will not

be polygons. Instead, they will grow upwards as they grow rightwards; crucially,

however, in a deterministic fashion. This means that their size will depend on only

one parameter (their height), rather than two, as in the case of a rectangle. As

noted above, this has the pleasantly surprising consequence of simplifying some of

the analysis, although (rather less surprisingly) its overall effect is to significantly

increase the number of technical difficulties that will need to be overcome, as we

shall see in Sections 3 and 4. This is the first time that non-polygonal droplets have

been used in bootstrap percolation, and we consider this innovation to be the key

contribution of this paper.

The rest of this paper is organised as follows. We begin in the next section by

giving the (relatively easy) proof of the upper bound in Theorem 1.1. Then, in Sec-

tion 3, we prepare for the proof of the lower bound by defining precisely the droplet

described above, by stating a number of other key definitions, and by recalling some

fundamental definitions from [5] and [17]. The most technical part of the paper is

Section 4, in which we prove precise bounds on the probability that a droplet grows

to ‘span’ a slightly larger droplet. In Section 5 we use the ‘method of iterated hierar-

chies’ to bound the probability that relatively small droplets are internally spanned,

and in Section 6 we deduce the corresponding bound for large droplets, and hence

complete the proof of Theorem 1.1. Finally, in Section 7, we discuss possible exten-

sions of our techniques to more general two-dimensional processes, and the (much

harder) problem of extending these methods to higher dimensions.

2. The upper bound

The upper bound in Theorem 1.1 is relatively straightforward. We will prove the

following proposition, which easily implies it (the deduction is given at the end of

the section). Given a rectangle R with sides parallel to the axes, let ∂(R) denote its

right-hand side.

Proposition 2.1. For every ε > 0, there exists p0(ε) > 0 such that the following

holds. Let 0 < p 6 p0(ε), set a = 1/p5 and b = 1/p3, and let R be a rectangle of

width a and height b. Then

Pp

(

∂(R) ⊂ [R ∩A]
)

> exp

(

− 1 + ε

4p

(

log
1

p

)2
)

.
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The growth structure we use to prove Proposition 2.1 is illustrated in Figure 1.

We will define rectangles R0, . . . , Rk, where k := 1/ε, and bound the probability

that R0 ⊂ [R0 ∩ A], and that R0 then grows to infect the other rectangles in turn.

(Note that if 1/ε is not an integer then we may replace ε by 1/⌈1/ε⌉.)

R1

R2

R3

R0

h

w1 w2 w3

Figure 1. Our proof of the upper bound of Theorem 1.1 shows that

one (asymptotically) optimal route to percolation of Z2
n is, somewhere

in the torus, for infection to spread in the manner depicted in the fig-

ure. From R0 infection spreads rightwards through R1, then upwards

from R1 to R
′
1 (which is the union of R1 and the dashed region above),

then rightwards again into R2, and so on.

Let us denote the discrete rectangle with opposite corners (a, b) and (c, d) by

R
(

(a, b), (c, d)
)

:=
{

(x, y) ∈ Z
2 : a 6 x 6 c and b 6 y 6 d

}

.

Assume that ε > 0 and 0 < p < p0(ε) are both sufficiently small, and set

h :=
ε

p
log

1

p
and wi := p−1−iε

for each i ∈ [k]. We define

R0 := R′
0 := R

(

(0, 0),
(

0, h
)

)

and, for each i ∈ [k],

Ri := R

(

(

1 +

i−1
∑

j=1

wj , 0

)

,

( i
∑

j=1

wj , ih

)

)

and

R′
i := R

(

(

1 +

i−1
∑

j=1

wj , 0

)

,

( i
∑

j=1

wj , (i+ 1)h

)

)

,

Thus the Ri are rectangles whose heights grow linearly and widths exponentially in

i, and consecutive rectangles are adjacent. The rectangle R′
i contains Ri and has

height equal to that of Ri+1. The set-up is depicted in Figure 1.

We first prove the following easy lemma.
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Lemma 2.2. For each i ∈ [k],

Pp

(

∂(R′
i) ⊂ [∂(R′

i−1) ∪ (R′
i ∩ A)]

)

> e−2/p · p(1−iε+ε2)h/2.

Proof. Note first that, since a single infected site in each column is sufficient for

horizontal growth, we have

Pp

(

Ri ⊂ [∂(R′
i−1) ∪ (Ri ∩A)]

)

>
(

1− (1− p)ih
)wi

>
(

1− piε
)wi

> e−2/p,

since pε is sufficiently small. Now suppose that Ri is already completely infected,

and observe that a single element of A in the row two above Ri causes all elements

to its right in these two rows to become infected (see Figure 2). Note that the

probability of finding at least one site of A in a collection of wi/h sites is

1− (1− p)wi/h > 1− exp

(

− p1−iε

ε log(1/p)

)

> p1−iε+ε2,

since εpε
2
log(1/p) < 1/2. It follows that

Pp

(

∂(R′
i) ⊂ [Ri ∪ (R′

i ∩A)]
)

> p(1−iε+ε2)h/2,

as required. �

Ri

∂(R′
i)

wi/h

Figure 2. Upwards growth through R′
i. With Ri and the four

marked sites already infected, the whole of ∂(R′
i) becomes infected.

Now set ŵ := w1 + · · ·+ wk and

R̂0 := R

(

(0, 0) ,

(

ŵ ,
1 + ε

p
log

1

p

)

)

.

The next lemma follows easily from Lemma 2.2.

Lemma 2.3. We have

Pp

(

∂(R̂0) ⊂ [R̂0 ∩ A]
)

> exp

(

− 1 + 2ε

4p

(

log
1

p

)2
)

.
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Proof. Note that ∂(R̂0) = ∂(R′
k), and that

Pp

(

R0 ⊂ [R0 ∩ A]
)

> p⌊h/2⌋+1,

since if every second element of R0 is in A then R0 ⊂ [R0 ∩ A]. Therefore

Pp

(

∂(R̂0) ⊂ [R̂0 ∩A]
)

> p⌊h/2⌋+1 ·
k
∏

i=1

Pp

(

∂(R′
i) ⊂ [∂(R′

i−1) ∪ (R′
i ∩ A)]

)

.

By Lemma 2.2, the right-hand side is at least

p⌊h/2⌋+1e−2k/p
k
∏

i=1

p(1−iε+ε2)h/2 > e−2k/p
(

p(k+1)h/2
)1−εk/2+ε2

> p(1+3ε2)h(k+1)/4,

since p is sufficiently small and εk = 1. Recalling that h = ε
p
log 1

p
, and noting that

(1 + 3ε2)(1 + ε) < 1+ 2ε since ε is sufficiently small, the claimed bound follows. �

We can now easily complete the proof of Proposition 2.1. Indeed, once we have

infected ∂(R̂0) it is relatively easy to grow p−2−ε steps to the right, then p−1−ε/2

steps upwards, then p−5 steps right, and finally p−3 steps up. For completeness we

spell out the details below.

Proof of Proposition 2.1. Recall that R = R
[

(0, 0), (p−5, p−3)
]

. We claim that

Pp

(

∂(R) ⊂
[

∂(R̂0) ∪ (R ∩ A)
]

)

> e−O(1/p). (3)

In order to prove (3), we will need to define three more rectangles. First, set

R̂1 = R

(

(ŵ + 1, 0) ,

(

ŵ + p−2−ε ,
1 + ε

p
log

1

p

)

)

,

and observe that

Pp

(

R̂1 ⊂
[

∂(R̂0) ∪ (R̂1 ∩A)
]

)

>

(

1− (1− p)h(R̂1)
)w(R̂1)

> e−O(1/p),

since exp
(

− p · h(R̂1)
)

= p−(1+ε) and p−(1+ε) · w(R̂1) = 1/p. Next, set

R̂′
1 = R

(

(ŵ + 1, 0) ,
(

ŵ + p−2−ε , p−1−ε/2
)

)

,

and observe that

Pp

(

∂R̂′
1 ⊂

[

R̂1 ∪ (R̂′
1 ∩A)

]

)

>

(

1− (1− p)w(R̂1)/h(R̂′
1)
)h(R̂′

1)/2

>
1

2

since exp
(

− p · w(R̂1)/h(R̂
′
1)
)

= exp(−p−ε/2) ≪ p2 and h(R̂′
1) ≪ p−2. Finally, set

R̂2 = R
(

(

ŵ + p−2−ε + 1 , 0
)

,
(

p−5 , p−1−ε/2
)

)

,

and observe that

Pp

(

R̂2 ⊂
[

∂(R̂′
1) ∪ (R̂2 ∩ A)

]

)

>

(

1− (1− p)h(R̂2)
)w(R̂2)

>
1

2
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since exp
(

− p · h(R̂2)
)

≪ p−5 and w(R̂2) 6 1/p5, and

Pp

(

∂(R) ⊂
[

R̂2 ∪ (R ∩ A)
]

)

>

(

1− (1− p)w(R̂2)/h(R)
)h(R)/2

>
1

2

since exp
(

− p · w(R̂2)/h(R)
)

≪ p3 and h(R) = p−3. This proves (3), and, together

with Lemma 2.3, it follows that

Pp

(

∂R ⊂ [R ∩ A]
)

> exp

(

− 1 + 3ε

4p

(

log
1

p

)2
)

.

Since ε was arbitrary, the proposition follows. �

Finally, let us deduce the upper bound of Theorem 1.1 from Proposition 2.1.

Proof of the upper bound of Theorem 1.1. Fix λ > 1/8, and set

p =
λ(log logn)2

logn
. (4)

We will show that, with high probability as n → ∞, a p-random subset A ⊂ Z
2
n

percolates. Observe first that Z2
n contains Ω

(

p8n2
)

disjoint translates of the rectangle

R = R
[

(0, 0), (p−5, p−3)
]

. Since

exp

(

− 1 + ε

4p

(

log
1

p

)2
)

> exp

(

− 1 + ε

4λ
· log n

)

> n−2+ε

if ε > 0 is sufficiently small, it follows from Proposition 2.1 that, with high proba-

bility, there exists such a translate with ∂(R) ⊂ [R ∩A].

To complete the proof, simply observe that with probability at least

1− 2n2
(

1− p
)1/p3

> 1− 1

n
,

there does not exist a (horizontal or vertical) line of 1/p3 consecutive sites of Z2
n that

contains no element of A. But if this holds then the set ∂(R) ∪A clearly percolates

in Z
2
n, and so we are done. �

3. Droplets, spanning, and iterated hierarchies

3.1. Droplets and the growth of infected regions. We are now ready to start

the main part of the proof of Theorem 1.1: the proof of the lower bound on the

critical probability. We begin by formally introducing the curved droplets we shall

use to control the growth of an infection. This will then allow us to state the key

result (Proposition 3.8) we need in the lead up to Theorem 1.1. Later, in Section 3.2,

we establish certain deterministic facts about ‘internally spanned droplets’ (see Def-

inition 3.7 below), and in Section 3.3 we briefly recall the definitions and properties

we shall need for the ‘method of iterated hierarchies’.

We begin by defining a droplet. The definition is quite subtle, and is chosen

both to reflect the typical growth of the infected set, and to facilitate our proof of

Theorem 1.1. For simplicity, we will work in Z
2 (and R

2) throughout this section,
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though all of the definitions and lemmas below can be easily extended to the setting

of Z2
n.

Definition 3.1. Given ε > 0 and p > 0, a Duarte region D∗ ⊂ R
2 is a set of the

form

D∗ = (a, b) +
{

(x, y) ∈ R
2 : 0 6 x 6 w, |y| 6 f(x)

}

, (5)

for some a, b, w ∈ R, where f : [0,∞) → [0,∞) is the function

f(x) :=
1

2p
log

(

1 +
ε3px

log 1/p

)

.

A Duarte droplet (or simply, as we shall usually say, a droplet) D ⊂ Z
2 is the

intersection of a Duarte region with Z
2. Thus, D is a Duarte droplet if and only if

there exists a Duarte region D∗ such that D = D∗ ∩ Z
2.

Let us make an easy but important observation.

Observation 3.2. Given a bounded set U ⊂ R
2, there is a (unique) minimal Duarte

region D∗(U) containing U .

If K ⊂ Z
2 is finite, we define the minimal droplet containing K to be D(K) :=

D∗(K)∩Z
2. Notice that K ⊂ D(K) and that D is the identity function on droplets.

Observation 3.2 allows us to make the following definitions. Given a bounded set

U ⊂ R
2 and a, b, w such that the right-hand side of (5) is D∗(U), we define the

height and width of U by h(U) := 2f(w) + 1 and w(U) := w, respectively. We call

the point (a, b) the source of U . Letting

c := sup{x ∈ R : (x, y) ∈ U for some y ∈ R},
we write

∂(U) :=
{

(c, y) ∈ U : y ∈ R
}

.

Informally we think of ∂(U) as being the right-hand side of U .3 We can now make

another easy but important observation, the proof of which is immediate from the

convexity of f .

Observation 3.3. If D∗
1 and D∗

2 are Duarte regions such that ∂(D∗
1) ⊂ D∗

2, then

D∗
1 ⊂ D∗

2.

It is worth noting that the reason for defining Duarte regions as well as (Duarte)

droplets, and for defining heights and widths of droplets in terms of regions, is that

if one were to define everything discretely then certain key lemmas below would be

false. For example, it would be more natural to define D(K) to be the smallest

droplet containing K, but if one were to do that then Lemma 3.12 would be false.

