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Abstract. In r-neighbour bootstrap percolation on a graph G, a (typically random) set
A of initially ‘infected’ vertices spreads by infecting (at each time step) vertices with at
least r already-infected neighbours. This process may be viewed as a monotone version
of the Glauber dynamics of the Ising model, and has been extensively studied on the
d-dimensional grid [n]d. The elements of the set A are usually chosen independently,
with some density p, and the main question is to determine pc([n]d, r), the density at
which percolation (infection of the entire vertex set) becomes likely.

In this paper we prove, for every pair d, r ∈ N with d > r > 2, that

pc

(
[n]d, r

)
=

(
λ(d, r) + o(1)

log(r−1) n

)d−r+1

as n → ∞, for some constant λ(d, r) > 0, and thus prove the existence of a sharp
threshold for percolation in any (fixed) number of dimensions. We moreover determine
λ(d, r) for every d > r > 2.

1. Introduction

Cellular automata, which were introduced by von Neumann (see [38]) after a sugges-
tion of Ulam [40], are dynamical systems (defined on a graph G) whose update rule is
homogeneous and local. In this paper we shall study a particular cellular automaton,
known as r-neighbour bootstrap percolation, which may be thought of as a monotone
version of the Glauber dynamics of the Ising model of ferromagnetism. We shall prove
the existence of a sharp threshold for percolation in the r-neighbour model on the grid
[n]d, where d > r > 2 are fixed and n→∞, and moreover we shall determine the critical
probability pc([n]d, r) up to a factor of 1+o(1). Our main theorem settles the major open
question in bootstrap percolation.

Given a (finite or infinite) graph G, and an integer r ∈ N = {0, 1, 2, . . .}, the r-
neighbour bootstrap process on G is defined as follows. Let A be a set of initially ‘infected’
vertices. At each time step, infect all of the vertices which have at least r already-infected
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neighbours. To be precise, let A0 = A, and define

At+1 := At ∪
{
v ∈ V (G) : |N(v) ∩ At| > r

}
for each t ∈ N, where N(v) denotes the set of (nearest) neighbours of v in G, and |S|
denote the cardinality of a set S. We think of the set At as the vertices which are infected
at time t, and write [A] =

⋃
tAt for the closure of A under the process. We say that the

set A percolates if the entire vertex set is eventually infected, i.e., if [A] = V (G).
The bootstrap process was introduced in 1979 by Chalupa, Leath and Reich [16] in the

context of disordered magnetic systems, and has been studied extensively by mathemati-
cians (see, for example, [2, 4, 8, 13, 31, 39]) and physicists [1, 12, 30, 36], as well as by
computer scientists [17, 20] and sociologists [24, 41], amongst others. Motivated by these
physical models, we shall consider bootstrap percolation on the grid [n]d = {1, . . . , n}d,
and an initial set A ⊂ V (G) whose elements are chosen independently at random, each
with probability p. We shall write Pp for this distribution; throughout the paper, A will
always denote a random subset of V (G) chosen according to Pp.

It is clear that the probability of percolation is increasing in p, and so we may define
the critical probability, pc(G, r) as follows:

pc(G, r) := inf
{
p : Pp

(
A percolates in the r-neighbour process on G

)
> 1/2

}
.

Our aim is to give sharp bounds on pc([n]d, r), and to bound the size of the ‘critical
window’ in which the probability of percolation shifts from o(1) to 1− o(1).

The first rigorous results on bootstrap percolation were obtained by van Enter [19] and
Schonmann [39], on the infinite lattice Zd, and by Aizenman and Lebowitz [2], on the
finite grid. In particular, Schonmann proved that pc(Zd, r) = 0 if r 6 d, and pc(Zd, r) =
1 otherwise. The finite-volume behaviour (also known as ‘metastability’) was studied
in [2, 13, 14], and the threshold function pc([n]d, r) was determined up to a constant factor,
for all d > r > 2, by Cerf and Manzo [14]. The first sharp threshold was determined by
Holroyd [31], in the case d = r = 2, who proved that

pc
(
[n]2, 2

)
=

π2

18 log n
+ o

(
1

log n

)
as n → ∞, and a corresponding result in three dimensions was recently proved in [6].
However, a longstanding open question (see, for example, [2, 3, 14, 31]) was to determine
whether there is sharp transition for pc([n]d, r) (for fixed d and r, as n → ∞), and if so,
whether there is a limiting constant. We resolve this question affirmatively, and determine
the constant for every pair (d, r).

In order to state our main result we first need to recall some functions from [6]. First,
for each k ∈ N, let

βk(u) :=
1

2

(
1 − (1− u)k +

(
1 + (4u− 2)(1− u)k + (1− u)2k

)1/2
)
,
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so βk(u)2 =
(
1− (1− u)k

)
βk(u) + u(1− u)k, and let

gk(z) := − log
(
βk
(
1− e−z

))
.

Now, for each 2 6 r 6 d ∈ N, let

λ(d, r) :=

∫ ∞
0

gr−1(zd−r+1) dz. (1)

The following theorem is the main result of this paper. Let log denote the natural log-
arithm, and let log(r) denote an r-times iterated logarithm, log(r+1)(n) = log

(
log(r)(n)

)
.

Theorem 1. Let d, r ∈ N, with d > r > 2. Then

pc([n]d, r) =

(
λ(d, r) + o(1)

log(r−1) n

)d−r+1

as n→∞.

Remark 1. We shall moreover obtain explicit bounds on the probability that A percolates
outside the critical window. To be precise, for any ε > 0 we shall prove that, if p =
(1− ε)pc, then

Pp
(
A percolates

)
6 n−d(r−2)−δ

for some δ = δ(ε) > 0 (see Corollary 23 and Theorem 27). In [6] it was proved that if
p = (1 + ε)pc, then

Pp
(
A percolates

)
> 1 − exp

(
− nd−1

(log n)3d

)
.

Some special cases of Theorem 1 were known previously. Indeed, as noted above, the
case d = r = 2 was proved by Holroyd [31], and the case d = r = 3, and the upper
bound in Theorem 1, were proved by Balogh, Bollobás and Morris [6]. Holroyd [32] also
proved a sharp threshold for a ‘modified’ bootstrap percolation in an arbitrary (constant)
number of dimensions. The modified model is much simpler to study, however, and the
critical threshold differs from ours by a factor of about d. A weaker notion of sharpness
was proven for r = 2 and all d > 2 by Balogh and Bollobás [3], using a general result of
Friedgut and Kalai [23]. Their result implies that the critical window is of order o(pc),
but not that the sequence pc([n]d, 2)(log n)d−1 converges.

Although we cannot solve the integral (1) exactly, it is not too hard to prove that the
function λ(d, r) has some nice properties. In particular, λ(d, r) <∞ for every d > r > 2,

λ(2, 2) =
π2

18
(see [31] and also [33]), λ(d, 2) =

d− 1

2
+ o(1), and

λ(d, d) =

(
π2

6
+ o(1)

)
1

d

as d→∞ (see [6]).
The following table lists some approximate values of λ(d, r) for 2 6 d 6 7:
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d

2 3 4 5 6 7

2 0.5483 0.9924 1.4797 1.9764 2.4760 2.9768
3 - 0.4039 0.8810 1.3864 1.8961 2.4078

r 4 - - 0.3198 0.8024 1.3162 1.8338
5 - - - 0.2650 0.7431 1.2606
6 - - - - 0.2265 0.6963
7 - - - - - 0.1979

λ(d, r)

We remark finally that the bootstrap process has also been studied on several other
graphs, such as high dimensional tori [4, 5, 7], infinite trees [8, 11, 21], the random
regular graph [9, 34], ‘locally tree-like’ regular graphs [5], and the Erdős-Rényi random
graph Gn,p [35]. Some of the techniques from these papers (and those mentioned earlier)
have been used to prove results about the low-temperature Glauber dynamics of the Ising
model [15, 22, 37]. Some very recent results on bootstrap percolation in two dimensions
can be found in [18, 29], see Section 9 for more details.

We shall prove Theorem 1 by induction on r, and in order for the proof to work we
shall need to strengthen the induction hypothesis. A bootstrap structure is a graph G,
together with a function r : V (G) → N which assigns a ‘threshold’ to each vertex of G.
Bootstrap percolation on such a structure is then defined in the obvious way, by setting
A0 = A and

At+1 := At ∪
{
v ∈ V (G) : |N(v) ∩ At| > r(v)

}
for each t > 0.

The following family of bootstrap structures, which we call C([n]d × [k]`, r), will be a
crucial tool in our proof. We think of [n]d × [k]` as a box [n]d of ‘thickness’ [k]`.

Definition. Let n, d, k, `, r ∈ N. Then C([n]d × [k]`, r) is the bootstrap structure such
that

(a) the vertex set is [n]d × [k]`,

(b) the edge set is induced by Zd+`,

(c) v = (a1, . . . , ad, b1, . . . , b`) has threshold r + |{j ∈ [`] : bj 6∈ {1, k}}|.
Let B([n]d, r) denote the bootstrap structure on [n]d in which every vertex has threshold
r ∈ N, and note that B([n]d, r) = C([n]d × [k]0, r).

We shall in fact determine a sharp threshold for percolation on C([n]d× [k]`, r) for every
d > r > 2 and every ` ∈ N, when k = k(n) → ∞ sufficiently slowly (see Theorem 27,
below, and Theorem 5 of [6]). The main difficulty will lie in proving the result below,
which implies the lower bound in the case r = 2. We define the diameter diam(S) of a
set S ⊂ Zd+` to be

diam(S) := sup
{
‖x− y‖∞ + 1 : x, y ∈ S and (x↔ y)S

}
,
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where we write (x ↔ y)S to indicate that there exists a path from x to y (in the graph
Zd+`) using only vertices of S.

The following theorem will be the base case of our proof by induction.

Theorem 2. Let d, ` ∈ N, with d > 2, and let ε > 0. Let B > 0 and k > k0(B) ∈ N be
sufficiently large, and let the elements of A ⊂ C([n]d × [k]`, 2) be chosen independently at
random with probability p, where

p = p(n) 6

(
λ(d+ `, `+ 2)− ε

log n

)d−1

.

Then

Pp
(
diam([A]) > B log n

)
→ 0

as n→∞.

The rest of the paper is organised as follows. In Sections 2 and 3 we review some basic
definitions and tools from [6]. In Section 4 we bound the probability that a rectangle is
‘crossed’ by A, in Section 5 we present some basic analytic tools, and in Section 6 we
deduce Theorem 2 using ideas from Holroyd’s proof of the case d = r = 2. In Section 7
we recall the method of Cerf and Cirillo [13], and in Section 8 we deduce Theorem 1.
Finally, in Section 9, we state some open problems and conjectures.

2. Tools and definitions

In this section we recall various tools and definitions from [6] which we shall use through-
out the paper. Define a rectangle R in [n]d × [k]` = {1, . . . , n}d × {1, . . . , k}` to be a set[

(a1, . . . , ad), (b1, . . . , bd)
]

:=
{

(x1, . . . , xd, y1, . . . , y`) : xi ∈ [ai, bi], yi ∈ [k]
}
,

where [a, b] = {a, a + 1, . . . , b} and [b] = [1, b]. We also identify these with rectangles in
[n]d = [n]d × [k]0 in the obvious way. The dimensions of R is the vector

dim(R) := (b1 − a1 + 1, . . . , bd − ad + 1) ∈ Nd

and the semi-perimeter of R is

φ(R) :=
∑
i

(
bi − ai + 1

)
.

