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Abstract

Discrete subgroups of SL(2,R) are well understood, and classified by the

geometry of the corresponding hyperbolic surfaces. Discrete subgroups

of higher-rank semisimple Lie groups, such as SL(n,R) for n > 2, re-

main more mysterious. While lattices in this setting are rigid, there also

exist more flexible, “thinner” discrete subgroups, which may have large

and interesting deformation spaces, giving rise in particular to so-called

higher Teichmüller theory. We survey recent progress in constructing and

understanding such discrete subgroups from a geometric and dynamical

viewpoint.

4.1 Introduction

Recall that a Lie group is a group which is also a differentiable manifold.

All Lie groups considered in these notes will be assumed to be real linear

Lie groups, i.e. closed subgroups of GL(N,R) for some N ∈ N, with

finitely many connected components. We will be specifically interested

in such Lie groups which are noncompact, since our goal is to study their

infinite discrete subgroups.

We say that a Lie group G is simple if its Lie algebra is simple, i.e.

nonabelian with no nonzero proper ideals; equivalently, all infinite closed

normal subgroups of G have finite index in G and are nonabelian. Sim-

ple Lie algebras have been completely classified by É. Cartan, leading

to a classification of simple Lie groups up to local isomorphism. (Recall

that two Lie groups G1 and G2 are said to be locally isomorphic if they

have the same Lie algebra; equivalently, some finite cover of the identity
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component of G1 is isomorphic to some finite cover of the identity com-

ponent of G2.) Noncompact simple Lie groups come in several infinite

families, given in Table 4.1, and 17 (up to local isomorphism) additional

groups, called exceptional (see e.g. [89, Ch. X]).

Noncompact
simple Lie
group G

Maximal
compact

subgroup K

rankR(G)

A SL(n,C) SU(n) n− 1
B SO(2n+ 1,C) SO(2n+ 1) n
C Sp(2n,C) Sp(n) n
D SO(2n,C) SO(2n) n
A I SL(n,R) SO(n) n− 1
A II SU∗(2n) Sp(n) n− 1
A III SU(p, q) S(U(p)×U(q)) min(p, q)
BD I SO(p, q)0 SO(p)× SO(q) min(p, q)
D III SO∗(2n) U(n) bn/2c
C I Sp(2n,R) U(n) n
C II Sp(p, q) Sp(p)× Sp(q) min(p, q)

Table 4.1 List of classical noncompact simple real linear Lie groups, up

to local isomorphism. Here n, p, q ≥ 1 are integers. For types A, A I,

and A II we assume n ≥ 2, for types D and D III we assume n ≥ 3, and

for type BD I we assume (p, q) /∈ {(1, 1), (2, 2)}.

We say that a Lie group G is semisimple if it is locally isomorphic to

a direct product G1×· · ·×G` of simple Lie groups Gi, called the simple

factors of G; in that case, if G is connected and simply connected, then it

is actually isomorphic to such a direct productG1×· · ·×G`. For instance,

SO(2, 2) and SO(4,C) are semisimple (they are locally isomorphic to

PSL(2,R) × PSL(2,R) and PSL(2,C) × PSL(2,C), respectively). Any

connected semisimple Lie group is the identity component (for the real

topology) of the real points of some R-algebraic group (see [45, § 2.14]).

Infinite discrete subgroups of semisimple Lie groups are important

objects that appear in various areas of mathematics, such as geometry,

complex analysis, differential equations, number theory, mathematical

physics, ergodic theory, representation theory, etc. There are many mo-

tivations for studying these discrete subgroups. Let us mention three:

(1) Historical importance: The study of second-order linear differential

equations over C, in particular by Fuchs, naturally led to the study

of discrete subgroups of PSL(2,C), in particular by Poincaré, and to
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the celebrated Uniformisation Theorem: any closed Riemann surface

of genus ≥ 2 is a quotient of the hyperbolic plane H2 by a discrete

subgroup Γ of PSL(2,R). See e.g. [121] for details.

(2) Locally symmetric spaces: Any discrete subgroup Γ of a noncom-

pact semisimple Lie group G defines a Riemannian locally symmet-

ric space Γ\G/K, where K is a maximal compact subgroup of G.

These locally symmetric spaces, which include real hyperbolic man-

ifolds Γ\Hn for G = PO(n, 1) = O(n, 1)/{±I}, are geometrically

important. They naturally appear in representation theory and har-

monic analysis, where symmetric spaces G/K play a central role

(see e.g. [7]).