(It would be true with ‘+2’ in place of ‘+1’, but that would be too weak for the

application in Lemma 3.13.)

One disadvantage of defining droplets in this way is that it makes the following

lemma non-trivial.

3This generalizes the definition of ∂(R) for a rectangle R, given in Section 2.
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Lemma 3.4. There are at most wO(1) droplets D such that the source of D belongs

to (0, 1]× (0, 1] and the x-coordinate of the elements of ∂(D) is equal to w.

The proof of the lemma is a simple consequence of the following extremal result

for set systems. Let us say4 that a set F ⊂ P[n] is a bi-chain if it has the following

property: for every distinct A,B ∈ F , there exists k ∈ [n] such that the following

two conditions hold: (a) A ∩ {1, . . . , k} is a subset of B ∩ {1, . . . , k}, or vice-versa,
and (b) A ∩ {k + 1, . . . , n} is a subset of B ∩ {k + 1, . . . , n}, or vice-versa.
Lemma 3.5. Let F ⊂ P[n] be a bi-chain. Then |F| 6 nO(1).

Proof. If A,B ∈ F are distinct and have the same cardinality, then without loss

of generality we may assume that A ∩ {1, . . . , k} ⊂ B ∩ {1, . . . , k} and B ∩ {k +

1, . . . , n} ⊂ A ∩ {k + 1, . . . , n}. This implies that the sum of the elements of A is

strictly greater than the sum of the elements of B. So summing over the possible

sizes of |A|, we have |F| 6 n3.

Alternatively, one may note that the bi-chain condition implies no set T ⊂ [n]

of size 3 is shattered by F . To see this, suppose T = {i, j, k} is such a set, with

i < j < k. Then there exist A,B ∈ F such that A ∩ T = {i, k} and B ∩ T = {j},
which contradicts the condition. Hence, by the Sauer-Shelah Theorem, we must

have |F| 6 O(n2). (Note this is optimal up to the constant factor.)5 �

Proof of Lemma 3.4. Firstly, given a droplet D, let top(D) be the set containing the

topmost site of each column of D, and similarly define bottom(D). It is easy to see

that a droplet D is uniquely determined by the set top(D) ∪ bottom(D).

Let A be the set of droplets D whose source is contained in the unit square

(0, 1]× (0, 1] and such that the x-coordinate of the elements of ∂(D) is w. For each

D ∈ A, there are (at most) 2w possibilities for top(D), since there are only 2 choices

for the element of top(D) at each x coordinate (this is because f ′(x) < 1 for all

x > 0). Thus there is a natural bijection between the set Atop :=
{

top(D) : D ∈ A
}

and a subset F of P[n] (the power set of {1, . . . , n}). Moreover, F is a bi-chain.

This is because any two translations of the curve
{

(x, f(x)) : x > 0
}

intersect in

at most one point. Hence, by Lemma 3.5, we have |Atop| = |F| 6 wO(1). Defining

Abottom similarly, it follows that |A| 6 |Atop| · |Abottom| 6 wO(1). �

Let us briefly collect together a few simple facts about f , which we shall use

repeatedly throughout the paper.

Observation 3.6. The function f has the following properties for all ε > 0 and

p > 0:

(a) f is strictly increasing on [0,∞).

(b) f ′ is strictly decreasing (and hence f is convex) on [0,∞).

4We write P [n] for the power set of [n].
5The first proof given here is due to Paul Balister and the second is due to Bhargav Narayanan.

The authors would like to thank both for bringing these proofs to our attention.
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(c) f ′(x) = ε3(2 log 1/p)−1e−2pf(x).

(d) If f(x) 6 1/4p then

ε3

4 log 1/p
6 f ′(x) 6

ε3

2 log 1/p
.

Next, let us record a few conventions, also to be used throughout the paper:

• ε > 0 is an arbitrary and sufficiently small constant, and p > 0 is sufficiently

small depending on ε, with p → 0 as n → ∞.
• Constants implicit in O(·) notation (and its variants) are absolute: they do

not depend on p, n, ε, k, or any other parameter.
• A denotes a p-random subset of Z2

n.
• [K] := [K]D for K ⊂ Z

2
n (or K ⊂ Z

2).

The following key definition is based on an idea first introduced in [3, 4].6

Definition 3.7. A droplet D is said to be internally spanned if there exists a set

L ⊂ [D ∩A] that is connected in the graph Z
2, and such that D = D(L). We write

I×(D) for the event that D is internally spanned.

We can now state the key intermediate result in the proof of Theorem 1.1.

Proposition 3.8. For every ε > 0, there exists p0(ε) > 0 such that the following

holds. If 0 < p 6 p0(ε), and D is a droplet with

h(D) 6
1− ε

p
log

1

p
,

then

Pp

(

I×(D)
)

6 p(1−ε)h(D)/4. (6)

In order to deduce the theorem from this result, we will show (see Lemma 3.14)

that if A percolates then there exists a pair (D1, D2) of disjointly internally spanned

droplets, satisfying

max
{

h(D1), h(D2)
}

6
1− ε

p
log

1

p
and h(D1) + h(D2) >

1− ε

p
log

1

p
− 1,

with d(D1, D2) 6 2. The theorem then follows from Proposition 3.8 by using the

van den Berg–Kesten inequality and taking the union bound over all such pairs.

Our proof of Proposition 3.8 uses the framework of ‘hierarchies’ (see Section 3.3),

which have become a standard tool in the study of bootstrap percolation since their

introduction by Holroyd [17] (see e.g. [3, 12, 16]). However, in order to limit the

number of possible hierarchies (which is needed, since we will use the union bound),

the ‘seeds’ of our hierarchies must have size roughly 1/p. This is a problem, because

(unlike in the 2-neighbour setting) there is no easy way to prove a sufficiently strong

6We emphasize this definition does not correspond to the use of the term ‘internally spanned’

in much of the older literature, where it was used to mean that [D ∩A]D = D.
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bound on the probability that such a seed is internally spanned.7 Moreover, we shall

need a similar bound in order to control the probability of vertical growth, due to

the (potential) existence of ‘saver’ droplets (see Definition 4.6).

We resolve this problem by using the ‘method of iterated hierarchies’. This tech-

nique, which was introduced by the authors in [5], allows one to prove upper bounds

on the probability that a droplet is internally spanned by induction on its height.

It is specifically designed to overcome the issue of there being too many droplets for

the union bound to work. The inductive step itself is proved using hierarchies.

Our induction hypothesis is as follows.

Definition 3.9. For each k > 0, let IH(k) denote the following statement:

Pp

(

I×(D)
)

6 p(1−εk)h(D)/2 (7)

for every droplet D with h(D) 6 p−(2/3)k(log 1/p)−1, where

εk = ε2 · (3/4)k. (8)

It is no accident that the factor of 1/4 in the exponent in (6) has become a factor

of 1/2 in (7): this has to do with the transition, as a droplet reaches height 1/p, to it

being likely that the droplet grows one more step to the right (see Proposition 6.1,

and also compare with Lemma 2.3).

The statement we need for the proof of Proposition 3.8 is IH(0); we will prove

that this holds in two steps. First, we will prove that IH(k) holds for all sufficiently

large k (see Lemma 5.1); then we will show that IH(k) ⇒ IH(k − 1) for every

k > 1 (see Lemma 5.2). The first step will follow relatively easily from the fact (see

Lemma 3.13) that if D is internally spanned, then |D ∩A| > h(D)/2. To prove the

second step, we will apply the method of hierarchies, using the induction hypothesis

to bound the probability that smaller droplets are internally spanned.

3.2. Spanning and extremal properties of droplets. In this section we will

recall from [5] the ‘spanning algorithm’, and deduce some of its key consequences.

In particular we will prove that critical droplets exist and, in the next section, we

will show that they have ‘good and satisfied’ hierarchies. In order to get started,

we need a way of saying that two sets of sites are sufficiently close to interact in the

Duarte model.

Definition 3.10. Define a graph Gstrong with vertex set Z2 and edge set E, where
{

(a1, b1), (a2, b2)
}

∈ E if and only if

|a1 − a2| 6 1 and |a1 − a2|+ |b1 − b2| 6 2.

We say that a set of vertices K ⊂ Z
2 is strongly connected if the subgraph of Gstrong

induced by K is connected.

7This is, roughly speaking, because a droplet of this height is too long.
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We are ready to recall the spanning algorithm of [5, Section 6], modified in accor-

dance with Definitions 3.1 and 3.10.

The spanning algorithm. Let K = {x1, . . . , xk0} be a finite set of sites. Set

K0 := {K0
1 , . . . , K

0
k0
}, where K0

j := {xj} for each 1 6 j 6 k0. Set t := 0, and repeat

the following steps until STOP:

1. If there are two sets Kt
i , K

t
j ∈ Kt such that the set

[

Kt
i ∪Kt

j

]

(9)

is strongly connected, then set

Kt+1 :=
(

Kt \ {Kt
i , K

t
j}
)

∪
{

Kt
i ∪Kt

j

}

,

and set t := t + 1.

2. Otherwise set T := t and STOP.

The output of the algorithm is the span of K,

〈K〉 :=
{

D
(

[KT
1 ]
)

, . . . , D
(

[KT
k ]
)}

,

where k = k0 − T . Finally, we say that a droplet D is spanned by a set K if there

exists K ′ ⊂ K such that D ∈ 〈K ′〉.

We will need a few more-or-less standard consequences of the algorithm above.

We begin with a basic but key lemma (cf. [5, Lemma 6.8]).

Lemma 3.11. A droplet D is internally spanned if and only if D ∈ 〈D ∩ A〉.

Proof. For every finite set K, we have

〈K〉 =
{

D(K1), . . . , D(Kk)
}

,

where K1, . . . , Kk are the strongly connected components of [K]. Applying this to

K = D ∩ A, we see that D ∈ 〈D ∩ A〉 if and only if D(L) = D for some strongly

connected component L of [D ∩ A]. But [D ∩ A] ⊂ D, and so this is equivalent to

the event that D is internally spanned, since a subset of Z2 is strongly connected

and closed if and only if it is connected in the graph Z
2 and closed. �

The second lemma is an approximate sub-additivity property for strongly con-

nected droplets. This lemma, and the extremal lemma which follows (Lemma 3.13),

are the main reasons for defining Duarte regions, and for defining the width and

height of a droplet in the ‘continuous’ way via Duarte regions.

Lemma 3.12. Let D1 and D2 be droplets such that D1 ∪D2 is strongly connected.

Then

h
(

D(D1 ∪D2)
)

6 h(D1) + h(D2) + 1.
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D∗
1

D∗
2

ht

0

(a, b)(w1 − w, h0)

Figure 3. The Duarte regions from the proof of Lemma 3.12. The

inner dashed region is D∗(D∗
1 ∪ D∗

2) and the outer dashed region is

D∗. In this example hb = 0. Note that D∗ is much larger than

D∗(D∗
1 ∪D∗

2). Since D
∗ is defined so that h(D∗) = h(D∗

1) + h(D∗
2) + 1

by (10), this discrepancy occurs whenever there is a large overlap

between the droplets.

Proof. It will be convenient to pass to the continous setting, so let D∗
i := D∗(Di)

for i = 1, 2. We shall prove that

h(D∗) 6 h(D∗
1) + h(D∗

2) + 1

for some Duarte regionD∗ containingD∗
1∪D∗

2. Since h(D) is defined to be h
(

D∗(D)
)

for any droplet D, and since D∗ ⊃ D∗(D∗
1 ∪D∗

2) ⊃ D∗(D1 ∪D2), this would imply

the result.

We may suppose that ∂(D∗
1) lies to the right of or in line with ∂(D∗

2), that D
∗
1 has

source 0 and width w1, and that D∗
2 has source (a, b) and width w2. (Assuming 0

for the source of D∗
1 is permissible because we shall not assume anything about the

location of lattice points inside the Duarte regions.) Define the new Duarte region

D∗ as follows. Let D∗ have width w, where

f(w) = f(w1) + f(w2) + 1, (10)

and source (w1 − w, h0), where h0 := (ht − hb)/2, and

ht := max
{

b+ f(w2)− f(w2 + a), 0
}

and

hb := max
{

− b+ f(w2)− f(w2 + a), 0
}

.

(By convention, we set f(x) = 0 if x < 0.) Thus, ht is the distance between the top

of ∂(D∗
2) and the top-most point of D∗

1, provided the former point lies above the
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latter point, and similarly for hb with ‘top’ replaced by ‘bottom’. Moreover, ∂(D∗
1)

and ∂(D∗) lie on the same vertical line in R
2. An example is shown in Figure 3.

Since the height condition h(D∗) 6 h(D∗
1) + h(D∗

2) + 1 follows immediately

from (10) (in fact, with equality), to prove the lemma it is enough to show that

D∗
1 ∪ D∗

2 ⊂ D∗, and therefore by Observation 3.3, it suffices to show that ∂(D∗
1) ∪

∂(D∗
2) ⊂ D∗. We may assume that max{ht, hb} > 0, since otherwise ∂(D∗

2) ⊂ D∗
1,

which implies D∗
2 ⊂ D∗

1 by Observation 3.3, and in this case the lemma is a triviality.