The longest side-length of R is long(R) := max{bi − ai + 1}, and the shortest side-length
of R is short(R) := min{bi − ai + 1}.

A component of a set S ⊂ Zd is a maximal connected set in the graph Zd[S] (the
subgraph of Zd induced by S). Given a subset S ⊂ [n]d × [k]`, let R(S) denote the
smallest rectangle such that S ⊂ R(S).

We next define the span 〈A〉 of a set A in C([n]d × [k]`, 2). The definition we give here
is slightly different from that in [6], but has many of the same properties (see Section 3).
This definition simplifies the proof in Section 8.
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Definition. Let n, k ∈ N and A ⊂ C([n]d × [k]`, 2). Let C1, . . . , Cm denote the collection
of connected components in [A]. The span of A is defined to be the following collection
of rectangles:

〈A〉 :=
{
R(C1), . . . , R(Cm)

}
.

If [A] is connected (i.e., m = 1), then we say that A spans the rectangle R(C1). If
R ∈ 〈A ∩R〉, then we say A internally spans R.

If 〈A〉 = {R}, i.e., A spans R, then we shall write 〈A〉 = R. If S is a set and S ⊂ [A∩S]
then we shall say that A internally fills S.

Given a set S, and p ∈ [0, 1], say that A ∼ Bin(S, p) if the elements of A ⊂ S are chosen
independently at random with probability p. If R is a rectangle in C([n]d × [k]`, r), then
let

Pp(R) := Pp
(
R ∈ 〈A ∩R〉

)
= P

(
R ∈ 〈A〉 | A ∼ Bin(R, p)

)
,

i.e., the probability that A internally spans R.
A set is said to be occupied if it is non-empty (i.e., contains some element of A), and it

is said to be full if every site is in A. We shall use throughout the paper the notation

q := − log(1− p)
as in [31]. Note that p ∼ q for small p. The advantage of this notation is the fact that

βk
(
1− (1− p)n

)
= e−gk(nq). (2)

Let u(x) = 1 − e−qx for any x ∈ R, and note that this is the probability that a set S of
size x is empty (i.e., not occupied) under Pp. Given x ∈ Rd and j ∈ [d], we define

uj(x) := u
(∏
i 6=j

xi

)
,

and if R ⊂ [n]d × [k]` is a rectangle, then let uj(R) = uj
(

dim(R)
)
.

We next recall the concept of disjoint occurrence of events, and the van den Berg-
Kesten Lemma [10], which utilizes it. An event E defined on subsets of [N ] is increasing
if (S ⊂ T ) ∧ E(S) implies E(T ). In the setting of bootstrap percolation on a graph G,
two increasing events E and F occur disjointly if there exist disjoint sets S, T ⊂ V (G)
such that the infected sites in S imply that E occurs, and the infected sites in T imply
that F occurs. (We call S and T witness sets for E and F .) We write E ◦F for the event
that E and F occur disjointly.

The van den Berg–Kesten Lemma. Let E and F be any two increasing events defined
in terms of the infected sites A ⊂ V (G), and let p ∈ (0, 1). Then

Pp(E ◦ F ) 6 Pp(E) Pp(F ).

We remark here, for ease of reference, that there will be various constants which appear
in the proof of Theorem 2, which will depend on each other, but not on p. These will be
chosen in the order first B (for ‘big’), then δ, k, Z (for ‘seed’), and finally T (for ‘tiny’),
and will satisfy

T � Z � δ � 1� B � k.
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Each of these constants also depends on d, ` and ε, which are fixed at the start of the
proof.

3. Hierarchies

In this section we shall recall (from [6] and [31]) the definition and some basic properties
of a hierarchy of a rectangle R. All of the results in this section were first proved by
Holroyd [31] for [n]2, and generalized to C([n]d × [k]`, r) in [6]. We refer the reader to
those papers for detailed proofs, and note that although our definition of 〈A〉 is slightly
different from that in [6], the proofs all work in exactly the same way.

We begin by defining a hierarchy of a rectangle in C([n]d × [k]`, 2). If G is an oriented
graph, then let N→G (u) := {v ∈ V (G) : u→ v}.
Definition. Let R be a rectangle in C([n]d × [k]`, 2). A hierarchy H of R is an oriented
rooted tree GH, with all edges oriented away from the root (‘downwards’), together with
a collection of rectangles {Ru : u ∈ V (GH)}, Ru ⊂ C([n]d× [k]`, 2), one for each vertex of
GH, satisfying the following criteria:

(a) The root of GH corresponds to R.
(b) Each vertex has at most `+ 2 neighbours below it.
(c) If u→ v in GH then Ru ⊃ Rv.
(d) If N→GH(u) = {v1, . . . , vt} and t > 2, then 〈Rv1 ∪ . . . ∪Rvt〉 = Ru.

A vertex u with N→GH(u) = ∅ is called a seed. Given two rectangles S ⊂ R, we write
D(S,R) for the event (depending on the set A ⊂ R) that

R ∈ 〈(A ∪ S) ∩R〉,
i.e., the event that R is internally spanned by A∪S. Note that the event D(S,R) depends
only on the set A ∩ (R \ S), and let

Pp(S,R) := Pp
(
D(S,R)

)
.

We say a hierarchy occurs (or is satisfied by a set A ⊂ R) if the following events all
occur disjointly.

(e) If u is a seed, then Ru is internally spanned by A.
(f) If (u, v) is such that N→GH(u) = {v}, then D(Rv, Ru) holds.

A hierarchy is good for (T̂ , Ẑ) ∈ R2 if it satisfies the following.

(g) If N→GH(u) = {v} and |N→GH(v)| = 1 then T̂ 6 φ(Ru)− φ(Rv) 6 2T̂ .

(h) If N→GH(u) = {v} and |N→GH(v)| 6= 1 then φ(Ru)− φ(Rv) 6 2T̂ .

(i) If |N→GH(u)| > 2 and v ∈ N→GH(u), then φ(Ru)− φ(Rv) > T̂ .

(j) u is a leaf if, and only if, short(Ru) 6 Ẑ.

In our application we shall take T̂ = T/p1/(d−1) and Ẑ = Z/p1/(d−1) for some (small)
constants T, Z > 0.

The definition above is useful because of the following lemma, which says that if A
internally spans R, then there is a good hierarchy which is satisfied by A. Our definition
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of the span 〈A〉 of the set A is motivated by the proof of this lemma (see [6] for more
details).

Lemma 3 (Lemma 18 of [6]). Let A ⊂ C([n]d × [k]`, 2), let T̂ , Ẑ > 0, and let R ⊂
C([n]d × [k]`, 2) be a rectangle. Suppose that A internally spans R. Then there exists a

good (for (T̂ , Ẑ)) and satisfied hierarchy of R.

Given T̂ , Ẑ > 0, let H(R, T̂ , Ẑ) denote the collection of hierarchies for R which are good

for the pair (T̂ , Ẑ). The next lemma makes the straightforward (but crucial) observation
that there are only ‘few’ possible hierarchies.

Lemma 4 (Lemma 19 of [6]). Let B, T, Ẑ, p > 0 and n, d, k, ` ∈ N. Let R be a rectangle

in C([n]d × [k]`, 2) with long(R) 6 B/p1/(d−1), and let T̂ = T/p1/(d−1). Then there exists
a constant M = M(B, T, d, `) such that

|H(R, T̂ , Ẑ)| 6 M

(
1

p

)M
.

Finally, we state the following key lemma, which gives us our fundamental bound on
the probability that A percolates. The lemma follows easily from Lemma 3 and the van
den Berg-Kesten Lemma (see Lemma 20 of [6] or Section 10 of [31]). Recall that Pp(R)
denotes the probability that a rectangle R is spanned by a set A ∼ Bin(R, p).

Lemma 5 (Lemma 20 of [6]). Let R be a rectangle in C([n]d×[k]`, 2), and let T̂ , Ẑ > p > 0.
Then

Pp
(
R ∈ 〈A ∩R〉

)
6

∑
H∈H(R,T̂ ,Ẑ)

( ∏
N→GH

(u)={v}

Pp(Rv, Ru)

)( ∏
seeds u

Pp(Ru)

)
.

4. Crossing a rectangle

In this section we shall bound from above the probability that a rectangle R is ‘crossed’
by a set A ∼ Bin(R, p). Our bound (see Lemma 6, below) is a generalization of Lemma 21
of [6], but the proof will be somewhat simpler than that given in [6]; in particular, we shall
avoid using Reimer’s Theorem. We refer the reader also to the paper of Duminil-Copin
and Holroyd [18], where similar ideas are used.

We begin by fixing integers d, ` ∈ N, with d > 2. In order to save repetition, we shall
keep these values fixed throughout the section. Let G = C([n]d × [k]`, 2), where n and k
will be chosen later.

A path in direction j across a rectangle R = [(a1, . . . , ad), (b1, . . . , bd)] ⊂ V (G) is a path
in G from a point in the set {x ∈ R : xj = aj} to a point in the set {x ∈ R : xj = bj}.
Definition. A rectangle R = [(a1, . . . , ad), (b1, . . . , bd)] in G = C([n]d × [k]`, 2) is said to
be left-to-right crossed in direction j (or just crossed) by A ⊂ V (G) if the set A ∩ R has
the following property. Let

A′ := (A ∩R) ∪ {x : xj 6 aj − 1}.
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Then there is path in [A′] across R in direction j.

We write H→(j)(R) for this event, and define H←(j)(R) (the event that R is right-to-left
crossed by A) similarly, with xj 6 aj − 1 replaced by xj > bj + 1. As in [6], we shall
bound from above the function

h(j)(R, t) := max
W⊂R,|W |6t

{
Pp
(
H→(j)(R)

∣∣W ⊂ A
)}
.

Note that Pp(H→(j)(R)) = h(j)(R, 0), and recall that u(x) = 1 − e−qx. By symmetry, it
suffices to bound h(1)(R, t).

Lemma 6. Let d, ` ∈ N and B, δ > 0. If k ∈ N is sufficiently large then the following
holds. Let p > 0 be sufficiently small, and let R be a rectangle in C([n]d × [k]`, 2), with
dim(R) = (a1, . . . , ad), where ai 6 B/p1/(d−1) for every i 6= 1. Then, for any t ∈ N,(

β`+1

(
u1(R)

))a1+1

6 Pp
(
H→(1)(R)

)
6 h(1)(R, t) 6

(
β`+1

(
u1(R)

))(1−δ)a1−kt
,

where u1(R) = u
(∏d

i=2 ai
)
.

As mentioned above, the strategy we shall use to prove this lemma differs from that
in [6]. Instead of directly looking at the probability of this rectangle being left-to-
right crossed, we will rather study the probability that a rectangle S with dimensions
(s, a2, . . . , ad), and with r(x) decreased by one for each x ∈ S with x1 = s, is crossed from
left to right in direction 1, with s large but constant (so in particular s � a1). Having
proven an essentially sharp estimate for this rectangle, we shall be able to extend this
bound to any length a1, by splitting the large rectangle into rectangles of width s.