(3) Geometric structures on manifolds: A modern point of view on ge-

ometry, which dates back to Klein’s 1872 Erlangen program and

which has been much developed in the twentieth century especially

through the work of Ehresmann and Thurston, is to study manifolds

that “locally look like” some “model spaces” with large “symmetry

groups”. Model spaces are typically homogeneous spaces X = G/H

where G is a real Lie group (often semisimple). Important examples

include X = G/K as above, but also (X,G) = (RPn,PGL(n+1,R))

(real projective geometry), (CPn,PGL(n + 1,C)) (complex projec-

tive geometry), or (Hp,q,PO(p, q + 1)) (pseudo-Riemannian hyper-

bolic geometry in signature (p, q)). See [77] for details.

An important class of discrete subgroups of noncompact semisimple

Lie groups is the class of lattices, namely discrete subgroups of finite

covolume for the Haar measure (see Section 4.2 below). They play an

important role in several fields of mathematics, in addition to the above,

such as:

• geometric group theory (lattices are finitely presented groups with

many desirable properties — e.g. lattices of SL(n,R) for n ≥ 3 have

Kazhdan’s property (T)),

• combinatorics (construction of expander graphs),

• number theory (arithmetic groups),

• ergodic theory (flows on Γ\G) and homogeneous dynamics.

See e.g. [134] and references therein. In some of these settings (in particu-

lar ergodic theory and homogeneous dynamics), there is currently active

research aiming to extend, to classes of discrete subgroups of infinite

covolume, classical results involving lattices. Infinite-index subgroups of

arithmetic groups (and particularly those that are still Zariski-dense,
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named thin groups by Sarnak) have also attracted considerable interest

recently, see e.g. [106].

In these notes, we will review a few properties of lattices, and then fo-

cus on the problem of finding other large classes of infinite discrete sub-

groups Γ of semisimple Lie groups G with desirable properties, including:

(1) the existence of examples with interesting geometric interpretations,

(2) a good control of the subgroups’ behaviour under deformation,

(3) interesting dynamics of Γ on certain homogeneous spaces of G.

These properties are typically invariant under replacing Γ by a finite-

index subgroup. This will allow us to sometimes reduce to torsion-free Γ:

indeed, the Selberg lemma [124, Lem. 8] states that any finitely generated

subgroup of G admits a finite-index subgroup which is torsion-free.

4.2 Lattices

Let G be a noncompact semisimple Lie group. It admits a Haar measure,

i.e. a nonzero Radon measure which is invariant under left and right

multiplication; this measure is unique up to scaling.

Definition 4.1 A lattice of G is a discrete subgroup Γ of G such that

the quotient Γ\G has finite volume for the measure induced by the Haar

measure of G.

If Γ is a lattice of G, then the quotient Γ\G can be compact (in which

case we say that Γ is a cocompact or uniform lattice) or not.

A fundamental result of Borel and Harish-Chandra [29, 30] states that

G always admits both cocompact lattices and noncocompact lattices.

Borel’s Density Theorem [28] states that lattices are Zariski-dense

in G as soon as G is connected and has no compact simple factors. This

means that if the set of real points of some R-algebraic group contains

a lattice of G, then it actually contains the whole of G.

We say that a lattice Γ of G is irreducible if for any noncompact,

infinite-index, closed normal subgroup G′ of G, the projection of Γ to

G/G′ is nondiscrete. (This is automatically satisfied if G is simple.)
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4.2.1 Geometric interpretation

Lattices of G can be characterised by their action on the Riemannian

symmetric space of G. Let us recall what this fundamental object is (see

e.g. [66, 89] for details).

As mentioned in the introduction, G admits a maximal compact sub-

group K. It is unique up to conjugation, and so the quotient G/K is

uniquely defined. For instance, if G = SL(n,R), then K = SO(n) up

to conjugation, and G/K identifies with the space of ellipsoids of Rn
of volume 1; if G = SL(n,C), then K = SU(n) up to conjugation. See

Table 4.1 for further examples.