Beginning with D∗
1, we shall show that in fact ∂(D∗

1) ⊂ ∂(D∗). Without loss of

generality let h0 > 0, and observe that the vertical coordinates of the bottom-most

points of ∂(D∗
1) and ∂(D∗) are −f(w1) and h0 − f(w) respectively. Since the source

of D∗ is defined so that ∂(D∗
1) and ∂(D∗) lie in the same vertical line, it is enough

to show that h0 − f(w) 6 −f(w1). By (10), this is equivalent to h0 6 f(w2) + 1.

Now, since D1 ⊂ D∗
1 is strongly connected to D2 ⊂ D∗

2, we have

b− ⌊f(w2)⌋ − ⌊f(w2 + a)⌋ 6 2,

by comparing the bottom-most point of ∂(D∗
2) with the boundary of D∗

1. (Note that

if D∗
2 lies entirely to the left of D∗

1 then we actually have the stronger inequality

b− ⌊f(w2)⌋ 6 1.) Therefore,

ht = b+ f(w2)− f(w2 + a) 6 2f(w2) + 2.

Thus if hb = 0 then h0 = ht/2 6 f(w2) + 1 as required. If hb > 0 then

h0 = b < f(w2)− f(w2 + a) < f(w2) + 1,

so we are again done.

Now we move on to D∗
2. Once again, by Observation 3.3 it is enough to prove

that ∂(D∗
2) ⊂ D∗, and so by symmetry (we are no longer assuming h0 > 0) we only

have to show that

b+ f(w2) 6 h0 + f(w2 + a− w1 + w);

that is, we have to show that the vertical coordinate of the top-most point of ∂(D∗
2)

is at most that of the upper boundary point of D∗ in the same vertical line. If ht > 0

and hb > 0 then h0 = b and we are done by the monotonicity of f . Here we are using

the fact that w + a > w1, which is obtained by observing that a > −w2 − 1, since

D1 and D2 are strongly connected, and then by observing that w > w1 + w2 + 1

follows from f(w) = f(w1) + f(w2) + 1 by the convexity of f . If hb = 0 then

h0 = b + f(w2)− f(w2 + a), so are we again easily done by the monotonicity of f .

Finally, if ht = 0 then b 6 0 and we are done as before. �

We can now deduce the following extremal result for internally spanned droplets.

Lemma 3.13. Let K ⊂ Z
2 be a finite set such that [K] is strongly connected. Then

h
(

D([K])
)

6 2|K| − 1.
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In particular, if D is an internally spanned droplet, then

|D ∩ A| > h(D) + 1

2
.

Proof. The first assertion follows by induction on |K| from Lemma 3.12 and the

spanning algorithm. Indeed, if |K| = 1 then h
(

D([K])
)

= 1, as required, so assume

that |K| > 2 and assume that the result holds for all proper subsets of K.

Run the spanning algorithm with initial set K, and observe that, since [K] is

strongly connected, we have 〈K〉 = {D([K]}. Let KT−1 = {K1, K2}, and observe

that [K1], [K2] and [K1 ∪K2] are strongly connected and |K1|+ |K2| = |K|. There-
fore, by the induction hypothesis and Lemma 3.12, we have

h
(

D([K])
)

= h
(

D([K1 ∪K2])
)

6 h
(

D([K1])
)

+ h
(

D([K2])
)

+ 1

6
(

2|K1| − 1
)

+
(

2|K1| − 1
)

+ 1 = 2|K| − 1,

as required.

The second assertion of the lemma follows from the first after noting that if D

is internally spanned then there exists a set K ⊂ D ∩ A such that [K] is strongly

connected and D
(

[K]
)

= D, by Lemma 3.11. �

We will use Lemma 3.13 in Section 5 to deduce a non-trivial bound on the proba-

bility that a very small droplet is internally spanned, and hence prove the base case

in our application of the method of iterated hierarchies.

Our next lemma implies that critical droplets exist, and is based on a fundamental

observation of Aizenman and Lebowitz [1], which has become a standard tool in the

study of bootstrap percolation. In order to obtain a sharp threshold for the Duarte

model, we will need the following, slightly stronger variant of their result.

Lemma 3.14. If [A] = Z
2
n, then there exists a pair (D1, D2) of disjointly internally

spanned droplets such that

max
{

h(D1), h(D2)
}

6
1− ε

p
log

1

p
and h(D1) + h(D2) >

1− ε

p
log

1

p
− 1,

and d(D1, D2) 6 2.

Proof. Run the spanning algorithm, starting with S = A, until the first time t at

which there exists a set K ∈ Kt that spans a droplet D(K) of height larger than

(1− ε)p−1 log 1/p. Since K was created in step t, it follows that K = K1∪K2, where

K1, K2 ∈ Kt−1 are disjoint subsets of A such that [K1] and [K2] are both strongly

connected. Setting D1 = D
(

[K1]
)

and D2 = D
(

[K2]
)

, we have

max
{

h(D1), h(D2)
}

6
1− ε

p
log

1

p
and h

(

D(K)
)

>
1− ε

p
log

1

p

by our choice of t, and D1 and D2 are disjointly internally spanned by K1 and K2,

respectively. By Lemma 3.12, it follows that

h(D1) + h(D2) >
1− ε

p
log

1

p
− 1,
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as required. �

We will also need the following variant of Lemma 3.14, which is closer to the

original lemma of Aizenman and Lebowitz. Since the proof is so similar to that of

Lemma 3.14, it is omitted.

Lemma 3.15. Let D be an internally spanned droplet. Then for any 1 6 k 6 h(D),

there exists an internally spanned droplet D′ ⊂ D such that k 6 h(D′) 6 2k.

3.3. Hierarchies. In this section we will recall the definition and some basic prop-

erties of hierarchies, which were introduced in [17] and subsequently used and de-

veloped by many authors, for example in [3–5,12,13,16]. We will be quite brief, and

refer the reader to [5] for more details.

Definition 3.16. Let D be a droplet. A hierarchy H for D is an ordered pair H =

(GH, DH), where GH is a directed rooted tree such that all of its edges are directed

away from the root vroot, and DH : V (GH) → P(Z2) is a function that assigns to

each vertex of GH a droplet, such that the following conditions are satisfied:

(1) the root vertex corresponds to D, so DH(vroot) = D;

(2) each vertex has out-degree at most 2;

(3) if v ∈ N→
GH

(u) then DH(v) ⊂ DH(u);

(4) if N→
GH

(u) = {v, w} then DH(u) ∈ 〈DH(v) ∪DH(w)〉.
Condition (4) is equivalent to the statement that DH(v) ∪ DH(w) is strongly

connected and that DH(u) is the smallest droplet containing their union. We usually

abbreviate DH(u) to Du.

Definition 3.17. Let t > 0. A hierarchy H for a droplet D is t-good if it satisfies

the following conditions for each u ∈ V (GH):

(5) u is a leaf if and only if t 6 h(Du) 6 2t;

(6) if N→
GH

(u) = {v} and |N→
GH

(v)| = 1 then

t 6 h(Du)− h(Dv) 6 2t;

(7) if N→
GH

(u) = {v} and |N→
GH

(v)| 6= 1 then h(Du)− h(Dv) 6 2t;

(8) if N→
GH

(u) = {v, w} then h(Du)− h(Dv) > t.

The final two conditions, which we define next, ensure that a good hierarchy for

an internally spanned droplet D accurately represents the growth of the initial sites

D ∩A. Given nested droplets D ⊂ D′, we define

∆(D,D′) :=
{

D′ ∈ 〈D ∪ (D′ ∩ A)〉
}

.

Definition 3.18. A hierarchy H for D is satisfied by A if the following events all

occur disjointly :

(9) if v is a leaf then Dv is internally spanned by A;

(10) if N→
GH

(u) = {v} then ∆(Dv, Du) occurs.
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Let us also make an easy observation about the event ∆(D,D′), which will be

useful in the next section.

Observation 3.19. Let D ⊂ D1 ⊂ D′ be droplets. Then∆(D,D′) implies∆(D1, D
′).

Next we recall some standard properties of hierarchies. Our first lemma motivates

the definitions above by showing that every internally spanned droplet has at least

one good and satisfied hierarchy. The proof is almost identical to Lemma 8.8 of [5]

(see also Propositions 31 and 33 of [17]), and so we omit it.

Lemma 3.20. Let t > 0, and let D be a droplet with h(D) > t that is internally

spanned by A. Then there exists a t-good and satisfied hierarchy for D. �

The next lemma allows us to bound Pp

(

I×(D)
)

in terms of the good and satisfied

hierarchies of D. Let us write HD(t) for the set of all t-good hierarchies for D, and

L(H) for the set of leaves of GH. We write
∏

u→v for the product over all pairs

{u, v} ⊂ V (GH) such that N→
GH

(u) = {v}.

Lemma 3.21. Let t > 0, and let D be a droplet. Then

Pp

(

I×(D)
)

6
∑

H∈HD(t)

(

∏

u∈L(H)

Pp

(

I×(Du)
)

)(

∏

u→v

Pp

(

∆(Dv, Du)
)

)

.

Proof of Lemma 3.21. Since the events I×(Du) for u ∈ L(H) and ∆(Dv, Du) for

u → v are increasing and occur disjointly, this is an immediate consequence of

Lemma 3.20 and the van den Berg–Kesten inequality. �

The following is little more than an observation, but we record it here for com-

pleteness.

Lemma 3.22. Let H ∈ HD(t). Then
∑

u∈L(H)

h(Du) +
∑

u→v

(

h(Du)− h(Dv)
)

> h(D)− v(H). (11)

Proof. Each vertex of out-degree 2 in GH contributes an additive ‘error’ of 1 to the

difference between h(D) and the left-hand side of (11), because of the application of

Lemma 3.13. Vertices of out-degree 1 in GH do not contribute any error. Thus (11)

holds (and one could in fact replace v(H) on the right-hand side of (11) with the

number of vertices in GH of out-degree 2). �

If H ∈ HD(t) is a hierarchy and v ∈ L(H), then we say that Dv is a seed of H.

We finish the section with the following easy lemma, cf. [5, Lemma 8.11].

Lemma 3.23. Let D be a droplet with h(D) 6 p−1 log 1/p. Then there are at most

exp

(

O

(

ℓ · h(D)

t
log

1

p

)

)

(12)
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t-good hierarchies for D that have exactly ℓ seeds. Moreover, if H is a t-good hier-

archy for D with ℓ seeds, then

∣

∣V (H)
∣

∣ = O

(

ℓ · h(D)

t

)

. (13)

Proof. The height of a t-good hierarchy for D is at most 2h(D)/t, so the bound (13)

is straightforward. To count the number of choices of the droplet Du associated with

the vertex u, we use Lemma 3.4. Thus, given integers a and b such that the source

of Du lies in the square (a, a + 1] × (b, b + 1], and given ⌊w(Du)⌋ = w, we have at

most wO(1) choices for Du, by Lemma 3.4. Summing over a, b and w gives at most

p−O(1) choices in total for Du, since there are at most p−O(1) choices for each of a, b

and w by the condition on h(D). The bound (12) now follows. �

4. Crossings

Our aim in this section is to derive bounds on the probabilities of crossing events,

a phrase that we use informally to mean events of the form ∆(D,D′), for droplets

D ⊂ D′. The bounds we obtain will be used both to prove the inductive step

IH(k) ⇒ IH(k−1), for each k > 1, in Section 5, and the deduction of Proposition 3.8

from IH(0), in Section 6. The culmination of this section is the following lemma.

Recall that εk = ε2 · (3/4)k, where ε > 0 is sufficiently small.

Lemma 4.1. Let k > 0 and let D ⊂ D′ be droplets such that h(D) > ε−5
k ,

ε−6
k 6 h(D′)− h(D) 6

p−(2/3)k

2 log 1/p
,

and

h(D′) 6

{

p−(2/3)(k−1)
(log 1/p)−1 if k > 1,

(1− ε)p−1 log 1/p if k = 0.

Suppose also that IH(k) holds. Then

Pp

(

∆(D,D′)
)

6 exp

(

−
(

1− 1.1εk
2

)(

log
1

p
− ph(D′)

)

(

h(D′)− h(D)
)

)

. (14)

Observe that, while k > 1 and h(D′) ≪ p−1 log 1/p, which will be the case

throughout Section 5, the bound (14) says (roughly) that

Pp

(

∆(D,D′)
)

> p(1−1.1εk)(h(D
′)−h(D))/2.

The contribution from −ph(D′) in the exponent in (14) only starts to matter when

k = 0 and the droplet approaches the critical size. However, it then plays a very

important role: it is the reason why the exponents in (6) and (7) differ by a factor

of 2 (see the discussion after Definition 3.9).
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Lemma 4.1 is a relatively straightforward consequence of the following lemma

about ‘vertical crossings’. Recall that

f(x) :=
1

2p
log

(

1 +
ε3px

log 1/p

)

and that ∂(D) denotes the right-hand side of a droplet. We will write D1 < D2 to

denote that ∂
(

D∗(D1)
)

⊂ ∂
(

D∗(D2)
)

holds.8

Lemma 4.2. Let k > 0 and let D < D′ be droplets such that h(D) > ε−5
k and

ε−5
k 6 y := h(D′)− h(D) 6

p−(2/3)k

2 log 1/p
.