This point of view has the following advantage: it allows us to study the structure of
the bootstrap process under the assumption that no two sites in A ∩ S are close to one
another. In order to do so, we introduce the following slight generalization of the structure
C([n]d × [k]`, 2). It corresponds to (or, more precisely, may be coupled with) the process
inside the rectangle S when everything in R \ S is already infected.

Given vectors m ∈ Nd−1 and k ∈ N`+1, we define C([m] × [k], 1) to be the bootstrap
structure such that

(a) the vertex set is S = [m1]× · · · × [md−1]× [k1]× · · · × [k`+1],

(b) the edge set is induced by Zd+`,

(c) v = (a1, . . . , ad−1, b1, . . . , b`+1) has threshold 1 +
∣∣{j ∈ [`+ 1] : bj 6∈ {1, kj}

}∣∣.
We remark that in our applications, we shall take k2 = · · · = k`+1 = k, and k1 = s, where
k is much larger than s.

To study this structure, we slice the set S = [m]× [k] into setsMx, see Figure 1, where

Mx :=
{
y ∈ [m]× [k] : yd−1+j = xj for every j ∈ [`+ 1]

}
for each x ∈ [k]. Given a vector x ∈ Zd, let C(x) := {1, x1} × · · · × {1, xd} denote the
set of ‘corners’ of x. Now, given a corner b ∈ C(k) = {1, k1} × · · · × {1, k`+1} of S, and a
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ed

ed+1 ed+2

k2

k1

k3

L+-blockers L−-blocker

L−-blocker

corner (1, 1, k3)

edge E
(1)
(1,1,k3)

S(1,1,1)

S(1,1,k3)

k3/3

Figure 1. The set [m1]×· · ·× [md−1]× [k1]×· · ·× [k`+1], with examples of
blockers and edges. Observe that the d−1 first dimensions are not depicted:
each ’unit’ square is a set Mx.

direction j ∈ [`+ 1], we define a boundary edge (or simply an edge) of S to be the union
of sets Mx over those x with xi = bi for i 6= j, so

E
(j)
b =

kj⋃
t=1

{
Mx : xi = bi if i 6= j and xj = t

}
.

Note that if bi = b′i for each i 6= j, then E
(j)
b = E

(j)
b′ .

We shall need the following generalization of the notion of blockers from [6]. Let
ei = (0, . . . , 0, 1, 0, . . . , 0) denote the vector with a single 1 in position i.

Definition. Given b ∈ C(k) and j ∈ [` + 1], let x ∈ E(j)
b . The set Mx is an L+-blocker

of the edge E
(j)
b if the events Ux and {V (i)

x : d 6 i 6 d+ `} all occur, where

Ux :=
{
Mx is not occupied

}
,

V (i)
x :=

{ {
Mx−ei

is not occupied
}

if i 6= j and bi = ki,{
Mx+ei

is not occupied
}

otherwise.
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It is an L−-blocker of E
(j)
b if the event V

(j)
x in the definition above is replaced by the event

V̂ (j)
x = {Mx−ej

is not occupied}.

The edge E
(i)
b is said to be blocked if there exist y, z ∈ E(i)

b such thatMy is an L+-blocker

and Mz is an L−-blocker of E
(i)
b , with zi > yi. It is said to be fully blocked if moreover

yi < (ki/3)− 1 and zi > (2ki/3) + 1.

Note that L-blockers are so-named because of their shape; L is not a variable. The
following lemma is purely deterministic.

Lemma 7. Let m ∈ Nd−1 and k ∈ N`+1, let A ⊂ C([m]× [k], 1), and let S = [m]× [k].
Suppose that there is a path in [A] across S in direction j, for some d 6 j 6 d+ `. Then
one of the following holds:

(a) A contains two sites x 6= y with dG(x, y) 6 2.

(b) One of the boundary edges {E(j)
b : b ∈ C(k)} is not blocked.

(c) One of the boundary edges {E(i)
b : j 6= i ∈ [`+ 1], b ∈ C(k)} is not fully blocked.

Proof. Suppose that none of the three events holds; that is, A ⊂ S does not contain two
sites at distance at most two from one another, and for every b ∈ C(k), the boundary

edge E
(j)
b is blocked, and the boundary edges {E(i)

b : j 6= i ∈ [`+ 1]} are all fully blocked.

We define a set Ŝ as follows (see Figure 1). For each b ∈ C(k) and i ∈ [`+ 1], let yi(b)

denote the minimal i-coordinate of an L+-blocker My of E
(i)
b , and let zi(b) denote the

maximal i-coordinate of an L−-blocker Mz of E
(i)
b . Note that yj(b) < zj(b), and that

yi(b) < (ki/3)− 1 and zi(b) > (2ki/3) + 1 for every j 6= i ∈ [`+ 1].
For each b ∈ C(k), let

Sb := [m]× I1(b)× · · · × I`+1(b),

where Ii(b) = [1, yi(b)− 1] if bi = 1, and Ii(b) = [z`+1(b) + 1, ki] if bi = ki. Let

Ŝ :=
⋃
b

Sb.

Claim: Ŝ ∪ A is a stable set, i.e., [Ŝ ∪ A] = Ŝ ∪ A.

Proof of claim. We first claim that the sets Sb are pairwise at distance at least three.
Indeed, let b,b′ ∈ C(k), and suppose that there exists some x ∈ [k] such that d(Sb,Mx) 6
1 and d(Sb′ ,Mx) 6 1. Suppose first that bi = b′i for every i 6= j. Then either b = b′,
or bj = 1 and b′j = kj, say. But then d(Sb,Mx) 6 1 implies that xj 6 yj(b), and
d(Sb′ ,Mx) 6 1 implies that xj > zj(b). Since yj(b) < zj(b), this is a contradiction.

So assume that bi = 1 and b′i = ki for some i 6= j. Since d(Sb,Mx) 6 1, we have
xi 6 yi(b), and since d(Sb′ ,Mx) 6 1, we have xi > zi(b

′). But yi(b) < (ki/3) − 1 <
(2ki/3) + 1 < zi(b

′), which is a contradiction, and hence the sets Sb are pairwise at
distance at least three, as claimed.
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Suppose that [Ŝ ∪ A] \ Ŝ ∪ A is non-empty, and consider the first new site v to be

infected. It has at most one neighbour in Ŝ, by the previous observation, and at most
one neighbour in A, since A does not contain two sites at distance at most two. Thus v

must have threshold at most two, and hence it belongs to an edge, E
(i)
b , say.

Now, simply note that if a vertex of E
(i)
b is at distance one from Ŝ, then it is inMy for

someMy which is a blocker of E
(i)
b . By the definition of a blocker, these vertices have no

element of A\ Ŝ as a neighbour, and so it must have threshold one. But if v has threshold

one, then v ∈Mb for some b ∈ C(k), and since v 6∈ Ŝ (by assumption), it follows that Sb

is empty, and that Mb is a blocker for E
(i)
b , so v has no neighbour in Ŝ ∪ A. This final

contradiction proves the claim. �

It follows immediately from the claim that [A] ⊂ Ŝ ∪A. But there is no path in Ŝ ∪A
across S in direction j, since the rectangles Sb are pairwise at distance at least three, and
the elements of A are pairwise at distance at least three. The lemma follows. �

We shall need the following bound on the probability that an edge is blocked.

Lemma 8. Given m ∈ Nd−1 and k ∈ N`+1, let S = C([m] × [k], 1). Let b ∈ C(k), and
let j ∈ [`+ 1] and p > 0. Then

Pp(E(j)
b is not blocked) 6 kj

(
β`+1

(
u(S)

))kj−2

,

and

Pp(E(j)
b is not fully blocked) 6 2

(
β`+1

(
u(S)

))kj/3−2

,

where u(S) = u
(∏d−1

i=1 mi

)
.

In order to prove Lemma 8, we shall need the following lemma from [6], which is easily
proved by induction on m. Given `,m ∈ N, consider some sequence of events

E =
{
Ui : i ∈ [m+ 1]

}
∪
{
V

(i)
j : i ∈ [`], j ∈ [m]

}
.

An L-gap in E is an event ¬
(
Ui ∨ Ui+1 ∨ V (1)

i ∨ . . . ∨ V (`)
i

)
for some i ∈ [m].

Lemma 9 (Lemma 6 of [6]). Let `,m ∈ N, let u ∈ (0, 1), and suppose that each event in
the set

E =
{
Ui : i ∈ [m+ 1]

}
∪
{
V

(i)
j : i ∈ [`], j ∈ [m]

}
occurs independently with probability u.

Let L(m,u) denote the probability that there is no L-gap in E. Then

β`+1(u)m+1 6 L(m,u) 6 β`+1(u)m,

where β`+1(u) is the function defined in the Introduction.
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Proof of Lemma 8. Assume without loss that bj = 1, and let x(t) = b+ (t−1)ej for each

t ∈ [kj], so E
(j)
b = {x(t) : t ∈ [kj]}. For each y ∈ [kj], consider the following events:

F1(y) : Mx(t) is not an L+-blocker of E
(j)
b for each 1 6 t 6 y − 1.

F2(y) : Mx(t) is not an L−-blocker of E
(j)
b for each y + 2 6 t 6 kj.

Note that the events F1(y) and F2(y) are independent.

Suppose that E
(j)
b is not blocked. We claim there exists y ∈ [kj] such that F1(y) and

F2(y) both hold; that is, there is no L+-blocker Mx(t) of E
(j)
b with t < y, and there is no

L−-blocker Mx(t) of E
(j)
b with t > y + 1. (To see this, simply take y minimal such that

Mx(y) is an L+-blocker of E
(j)
b , or kj if there is no such blocker.)

The lemma now follows from Lemma 9, applied to the events Ux(t) and V
(i)
x(t) for t ∈ [kj]

and j 6= i ∈ [`+ 1]. Indeed, we have

β`+1

(
u(S)

)y+1
6 F1(y) 6 β`+1

(
u(S)

)y
,

and similarly for F2(y), and hence

Pp(E(j)
b is not blocked) 6

kj∑
y=1

Pp
(
F1(y) ∧ F2(y)

)
6 kj

(
β`+1

(
u(S)

))kj−2

,

as required.

Finally, if E
(j)
b is not fully blocked then either the event F1

(
(kj/3) − 1

)
or the event

F2

(
(2kj)/3

)
occurs, and so

Pp(E(j)
b is not fully blocked) 6 Pp

(
F1

(
(kj/3)− 1

))
+ Pp

(
F2

(
(2kj)/3

))
6 2

(
β`+1

(
u(S)

))kj/3−2

,

as claimed. �

Given a rectangle S ⊂ C([n]d−1 × [k]`+1, 1), a set A ⊂ S, and a direction j ∈ [` + 1],
define the event

X S
j (A) :=

{
there is a path in [A ∩ S] across S in direction d+ j − 1

}
.

The following upper bound on the probability of X S
j (A) follows easily from Lemmas 7

and 8.