The group K is the set of fixed points of some involution θ of G, called

a Cartan involution. This yields a splitting of the Lie algebra g of G as

the direct sum of two linear subspaces, namely the subspace gdθ of fixed

points of dθ (which is the Lie algebra ofK) and the subspace g−dθ of anti-

fixed points of dθ. The tangent space TeK(G/K) to G/K at the origin

identifies with g−dθ, on which there is a natural K-invariant positive

definite symmetric bilinear form, the Killing form. Pushing forward this

bilinear form by elements of G yields a G-invariant Riemannian metric

on G/K. With this metric, G/K has nonpositive sectional curvature and

is a symmetric space: at every point, the geodesic symmetry sending

exp(tv) to exp(−tv) (where v is a tangent vector) is an isometry.

Since K is compact, any discrete subgroup Γ of G acts properly dis-

continuously on G/K. The subgroup Γ is a lattice if and only if the

quotient Γ\G/K has finite volume, which is equivalent to the action of

Γ on G/K admitting a fundamental domain of finite volume.

4.2.2 Examples

The following fundamental example goes back to Minkowski.

Example 4.2 The group Γ = SL(n,Z) is a noncocompact lattice in

G = SL(n,R).

Let us briefly explain how to see this, starting with the case n = 2.

For n = 2, the Riemannian symmetric space G/K is the hyperbolic

plane H2 ' {z = x + iy ∈ C | y = Im(z) > 0} with its G-invariant

metric ds2 = (dx2 + dy2)/y2, on which G = SL(2,R) acts by Möbius

transformations:
(
a b
c d

)
· z = az+b

cz+d
. It is an easy exercise to check that

D :=
{
z ∈ H2

∣∣∣ |Re(z)| ≤ 1

2
and |z| ≥ 1

}
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(see Figure 4.1) is a finite-volume fundamental domain for the action of

Γ = SL(2,Z) on H2. (Use that Γ is generated by
(

1 1
0 1

)
and

(
0 1
−1 0

)
and

that the G-invariant volume form on H2 is given by dvol = dxdy/(4y2).)

Therefore Γ is a lattice in G = SL(2,R). This lattice is not cocompact

since for any γ =
(
a b
c d

)
∈ Γ we have Im(γ · i) = 1/(c2 + d2) ≤ 1, hence

there exist points of H2 (e.g. ti with t > 0 large) that are arbitrarily far

away from any point of the Γ-orbit of i in H2.

For general n ≥ 2, we can use the classical Iwasawa decomposition

G = NAK, where N (resp. A) is the subgroup of G = SL(n,R) con-

sisting of upper triangular unipotent (resp. positive diagonal) matrices

and K = SO(n). This means that any element g ∈ G can be written in

a unique way as g = nak where n ∈ N , a ∈ A, and k ∈ K. A finite-

volume fundamental domain for the action of Γ on G/K is given by

the Siegel set S consisting of those elements of G/K of the form naK

with n ∈ N having all entries above the diagonal in [−1/2, 1/2] and a =

diag(a1, . . . , an) ∈ A satisfying |ai/ai+1| ≥
√

3/2 for all 1 ≤ i ≤ n− 1.

D

Figure 4.1 Fundamental domains for the action of SL(2,Z) on the
upper half plane model of H2

Generalising Example 4.2, a fundamental result of Borel and Harish-

Chandra [30] states that if G is a semisimple Q-algebraic group, then

GZ is a lattice in GR. Godement’s cocompactness criterion (see e.g. [19,

§ 2.8]) states that this lattice is cocompact if and only if it does not

contain any nontrivial unipotent elements.

We now give a concrete example of a cocompact lattice (see [19, § 2]).

Example 4.3 For p, q ≥ 1 with p + q = n ≥ 3, consider the block
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diagonal matrix

Jp,q :=

(
Ip 0

0 −
√

2 Iq

)
and the Lie groupG := SO(Jp,q,R) ' SO(p, q). Then Γ := G∩SL(n,Z[

√
2])

is a cocompact lattice in G.

In order to see this, we can apply Weil’s trick of “restriction of scalars”.

Namely, consider the automorphism σ of SL(n,Z[
√

2]) obtained by ap-

plying the Galois conjugation x +
√

2y 7→ x −
√

2y of Q[
√

2] to each

entry. Let Jσp,q be the image of Jp,q under σ, and H the semisimple al-

gebraic subgroup of GL2n whose set HC of complex points consists of

those block matrices of the form

h :=

(
a 2b

b a

)
∈ GL(2n,C)

with ϕ+(h) := a+
√

2b ∈ SO(Jp,q,C) and ϕ−(h) := a−
√

2b ∈ SO(Jσp,q,C).