Suppose also that IH(k) holds. Then

Pp

(

∆(D,D′)
)

6 w(D′)O(ε3ky) ·
(

p

f ′
(

w(D′)
)

)(1−1.01εk)y/2

. (15)

We reiterate at this point that the constant implied by the O(·) notation in the

statement of the lemma is absolute: that is, it does not depend on any other pa-

rameter (in particular, it does not depend on ε or k). (In fact, one could take the

constant to be 10, but we choose not to keep track of this.)

In order to prove Lemma 4.2 we shall examine how growth from D to D′ could

occur. To do this, we shall show inductively that there exists a sequence of nested

droplets D = D0 < · · · < Dm = D′ such that, for each 1 6 i 6 m − 1, either

(Di \Di−1)∩A contains a large constant number of relatively ‘densely spaced’ sites

(an event which we think of, informally, as corresponding to the droplet growing

row-by-row), or it spans a ‘saver’ droplet of at least a large constant size. These

alternatives are defined precisely in Definition 4.6.

In order to state that definition, we will need a weaker notion of connectivity

than the strong connectivity used in conjunction with spanning, which will enable

us to say what we meant by ‘relatively densely spaced’ in the previous paragraph.

Very roughly speaking, we say that a small set of sites is ‘weakly connected and

D-rooted’, for some droplet D, if the sites (might) help D to grow vertically ‘faster

than it should’.

Henceforth in this section let us fix k > 0 and let p > 0 (and hence f ′(0)) be

sufficiently small.

Definition 4.3. (a) Define a relation ≺ on Z
2, called the weak relation, as follows.

Given sites x = (a1, b1) and y = (a2, b2), we say that x ≺ y if

a2 − a1 > −ε−6
k and |b2 − b1| 6 2.

8Note that ∂(D1) ⊂ ∂(D2) does not imply ∂
(

D∗(D1)
)

⊂ ∂
(

D∗(D2)
)

, but that ∂(D1) ⊂ ∂(D2)

and D1 ⊂ D2 does.
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(b) We say that a finite set Y ⊂ Z
2 is weakly connected if the graph on Y with

edge set
{

xy ∈ Y (2) : x ≺ y or y ≺ x
}

is connected.

(c) Now let D be a droplet, with width w and source
(

a0, b0
)

, and let ZD :=
{

(a, b) ∈ Z
2 \D : a 6 a0 + w

}

. A weakly connected set Y ⊂ ZD is D-rooted

if for every y ∈ Y there exist y1, . . . , yj ∈ Y (for some j > 0) and x ∈ D such

that

x ≺ y1 ≺ y2 ≺ . . . ≺ yj ≺ y.

The site x is called a root for y with respect to D.

The following lemma elucidates the key property of the definition above. The

somewhat verbose statement (in terms of the numbers h1 and h2) is needed because

in the applications we do not want the final bound in (16) to depend on |Y |, which
may be much larger than h1 + h2.

Lemma 4.4. Let h1, h2 > 0 and let p > 0 be sufficiently small. Now let D be a

droplet with width w and source (a0, b0), let Y ⊂ Z
2 \D be a finite set, and partition

Y into Y (1) ∪ Y (2), where Y (1) :=
{

(a, b) ∈ Y : b > b0
}

and Y (2) := Y \ Y (1).

Suppose that for each y ∈ Y there exists a weakly connected and D-rooted set Y ′ ⊂ Y

containing y, such that |Y ′ ∩ Y (i)| 6 hi for i = 1, 2. Then

h
(

D(D ∪ Y )
)

6 h(D) + 2h1 + 2h2 + 2. (16)

Proof. Let us in fact set 0 to be the source of D. As in Lemma 3.12, this is per-

missible because we shall not need to assume that the lattice points inside D have

integer coordinates, neither shall we need to assume this about the elements of

Y . Let D∗ := D∗(D), and let D∗
1 be the Duarte region with width w1, where

f(w1) = f(w)+ h1+ h2 +1, and source (w−w1, h0), where h0 := h1− h2. We claim

that

D∗ ∪ Y ⊂ D∗
1. (17)

Once we have this the lemma will follow, since

h(D∗
1) = 2f(w1) + 1 = 2f(w) + 2h1 + 2h2 + 3 = h(D∗) + 2h1 + 2h2 + 2.

To show that D∗ ⊂ D∗
1 it is enough to have ∂(D∗) ⊂ D∗

1, by Observation 3.3.

This containment would hold if f(w1) − f(w) > |h0|, since ∂(D∗) is contained in

the same vertical line in R
2 as ∂(D∗

1). But this inequality is immediate from the

definitions of w1 and h0, so D∗ ⊂ D∗
1 holds. The more substantive task is to show

that Y ⊂ D∗
1, and for this the key observation is as follows.

Claim 4.5. If x = (a1, b1) ∈ D∗ and y = (a, b) ∈ R
2 \D∗ are such that

a1 −O(1) 6 a 6 w and − 2h2 6 b− b1 6 2h1,

then y ∈ D∗
1.
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D∗

D∗
1

x

2h1

> 1

O(1)

Figure 4. Claim 4.5 asserts that the shaded region is contained in

D∗
1. The essence of the proof is that the vertical distance between the

boundaries of D∗ and D∗
1 is always at least 2h1 + 1, and p (and hence

f ′(0)) can be taken sufficiently small to beat the O(1) distance the

region extends to the left of x.

Proof of Claim 4.5. This follows essentially from the convexity of f and the fact

that p (and hence f ′(0)) is sufficiently small. The key is that the top of D∗
1 always

passes at least distance 2h1 + 1 above x.

To spell out the details, first let us assume by symmetry that b > 0, and observe

that for each t ∈ [0, w] we have

h0 + f(t− w + w1)− f(t) > h0 + f(w1)− f(w) = 2h1 + 1,

where we used the convexity of f for the inequality. But the left-hand side is the

difference between the vertical coordinates of the top-most points in D∗
1 and D∗,

intersected with the column with horizontal coordinate t. Thus we are done if a = a1.

If a > a1 then we are also done, since f is increasing. Finally, if a1 −O(1) 6 a < a1
then we are again done, this time since p is sufficiently small and hence f ′(t) is

sufficiently small for all t > 0. �

To complete the proof of the lemma, recall that we wish to show Y ⊂ D∗
1. Let

y = (a, b) ∈ Y and without loss of generality let us assume y ∈ Y (1). We know by

the condition of the lemma that there exists a weakly connected and D-rooted set

Y ′ ⊂ Y containing y, such that |Y ′ ∩ Y (i)| 6 hi for i = 1, 2. Now take a path of sites

x ≺ y1 ≺ . . . ≺ yj ≺ y,

with j > 0, such that {y1, . . . , yj, y} ⊂ Y ′ ∩ Y (1), and such that either x ∈ D or

b1 ∈ [−2, 0), where x = (a1, b1). To construct such a path, first allow the yi to

belong to Y ′, then, starting at y, truncate the path if necessary at the first element

having negative vertical coordinate. It follows that j + 1 6 |Y ′ ∩ Y (1)| 6 h1.

If x ∈ D then, by the definition of ≺, we have b 6 b1 + 2(j + 1) 6 b1 + 2h1 and

a > a1 − O(j) = a1 − O(1). Hence x and y satisfy the conditions of Claim 4.5. On

the other hand, if b1 ∈ [−2, 0) then b 6 2(j + 1) 6 2h1 and a > −O(1). Hence in

this case 0 and y satisfy the conditions of the claim. In either case it follows that

y ∈ D∗
1, and the proof is complete. �
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D = D0

D′ = D4

Figure 5. An example of a satisfied partition P = (Di)
4
i=0 of (D,D′).

The small droplet is a saver droplet and the clusters of five crosses are

weakly connected sets, each Di-rooted for some i. Thus, with γ = 5,

condition (1) of Definition 4.6 is satisfied when i = 1 and 3, and

condition (2) is satisfied when i = 2.

We are now ready to make the key definition of the section, that of a satisfied

partition of a pair of droplets D < D′. Let us fix γ := ⌊ε−3
k /2⌋.

Definition 4.6. Let D < D′ be droplets. A satisfied partition P of (D,D′) is a

sequence of droplets P = (Di)
m
i=0, for some m > 1, such that

D = D0 < D1 < · · · < Dm = D′,

h(Dm)− h(Dm−1) 6 5γ, and for each 1 6 i 6 m− 1, we have h(Di)− h(Di−1) > 2γ

and (at least) one of the following events occurs:

(1) h(Di) − h(Di−1) 6 2γ + 2 and
(

Di \ Di−1

)

∩ A contains a weakly connected

Di−1-rooted set of size at least γ.

(2) There exists a droplet Si spanned
9 by (Di \Di−1) ∩ A, with

w(Si) > ε−6
k − 1 and h(Si) > h(Di)− h(Di−1)− ε−3

k , (18)

and such that either h(Si) > ε−5
k or the rightmost ε−6

k − 1 columns of Si all

contain an element of (Di \Di−1) ∩A. (We call Si a saver droplet.)

The next lemma, which states that the crossing event for droplets D < D′ im-

plies the existence of a satisfied partition for (D,D′), is the heart of the proof of

Lemma 4.1, and is the key deterministic tool in the proof of Theorem 1.1.

9Recall that Si is spanned by a set K if there exists K ′ ⊂ K such that Si ∈ 〈K ′〉. Note that

here it need not necessarily be the case that Si ⊂ Di \Di−1.
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Lemma 4.7. Let D < D′ be droplets with h(D) > ε−5
k . If ∆(D,D′) holds then there

exists a satisfied partition of (D,D′).

From here until the end of the proof of Lemma 4.7, let us fix droplets D < D′.

Let Y1, . . . , Ys be the collection of maximal weakly connected and D-rooted sets in

(D′ \ D) ∩ A. (These sets are disjoint, since if Yi ∩ Yj 6= ∅ then Yi ∪ Yj is weakly

connected and D-rooted.10) Finally, let

Y := Y1 ∪ · · · ∪ Ys and Z := [D ∪ Y ] \D. (19)

The first preliminary we need in the build up to the proof of Lemma 4.7 is the

following easy observation about elements of Z.

Observation 4.8. Let z = (c, d) ∈ [D ∪ Yi] \D for some 1 6 i 6 s. Then one of

the following holds, in each case with a 6 c (and a′ 6 c in case (b)):

(a) there exists a site y := (a, d) ∈ Yi;

(b) there exist sites y := (a, d− 1) ∈ Yi and y′ := (a′, d+ 1) ∈ Yi;

(c) (c, d− 1) ∈ D and there exists a site y := (a, d+ 1) ∈ Yi;

(d) (c, d+ 1) ∈ D and there exists a site y := (a, d− 1) ∈ Yi.

Next we need the following lemma, which says that we may obtain D ∪ Z from

D by taking the closures with each of the Yi independently. This will enable us to

control the size of Z. The lemma also says that there is a good separation between

D ∪ Z and the elements of A outside of D ∪ Z.

Lemma 4.9. We have

Z =
(

[D ∪ Y1] ∪ · · · ∪ [D ∪ Ys]
)

\D. (20)

Moreover, if x ∈ A \ (D ∪ Z) then there does not exist z ∈ D ∪ Z such that z ≺ x.

Proof. To prove (20), we shall show that no site z1 ∈ [D ∪ Y1] \ D is strongly

connected to a site in z2 ∈ [D ∪ Y2] \D, unless z1 and z2 lie either side (vertically)

of an element of D. This will establish the claim, since it would imply that the set

[D ∪ Y1] ∪ [D ∪ Y2] is closed, and since the ordering of the Yi was arbitrary.

First, we make the following observation, which follows immediately from the

definition of ≺:

(∗) If y1 = (a1, b1) ∈ Y1 and y2 = (a2, b2) ∈ Y2, then, since neither y1 ≺ y2 nor

y2 ≺ y1 holds, we must have |b1 − b2| > 3.

Since Y1 and Y2 are each weakly connected, it follows (without loss of generality) that

max{b : (a, b) ∈ Y1} 6 min{b : (a, b) ∈ Y2} − 3. Let z1 = (c1, d1) and z2 = (c2, d2),

and suppose first that d1 6 max{b : (a, b) ∈ Y1}. Then, since z1 and z2 are strongly

connected, it follows that d2 < min{b : (a, b) ∈ Y2}. Now, by Observation 4.8, it

follows that (c2, d2 − 1) ∈ D and d2 = min{b : (a, b) ∈ Y2} − 1. But since z1 and z2
are strongly connected, this implies that c1 = c2 and d1 = d2 − 2, and hence z1 and

10This is because the elements of a D-rooted set do not all have to have the same root.
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z2 lie either side (vertically) of an element of D, as claimed. The proof in the case

d1 > max{b : (a, b) ∈ Y1} is identical.

To see the second part of the lemma, let x ∈ A \ (D ∪Z), and suppose that z ≺ x

for some z ∈ D ∪ Z. Observe that z cannot be in D, because then x would belong

to one of the Yi. So in fact we have z ∈ Z and we may assume further that x is

not weakly connected to any element of D. By the first part of the lemma, we may

also assume that z ∈ [D ∪ Y1] \D. We shall show that there exists y ∈ Y1 such that

y ≺ x, which would imply that x belongs to Y1, a contradiction.