Lemma 10. Let B > 0 and d, k, ` ∈ N, with d > 2. If p > 0 is sufficiently small then the
following holds. Let j ∈ [` + 1], and let m ∈ Nd−1 and k ∈ N`+1, with mi 6 B/p1/(d−1),
2` < kj 6 k/6 and k/2 6 ki 6 k for each i 6= j. Then

Pp
(
X S
j (A)

)
6 2`+1kj

(
β`+1

(
u(S)

))kj−2

,

where S = C([m]× [k], 1) and u(S) = u
(∏d−1

i=1 mi

)
.
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Proof. By Lemma 7, if there is a path in [A] across S in direction d+ j− 1, then either A
contains two sites within distance two, or one of the boundary edges in direction j is not
blocked, or one of the other boundary edges is not fully blocked. The probability that A
contains two sites at distance at most two is at most

(2d+ 2`)2|S|p2 6 4(d+ `)2Bd−1k`+1p = O(p).

There are 2` boundary edges in direction j, so, by Lemma 8, the probability that one of
them is not blocked is at most

2`kj

(
β`+1

(
u(S)

))kj−2

.

Finally, there are at most 2`` boundary edges not in direction j, so the probability that
one of them is not fully blocked is at most

2`+1`
(
β`+1

(
u(S)

))k/6−2

,

by Lemma 8, and since ki > k/2 for every i 6= j. Since p was chosen sufficiently small,
and kj 6 k/6 and kj > 2`, it follows that

P
(
X S
j (A)

)
6 2`+1kj

(
β`+1

(
u(S)

))kj−2

,

as required. �

We can now deduce Lemma 6 from Lemma 10.

Proof of Lemma 6. The lower bound is straightforward, and follows by Lemma 7 of [6],
and the second inequality is immediate from the definition. We shall prove the upper
bound. Let R be a rectangle as described in the lemma, so R ⊂ C([n]d × [k]`, 2) with
dim(R) = (a1, . . . , ad), where ai 6 B/p1/(d−1) for every i 6= 1. Recall that B, δ > 0, and
that k > k0(d, `, B, δ) is sufficiently large.

Let A ∼ Bin(R, p), let t ∈ N, and let W ⊂ R with |W | = t. We are required to bound
from above the probability that there is a path in [A′] across R in direction 1, where
A′ = (A ∩R) ∪ {x : x1 6 a1 − 1} ∪W .

Let s = k/10, m = (a2, . . . , ad) and k = (s, k, . . . , k) ∈ N`+1, and assume for simplicity
that s divides a1. We partition R into M = a1/s blocks B1, . . . , BM , where Bj

∼= [m]× [k]
for each j, in the obvious way, i.e., so that Bj is a translate of [m] × [k]. Replace the
thresholds in Bj with those of C([m] × [k], 1), and allow the bootstrap process to occur
independently in each block. (By this, we mean that the blocks do not interact with each
other.) Denote by {A}(j) the closure of A ∩ Bj under this process, i.e., the closure of
A ∩Bj in the bootstrap structure C([m]× [k], 1).

Let {A} =
⋃M
j=1{A}(j). The following claim shows that this is a coupling.

Claim: {A} ⊃ [A′], where [A′] denotes the closure of A′ in C([n]d × [k]`, 2).

Proof of claim. Let x be a vertex of Bj, so x = (y1, x2, . . . , xd, y2, . . . , y`+1), where xj ∈
[mj] and yj ∈ [k] for each j > 2, and (j − 1)s + 1 6 y1 6 js. Observe that x has at
most one neighbour in A′ \ Bj, since such a neighbour must differ from x in direction 1.



THE SHARP THRESHOLD FOR BOOTSTRAP PERCOLATION IN ALL DIMENSIONS 15

Moreover, ‘internal’ vertices of Bj (those with y1 6∈ {(j− 1)s+ 1, js}) have no neighbours
in A′ outside Bj.

In the original system, C([n]d × [k]`, 2), the threshold of vertex x was

r(x) = 2 +
∣∣{2 6 j 6 `+ 1 : yj 6∈ {1, k}

}∣∣ .
In the coupled system, it is r(x) − 1 + I[y1 6∈ {(j − 1)s + 1, js}]. It follows that the
threshold of no vertex has increased, and the threshold of those vertices which have a
neighbour in A′ outside Bj have decreased by one. Thus {A} ⊃ [A′], as claimed. �

Let J ⊂ [M ] denote the set of indices j such that Bj ∩W 6= ∅, and recall that |J | 6 t.
Observe that, by the claim, if R is left-to-right crossed by A∪W in direction 1, then the

event XBj

1 (A) occurs for each j ∈ [M ] \ J , i.e., there is a path in {A} ∩ Bj across Bj in

direction 1. Note, moreover, that the events XBj

1 (A) for j ∈ [M ] \ J are independent.
Hence, by Lemma 10, and recalling that M = a1/s and |J | 6 t,

Pp
(
R is left-to-right crossed by A in direction 1

∣∣W ⊂ A
)
6

∏
j∈[M ]\J

Pp
(
XBj

1 (A)
)

6
∏

j∈[M ]\J

2`+1s
(
β`+1

(
u1(Bj)

))s−2

6
(
β`+1

(
u1(Bj)

))(1−δ)a1−st
,

where u1(Bj) = u
(∏d

i=2 ai
)
. In the final inequality we used the fact that ai 6 B/p for

each i 6= 1, so β`+1

(
u1(Bj)

)
is bounded away from 1 (as a function of B, d and `). Hence(

2`+1s
)a1/s(

β`+1

(
u1(Bj)

))−2a1/s

6
(
β`+1

(
u1(Bj)

))−δa1

since s = k/10 is sufficiently large. This proves Lemma 6. �

5. Analytic tools

In this section we shall extend the analytic tools used by Holroyd [31] to the d-
dimensional setting. We remark that the results of this section, together with the method
of [31], are sufficient to prove Theorem 1 in the case r = 2.

The following line integral was introduced in [31] in the case d = 2. Let R+ denote the
(strictly) positive reals. Given any function f : R+ → R+, and a,b ∈ Rd

+, define

Wf (a,b) := inf
γ : a→b

∫
γ

(∑
j

f
(∏
i 6=j

xi

)
dxj

)
,

where the infimum is taken over all piecewise linear, increasing paths from a to b in Rd
+

(see Section 6 of [31]). Moreover, for any two rectangles R ⊂ R′ ⊂ [n]d × [k]`, let

Uf (R,R
′) = Wf

(
p1/(d−1) dim(R), p1/(d−1) dim(R′)

)
. (3)

The aim of this section is to prove the following two propositions, which will allow us
to deduce Theorem 2 from Lemmas 5 and 6. The first is a generalization of Lemma 37
of [31].
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Proposition 11. Let n, d, k, ` ∈ N, let T̂ , Ẑ, p > 0, and let Z = Ẑ · p1/(d−1). For any
hierarchy H of a rectangle R ⊂ C([n]d × [k]`, 2) which is good for (T̂ , Ẑ), there exists a
rectangle S = S(H) ⊂ R, with

φ(S) 6
∑

seeds u

φ(Ru),

such that∑
N→GH

(u)={v}

Ug`+1
(Rv, Ru) > Ug`+1

(S,R) −
(
d p1/(d−1)g`+1(Z)

) ∣∣{u ∈ H : |N→GH(u)| > 2
}∣∣ .

The rectangle S(H) is called the pod of the hierarchy H. In order to understand this
statement, ignore the final (error) term, and observe that the lemma gives us a lower
bound on the sum a large number of small line integrals (which correspond to events
D(Rv, Ru) in the hierarchy).

The next result, which is a generalization of Proposition 14 of [31], shows that, if there
are not too many big seeds, then this lower bound is exactly what we want. It will follow
from the fact that the line integral Wg`

(a,b) is minimized by following the main diagonal
as closely as possible.

Given a vector x ∈ Rd, we shall write ∆(x) = maxj{xj}. Given two vectors a,b ∈ Rd,
we shall write a 6 b if aj 6 bj for each j ∈ [d], and a < b if aj < bj for every j ∈ [d].

Proposition 12. Let d, ` ∈ N, and let a,b ∈ Rd
+, with a 6 b and minj{bj} = bi. Then

Wg`
(a,b) > d

∫ ∆(b)

∆(a)

g`(z
d−1) dz − d∆(b)g`

(∏
i 6=j

bj

)
.

Remark 2. We shall use the following simple properties of the function gk(z) defined in
the introduction: gk(u) is decreasing, convex and continuous, and gk(z) 6 2e−kz if z is suf-
ficiently large. Note that either we have

∏
i 6=j bj 6 log

(
d∆(b)

)
, or d∆(b)gk

(∏
i 6=j bj

)
→ 0

as ∆(b)→∞.

We shall prove Propositions 11 and 12 using a discretization argument. Given a function
f and a path γ in Rd

+, we shall write

wf (γ) :=

∫
γ

(∑
j

f
(∏
i 6=j

xi

)
dxj

)
,

so that Wf (a,b) = inf
γ : a→b

wf (γ). We begin with a simple observation.

Observation 13. Let f : R+ → R+ be continuous, and let a,b ∈ Rd
+ with 0 < a 6 b.

For every ε > 0, there exists a piecewise linear, increasing path γε from a to b, with each
linear piece parallel to one of the axes, and all of equal length, such that

wf
(
γε
)
6 Wf (a,b) + ε.

The following lemma is a generalization of Lemma 18 of [31].
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Lemma 14. Let f : R+ → R+ be continuous and decreasing, and let a,b, c ∈ Rd
+ with

a 6 b 6 c. Then

Wf (a, c) > Wf (b, c).

Remark 3. Notice that a similarly ‘intuitive’ inequality, that Wf (a,b) 6 Wf (a, c), is
not true in general, even in two dimensions. To see this, consider for example the triple
a = (1, 1), b = (B, 1) and c = (B,B), and let B � 1. Then Wf (a,b) → ∞ as B → ∞,
but if f is integrable then Wf (a, c) = O(1).

Proof. The proof will be by induction on d. When d = 1 it is trivial, since there is a
unique path from a to c, which passes through b.

Let d > 2, and assume that the result holds for d − 1. Let ε > 0, and let γε be the
path from a to c given by Observation 13. In other words, γε is piecewise linear and
increasing, with each linear piece parallel to one of the axes, and all of equal length, and
wf (γε) 6 Wf (a, c) + ε.

Now consider the first point v on γε such that v > b, and observe that vj = bj for
some j ∈ [d]. Assume that j = 1, let a′ = (b1, a2, . . . , ad), and observe that a′, b and v
all live in the same (d− 1)-dimensional hyperplane. Hence, by the induction hypothesis,
it follows that Wf (a

′,v) > Wf (b,v).
Now, let γ1 denote the section of γε between a and v, and let γ2 denote the section

from v to c. Consider the path δ1 from a′ to v obtained from γ1 by projecting onto
the hyperplane x1 = b1. Observe that each linear piece which is parallel to the x1-axis
disappears, and each other piece retains its length and direction, and has its x1-coordinate
increased. Since f is decreasing, it follows that wf (δ1) 6 wf (γ1).

Now, since Wf (a
′,v) > Wf (b,v), it follows that there exists a path δ′ from b to v such

that wf (δ
′) 6 wf (δ1) + ε.