An elementary computation (or more abstractly the fact that the family

of polynomial equations defining H is invariant under σ) shows that H

is a Q-algebraic group. We have isomorphisms{
HR

(ϕ+,ϕ−)
' SO(Jp,q,R)× SO(Jσp,q,R) = G× SO(Jσp,q,R),

HZ
ϕ+' Γ,

where SO(Jσp,q,R) ' SO(n) is compact. The group HZ is a lattice in HR,

hence Γ is a lattice in G. Moreover, HZ does not contain any nontrivial

unipotent elements since ϕ− takes Γ to a subgroup of a compact group,

hence without nontrivial unipotent elements, and a homomorphism of

algebraic groups takes unipotent elements to unipotent elements. Gode-

ment’s criterion then ensures that HZ\HR is compact, and so Γ\G is

compact too.

In both Examples 4.2 and 4.3, the group Γ is arithmetic in G, i.e.

there is a homomorphism π : H→ G of semisimple Q-algebraic groups

such that G = GR, such that the kernel of π in HR is compact, and such

that Γ is commensurable to π(HZ) (see [134]).

Nonarithmetic lattices are known to exist in G = SO(n, 1) for any

n ≥ 2: examples were constructed by Vinberg [128] for small n using

reflection groups, then by Gromov and Piatetski-Shapiro [79] for any n.

Later, different examples were constructed by Agol [1] and Belolipetsky–

Thomson [13] (see also the very recent work [63]) in the form of lattices

of SO(n, 1) whose systole (i.e. length of the shortest closed geodesic)
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is arbitrarily small. (Due to a separability property later established

in [20, Cor. 1.12], Agol’s construction [1] actually works for any n.)

Finitely many commensurability classes of nonarithmetic lattices are

also known in SU(2, 1) and SU(3, 1) by Deligne–Mostow [57, 115] and

Deraux–Parker–Paupert [58, 59]. It is an open question whether nonar-

ithmetic lattices exist in SU(n, 1) for n > 3.

On the other hand, in noncompact simple Lie groups which are not

locally isomorphic to SO(n, 1) or SU(n, 1), all lattices are arithmetic (as

a consequence of superrigidity, see Section 4.2.4).

4.2.3 Rank one versus higher rank

The real rank of a semisimple Lie group is an integer defined as follows.

Definition 4.4 The real rank of G, denoted rankR(G), is the max-

imum dimension of a subgroup of G which is diagonalisable over R;

equivalently, for noncompact G, it is the maximum dimension of a to-

tally geodesic subspace of the Riemannian symmetric space G/K which

is flat (i.e. of constant zero sectional curvature).

The real rank is invariant under local isomorphism, and the real rank

of a product is the sum of the real ranks of the factors. We refer to Ta-

ble 4.1 for the real ranks of the classical noncompact simple Lie groups.

A compact Lie group has real rank 0.

The simple Lie groups of real rank 1 are, up to local isomorphism,

SO(n, 1), SU(n, 1), Sp(n, 1) for n ≥ 2, and the exceptional group F4(−20).

(Note that PSL(2,R) ' SO(2, 1)0 and PSL(2,C) ' SO(3, 1)0, where the

subscript 0 denotes the identity components.)

Semisimple Lie groups G of real rank 1 are characterised by the fact

that the sectional curvature of the corresponding Riemannian symmetric

space G/K is everywhere < 0. (In fact, the curvature is then pinched, i.e.

contained in an interval of the form [α, β] where α ≤ β < 0.) This implies

that the geodesic metric space G/K is Gromov hyperbolic, meaning that

there exists δ ≥ 0 such that all geodesic triangles (a, b, c) of G/K are

δ-thin: the side [a, b] lies in the uniform δ-neighbourhood of the union

[b, c] ∪ [c, a] of the other two sides (see Figure 4.2). On the other hand,

when r := rankR(G) ≥ 2, the Riemannian symmetric space G/K is

only nonpositively curved, and not Gromov hyperbolic; its geometry is

somewhat more complicated due to the presence of flats (i.e. isometric

copies of Euclidean Rr, where the curvature vanishes).
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a b

c

Figure 4.2 A δ-thin triangle in a geodesic metric space. The side [a, b]
is contained in the union of the uniform δ-neighbourhoods (indicated
by dashes) of the sides [b, c] and [c, a].