Let x = (c0, d0) and let z = (c, d), and let y (and possibly also y′) be the sites

obtained from Observation 4.8 applied to z. If option (a) holds then we immediately

have y ≺ x. If option (b) holds then we take y = (a, d + 1) if d0 > d, to obtain

y ≺ x, and we take y′ = (a, d− 1) if d0 < d, to obtain y′ ≺ x. Finally, if option (c)

holds (say), then since (c, d − 1) ∈ D and z ≺ x, we must have d0 > d − 1, and

therefore we have y ≺ x. (Here we have used the assumption that x is not weakly

connected to any element of D: if z is near to the left-hand end of D, then there

do exist sites in Z
2 \ D within horizontal distance ε−6

k to the left of z, and having

vertical coordinate 2 less than that of z. However, any such site is weakly connected

to D.) This completes the proof of the second part of the lemma. �

We are now ready to prove Lemma 4.7. The basic idea is as follows: if none of

the sets Yi has size at least γ, then since (by (20)) we can obtain D ∪ Z from D by

taking the closure of D with each of the Yi independently, we can control the size of

each (strongly) connected component of Z. Since Definition 4.3 ensures that there

is a large region disjoint from A around any maximal weakly connected component,

the event ∆(D,D′) allows us to deduce the existence of a saver droplet sufficiently

large to penetrate through this region; see Claim 4.11 below.

Proof of Lemma 4.7. The proof is by induction on ⌊h⌋, where h := h(D′) − h(D).

When h 6 5γ there is nothing to prove: we may take m = 1, D0 = D and D1 = D′,

so that P = (D0, D1) trivially satisfies Definition 4.6. Thus we shall assume that

h > 5γ and that the result holds for smaller non-negative values of ⌊h⌋.
Suppose first that |Yi| > γ for some i. In this case we will show that there exists a

droplet D < D1 < D′ with 1 6 h(D1)− h(D) 6 2γ + 2 and such that
(

D1 \D
)

∩ Yi

contains a weakly connected D-rooted set of size at least γ, as in Definition 4.6 (1).

In order to define D1, we will first show that there exists a subset W ⊂ Yi with

|W | = γ that satisfies the conditions of Lemma 4.4. Indeed, this follows by greedily

adding points of Yi to W one by one (starting from the empty set), maintaining the

property that W is D-rooted. (So a point y ∈ Yi may be added to W if there exists

u ∈ D ∪W such that u ≺ y.) It is easy to see that for each u ∈ W there exists a

set W ′ ⊂ W with u ∈ W ′ such that W ′ is weakly connected and D-rooted (simply

take the oriented path leading to u). Moreover, since W ′ ⊂ W and |W | = γ, the
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conditions of Lemma 4.4 are satisfied for some h1, h2 > 0 with h1+ h2 = γ, and thus

h
(

D(D ∪W )
)

− h(D) 6 2γ + 2.

If h
(

D(D ∪W )
)

− h(D) > 2γ, then set D1 = D(D ∪W ); if not, then choose instead

forD1 any droplet such that 2γ 6 h(D1)−h(D) 6 2γ+1 andD(D∪W ) < D1 < D′.

In either case, the droplet D1 satisfies the conditions of Definition 4.6 with i = 1 and

D0 = D. We may therefore apply induction to the pair (D1, D
′), noting that the

event ∆(D1, D
′) occurs by Observation 3.19, and, for the purpose of the induction

on ⌊h⌋, that we have ensured that h(D′)− h(D1) 6 h(D′)− h(D)− 1.

Henceforth we shall assume that |Yi| 6 γ − 1 for each 1 6 i 6 s. Our task is to

show, using Lemma 4.9, that there exists a saver droplet satisfying condition (2) of

Definition 4.6. In order to find the saver droplet, we begin by showing that either

[(D′ \D) ∩ (A \ Y )] is strongly connected to D ∪ Z, or we can take the whole of D′

to be the saver droplet.

Claim 4.10. Either there exist sites z ∈ D ∪ Z and x ∈
[

(D′ \D) ∩ (A \ Y )
]

such

that z and x are strongly connected, or we have

D′ ∈
〈

(D′ \D) ∩ (A \ Y )
〉

. (21)

Proof of Claim 4.10. Suppose (21) does not hold. Firstly, note that

[

D ∪ (D′ ∩A)
]

=
[

D ∪ Y ∪
(

D′ ∩ (A \ Y )
)

]

=
[

(

D ∪ Z
)

∪
[

(D′ \D) ∩ (A \ Y )
]

]

, (22)

since Y ⊂ D′ ∩ A and D ∪ Z = [D ∪ Y ]. Secondly, the event ∆(D,D′) implies that

[D ∪ (D′ ∩A)] contains a strongly connected set L such that D′ = D(L). However,

we cannot have L ⊂ D ∪ Z, because if we apply Lemma 4.4 to the droplet D and

the set Y , with h1 = h2 = γ, then we obtain

h
(

D(D ∪ Z)
)

= h
(

D(D ∪ Y )
)

6 h(D) + 4γ + 2 < h(D′),

where we have used the fact that h(D′) − h(D) > 5γ. We also cannot have L ⊂
[

(D′ \D) ∩ (A \ Y )
]

, because (21) does not hold. Now, if the union of D ∪ Z and
[

(D′ \D) ∩ (A \ Y )
]

is not closed, then we are done: this would immediately imply

the existence of sites x and z as in the statement of the claim. If the union of the

two sets is closed, then by (22) we would have

L ⊂
[

D ∪ (D′ ∩A)
]

=
(

D ∪ Z
)

∪
[

(D′ \D) ∩ (A \ Y )
]

.

Hence, since the strongly connected set L is contained in neither D ∪ Z nor
[

(D′ \
D) ∩ (A \ Y )

]

, it must intersect both, and therefore these sets must themselves be

strongly connected, as required. �

We now have everything we need to find the saver droplet.
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D

S

x′ x

z

Figure 6. The setup in Claim 4.11. The region below the solid line

at the bottom of the figure is D; that above and to the left of the

solid line at the top of the figure is S. Solid boxes are elements of

A. The dashed lines bound the elements of the closure Z = [D ∪ Y ].

The dotted line bounds the set of sites weakly connected to Yi. The

sites x, x′ and z are as in the claim. (Note that x is not in A, so it is

indicated by a dashed box. In this example we have z ∈ A, but that

need not be the case; similarly, x is shown as the bottom-right-hand

element of S, which it need not be.)

Claim 4.11. There exists a droplet S spanned by (D′ \D) ∩ A such that

w(S) > ε−6
k − 1 and h(S) > h

(

D(D ∪ S)
)

− h(D)− ε−3
k . (23)

Moreover, either h(S) > ε−5
k , or the rightmost ε−6

k − 1 columns of S all contain an

element of (D′ \D) ∩ A.

We will complete the proof of Lemma 4.7 after the proof of Claim 4.11.

Proof of Claim 4.11. To begin, note that if (21) holds then we may take S = D′,

since then h(S) = h(D′) > ε−5
k by the assumption of Lemma 4.7. So let us

assume (21) does not hold, and that therefore, by Claim 4.10, there exist sites

z ∈ D ∪ Z and x ∈ [(D′ \D) ∩ (A \ Y )] such that z and x are strongly connected.

Without loss of generality, let us assume that in fact z ∈ [D ∪ Y1], by (20). Let

S ∈ 〈(D′ \D) ∩ (A \ Y )〉 be the droplet spanned by the strongly connected compo-

nent of [(D′ \D)∩ (A \ Y )] containing x. We will show that S is the desired droplet,

i.e., that it has all of the claimed properties.

First we must show that the dimensions of S satisfy the conditions of (23). We

begin with the height condition. If z ∈ D then S and D are strongly connected, in

which case

h
(

D(D ∪ S)
)

6 h(D) + h(S) + 1,

by Lemma 3.12. So assume that z ∈ [D ∪ Y1] \D, and let Dz = D(Cz), where Cz is

the minimal column of (consecutive) sites containing z and strongly connected to D.

By the definition of the weak relation and the bound |Y1| 6 γ − 1, and since p (and
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therefore f ′(0)) is sufficiently small, it follows that |Cz| 6 2(γ − 1), and therefore

h
(

D(Cz)
)

6 2(γ − 1). Hence, by Lemma 3.12 we have

h
(

D(D ∪ {z})
)

6 h(D) + h
(

D(Cz)
)

+ 1 6 h(D) + 2γ − 1.

Now, since z and x are strongly connected, it follows again from Lemma 3.12, this

time applied to droplets D(D ∪ {z}) and S, that

h
(

D(D ∪ S)
)

6 h
(

D(D ∪ {z})
)

+ h(S) + 1 6 h(D) + h(S) + 2γ.

Since 2γ 6 ε−3
k , it follows that the height condition in (23) holds.

For the width condition in (23), notice that since x ∈ [S ∩ A] (but x /∈ A), at

least one of the following must hold:

• S ∩A has non-empty intersection with the row containing x;
• S ∩ A has non-empty intersection with the row immediately above x and the

row immediately below x.

In either case, since x and z are strongly connected, there exists x′ ∈ S ∩A differing

from z in its vertical coordinate by at most 2. Note moreover that we can choose

x′ to be in the same strongly connected component of [S ∩ A] as x. Now since

x′ ∈ A \ (D∪Z), we cannot have z ≺ x′, by Lemma 4.9. Hence, writing x′ = (a1, b1)

and z = (a3, b3), it follows that w(S) > a3 − a1 − 1 > ε−6
k , which implies the claimed

bound on w(S).

Finally, we must show that the rightmost ε−6
k − 1 columns of S all contain an

element of (D′ \D)∩A. But this follows from the fact that x and x′ lie in the same

strongly connected component of [S ∩A], using the bound a3 − a1 > ε−6
k . �

We now finish the proof of Lemma 4.7. Let S be the (saver) droplet whose

existence is guaranteed by Claim 4.11. Set D1 to be equal to D(D ∪ S), unless

h
(

D(D ∪S)
)

− h(D) < 2γ, in which case instead set D1 to be any droplet such that

D(D ∪ S) < D1 < D′ and 2γ 6 h(D1) − h(D) 6 2γ + 1 (cf. the second paragraph

of the proof of the lemma). Then we have w(S) > ε−6
k − 1 by Claim 4.11, and

h(S) > h(D1) − h(D) − ε−3
k if D1 = D(D ∪ S), also by Claim 4.11. On the other

hand, if D1 is larger than D(D ∪ S) then

h(D1)− h(D)− ε−3
k 6 2γ + 1− ε−3

k 6 1,

and h(S) > 1 by the definition of the height of a droplet. Thus in either case S

satisfies the conditions of Definition 4.6 (2).

Finally, we note (once again) that ∆(D1, D
′) occurs, by Observation 3.19 (using

the fact that S being spanned by (D′ \D) ∩ A implies S is also spanned by (D1 \
D) ∩ A, since S ⊂ D1 ⊂ D′), and, for the induction on ⌊h⌋, that h(D′) − h(D1) 6

h(D′)− h(D)− 1. Thus, we are done by induction. �

From here, the proof of Lemma 4.2 is no more than a calculation. First, we

establish a bound for the probability of the existence of saver droplets.
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Lemma 4.12. Let P = (Di)
m
i=0 be a satisfied partition for (D,D′), where D and D′

satisfy the conditions of Lemma 4.2. Let w := w(D′), and suppose that IH(k) holds.

Then, for each 1 6 i 6 m − 1, the probability that (Di \ Di−1) ∩ A spans a saver

droplet (that is, a droplet satisfying the conditions of Definition 4.6 (2)) is at most

wO(1) · p(1−εk)(1−ε2k)yi/2,

where yi := h(Di)− h(Di−1).

Proof. First we apply Lemma 3.4 to count the number of choices of the saver Si.

Indeed, if the integer parts of the coordinates of the source of Si are fixed, and if

⌊w(Si)⌋ = a, then the lemma implies that there are at most aO(1) distinct choices

for Si. Now, Si is spanned by (Di \Di−1) ∩A, and therefore we have the inclusions

Si ⊂ Di ⊂ D′, since Di and D′ are droplets. So the number of choices for the

integer part of the source of Si is at most w2. Hence, the total number of choices

for Si is at most wO(1), independently of h(Si) and yi. It only remains to show

that the probability a given droplet Si satisfies the conditions of a saver droplet in

Definition 4.6 (2) is at most

p(1−εk)(1−ε2k)yi/2. (24)

Let Si be a droplet spanned by (Di \Di−1) ∩ A, such that the width and height

of Si satisfy the conditions in (18), which we recall again here:

w(Si) > ε−6
k − 1 and h(Si) > h(Di)− h(Di−1)− ε−3

k . (25)

Note that it is possible that h(Si) is large: indeed it is possible that it is much larger

than yi = h(Di) − h(Di−1). If that is the case, then we may pass to a sub-droplet

S ′
i ⊂ Si as follows: if h(Si) 6 p−(2/3)k/(log 1/p) then we set S ′

i := Si; otherwise, by

Lemma 3.15, we may choose a droplet S ′
i ⊂ Si spanned by (Di \Di−1)∩A such that

p−(2/3)k

2 log 1/p
6 h(S ′

i) 6
p−(2/3)k

log 1/p
. (26)

In either case we have

h(S ′
i) > h(Di)− h(Di−1)− ε−3

k , (27)

because if S ′
i = Si then this is just the second part of (25), and if S ′

i ⊂ Si then

h(S ′
i) >

p−(2/3)k

2 log 1/p
> h(D′)− h(D) > h(Di)− h(Di−1)− ε−3

k .