Finally, let δε denote the path from a′ to c obtained by conjoining the paths δ′ (from
b to v) and γ2 (from v to c). By the observations above, we have

wf
(
δε
)
6 wf (δ1) + wf (γ2) + ε 6 wf (γ1) + wf (γ2) + ε = wf

(
γε
)

+ ε,

and hence

Wf (b, c) 6 wf
(
δε
)
6 wf

(
γε
)

+ ε 6 Wf (a, c) + 2ε,

by our choice of γε. Since ε > 0 was arbitrary, the lemma follows. �

We are now ready to prove Proposition 11. The proof is exactly as in [31], except we
need to replace Lemma 18 of [31] with Lemma 14, above. For completeness, we sketch
the proof.

Proof of Proposition 11. Let f : R+ → R+ be continuous and decreasing; the lemma holds
for any such function. The key step is a d-dimensional version of Proposition 15 of [31],
which states the following: for every a,b, c,d ∈ Rd

+ with a 6 b and c 6 d, and every
x, Z ∈ R+ and r ∈ Rd

+ with b,d 6 r 6 b + d + (x, . . . , x), x < Z and r > (2Z, . . . , 2Z),
there exists s ∈ Rd

+ with s 6 a + c such that

Wf (a,b) +Wf (c,d) 6 Wf (s, r)− (xd)f(Z).
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This statement for d = 2 follows by Propositions 12 and 13 and Lemmas 17 and 18
of [31]. The first three generalize easily to the d-dimensional setting; in fact they are easy
consequences of the fact that f is decreasing. The last follows for general d by Lemma 14.

Proposition 11 now follows by a straightforward induction argument, exactly as in the
proof of Lemma 37 of [31], noting that if R, S and T are rectangles with R = 〈S ∪ T 〉 in
C([n]d × [k]`, 2), then dim(S) + dim(T ) > dim(R)− (1, . . . , 1). �

Finally, we prove Proposition 12. In this case the proof does not follow by the method
of [31], which was via an application of Green’s Theorem in the plane. We shall discretize
and apply Lemma 15. Given two piecewise linear paths γ and γ′ in Rd

+, we say that γ′ is
a permutation of γ if it is obtained by permuting the linear pieces of γ.

The following lemma allows us to permute adjacent linear pieces in order to move the
path closer to the main diagonal.

Lemma 15. Let f : R+ → R+ be convex, let a ∈ Rd
+ and b ∈ R+, and set b = a + be1

and c = a + be2. Suppose that a1 6 a2. Then

Wf (a,b) +Wf (b,b + c) 6 Wf (a, c) +Wf (c,b + c).

Proof. This follows easily from the definition. Since f convex, we have

f(x)− f(x+ z) 6 f(y)− f(y + z)

for any x, y, z ∈ R with x > y. Thus

Wf (a,b) +Wf (b,b + c) = bf
(
a2

∏
i>3

ai

)
+ bf

(
(a1 + b)

∏
i>3

ai

)
6 bf

(
(a2 + b)

∏
i>3

ai

)
+ bf

(
a1

∏
i>3

ai

)
= Wf (a, c) +Wf (c,b + c),

by the inequality above with x =
∏

i 6=1 ai, y =
∏

i 6=2 ai, and z = b
∏

i>3 ai. �

Proof of Proposition 12. Let f : R+ → R+ be continuous and convex; the result will hold
for any such function. Recall that a,b ∈ Rd

+ with a 6 b, and assume without loss of
generality that b1 6 . . . 6 bd. We require a lower bound on Wf (a,b). Let B = bd = ∆(b)
and let b′ = (B, . . . , B). Observe that b′ > b, so

Wf (a,b
′) 6 Wf (a,b) + Wf (b,b

′).

It is easy to see that Wf (b,b
′) 6 (Bd)f

(∏d
j=2 bj

)
= d∆(b)f

(∏d
j=2 bj

)
(simply choose a

path which grows in direction 1 first, then direction 2, and so on), and so the proposition
will follow from the statement

Wf (a,b
′) > d

∫ B

∆(a)

f(zd−1) dz.

Let ε > 0, and let γ be a path from a to b′ = (B, . . . , B) given by Observation 13.
Thus γ is piecewise linear and increasing, with each linear piece parallel to one of the
axes, and all of equal length, and wf (γ) 6 Wf (a,b

′) + ε. Let δ > 0 denote the length of
each piece of γ, and note that we may choose δ as small as we like.
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We claim that there exists a permutation γ′ of γ which passes within `∞-distance δ of
every point of the straight line between (A, . . . , A) and (B, . . . , B), such that

wf (γ) > wf (γ
′) > d

∫ B

∆(a)

f(zd−1) dz − ε.

This follows by Lemma 15. Indeed, let γ′ be chosen to minimize wf (γ
′) over all permuta-

tions of γ. Assume, without loss of generality, that a1 6 a2 6 . . . 6 ad, and consider the
piecewise linear path ζ, given by

(a1, . . . , ad)→ · · · → (aj, . . . , aj, aj+1, . . . , ad)→ · · · → (ad, . . . , ad)→ (B, . . . , B),

where x → y means that ζ follows a straight line between x and y. By Lemma 15, we
can choose γ′ to be the permutation which follows ζ as closely as possible. The second
inequality follows because f is continuous, and we chose δ > 0 sufficiently small.

Putting the pieces together, we have

Wf (a,b
′) > wf (γ)− ε > wf (γ

′)− ε > d

∫ B

∆(a)

f(zd−1) dz − 2ε.

Since ε > 0 was arbitrary, the result follows. �

To finish the section, we prove the following simple property of λ(d, r), which will be
useful in Section 6.

Proposition 16. Let d, ` ∈ N with d > 2. Then λ(d+ `, `+ 2) <
d+ 1

2
.

Proof. Recall from (1) that

λ(d+ `, `+ 2) =

∫ ∞
0

g`+1(zd−1) dz.

By Proposition 3 of [6], we have gk+1(z) 6 gk(z) for every k ∈ N and z ∈ (0,∞), so it
suffices to prove the result for ` = 0. By Theorem 5 of [33], we have∫ ∞

log(3/2)

g1(z) dz =

∫ 2/3

0

− log
(
β1(1− x)

)
x

dx <
π2

36
<

1

3
.

Moreover, since g1 is decreasing, we have g1(zd−1) 6 g1(z) whenever z > 1. Hence∫ ∞
1

g1(zd−1) dz 6
∫ ∞

1

g1(z) dz 6
∫ ∞

log(3/2)

g1(z) dz <
1

3
.

To bound the integral when z < 1, observe that β1(u) >
√
u for 0 6 u 6 1, and that

1− e−z > (1− 1/e)z for 0 6 z 6 1, so

β1(1− e−z) >
√

1− e−z >
(

1− 1

e

)1/2√
z
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for every 0 6 z 6 1. Hence g1(zd−1) 6 − log
(
z(d−1)/2

)
+

1− log(e− 1)

2
, and so∫ 1

0

g1(zd−1) dz 6
d− 1

2

∫ 1

0

− log z dz +
2

5
=

d− 1

2
+

2

5
.

Thus λ(d+ `, `+ 2) 6
d− 1

2
+

2

5
+

1

3
<
d+ 1

2
, as claimed. �

6. Proof of Theorem 2

In this section we complete the proof of Theorem 2. We shall follow the basic method
of Holroyd [31] (see also Sections 4.3 and 4.4 of [6]), but we shall need some new ideas
here also. Theorem 2 will follow easily from the following theorem (see Corollary 23).

Theorem 17. For every d, ` ∈ N with d > 2, and every ε > 0, there exists B0 > 0 and
k0 : N→ N such that the following holds for every B > B0 and every k > k0(B).

Let G = C([n]d × [k]`, 2), and let p > 0 be sufficiently small. Let R ⊂ V (G) be a
rectangle with long(R) = B/p1/(d−1). Then

Pp
(
R ∈ 〈A ∩R〉

)
6 exp

(
−dλ(d+ `, `+ 2)− ε

p1/(d−1)

)
.

We begin by bounding the probability that a rectangle grows sideways by T/p1/(d−1).
Let R ⊂ R′ be rectangles in C([n]d × [k]`, 2), and recall from Section 3 that Pp(R,R

′) =
Pp
(
D(R,R′)

)
, where D(R,R′) denotes the event that R′ is internally spanned by (A ∪

R) ∩R′.
We shall deduce the following lemma from Lemma 6. We refer the reader to [28] (see

Lemma 5) where a similar trick is used.

Lemma 18. For each d, ` ∈ N and B, δ > 0, there exist constants k ∈ N, Z = Z(k) > 0
and T = T (k, Z) > 0 such that the following holds.

Let p > 0 be sufficiently small, and let R ⊂ R′ be rectangles in C([n]d × [k]`, 2) with
dim(R) = (m1, . . . ,md) and dim(R′) = (m1 + s1, . . . ,md + sd). Suppose that Z/p1/(d−1) 6
mj 6 B/p1/(d−1) and sj 6 T/p1/(d−1) for each j ∈ [d]. Then

Pp(R,R
′) 6 exp

(
−
(
1− 2δ

) d∑
j=1

g`+1

(
q
∏
i 6=j

mi

)
sj

)
. (4)

Proof. For each direction j ∈ [d], let R<
j denote the rectangle {x ∈ R′ : xj < yj for all y ∈

R}, and similarly let R>
j denote the rectangle {x ∈ R′ : xj > yj for all y ∈ R}. Write

Rj = R<
j ∪ R>

j , and let C =
⋃
i<j Ri ∩ Rj denote the corner areas of R′ \ R. Finally, let

W = A ∩ C, and let t = |W |.
If the event D(R,R′) occurs, then clearly the events H→(j)(R>

j ) and H←(j)(R<
j ) must

also occur for each j ∈ [d]. Hence,

Pp(R,R
′) 6 Pp

(∧
j

H→(j)(R>
j ) ∧H←(j)(R<

j )

)
.
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Note that |C| 6
(
d
2

)
T 2Bd−2p−d/(d−1). The idea is that, since T may be chosen small

compared with Z (and also B, d, k, `), it is likely that |A ∩ C| will be small compared
with sj, and so the events H→(i)(R>

i ) and H←(j)(R<
j ) are ‘almost independent’.

To be precise, by Lemma 6, and the binomial theorem, we have

Pp(R,R
′) 6

|C|∑
t=0

(|C|
t

)
pt(1− p)|C|−t

∏
j

h(j)(R>
j , t) · h(j)(R<

j , t)

6
|C|∑
t=0

(|C|
t

)
pt
∏
j

(
β`+1

(
uj(R)

))(1−δ)sj−kt

=

(∏
j

(
β`+1

(
uj(R)

))(1−δ)sj

)(
1 + p

∏
j

(
β`+1

(
uj(R)

))−k)|C|
.

To estimate the error term, we use our bounds on mj and sj. Indeed, since mj >
Z/p1/(d−1) for each j ∈ [d], we have uj(R) > 1− exp(−Zd−1) > Zd−1/2. Since β`+1(u) is
increasing on [0, 1] (see Proposition 3 of [6]), and β`+1(u) > u when u is small, it follows
that ∏

j

(
β`+1

(
uj(R)

))−k
6
∏
j

(
2/Zd−1

)k
6

(
1

Z

)kd2
.