There are a number of differences between lattices in real rank one

and lattices in higher real rank.

One difference concerns hyperbolicity. Namely, if rankR(G) = 1, then

• any cocompact lattice Γ of G is Gromov hyperbolic, i.e. Γ acts properly

discontinuously, by isometries, with compact quotient, on a Gromov

hyperbolic proper geodesic metric space X (e.g. X = G/K);

• any noncocompact lattice Γ of G is relatively hyperbolic with respect

to some collection P of subgroups which are virtually (i.e. up to finite

index) nilpotent: this means that Γ acts properly discontinuously by

isometries on some visual Gromov hyperbolic proper metric space X

(e.g. X = G/K), and with compact quotient on some closed subset

of X of the form X r
⋃
P∈P BP where each BP is a P -invariant open

horoball of X and BP ∩BP ′ = ∅ for P 6= P ′ (see [88, § 4] for details).

On the other hand, if rankR(G) ≥ 2, then lattices of G are never Gro-

mov hyperbolic, nor relatively hyperbolic with respect to any collection

of subgroups [12]. This follows from the fact that these groups are met-

rically thick in the sense of [12] (see [104] for cocompact lattices). In

fact, if rankR(G) ≥ 2, then any isometric action of a lattice Γ of G on

a Gromov hyperbolic metric space X is “trivial” (i.e. admits a global

fixed point in X or its boundary), unless it is obtained by projecting Γ

to a rank-one factor of G [3, 86].

More generally, lattices Γ in simple Lie groups G with rankR(G) ≥ 2

tend to have global fixed points when they act on various classes of

spaces. For instance, any continuous action by affine isometries of Γ on a

Hilbert space has a global fixed point. This property, which is equivalent
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to Kazhdan’s property (T) (see [134, Ch. 13]), is also satisfied by lattices

in the rank-one Lie groups Sp(n, 1) with n ≥ 2 or F4(−20). However,

other fixed point properties actually distinguish higher rank from rank

one. For instance, for any simple Lie group G with rankR(G) ≥ 2 and any

σ-finite positive measure ν on a standard Borel space, any continuous

affine action of a lattice of G on Lp(ν) for 1 < p < +∞ has a global

fixed point, by Bader–Furman–Gelander–Monod; on the other hand, by

Pansu and Bourdon–Pajot, any cocompact lattice Γ in a simple Lie group

G with rankR(G) = 1 (and more generally, any Gromov hyperbolic group

Γ) admits fixed-point-free affine isometric actions on Lp(Γ) whose linear

part is the regular representation, for any p > 1 large enough. See [4].

Another difference between real rank one and higher real rank con-

cerns normal subgroups. Namely, if rankR(G) = 1, then lattices of G

have many normal subgroups (see Gromov [78]); in fact, if Γ is a lattice

of G, then any countable group can be embedded into a quotient of Γ

by some normal subgroup (this “universality” property holds for all rel-

atively hyperbolic groups [2]). On the other hand, if rankR(G) ≥ 2, then

all normal subgroups of an irreducible lattice Γ of G are finite or finite-

index in Γ (this is Margulis’s Normal Subgroups Theorem, see [111]).

Note that for an irreducible lattice Γ of G, the finite normal subgroups

of Γ are easily described as the subgroups of the finite abelian group

Γ∩Z(G) (using Borel’s Density Theorem [28]). On the other hand, much

more effort is required to understand the finite-index normal subgroups

of Γ. By [11], for Γ = SL(n,Z) with n ≥ 3, any finite-index normal

subgroup of Γ is a congruence subgroup, i.e. contains the kernel of the

natural projection SL(n,Z) → SL(n,Z/mZ) for some m ≥ 1; this is

false for Γ = SL(2,Z). In general, it is conjectured that lattices of G

have a slightly weaker form of this “Congruence Subgroup Property” if

and only if rankR(G) ≥ 2: see [126].

We now discuss some rigidity results for representations of lattices

inside G, which hold in particular for rankR(G) ≥ 2.

4.2.4 Deformations and rigidity

Let Γ be a discrete subgroup of G. We denote by Hom(Γ, G) the space

of representations of Γ to G, endowed with the compact-open topology

(if Γ admits a finite generating subset F , then this coincides with the

topology of pointwise convergence on F ).