The probability S ′
i is spanned by (Di \ Di−1) ∩ A is at most the probability it is

internally spanned, since if S ′
i is spanned by (Di \Di−1)∩A, then it is also spanned

by (Di \Di−1)∩A∩ S ′
i. Therefore, applying IH(k) (using the upper bound on h(S ′

i)

from (26)), we obtain

Pp

(

I×(S ′
i)
)

6 p(1−εk)h(S
′
i)/2.
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For droplets S ′
i with h(S ′

i) > ε−5
k , this bound will be sufficient. Indeed, in such cases

we have ε2k · h(S ′
i) > ε−3

k , and hence, by (27),

yi 6 h(S ′
i) + ε−3

k 6 (1 + ε2k) · h(S ′
i) 6

h(S ′
i)

1− ε2k
,

so (24) holds. For smaller saver droplets we need a better bound, because in these

cases the error of ε−3
k in the height bound in (25) is significant relative to h(Si).

11

We obtain this by using the final condition of a saver droplet in Definition 4.6 (2):

that if h(Si) < ε−5
k then the rightmost ε−6

k − 1 columns of Si all contain an element

of (Di \Di−1) ∩ A. The probability that this occurs is at most

(

ph(Si)
)ε−6

k −1
6 p2ε

−5
k ,

if p is sufficiently small, since we are assuming h(Si) 6 ε−5
k , and we have used the

(easy) fact that |∂(Si)| 6 h(Si). The bound in (24) now follows, since h(Si) < ε−5
k

implies yi 6 2ε−5
k . �

We can now complete the proof of Lemma 4.2.

Proof of Lemma 4.2. We shall show that the probability that (D,D′) admits a sat-

isfied partition is at most the bound claimed in (15); the lemma will then follow

from Lemma 4.7.

Thus, suppose P = (Di)
m
i=0 is a satisfied partition for (D,D′), and let w := w(D′).

To start, we claim that for each 1 6 i 6 m− 1, the probability that (Di \Di−1)∩A

contains a weakly connected Di−1-rooted set Yi of size γ = ⌊ε−3
k /2⌋, given that

yi := h(Di)− h(Di−1) 6 2γ + 2, is at most

2w ·
(

ck
f ′(w)

)ε−3
k /2−1

· pε−3
k /2, (28)

where ck depends only on εk. To see this, first note that each y ∈ Yi lies within

vertical distance 2γ + 1 of Di−1, because |Yi| = γ and Yi is Di−1-rooted. Then for

each y ∈ Yi, there are at most O(γ)/f ′(w) sites y′ such that y ≺ y′ (here we have

used that f ′ is decreasing). Hence, when searching for elements of Yi greedily, there

are only ck/f
′(w) choices for each new site. Now if p is sufficiently small then (28)

is at most

w ·
(

p

f ′(w)

)(1−εk)yi/2

, (29)

since 2γ 6 yi 6 2γ+2 6 ε−3
k +2 (and εk being sufficiently small) implies ε−3

k /2−1 >

(1− εk)yi/2, and since 2p · cε
−3
k /2

k 6 1, because p is sufficiently small.

On the other hand, for each 1 6 i 6 m− 1, the probability that (Di \Di−1) ∩ A

spans a saver droplet Si (that is, Si satisfies the conditions of Definition 4.6 (2)) is

11We have returned to using the original saver droplet because if h(Si) is small then we do not

need to pass to a sub-droplet S′

i
.
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at most

wO(1) · p(1−εk)(1−ε2k)yi/2, (30)

by Lemma 4.12, where as usual yi := h(Di)− h(Di−1).

Next we combine the bound for weakly connected sets from (29) with the bound

for saver droplets from (30). If one defines for each 1 6 i 6 m − 1 the event Ei to
be that (Di \Di−1) ∩ A either contains a weakly connected set of size γ or spans a

saver droplet, then the events Ei are independent as i varies, even though the saver

droplet spanned by (Di \Di−1) ∩ A may not be fully contained in Di \Di−1. This

is because Ei only depends on the intersection of Di \ Di−1 with A, and the sets

Di \Di−1 are disjoint for different values of i. Moreover, by (29) and (30),

Pp(Ei) 6 wO(1) ·
(

p

f ′(w)

)(1−εk)(1−ε2k)yi/2

(31)

for each 1 6 i 6 m− 1. Observe also that

m−1
∑

i=1

yi = h(Dm−1)− h(D) = y −
(

h(D′)− h(Dm−1)
)

> y − 3ε−3
k , (32)

by Definition 4.6. Noting that we always have

m = O(ε3ky), (33)

since h(Di) − h(Di−1) > 2γ > 2ε−3
k /3 for each 1 6 i 6 m − 1, it follows from (31)

and (32) that

m−1
∏

i=1

Pp(Ei) 6 wO(ε3ky) ·
(

p

f ′(w)

)(1−εk)(1−ε2k)(y−3ε−3
k )/2

. (34)

In order to bound the probability that there is a satisfied partition for (D,D′), we

take the union bound over the choices of m and D1, . . . , Dm−1. By Lemma 3.4,

the number of choices for each Di is wO(1) (cf. the proof of Lemma 4.12), so the

total number of choices for m and D1, . . . , Dm−1 is at most wO(ε3ky), by (33). Hence,

by (34), the probability there is a satisfied partition for (D,D′) is at most

wO(ε3ky) ·
(

p

f ′(w)

)(1−εk)(1−ε2k)(y−3ε−3
k )/2

.

We are given that y > ε−5
k , and therefore y − 3ε−3

k > y(1 − 3ε2k). Hence, the

preceeding probability is at most

wO(ε3ky) ·
(

p

f ′(w)

)(1−1.01εk)y/2

,

and so as noted earlier, we are done by Lemma 4.7. �
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Dh
Dv

Figure 7. The two cases of the proof of Lemma 4.1. Both figures

show the inner droplet D and the outer droplet D′. On the left

(Case 1), w(D′) − w(Dh) is large, the intermediate droplet shown

is Dh, and in the proof we bound Pp

(

∆(D,D′)
)

directly by noting

that every column of D′ \Dh must intersect A. On the right (Case 2),

h(D′)− h(Dv) is large, the intermediate droplet shown is Dv, and in

the proof we bound Pp

(

∆(D,D′)
)

using Lemma 4.2.

The deduction of Lemma 4.1 from Lemma 4.2 proceeds as follows. Given D ⊂ D′,

let Dv be the minimal droplet such that D ⊂ Dv < D′, and let Dh be the maximal

droplet such that D < Dh ⊂ D′. Observe that

∆(D,D′) ⇒ ∆(Dv, D
′) ∧∆(Dh, D

′). (35)

Now, either h(D′) − h(Dv) is large, in which case we bound the probability of the

event ∆(Dv, D
′) using Lemma 4.2, or w(D′) − w(Dh) is large, in which case we

bound the probability of the event ∆(Dh, D
′) directly by noting that every column

of D′ \Dh must intersect A (see Figure 7). We now give the details.

Proof of Lemma 4.1. Suppose that ∆(D,D′) occurs, and let Dv and Dh be as above.

By (35), we have

Pp

(

∆(D,D′)
)

6 min
{

Pp

(

∆(Dv, D
′)
)

, Pp

(

∆(Dh, D
′)
)

}

. (36)

To prove the lemma, we shall show that at least one term inside the minimum is at

most the right-hand side of (14).

Let

xv := w(Dv)− w(D), xh := w(Dh)− w(D), and x := w(D′)− w(D),

and note that xv + xh = x, because w(Dv) − w(D) = w(D′) − w(Dh). Note also

that xv ∈ Z, since D and Dv have the same source. Let y := h(D′)− h(D), so that

we have

y

x
=

h(D′)− h(D)

w(D′)− w(D)
= 2 · f

(

w(D′)
)

− f
(

w(D)
)

w(D′)− w(D)
. (37)
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Thus, using Observation 3.6 (d) and the mean value theorem, we have that if k > 1

(and hence f
(

w(D′)
)

< h(D′) 6 1/4p), then

log 1/p

ε3
· y 6 x 6

2 log 1/p

ε3
· y. (38)

Case 1. First suppose that xv > εkx/50. In this case we shall show that the

probability Pp

(

∆(Dh, D
′)
)

of ‘crossing horizontally’ is small: in fact we shall show

that it is at most py, which is more than sufficient for the lemma.

The event ∆(Dh, D
′) implies that every column of D′ \Dh is non-empty. If k > 1

then, since xv is an integer, it follows that

Pp

(

∆(Dh, D
′)
)

6
(

p · h(D′)
)εkx/50

6 e−x,

where for the first inequality we have used the fact that |∂(D′)| 6 h(D′), and for the

second inequality we have used the fact that p · h(D′) = o(1) (which is true since

k > 1). Combining this with (36) and (38) we have

Pp

(

∆(D,D′)
)

6 exp

(

− log 1/p

ε3
· y
)

6 py. (39)

On the other hand, if k = 0 then the probability that every column of D′ \ Dh is

non-empty is at most

(

1− (1− p)h(D
′)
)ε0x/50

6 exp

(

−(1− p)h(D
′) · ε

2

50
· x
)

,

where we have again used |∂(D′)| 6 h(D′), and we have also substituted ε0 = ε2.

Thus, using the inequality 1− p > e−p−p2 (since p is sufficiently small), we have

Pp

(

∆(Dh, D
′)
)

6 exp

(

−e−ph(D′) · ε2

100
· x
)

, (40)

since e−p2h(D′) = 1− o(1). Now observe that

y

x
6 2 · f ′

(

w(D)
)

,

by (37), the mean value theorem, and the fact that f ′ is decreasing (Observa-

tion 3.6 (b)). Hence,

x >
log 1/p

ε3
· e2pf(w(D)) · y >

log 1/p

2ε3
· eph(D) · y,

by Observation 3.6 (c), the definition of h(D), and the fact that e−p > 1/2. Inserting

this into (40) and using the bound from (36) gives

Pp

(

∆(D,D′)
)

6 exp

(

−e−p(h(D′)−h(D)) · log 1/p
200ε

· y
)

6 exp

(

− log 1/p

300ε
· y
)

,

since p
(

h(D′)− h(D)
)

= o(1). Thus, it follows that

Pp

(

∆(D,D′)
)

6 py, (41)
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since ε is sufficiently small. This together with (39) establishes the lemma in the

case xv > εkx/50.

Case 2. So suppose instead that xv 6 εkx/50. First we would like to show that

y′ := h(D′)− h(Dv) is not much smaller than y. To that end, note that

h(Dv)− h(D) = 2f
(

w(Dv)
)

− 2f
(

w(D)
)

6 2f ′
(

w(D)
)

· xv

6 2f ′
(

w(D)
)

· εkx/50,
by the mean value theorem and since f ′ is decreasing. By a similar justification,

and using (37), we have

x 6
1

2f ′
(

w(D′)
) · y.

Hence,

h(Dv)− h(D) 6
f ′
(

w(D)
)

f ′
(

w(D′)
) · εk

50
· y = ep(h(D

′)−h(D)) · εk
50

· y 6
εk
40

· y,

by Observation 3.6 (c), the definition of the height of a droplet, and since p
(

h(D′)−
h(D)

)

= o(1). Thus

y′ = h(D′)− h(Dv) > (1− εk/40)y. (42)

Note that the conditions of Lemma 4.2 hold when applied to droplets Dv and D′.

Indeed, Dv < D′ by construction; h(Dv) > h(D) > ε−5
k by assumption;

h(D′)− h(Dv) > (1− εk/40)
(

h(D′)− h(D)
)

> (1− εk/40) · ε−6
k > ε−5

k

by (42) and assumption; and h(D′) − h(Dv) 6 p−(2/3)k
(

2 log 1/p
)−1

again by as-

sumption. Thus, applying Lemma 4.2 gives

Pp

(

∆(Dv, D
′)
)

6 w(D′)O(ε3ky
′) ·
(

p

f ′
(

w(D′)
)

)(1−1.01εk)y
′/2

.

We always have h(D′) 6 p−1 log 1/p (regardless of k), which implies that

w(D′) =
log 1/p

ε3p

(

ep(h(D
′)−1) − 1

)

6 p−O(1),

by inverting the function f and using the fact that h(D′) = 2f
(

w(D′)
)

+ 1. Hence,

also inserting the expression for f ′ from Observation 3.6 (c),

Pp

(

∆(Dv, D
′)
)

6 p−O(ε3ky
′) ·
(

p · 2 log 1/p
ε3

· eph(D′)

)(1−1.01εk)y
′/2

.

Hence, using the (crude) bound
(

2 log 1/p

ε3

)(1−1.01εk)/2

6 p−O(ε3k),
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we deduce that Pp

(

∆(Dv, D
′)
)

is at most

exp

(

−
(

1− 1.01εk

)

(

log
1

p
− ph(D′)

)

y′

2
+O

(

ε3k log
1

p

)

y′

)

. (43)

To deal with the final error term in (43), we use the fact that log 1/p− ph(D′) >

ε log 1/p. Together with (42), this gives us finally that

Pp

(

∆(Dv, D
′)
)

6 exp

(

−
(

1− 1.1εk

)

(

log
1

p
− ph(D′)

)

y

2

)

.