Let T1 = p1/(d−1) maxj{sj} 6 T , and recall that |C| 6
(
d
2

)
T 2

1B
d−2p−d/(d−1), since mj 6

B/p1/(d−1) for each j ∈ [d]. Hence, since T1 6 T ,(
1 + p

∏
j

(
β`+1

(
uj(R)

))−k)|C|
6 exp

(
|C|Z−kd2p

)
6 exp

(
T

3/2
1

p1/(d−1)

)

6 exp

(
δg`+1

(
2Bd−1

)
max
j
{sj}

)
6 exp

(
δ

d∑
j=1

g`+1

(
q
∏
i 6=j

mi

)
sj

)
,

if T > 0 is chosen to be sufficiently small (with respect to d, `, B, δ, k and Z). The

penultimate inequality follows since we may we choose
√
T 6 δg`+1

(
2Bd−1

)
. In the final

inequality, we used the facts that g`+1 is decreasing, and that q
∏

i 6=jmi 6 2Bd−1.

Finally, recall that e−g`+1(qx) = β`+1

(
u(x)

)
, so

∏
j

(
β`+1

(
uj(R)

))(1−δ)sj

= exp

(
−
(
1− δ

) d∑
j=1

g`+1

(
q
∏
i 6=j

mi

)
sj

)
.

Combining these bounds, the lemma follows. �

We now rewrite the right-hand side of (4) in a more useful form. We shall use the
following easy observation from [31].
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Observation 19 (Proposition 12 of [31]). If f is decreasing, then

Wf (a,b) 6
d∑
j=1

(
bj − aj

)
f
(∏
i 6=j

ai

)
.

By Observation 19 and the definition of Ug`+1
(R,R′), we have

1

p1/(d−1)
Ug`+1

(R,R′) 6
d∑
j=1

g`+1

(
q
∏
i 6=j

mi

)
sj.

The following corollary of Lemma 18 is now immediate.

Corollary 20. Under the conditions of Lemma 18,

Pp(R,R
′) 6 exp

(
−
(
1− 2δ

)Ug`+1
(R,R′)

p1/(d−1)

)
.

Next we bound the probability that a seed is internally spanned. Recall that φ(R)
denotes the semi-perimeter of a rectangle R.

Lemma 21. Let d, `, k ∈ N, let B,α > 0, and let Z = Z(d, `, B, α, k) > 0 be sufficiently
small. Let p > 0, and let R be a rectangle in C([n]d × [k]`, 2). Suppose short(R) 6
Z/p1/(d−1) and long(R) 6 B/p1/(d−1). Then

Pp(R ∈ 〈A ∩R〉) 6 e−αφ(R).

Proof. Let dim(R) = (u1, . . . , ud), and suppose without loss of generality that u1 =
long(R) and u2 = short(R). Note that if R ∈ 〈A ∩ R〉, then R has no ‘double gap’,
i.e., no pair of adjacent empty hyperplanes (see Lemma 27 of [6]). Thus,

P
(
R ∈ 〈A ∩R〉

)
6
(

2k`ud−2
1 u2p

)u1/2

6
(

2k`Bd−2Z
)φ(R)/2d

6 e−αφ(R)

if 2k`Bd−2Z 6 e−2dα, which holds if Z > 0 is sufficiently small, as required. �

Finally, we recall the following lemma from [6] (see also [2]).

Lemma 22 (Lemma 16 of [6]). Let A ⊂ C([n]d × [k]`, 2). If 1 6 L 6 diam([A]), then
there exists a rectangle R, internally spanned by A, with

L 6 long(R) 6 2L.

We are ready to prove Theorem 17.

Proof of Theorem 17. Let d, ` ∈ N, with d > 2, and let ε > 0. We choose positive
constants B, α, δ, k, Z and T (chosen in that order), with B > 0 sufficiently large, δ > 0
sufficiently small, and k, Z and T chosen so that Lemmas 18 and 21 hold. In particular,
let α = dλ(d+ `, `+ 2)B, and note that

T � Z � δ � 1� B � k.

Finally, we let p→ 0, so that p� T . Let T̂ = T/p1/(d−1) and Ẑ = Z/p1/(d−1).
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Let R be a rectangle in G = C([n]d × [k]`, 2) with dim(R) = (b1, . . . , bd), let long(R) =
B/p1/(d−1), and assume without loss of generality that b1 6 . . . 6 bd. By Corollary 20 and
Lemmas 5 and 21, we obtain

Pp
(
R ∈ 〈A ∩R〉

)
6

∑
H∈H(R,T̂ ,Ẑ)

 ∏
N→GH

(u)={v}

Pp(Rv, Ru)

( ∏
seeds u ∈ H

Pp(Ru)

)

6
∑

H∈H(R,T̂ ,Ẑ)

exp

− ∑
N→GH

(u)={v}

(1− 2δ)Ug`+1
(Rv, Ru)

p1/(d−1)
− α

∑
seeds u ∈ H

φ(Ru)

 (5)

For each hierarchy H ∈ H(R, T̂ , Ẑ), let

Q(H) := exp

− ∑
N→GH

(u)={v}

(1− 2δ)Ug`+1
(Rv, Ru)

p1/(d−1)
− α

∑
seeds u ∈ H

φ(Ru)

 .

The theorem will follow easily from (5), Lemma 4 and the following claim.

Claim: Q(H) 6 exp

(
−dλ(d+ `, `+ 2)− ε

p1/(d−1)

)
for every H ∈ H(R, T̂ , Ẑ).

Proof of claim. We shall consider three cases. First, suppose that H has ‘many’ seeds.

Case 1:
∑

seeds u

φ(Ru) >
1

Bp1/(d−1)
.

In this case it is sufficient to consider only the second term in Q(H). Indeed,

exp

(
−α

∑
seeds u

φ(Ru)

)
6 exp

(
− α

Bp1/(d−1)

)
= exp

(
−dλ(d+ `, `+ 2)

p1/(d−1)

)
if p > 0 is sufficiently small, since α = dλ(d+ `, `+ 2)B, as required.

Next, suppose that R is unusually ‘long and thin’. Let girth(R) = p
∏d

j=2 bj, and recall

that bd = B/p1/(d−1), and that B is chosen to be sufficiently large.

Case 2:
∑

seeds u

φ(Ru) 6
1

Bp1/(d−1)
and girth(R) 6 2 log(Bd).

In this case we consider only the first term in Q(H). Let S = S(H) be the pod of H,
given by Proposition 11. Note that H has bounded height (in terms of B, d and T ), and
hence that |GH| is bounded (as p→ 0). Hence, by Proposition 11, we have

Q(H) 6 exp

(
−(1− 2δ)Ug`+1

(S,R)

p1/(d−1)
+M1

)
, (6)

for some constant M1 = M1(d, `, B, Z, T ).
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Next, note that bd/b1 >
√
B, since girth(R) 6 2 log(Bd) 6

√
B and so

b1 6

(
girth(R)

p

)1/(d−1)

6

(√
B

p

)1/(d−1)

6

√
B

p1/(d−1)
,

whereas bd = B/p1/(d−1). Recall (3), the definition of Ug`+1
(S,R), and recall also that

φ(S) 6
∑

seeds φ(Ru), and that g`+1 is decreasing. We obtain

Ug`+1
(S,R) >

(
B − φ(S)p1/(d−1)

)
g`+1

(
q
d−1∏
j=1

bj

)
>
(
B − 1

)
g`+1

(
4 log(Bd)√

B

)
> 2B,

if B > 0 is sufficiently large. The first inequality above follows by considering growth
only in direction d. For the second step, note that q

∏d−1
j=1 bj 6 2 ·girth(R)(b1/bd), and use

the upper bounds on
∑

seeds φ(Ru), girth(R) and b1/bd. The final inequality holds if B is
sufficiently large, since g`+1(z)→∞ as z → 0.

Thus, combining this bound with (6), we deduce that

Q(H) 6 exp

(
− B

p1/(d−1)
+M1

)
< exp

(
−dλ(d+ `, `+ 2)

p1/(d−1)

)
if B > 0 is sufficiently large and p > 0 is sufficiently small, as required.

Finally, we arrive at the main case.

Case 3:
∑

seeds u

φ(Ru) 6
1

Bp1/(d−1)
and girth(R) > 2 log(Bd).

The inequality (6) again follows from Proposition 11 and the definition of Q(H), exactly
as in Case 2. By Proposition 12 (applied to the vectors a = p1/(d−1) dim(S) and b =
p1/(d−1) dim(R)), we have

Ug`+1
(S,R) > d

∫ B

1/B

g`+1

(
zd−1

)
dz − (Bd)g`+1

(
p

d∏
j=2

bj

)
,

and hence, recalling that girth(R) > 2 log(Bd) and noting that δ/p1/(d−1) �M1,

Q(H) 6 exp

[
−(1− 3δ)

p1/(d−1)

(
d

∫ B

1/B

g`+1

(
zd−1

)
dz − (Bd)g`+1

(
2 log(Bd)

))]
.

But g`+1(z) 6 2e−(`+1)z for large z (see [6]), so

Q(H) 6 exp

[
−(1− 3δ)

p1/(d−1)

(
d

∫ B

1/B

g`+1

(
zd−1

)
dz − 2

Bd

)]
6 exp

(
−dλ(d+ `, `+ 2)− ε

p1/(d−1)

)
if B is sufficiently large, and δ is sufficiently small, as required. �
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To complete the proof of Theorem 17, recall that, by Lemma 4,

|H(R, T̂ , Ẑ)| 6 M2

(
1

p

)M2

.

for some constant M2 = M2(B, T, d, `). Hence, by (5) and the claim,

Pp
(
R ∈ 〈A ∩R〉

)
6

∑
H∈H(R,T̂ ,Ẑ)

Q(H) 6 M2

(
1

p

)M2

max
H∈H(R,T̂ ,Ẑ)

Q(H)

6 M2

(
1

p

)M2

exp

(
−dλ(d+ `, `+ 2)− ε

p1/(d−1)

)
6 exp

(
−dλ(d+ `, `+ 2)− 2ε

p1/(d−1)

)
if p > 0 is sufficiently small. Since ε > 0 was arbitrary, the theorem follows. �

We complete this section by deducing the following corollary of Theorem 17, which is
the technical statement which we shall need in Section 8.

Corollary 23. Let d, ` ∈ N, with d > 2. If ε > 0 is sufficiently small, then there exist
B > 0 and k0 = k0(B) > 0 such that, if k > k0 and n > n0(B, d, k, `, ε) is sufficiently
large, then the following holds. Let G = C([n]d × [k]`, 2), and let

p = p(n) 6

(
λ(d+ `, `+ 2)− ε

log n

)d−1

.

Then

Pp
(

diam([A]) > B log n
)
6 n−ε.

Proof. Let ε′ = ε′(d, `, ε) > 0 be sufficiently small, let B0 = B0(ε′), k0 = k0(B0, ε
′) be

chosen according to Theorem 17, and write λ = λ(d + `, ` + 2). Let n ∈ N and, noting
that the probability is monotone in p, let

p = p(n) =

(
λ− ε
log n

)d−1

.

Let B1 = 2B0/(λ− ε). We shall show that

Pp
(

long(R) > B1 log n for some R ∈ 〈A〉
)
6 n−ε.

The result will then follow, since diam([A]) 6 max
{

long(R) : R ∈ 〈A〉
}

.
Suppose long(R) > B1 log n for some R ∈ 〈A〉. By Lemma 22, there exists an internally

spanned rectangle R′ ⊂ R with

B1 log n

2
6 long(R′) 6 B1 log n.

By our choice of p, it follows that long(R′) = B/p1/(d−1) for some B ∈ [B0, 2B0]. Hence,
by Theorem 17, if n is sufficiently large then

Pp
(
R′ ∈ 〈A ∩R′〉

)
6 exp

(
−dλ− ε

′

p1/(d−1)

)
6 exp

(
−
(
dλ− ε′
λ− ε

)
log n

)
6 n−(d+ε+ε′).
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The last inequality holds since ε > 0 and ε′ = ε′(d, `, ε) > 0 were chosen sufficiently small,
and because λ(d+ `, `+ 2) < (d+ 1)/2 < d, by Proposition 16.

There are at most (B log n)dnd 6 nd+ε′ potential such rectangles R′. So, writing Y (B1)
for the number of internally spanned rectangles R′ ⊂ C([n]d× [k]`, 2) with (B1/2) log n 6
long(R′) 6 B1 log n, we get

Pp
(
long(R) > B1 log n for some R ∈ 〈A〉

)
6 Ep

(
Y (B1)

)
6 n−ε

as required. �

It is easy to see that Corollary 23 implies Theorem 2.

7. The Cerf-Cirillo Method

In this section we shall recall a fundamental technique in the study of bootstrap per-
colation on [n]d. This technique was introduced by Cerf and Cirillo [13], and later used
and refined by Cerf and Manzo [14], Holroyd [32], and Balogh, Bollobás and Morris [6].
We shall use this ‘Cerf-Cirillo method’ in order to prove the induction step in our proof
of Theorem 1.

In order to state the main lemma of this section, we need to recall some definitions
from [6]. We will be interested in two-coloured graphs, i.e., simple graphs with two
types of edges, which we shall label ‘good’ and ‘bad’. We call such a two-coloured graph
‘admissible’ if it either contains at least one bad edge, or if every component is a clique
(i.e., a complete graph). For any set S, let

Λ(S) :=
{

admissible two-coloured graphs with vertex set S × [2]
}
.

Now, given m ∈ N, let

Ω(S,m) :=
{
P = (G1, . . . , Gm) : Gt ∈ Λ(S) for each t ∈ [m]

}
,

the set of sequences of two-coloured admissible graphs on S × [2] of length m. We shall
sometimes think of Gt as a coloured graph on S× [2t−1, 2t], and trust that this will cause
no confusion. We shall be interested in probability distributions on Ω(S,m) in which, with
high probability, there are bad edges in only very few of the graphs Gt.

Now, for each P ∈ Ω(S,m), let GP denote the graph with vertex set S × [2m], and the
following edge set E(GP) (see, for example, Figure 2).

(a) GP [S × {2y − 1, 2y}] = Gy,

(b) {(x, 2y), (x′, 2y + 1)} ∈ E(GP)⇔ x = x′,

(c) {(x, y), (x′, y′)} /∈ E(GP) if |y − y′| > 2.

Edges in GP of type (a) are labelled good and bad in the obvious way, to match the
label of the corresponding edge in Gy. Thus GP has three types of edge: good, bad, and
unlabelled.

Such a graph GP , with S = [3] and m = 4, is pictured below. Note that, for example,
G3 has two edges: {(1, 1), (2, 1)} and {(3, 1), (3, 2)}, and that G4 must contain a bad edge.
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G1 G2 G3 G4

Figure 2: A graph GP , with S = [3] and m = 4.

Given G ∈ Λ(S), let Eg(G) denote the set of good edges, and Eb(G) denote the bad
edges, so that E(G) = Eg(G) ∪ Eb(G). If uv is a good edge in G, then we shall write
u ∼ v. For each vertex v = (x, y) ∈ V (GP), let

ΓP(v) := {u ∈ V (GP) : u ∼ v and u 6= v},
and let dP(v) = |ΓP(v)|. We emphasize that dP(v) is the number of good edges incident
with v.

Finally, let X(P) denote the event that there is a connected path across GP (i.e., a
path from the set S × {1} to the set S × {2m}). Observe that the event X(P) holds for
the graph GP depicted in Figure 2.

The following lemma was first stated in [6], but the proof is due to Cerf and Cirillo [13].

Lemma 24 (Cerf and Cirillo [13], see Lemma 35 of [6]). For each 0 < α < 1/2 and ε > 0,
there exists δ > 0 such that the following holds for all m ∈ N and all finite sets S with
α4|S|ε > 1.

Let P = (G1, . . . , Gm) be a random sequence of admissible two-coloured graphs on S×[2],
chosen according to some probability distribution fΩ on Ω(S,m). Suppose fΩ satisfies the
following conditions:

(a) Independence: Gi and Gj are independent if i 6= j,

(b) BK condition: For each t ∈ [m], r ∈ N, and each x1, y1, . . . , xr, yr ∈ V (Gt),

P

(
r∧
j=1

(
xj ∼ yj

)
∧
∧
j 6=j′

(
xj 6∼ xj′

)
∧
(
Eb(Gt) = ∅

))
6

r∏
j=1

P
(
xj ∼ yj

)
,

and for each t ∈ [m] and v ∈ V (GP),

(c) Bad edge condition: P
(
Eb(Gt) 6= ∅

)
6 |S|−ε,

(d) Good edge condition: E (dP(v)) 6 δ.

Then
P
(
X(P)

)
6 αm|S|.

Remark 4. We shall apply Lemma 24 with S = [N ]d−1 × [k]`, where N 6 log n. The
pair uv will be an edge of the graph Gt if u, v are in the same component of [A], where
the closure is in the structure C([N ]d−1 × [k]`+1, r − 1), and A is chosen according to Pp.
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Edges will be labelled ‘good’ if both endpoints lie in some internally filled component of
‘small’ diameter, i.e., less than B logN , for some suitably chosen B > 0. Condition (b)
will be proved using the van den Berg-Kesten Lemma, and conditions (c) and (d) by the
induction hypothesis. The base cases are Corollary 23 and Lemma 25, below.

Given a bootstrap structure G on [n]d × [k]`, a set A ⊂ V (G), a vertex x ∈ V (G) and
a number m > 0, we define the set

ΓG(A,m, x) :=
{
y ∈ V (G) : there exists an internally filled connected

component X ⊂ V (G) such that x, y ∈ X and diam(X) 6 m
}
. (7)

(This definition is important, and is due to Holroyd [32].) The following straightforward
lemma, which we shall use to bound the expected number of good edges incident with a
vertex, was proved in [6].

Lemma 25 (Lemma 36 of [6]). Let n, d, k, ` ∈ N, with d > 2, and let B > 0. There exists
a constant c(B, d, k, `) such that the following holds. Given p > 0 sufficiently small, let
G = C([n]d × [k]`, 2) and A ∼ Bin(V (G), p). Then

Ep

(∣∣ΓG(A,B/p1/(d−1), v)
∣∣) 6 c(B, d, k, `)

(
log(1/p)

)3d+`+1
p

for every v ∈ V (G).

We shall also use the following easy lemma from [13].

Lemma 26. Let A ⊂ C([n]d × [k]`, r). Then for every 1 6 L 6 diam([A]), there exists a
connected set X which is internally filled, i.e., X ⊂ [A ∩X], with

L 6 diam(X) 6 2L.

Proof. Add newly infected sites one by one, and note that in each step the largest diameter
of a component in [A] may jump from at most L − 1 to at most 2L − 1. Thus, at some
point in the process the required set X must appear as a component. �

8. Proof of Theorem 1

We can now prove the following generalization of the lower bound in Theorem 1 by
induction on r, using the method of Cerf and Cirillo for the induction step, and with
Corollary 23 and Lemma 25 as the base case.

Recall from Section 7 the definition (7) of ΓG(A,m, x), the set of vertices which are
connected to x by a ‘small’ component which is internally filled by A. We shall show that,
for appropriate values of p and m, the expected size of this set goes to zero as n→∞.

Theorem 27. Let d, `, r ∈ N with d > r > 2. If ε > 0 is sufficiently small, then there
exist B > 0 and k0 = k0(B) > 0 such that, if k > k0 and n ∈ N is sufficiently large, then
the following holds. Let G = C([n]d × [k]`, r), and let

p = p(n) 6

(
λ(d+ `, `+ r)− ε

log(r−1) n

)d−r+1

.
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Then

Pp
(

diam([A]) > B log n
)
6 n−(r−2)d−ε,

and moreover

Ep

(∣∣ΓG(A,B log n, v)
∣∣) = o(1)

as n→∞, for every v ∈ V (G).

Proof. The proof is by induction on r; we begin by proving the base case, r = 2. Let
B = B(2)(d, `, ε) and k0(B) be given by Corollary 23. The first statement follows from
Corollary 23, and the second follows by Lemma 25, so in this case we are done.

Let r > 3, and assume that the theorem holds for r − 1, for all d, ` ∈ N and every
sufficiently small ε > 0. We shall prove the theorem with B = B(r)(d, `, ε) = 1 when
r > 3. Fix d, ` ∈ N and ε > 0, let p = p(n) > 0 be as described above, and let
k > k0(d, `, r, ε) ∈ N be sufficiently large.

Let G = C([n]d × [k]`, r), and recall that Pp(R) denotes the probability that a rec-
tangle R ⊂ V (G) is internally spanned by A ∼ Bin

(
V (G), p

)
. The induction step is a

straightforward consequence of the following claim.

Claim: If R ⊂ C([n]d × [k]`, r) is a rectangle and diam(R) = m 6 log n, then

Pp(R) 6 αm/k(m+ k)d+`

for some α = α(n)→ 0 as n→∞.

Proof of claim. If m 6 log(r) n then Pp(R) 6 kd+`p→ 0 as n→∞, since R must contain
an element of A. So assume that m > log(r) n� k, let R′ ⊃ R be a rectangle in G, with

R′ ∼= [m]d× [k]`, and let t = bm/kc. Assume without loss of generality that dim(R)1 = m
(i.e., R has length m in direction 1), and assume for simplicity that m is divisible by k.
We partition the rectangle R′ into blocks L1, . . . , Lt, each of size [m]d−1 × [k]`+1. To be
precise, let Lj =

{
x ∈ R′ : (j − 1)k + 1 6 x1 6 jk

}
.

Since R is internally spanned by A, there exists a path in [A∩R] from the set {x ∈ R :
x1 = 1} to the set {x ∈ R : x1 = m}. We shall use Lemma 24 to show that this is rather
unlikely. In order to do so we use the following coupling.

Replace the thresholds in each block Lj with those of C([m]d−1×[k]`+1, r−1), and allow
percolation to occur independently in each block. Denote by {A}(j) the closure of A∩Lj
under this process, i.e., the closure in the bootstrap structure C([m]d−1 × [k]`+1, r − 1).

Let {A} =
⋃
j{A}(j). The following subclaim shows that this is indeed a coupling.

Subclaim: {A} ⊃ [A ∩R′] ⊃ [A ∩R].