We are now done by (36). �

5. Small droplets

In this section we will bound the probability that a droplet of height at most

(p log 1/p)−1 is internally spanned. Recall from Definition 3.9 that, for each k > 0,

we denote the following statement by IH(k):

Let D be a droplet of height at most p−(2/3)k(log 1/p)−1. Then

Pp

(

I×(D)
)

6 p(1−εk)h(D)/2,

where εk = ε2 · (3/4)k.
Our aim is to prove that IH(0) holds. This is an immediate consequence of the

following two lemmas.

Lemma 5.1. IH(k) holds for all sufficiently large k.

Lemma 5.2. Let k > 1. Then IH(k) ⇒ IH(k − 1).

The proof of Lemma 5.1 is easy, so the main task of this section will be to prove

Lemma 5.2. We begin, however, with the more straightforward task.

Proof of Lemma 5.1. Let k ∈ N be sufficiently large, and let D be a droplet with

h(D) 6 p−(2/3)k(log 1/p)−1. By Lemma 3.13, if D is internally spanned then

|D ∩ A| > h(D) + 1

2
.

Noting that Observation 3.6 implies that the volume of D (rather crudely) satisfies

|D| 6 (log 1/p)2 · h(D)2,

it follows that

Pp

(

I×(D)
)

6

( |D|
(

h(D) + 1
)

/2

)

p(h(D)+1)/2 = O
(

h(D) · p(log 1/p)2
)(h(D)+1)/2

.

But if k is sufficiently large so that εk = ε2 · (3/4)k > (2/3)k, then h(D) · (log 1/p)2 6
p−(2/3)k log 1/p ≪ p−εk , and hence this is at most p(1−εk)h(D)/2, as required. �
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In order to prove Lemma 5.2 we will use the method of hierarchies. In particular,

we will use Lemmas 3.21, 3.23 and 4.1.

In this section and the next, for the clearer display of expressions involving expo-

nentials, we shall use the notation expp(x) := px.

Proof of Lemma 5.2. Let k > 1 and suppose that IH(k) holds. Let D be a droplet

with12

p−(2/3)k(log 1/p)−1 6 h(D) 6 p−(2/3)k−1

(log 1/p)−1,

and apply Lemma 3.21 to D with t = p−(2/3)k/
(

4 log 1/p
)

. We obtain

Pp

(

I×(D)
)

6
∑

H∈HD(t)

(

∏

u∈L(H)

Pp

(

I×(Du)
)

)(

∏

u→v

Pp

(

∆(Dv, Du)
)

)

. (44)

To deduce the desired bound from (44), we shall use IH(k) and Lemmas 3.23 and 4.1.

Let H ∈ HD(t), and note first that t 6 h(Du) 6 2t = p−(2/3)k/
(

2 log 1/p
)

for

every u ∈ L(H), so by IH(k) we have

Pp

(

I×(Du)
)

6 p(1−εk)h(Du)/2 6 pt/3. (45)

Next, note that if u → v then h(Du)− h(Dv) 6 2t = p−(2/3)k/
(

2 log 1/p
)

. If we also

have h(Du)− h(Dv) > ε−6
k , then by Lemma 4.1 we have

Pp

(

∆(Dv, Du)
)

6 expp

(

(1− 1.1εk)(1− ε2k)

2

(

h(Du)− h(Dv)
)

)

, (46)

since ph(Du) 6 (log 1/p)−1 6 ε2k · log 1/p. Therefore we have

∏

u→v

Pp

(

∆(Dv, Du)
)

6 expp

(

1− ε′k
2

(

∑

u→v

(

h(Du)− h(Dv)
)

− v(H) · ε−6
k

)

)

, (47)

where 1 − ε′k := (1 − 1.1εk)(1 − ε2k), and the second term in the exponential takes

account of the fact that (46) requires h(Du)− h(Dv) > ε−6
k .

With foresight, let us split the sum in (44) into two parts, depending on the

number of seeds in H. To that end, set ℓ0 := t · (log 1/p)−1, and let

H(1) =
{

H ∈ HD(t) : ℓ(H) 6 ℓ0
}

and H(2) = HD(t) \ H(1).

Bounding the sum over H ∈ H(2) is easy: by Lemma 3.23 and (45) we have
∑

H∈H(2)

∏

u∈L(H)

Pp

(

I×(Du)
)

6
∑

ℓ>ℓ0

expp

(

ℓ · t/3−O
(

ℓ · h(D)/t
)

)

< ph(D),

where the last inequality holds since h(D)/t ≪ t and ℓ0 · t ≫ h(D).

Thus, combining (44) with (45) and (47), and noting that ε′k > εk, it will suffice

to bound

∑

H∈H(1)

expp

(

1− ε′k
2

(

∑

u∈L(H)

h(Du) +
∑

u→v

(

h(Du)− h(Dv)
)

− v(H) · ε−6
k

)

)

. (48)

12If h(D) is smaller than this, then the desired bound follows immediately from IH(k).
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To do so, let H ∈ H(1), and recall that
∑

u∈L(H)

h(Du) +
∑

u→v

(

h(Du)− h(Dv)
)

> h(D)− v(H), (49)

by Lemma 3.22, and that

v(H) = O

(

ℓ · h(D)

t

)

= o
(

h(D)
)

,

by Lemma 3.23, and since ℓ 6 ℓ0 = o(t). Thus, using Lemma 3.23 to bound |H(1)|,
it follows that

Pp

(

I×(Du)
)

6 expp

(

(

1− ε′k
2

)

h(D)− o
(

h(D)
)

)

+ ph(D),

where the o
(

h(D)
)

in the exponent counts the size of H(1) and also the error of

O
(

v(H)
)

. Since εk−1 = (4/3) · εk, this is at most p(1−εk−1)h(D)/2, as required. �

6. Large droplets, and the proof of Theorem 1.1

In this section we shall prove Proposition 3.8, and deduce Theorem 1.1. The spirit

of this section is similar to that of the previous section, in that we are proving an

upper bound on the probability that a droplet is internally spanned assuming that

we already have a corresponding bound for smaller droplets. This time, however,

the larger droplets will be critical droplets and the smaller droplets will be those

which we can bound using IH(0). Another important difference is that, as we reach

the critical size, we gain an additional factor of 1/2 in the exponent in the bound

for Pp

(

I×(D)
)

. Indeed, as one can see below in Proposition 6.1, the factor of 1/2

decreases to 1/4 linearly in the height of the droplet as the droplet reaches the

critical size.

Given a droplet D, let

h∗(D) :=
p

log 1/p
· h(D) (50)

denote the renormalized height of D. Proposition 3.8 is an immediate consequence

of the following bound.

Proposition 6.1. For every ε > 0, there exists p0(ε) > 0 such that the following

holds. If 0 < p 6 p0(ε) and D is a droplet with h∗(D) 6 1− ε, then

Pp

(

I×(D)
)

6 expp

(

(

2− h∗(D)

4
− ε

)

h(D)

)

. (51)

We will prove Proposition 6.1 by taking a union bound over good and satisfied

hierarchies for D. In order to do so, we will need one additional lemma, which
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bounds the product of the probabilities of the ‘sideways steps’ of such a hierarchy.

Define the pod height13 of a hierarchy H for a droplet D to be

h(H) := min

{

h(D),
∑

u∈L(H)

h(Du)

}

, (52)

and let h∗(H) := p(log 1/p)−1 · h(H) be the renormalized pod height. Let us write

ℓ(H) for
∣

∣L(H)
∣

∣, and set

t :=
1

4p log 1/p
.

Finally, we will need a function µ, defined by

µ(H) :=
2− h∗(D)− h∗(H)

4
. (53)

Note that if h∗(H) 6 h∗(D) 6 1 − ε, which will always be the case in this section,

then µ(H) > ε/2. The following bound is a variant of [17, Lemma 38]. We remark

that such ‘pod lemmas’ have since become a standard tool in the area; see e.g. [3,

13,17,18]. The proof follows (as usual) by adapting the argument of [17], but since

in our setting there are some slightly subtle complications to deal with, we will give

the details in full.

Lemma 6.2. Let D be a droplet with h∗(D) 6 1 − ε, and let H be a t-good and

satisfied hierarchy for D. Then
∏

u→v

Pp

(

∆(Dv, Du)
)

6 expp

(

(

µ(H)− 2ε2
)(

h(D)−h(H)
)

− ε−6
(

3ℓ(H)− 2
)

)

. (54)

We will use the following easy algebraic facts in the proof of Lemma 6.2.

Observation 6.3. Let a, a′, s, s′, δ ∈ R. If s′ 6 s 6 1− 2δ, a > a′, and 2δ(1 + a) >

a− a′, then
(

2− a′ − s′

4
− δ

)

(a′ − s′) + (1− δ)

(

1− a

2

)

(a− a′) >

(

2− a− s

4
− δ

)

(a− s).

Proof. The condition s′ 6 s 6 1 − 2δ implies that the left-hand side is decreas-

ing in s′, so we may assume that s = s′. Then the claimed inequality is just a

rearrangement of 2δ(1 + a)(a− a′) > (a− a′)2. �

Observation 6.4. Let δ, a, a1, a2, s, s1, s2 ∈ R. If a, s 6 1 − 2δ, a 6 a1 + a2,

s > s1 + s2, and a1a2 > s1s2, then
(

2− a1 − s1
4

− δ

)

(a1 − s1) +

(

2− a2 − s2
4

− δ

)

(a2 − s2)

>

(

2− a− s

4
− δ

)

(a− s).

13This terminology is a reference to the ‘pod’ droplets first introduced in [17]. In our setting it

will be more convenient to work with the pod height function directly.



40 B. BOLLOBÁS, H. DUMINIL-COPIN, R. MORRIS, AND P.J. SMITH

Proof. The right-hand side is increasing in a and decreasing in s, since a, s 6 1− 2δ,

so we may assume that a = a1 + a2 and s = s1 + s2, in which case the inequality is

equivalent to a1a2 > s1s2. �

Proof of Lemma 6.2. The proof is by induction on m := |V (GH)|. Note that the

inequality holds trivially if h(H) = h(D), since the right-hand side is at least 1, and

that h(H) = h(D) if m = 1. So let m > 2, and suppose that h(H) < h(D) (so that

in fact h(H) =
∑

u∈L(H) h(Du)), and that the lemma holds for all hierarchies with

at most m− 1 vertices. We shall divide the induction step into two cases according

to whether or not the first step of the hierarchy is a reasonably large sideways step.

Case 1: N→
GH

(vroot) = {w} and h(D)− h(Dw) > ε−6.

In this case the desired bound follows from Lemma 4.1, IH(0) and the induction

hypothesis on m, using Observation 6.3. To see this, set D′ = Dw and write H′ for

the hierarchy obtained from H by removing the vertex (and droplet) corresponding

to vroot, and adding a new root at w. Then, trivially,
∏

u→v
u,v∈H

Pp

(

∆(Dv, Du)
)

= Pp

(

∆(D′, D)
)

∏

u→v
u,v∈H′

Pp

(

∆(Dv, Du)
)

. (55)

Now, observe that H′ is a t-good and satisfied hierarchy for D′. Thus, by the

induction hypothesis on m, we have

∏

u→v
u,v∈H′

Pp

(

∆(Dv, Du)
)

6 expp

(

(

µ(H′)− 2ε2
)(

h(D′)− h(H′)
)

− ε−6
(

3ℓ(H)− 2
)

)

,

(56)

where we have replaced ℓ(H′) by ℓ(H) since L(H′) = L(H). Now, since IH(0) holds

(by Lemmas 5.1 and 5.2), and we have the bounds ε−6 6 h(D) − h(D′) 6 2t and

h∗(D) 6 1− ε, we may apply Lemma 4.1 to give

Pp

(

∆(D′, D)
)

6 expp

(

(1− 2ε2)

(

1− h∗(D)

2

)

(

h(D)− h(D′)
)

)

. (57)

Combining (56) and (57) with (55), it follows that it is sufficient to show

(

µ(H′)− 2ε2
)(

h(D′)− h(H′)
)

+ (1− 2ε2)

(

1− h∗(D)

2

)

(

h(D)− h(D′)
)

>
(

µ(H)− 2ε2
)(

h(D)− h(H)
)

. (58)

We would like to apply Observation 6.3 with a = h∗(D), a′ = h∗(D′), s = h∗(H),

s′ = h∗(H′), and δ = 2ε2. If the conditions of the observation are satisfied, then

we will be done, since on multiplying through by p−1 log 1/p, the conclusion of the

observation (with these parameters) is equivalent to (58). For the conditions, we

have: h∗(D) > h∗(D′) by assumption; h∗(H) > h∗(H′) from the previous inequality
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and since L(H) = L(H′); h∗(H) 6 1− 4ε2 since h∗(H) 6 h∗(D) and h∗(D) 6 1− ε;

and finally,

4ε2
(

1 + h∗(D)
)

> h∗(D)− h∗(D′)

since h∗(D) − h∗(D′) 6 (log 1/p)−2 ≪ 1, by our choice of t. This completes the

proof of the lemma in Case 1.

Case 2: N→
GH

(vroot) = {w} and h(D)− h(Dw) < ε−6.