Proof of subclaim. Note that each vertex of Lj has at most one neighbour in R′ \Lj, and
‘internal’ vertices of Lj (those with x 6∈ {(j−1)k+ 1, jk}) have no neighbours outside Lj.
A vertex x ∈ Lj originally had threshold r, and now (in the coupled system) has threshold
r − 1 + I[x1 6∈ {(j − 1)k + 1, jk}]. Thus, the threshold of no vertex has increased, and
the threshold of those vertices which have a neighbour in R′ outside Lj have decreased
by one. Thus {A} ⊃ [A∩R′], as claimed. The second inclusion follows since R ⊂ R′. �
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Now, let S = [m]d−1×[k]`, and for each j ∈ [t], define a two-coloured graph Gj on S×[2]
as follows. For each x ∈ S×[2], let x̃ denote the element of {(j−1)k+1, jk}×[m]d−1×[k]`

corresponding to x in the natural isomorphism. Now define the edges of Gj by

xy ∈ E(Gj) if and only if x̃ and ỹ are in the same component of {A}(j),
and let

x ∼ y ⇔ there exists an internally filled connected component

X ⊂ {A}(j) such that x,y ∈ X and diam(X) 6 B log n,

where x ∼ y means xy is a ‘good’ edge, as in Section 7, and B = B(r−1)(d − 1, ` + 1, ε)
was chosen above. Note that Gj is admissible, since x ∼ y and y ∼ z in Gj implies that
x and z are in the same component of {A}(j), and so either x ∼ z, or xz is a bad edge.
Note also that the event x ∼ y is increasing.

For each set A ⊂ V (G), we have defined a sequence P := (G1, . . . , Gt) ∈ Ω(S,m) of
admissible two-coloured graphs. We claim that the (random) sequence P satisfies the
conditions of Lemma 24. Indeed, recall that m 6 log n, so

p 6

(
λ(d+ `, `+ r)− ε

log(r−2)m

)
,

and let ε′ = ε/(d+ `). By the induction hypothesis (and our choice of B and k), for each
j ∈ [t] we have

P
(
Eb(Gj) 6= ∅

)
6 Pp

(
diam

(
{A}(j)

)
> B logm

)
6 m−ε 6 |S|−ε′ , (8)

since |S| = md−1k` 6 md+`.
Next, choose a function α = α(n) such that α → 0 sufficiently slowly as n → ∞, and

let δ = δ(α, ε′) > 0 be given by Lemma 24. Since α(n) → 0 sufficiently slowly, and d, `
and ε are constants, we can assume that δ = δ(n) approaches zero arbitrarily slowly as
n→∞. Thus, by the induction hypothesis, we have

Ep

(
dP(v)

)
= E

(∣∣ΓG(A ∩ Lj, B(r−1)(d− 1, `+ 1, ε) logm, v)
∣∣) 6 δ (9)

for any v ∈ V (Gj), if n (and therefore m > log(r) n) is sufficiently large. Moreover, we

have |S| > m > log(r) n, so α4|S|ε′ →∞ as n→∞ if α(n)→ 0 sufficiently slowly.
By (8) and (9), it follows that conditions (c) and (d) of Lemma 24 are satisfied (for

ε′ and δ = δ(α, ε′) as above). Condition (a) is satisfied by construction. Condition (b)
follows because if x ∼ y and x′ ∼ y′, and there are no bad edges, then either all four
points are in the same internally spanned component with diameter at most B log n, or
they are in different components of {A}(j). Thus, if x 6∼ x′, then the events x ∼ y and
x′ ∼ y′ must occur disjointly, and so we can apply the van den Berg-Kesten Lemma.

Recall that X(P) denotes the event that there is a connected path across GP , and note
that if R is internally spanned by A, then, by the subclaim, the event X(P) holds. Thus,



THE SHARP THRESHOLD FOR BOOTSTRAP PERCOLATION IN ALL DIMENSIONS 31

by Lemma 24, we have

Pp(R) 6 P
(
X(P)

)
6 αbm/kc(m+ k)d+`

as required, and the claim follows. �

We shall now use the claim to prove the theorem for r. Indeed, suppose that diam([A]) >
log n. By Lemma 26, there exists an internally filled, connected set X with

log n− 1

2
6 diam(X) 6 log n− 1.

Let R be the smallest rectangle containing X, and observe that R is internally spanned
by A, and that diam(R) = diam(X) 6 log n. Since there are at most (n log n)d such
rectangles, by the claim we have

Pp
(

diam([A]) > log n
)
6 (n log n)d · αlogn/3k(log n+ k)d+` 6 n−dr,

if n is sufficiently large, since α(n)→ 0 as n→∞.
Finally, let v ∈ V (G), and suppose that w ∈ ΓG(A, log n, v). Then there exists an

internally filled connected component X ⊂ V (G) such that v, w ∈ X and diam(X) 6
log n, and hence there exists an internally spanned rectangle R (the smallest rectangle
containing X) such that v, w ∈ R and m := diam(R) 6 log n.

There are at most m2d rectangles with diameter m containing v, and each contains at
most mdk` vertices. It follows that

Ep

(∣∣ΓG(A, log n, v)
∣∣) 6 logn∑

m=1

m3dk` · αm/k(m+ k)d+` = o(1),

since α(n) → 0 as n → ∞. This completes the induction step, and hence the proof of
Theorem 27. �

This completes the proof of Theorem 1, since the upper bound was proved in [6], and
the lower bound follows immediately from Theorem 27 in the case ` = 0.

9. Open problems

In this section we shall present three different directions for future research into the
bootstrap process on the grid [n]d: extensions to higher dimensions (d = d(n) → ∞),
more general update rules, and further sharpening of the thresholds. See [4, 5, 7, 18, 29]
for some recent work on these questions.

9.1. Higher dimensions. We consider Theorem 1 to be an important step towards a
much bigger goal: to determine pc([n]d, r) for arbitrary functions n = n(t), d = d(t)
and r = r(t) with n + d → ∞. Despite much recent progress, r-neighbour bootstrap
percolation on [n]d is still poorly understood for most such functions.
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Our understanding of the bootstrap process is most complete in the case r = 2, where
we have sharp bounds in the case d = O(1) (by Theorem 1), and in the case d � log n,
where it was proved in [7] that

pc
(
[n]d, 2

)
=
(

4λ+ o(1)
)( n

n− 1

)2
1

d2
2−2
√
d log2 n,

as d→∞, where λ ≈ 1.166 is the smallest positive root of the equation
∞∑
k=0

(−1)kλk

2k2−kk!
= 0.

Problem 1. Determine pc([n]d, 2) for all functions d(n) with 1� d(n) = O(log n).

We expect that our proof of Theorem 1 can be extended to slowly growing functions
d = d(n), and that d = Θ(log n) will be the most challenging range. The growth of the
the critical droplet is very different in the ranges d = O(1) (where it grows in all directions
at the same time), and d� log n (where it grows in only one direction at a time), and it
will be particularly interesting to see whether these are the only two possible (dominant)
behaviours.

Due to some recent progress, we also know a significant amount about the process when
d = r. Indeed, by Theorem 1 and the results of [5], we have sharp bounds on pc([n]d, d)
when d = O(1) and when d > (log log n)2+ε. Looking from slightly further away, we have
the following theorem, which is implied by the results of [39] and [5].

Theorem 28. Let n = n(d). Then, as d→∞, we have

pc([n]d, d) =

 o(1) if n > 22...2

, (a tower of 2s of height d)

1

2
+ o(1) if n 6 22

√
d/ log d

.

We have very little idea where (or how) the transition from 0 to 1/2 occurs.

Problem 2. Determine a function n = n(d) (if one exists), such that

0 < lim inf
d→∞

pc([n]d, d) 6 lim sup
d→∞

pc([n]d, d) <
1

2
.

There are also much simpler questions to which we have no good answer. For example,
the following conjecture was made in [7].

Conjecture 1. For r fixed,

pc([2]d, r) = exp
(
−Θ

(
d1/2r−1

))
.

We know of no non-trivial lower bound on this function when r > 3.
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9.2. More general models on [n]d. In [18], Duminil-Copin and Holroyd introduced
the following, much more general family of bootstrap percolation models. We say that
N ⊂ Zd is a neighbourhood if it is a finite, convex, symmetric set containing the origin 0.
(Here, symmetric means that if x ∈ N then −x ∈ N .) For r ∈ N, define the bootstrap
process on [n]d with parameters (r,N ) by setting

At+1 := At ∪
{
v ∈ [n]d : |(N + v) ∩ At| > r

}
for each t ∈ N, where A0 is the set of vertices which are infected at time 0. We define the
closure [A] of a set A, and the critical probability pc([n]d, r,N ) as in the Introduction.

Depending on the shape ofN and the value of r, these dynamics behave very differently.
We say that they are critical if, on the infinite grid Zd, any finite set generates a finite
set, and no finite set can be the complement of a stable set (see [25, 26] or [18] for more
details).

Critical models can be divided into two sub-families: balanced and unbalanced models.
Given a set S, define ι1(S) to be the maximal cardinality of a set of the form L∩S where
L is a line passing through 0. A model is balanced if there exist two distinct lines L and
L′ passing through 0 such that L ∩ N and L′ ∩ N both have cardinality ι1(N ). Finally,
let γ1 = r − (|N | − ι1(N ))/2.

The following theorem shows that, in two dimensions, there is a sharp threshold for
pc([n]d, r,N ) for all balanced, critical models.

Theorem 29 (Duminil-Copin and Holroyd [18]). Let N ⊂ Z2 be a neighbourhood of 0, let
r ∈ N, and suppose that the bootstrap process on [n]2 with parameters (r,N ) is balanced
and critical. Then there exists a constant Λ ∈ (0,∞) such that

pc([n]2, r,N ) =

(
Λ + o(1)

log n

)1/γ1

as n→∞.

It is a challenging open problem to extend this result to higher dimensions, and to more
general neighbourhoods and update rules.

9.3. Sharper thresholds. Finally, we note some recent progress, also in two dimensions,
on the problem of proving even sharper thresholds for pc([n]d, r). This question was first
addressed by Gravner and Holroyd [27], who were interested in explaining the surprising
discrepancy between the rigorously proved result of Holroyd [31], and the estimates of
pc([n]2, 2) from simulations. They improved the upper bound, proving that

pc([n]2, 2) 6
π2

18 log n
− c

(log n)3/2

for some c > 0, and showed also that the function pc([n]2, 2) log n converges too slowly for
the limit to be easily estimated. In [28], they conjectured that their upper bound is close
to being tight. This conjecture was proved recently by Gravner, Holroyd and Morris [29].
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Theorem 30 (Gravner, Holroyd and Morris [29]). There exist constants C > 0 and c > 0
such that

π2

18 log n
− C(log log n)3

(log n)3/2
6 pc([n]2, 2) 6

π2

18 log n
− c

(log n)3/2

for every n ∈ N.

Similarly tight bounds have also been proved for the hypercube when r = 2 and when
r = d/2 (see [5, 7]). By combining the techniques of this paper with those of [29], one
might hope that sharper bounds could also be given on pc([n]d, 2). However, it is likely
to be much harder to prove such results when r > 3.
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