By the definition of a t-good hierarchy, there are two ways that we could have

h(D) − h(D′) < ε−6. One is that w is a split vertex (which is why we have not

considered separately the case in which vroot is a split vertex; see below), and the

other is that w is a leaf. If w is a leaf then (54) trivially holds, since then vroot and

w are the only vertices in H, and the expression inside the exponent in (54) is at

most
(

h(D)− h(Dw)
)

/2− ε−6 < 0,

so the right-hand side of (54) is greater than 1.

Thus we may assume that w is a split vertex. (As mentioned above, we have not

considered the case in which vroot is a split vertex. However, this case is covered by

the calculation below, as long as we allow h(D) − h(Dw) to be zero.14) We shall

show that the desired bound follows from the induction hypothesis on m directly,

using Observation 6.4.

Indeed, set D′ = Dw and write H′ for the hierarchy obtained from H by removing

the vertex (and droplet) corresponding to vroot, and adding a new root at w. More-

over, let N→
GH

(w) = {v1, v2}, and, for each i ∈ {1, 2}, set Di = Dvi and let Hi be the

part of H′ below and including vi. Note that
∏

u→v
u,v∈H′

Pp

(

∆(Dv, Du)
)

=
∏

u→v
u,v∈H1

Pp

(

∆(Dv, Du)
)

∏

u→v
u,v∈H2

Pp

(

∆(Dv, Du)
)

. (59)

Now, observe that H1 and H2 are t-good and satisfied hierarchies for D1 and D2.

Therefore, by the induction hypothesis, we have
∏

u→v
u,v∈Hi

Pp

(

∆(Dv, Du)
)

6 expp

(

(

µ(Hi)− 2ε2
)(

h(Di)− h(Hi)
)

− ε−6
(

3ℓ(Hi)− 2
)

)

,

(60)

for each i ∈ {1, 2}. Moreover, we have

h(H) =
∑

u∈L(H)

h(Du) > h(H1) + h(H2) (61)

since we assumed h(H) < h(D), and we also have

h(D) 6 h(D′) + ε−6 6 h(D1) + h(D2) + 1 + ε−6 (62)

by Lemma 3.12.

14In this case, set w = vroot and H′ = H in the definitions in the next paragraph.
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Next we shall apply Observation 6.4 with a = h∗(D) − (1 + ε−6)p(log 1/p)−1,

s = h∗(H), ai = h∗(Di) and si = h∗(Hi) for i ∈ {1, 2}, and δ = 2ε2. This is

permissible since we have a 6 a1 + a2 by (62), s > s1 + s2 by (61), a1a2 > s1s2
since ai > si for i ∈ {1, 2} by the definition of h(Hi), and finally a, s 6 1 − 2δ

since s 6 a + ε2 (say) and a 6 1 − ε by the assumption of the lemma. Applying

Observation 6.4 and multiplying through by p−1 log 1/p gives

(

µ(H1)− 2ε2
)(

h(D1)− h(H1)
)

+
(

µ(H2)− 2ε2
)(

h(D2)− h(H2)
)

>
(

µ(H)− 2ε2 − (1 + ε−6)p(log 1/p)−1
)(

h(D)− h(H)− (1 + ε−6)
)

,

After rearranging, the right-hand side is at least
(

µ(H)− 2ε2
)(

h(D)− h(H)
)

− (1 + ε−6)
(

µ(H) + h∗(D)
)

,

so all together we have

(

µ(H1)− 2ε2
)(

h(D1)− h(H1)
)

+
(

µ(H2)− 2ε2
)(

h(D2)− h(H2)
)

>
(

µ(H)− 2ε2
)(

h(D)− h(H)
)

− 2ε−6, (63)

since µ(H) 6 1/2 and h∗(D) 6 1.

Returning to the probability we wish to bound, after combining (59) and (60)

with (63) we have that the left-hand side of (59) is at most

expp

(

(

µ(H)− 2ε2
)(

h(D)− h(H)
)

− 2ε−6 − ε−6
(

3ℓ(H1) + 3ℓ(H2)− 4
)

)

.

The proof of the lemma is now complete, since ℓ(H) = ℓ(H1) + ℓ(H2), and we can

bound Pp

(

∆(D′, D)
)

trivially by 1, which gives
∏

u→v
u,v∈H

Pp

(

∆(Dv, Du)
)

6 expp

(

(

µ(H)− 2ε2
)(

h(D)− h(H)
)

− ε−6
(

3ℓ(H)− 2
)

)

,

as desired. �

We now have all the tools we need in order to prove Proposition 6.1.

Proof of Proposition 6.1. Let D be a droplet such that h∗(D) 6 1 − ε, set t =

(4p log 1/p)−1, and note that we may assume that h(D) > t, since otherwise the

lemma follows immediately from IH(0). Applying Lemma 3.21 to D, we obtain

Pp

(

I×(D)
)

6
∑

H∈HD(t)

(

∏

u∈L(H)

Pp

(

I×(Du)
)

)(

∏

u→v

Pp

(

∆(Dv, Du)
)

)

. (64)

In order to deduce Proposition 6.1 from (64), we shall use IH(0) and Lemmas 3.23

and 6.2.

Let H ∈ HD(t), and note that h(Du) 6 2t = (2p log 1/p)−1 for every u ∈ L(H).

Thus, by IH(0) (which follows from Lemmas 5.1 and 5.2), we have
∏

u∈L(H)

Pp

(

I×(Du)
)

6
∏

u∈L(H)

p(1−ε2)h(Du)/2 6 p(1−ε2)h(H)/2. (65)
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Also, by Lemma 6.2, we have
∏

u→v

Pp

(

∆(Dv, Du)
)

6 expp

(

(

µ(H)− 2ε2
)(

h(D)−h(H)
)

− ε−6
(

3ℓ(H)− 2
)

)

. (66)

As in the proof of Lemma 5.2, we split the sum in (64) into two parts, depending

on the number of seeds in H. Thus, let us set

H(1) =
{

H ∈ HD(t) : ℓ(H) 6 p−1/2
}

and H(2) = HD(t) \ H(1).

As before, bounding the sum over H ∈ H(2) is easy: by Lemma 3.23 and (65) we

have
∑

H∈H(2)

∏

u∈L(H)

Pp

(

I×(Du)
)

6
∑

ℓ>p−1/2

expp

(

ℓ · t/3−O
(

ℓ · h(D)/t
)

)

< e−p−5/4

, (67)

where the last inequality holds since h(D)/t = O
(

(log 1/p)2
)

and t > p−3/4.

For the sum over H ∈ H(1), we insert the bounds from (65) and (66) into (64) to

obtain

∑

H∈H(1)

(

∏

u∈L(H)

Pp

(

I×(Du)
)

)(

∏

u→v

Pp

(

∆(Dv, Du)
)

)

6
∑

H∈H(1)

expp

(

(

µ(H)−2ε2
)(

h(D)−h(H)
)

+

(

1− ε2

2

)

h(H)−ε−6
(

3ℓ(H)−2
)

)

.

(68)

Observe that by rearranging the terms and noting that h(D)h∗(H) = h(H)h∗(D),

we have
(

2− h∗(D)− h∗(H)

4
− 2ε2

)

(

h(D)− h(H)
)

+

(

1− ε2

2

)

h(H)

>

(

2− h∗(D)

4
− 2ε2

)

h(D),

and therefore (68) is at most

∑

H∈H(1)

expp

(

(

2− h∗(D)

4
− 2ε2

)

h(D)− ε−6
(

3ℓ(H)− 2
)

)

. (69)

By Lemma 3.23 and the bounds ℓ(H) 6 p−1/2 and h(D)/t 6 (log 1/p)2, we have

|H(1)| 6 p−1/2 · exp
(

O

(

h(D) log 1/p

t
√
p

))

< et. (70)

Finally, combining (69) with (70) and the bounds h(D) > t ≫ p−1/2 > ℓ(H), which

hold for every H ∈ H(1), and adding (67), it follows that

Pp

(

I×(D)
)

6 expp

(

(

2− h∗(D)

4
− ε

)

h(D)

)

,

as required. �
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We are finally ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The upper bound was proved in Section 2, so fix λ < 1/8,

and set

p =
λ(log logn)2

logn
.

We will prove that with high probability a p-random subset A ⊂ Z
2
n does not

percolate.

Indeed, if A percolates then, by Lemma 3.14, there exists a pair (D1, D2) of

disjointly internally spanned droplets such that

max
{

h(D1), h(D2)
}

6
1− ε

p
log

1

p
and h(D1) + h(D2) >

1− ε

p
log

1

p
− 1,

and d(D1, D2) 6 2. By Lemma 3.4, there are at most n2 · p−O(1) choices for D1 and

D2 satisfying these conditions. Applying Proposition 6.1 to D1 and D2 (which we

may do since h∗(Di) 6 1− ε for i ∈ {1, 2}), and using the BK inequality, it follows

that

Pp

(

[A] = Z
2
n

)

6 n2 · p−O(1) · exp
(

− (1− 8ε)

4p

(

log
1

p

)2
)

6 n−ε

if ε > 0 is sufficiently small. This complete the proof of the theorem. �

7. Further discussion and open problems

7.1. The modified Duarte model. The modified Duarte model is the monotone

cellular automaton whose update family is

D(m) :=
{

{

(−1, 0), (0,−1)
}

,
{

(1, 0), (0,−1)
}

}

.

Thus, the modified Duarte model comprises two of the three rules of the (original)

Duarte model, has the same stable set, and is also critical and unbalanced with

difficulty 1. An interesting feature of the modified Duarte model is its size: it is

formed of only two update rules, which is the minimum of any critical update family.

The following theorem is the first sharp threshold result for a critical two-dimensional

family that is minimal in this sense.

Theorem 7.1.

pc
(

Z
2
n,D(m)

)

=

(

1

4
+ o(1)

)

(log logn)2

log n
as n → ∞.

The proof of Theorem 7.1 follows that of Theorem 1.1 almost exactly. The only

differences are that the absence of the rule
{

(0,−1), (0, 1)
}

from D(m) means that,

in order for a droplet to grow vertically, there must be an element of A in every

row, rather than just every alternate row. This leads to some small simplifications

in Section 4 and a gain of a factor of 2 in the exponent in the bound (14) in

Lemma 4.1, and some similarly minor simplifications in the upper bound.
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7.2. Related two-dimensional models. In two dimensions, sharp thresholds are

now known for the 2-neighbour model (and its modified analogue) [17], so-called

symmetric balanced threshold models15 [13], a single unbalanced non-drift model [12],

and the Duarte model (and its modified analogue), but remain open in all other

cases. It might be possible that, using a combination of the techniques from [13,17]

for balanced models, [12] for unbalanced models without drift, and the present paper

for unbalanced models with drift, one could determine the sharp threshold for any

critical family U whose update rules are contained in the axes (i.e. such that for all

X ∈ U and for all (a, b) ∈ X , we have ab = 0). Nevertheless, we expect the following

problem to be hard.

Problem 7.2. Determine the sharp threshold for any critical family whose update

rules are contained in the axes.

7.3. Higher dimensions. The study of monotone cellular automata in higher di-

mensions is notoriously difficult. In Z
d for d > 3, the only models for which sharp

thresholds are known are the r-neighbour bootstrap percolation models [3, 4], for

each 2 6 r 6 d. These r-neighbour models aside, even coarse thresholds (that is,

thresholds up to a constant factor) are only known for a certain family of symmetric

three-dimensional threshold models, whose rules are contained in the axes [14].

The analogue of Problem 7.2 in dimensions d > 3 is likely to be out of reach at

present, but it may be possible to make progress if ‘sharp threshold’ is replaced by

‘coarse threshold’. To state the problem formally, we need to say what we mean by

‘critical’ in higher dimensions. The following definition was recently proposed by

the authors in [5].

Fix an integer d > 2 and let U be a d-dimensional update family (that is, let U
be a finite collection of finite subsets of Zd \ {0}). Define the stable set S = S(U)
analogously to how it is defined in two dimensions:

S :=
{

u ∈ Sd−1 : [Hd
u] = H

d
u

}

,

where

H
d
u :=

{

x ∈ Z
d : 〈x, u〉 < 0

}

is the discrete half-space in Z
d with normal u ∈ Sd−1. Let µ : L(Sd−1) → R denote

the Lebesgue measure on the collection of Lebesgue-measurable subsets of Sd−1.

Definition 7.3. A d-dimensional update family is:

(1) subcritical if µ(C ∩ S) > 0 for every hemisphere C ⊂ Sd−1;

(2) critical if there exists a hemisphere C ⊂ Sd−1 such that µ(C ∩ S) = 0 and

if C ∩ S 6= ∅ for every open hemisphere C ⊂ Sd−1;

(3) supercritical if C ∩ S = ∅ for some open hemisphere C ⊂ Sd−1.

15That is, models formed by the r-element subsets of a centrally symmetric star subset of

Z
2 \ {0}, in the cases where such models are critical and balanced. (Here, ‘star’ means that if x is

in the set then the whole of (0, x] ∩ Z
2 is in the set.)
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Problem 7.4. For each d > 3, determine the coarse threshold for any d-dimensional

critical family whose update rules are contained in the axes.

This question is already likely to be very difficult, so as a first step one might

restrict to the case d = 3 or to update rules contained in the set of nearest neighbours

of the origin.
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