By a continuous deformation of Γ in G we mean a continuous path

(ρt)t∈[0,1) in Hom(Γ, G) where ρ0 is the natural inclusion of Γ in G. Cer-
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tain continuous deformations of Γ in G are considered trivial : namely,

those of the form ρt = gt ρ0(·) g−1
t where (gt)t∈[0,1) is a continuous path

in G (and g0 is the identity element). In other words, if Hom(Γ, G)/G

denotes the quotient of Hom(Γ, G) by the natural action of G by conju-

gation at the target, then the trivial deformations are those whose image

in Hom(Γ, G)/G is constant.

For G = PSL(2,R) ' SO(2, 1)0, torsion-free lattices Γ of G admit

many nontrivial continuous deformations. Indeed, if Γ is noncocompact

in G, then Γ is a nonabelian free group on finitely many generators

γ1, . . . , γm, and the natural inclusion ρ0 : Γ ↪→ G can be continuously

deformed by deforming independently the image of each γi; the map

ρ 7→ (ρ(γ1), . . . , ρ(γm)) yields an isomorphism Hom(Γ, G) ' Gm. If Γ

is cocompact in G, then Γ identifies with the fundamental group of

the closed hyperbolic surface S := Γ\H2; the connected component of

the natural inclusion ρ0 in Hom(Γ, G) consists entirely of injective and

discrete representations [76], and its image in Hom(Γ, G)/G is homeo-

morphic to R6g−6: it is the Teichmüller space of S.

On the other hand, a number of rigidity results have been proved

for lattices in other noncompact semisimple Lie groups G, including

local rigidity, Mostow rigidity, and Margulis superrigidity, which we now

briefly state and comment on. See [67, 118] for details and references.

Local rigidity (Selberg, Calabi, Weil, Garland–Raghunathan) Let G

be a semisimple Lie group with no simple factors that are compact or

locally isomorphic to PSL(2,R) (resp. PSL(2,K) with K = R or C). If

Γ is a cocompact (resp. noncocompact) irreducible lattice of G, then any

continuous deformation of Γ in G is trivial.

Note that noncocompact lattices of G = PSL(2,C) are not locally

rigid: they can be deformed using Thurston’s hyperbolic Dehn surgery

theory. However, they do not admit nontrivial deformations sending

unipotent elements to unipotent elements.

Local rigidity is an important ingredient in the proof of Wang’s finite-

ness theorem, which states that if G is simple and not locally isomorphic

to PSL(2,K) with K = R or C, then for any v > 0 there are only finitely

many conjugacy classes of lattices of G with covolume ≤ v.

Mostow rigidity (Mostow, Prasad, Margulis) Let G,G′ be connected

semisimple Lie groups, with trivial centre, and with no simple factors

that are compact or locally isomorphic to PSL(2,R). If Γ and Γ′ are
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irreducible lattices of G and G′, respectively, then any isomorphism be-

tween Γ and Γ′ extends to a continuous isomorphism between G and G′.

This implies (see Section 4.2.1) that the fundamental group of any

locally symmetric space Γ\G/K completely determines its geometry.

Margulis superrigidity (Margulis, Corlette, Gromov–Schoen, see e.g.

[134, Th. 16.1.4]) Let G be a noncompact semisimple Lie group which

is connected, algebraically simply connected, and not locally isomorphic

to the product of SO(n, 1) or SU(n, 1) with a compact Lie group. Then

any irreducible lattice Γ of G is superrigid, in the sense that any repre-

sentation ρ : Γ → GL(d,R) (for any d ≥ 2) continuously extends to G

up to finite index and to bounded error.

Here “ρ continuously extends to G up to finite index and to bounded

error” means that there exist a finite-index subgroup Γ′ of Γ, a contin-

uous homomorphism ρG : G → GL(d,R), and a compact subgroup C

of GL(d,R) centralising ρG(G) such that ρ(γ) ∈ ρG(γ)C for all γ ∈ Γ′.

Under an appropriate assumption on the image of ρ, we can take C to

be trivial. “Algebraically simply connected” is a technical assumption

which is always satisfied up to passing to a finite cover: see [134, § 16.1].

Margulis used his superrigidity (over R as above, but also over non-

Archimedean local fields) to prove that if G is semisimple with no com-

pact simple factors and if rankR(G) ≥ 2, then all irreducible lattices Γ

of G are arithmetic in the sense of Section 4.2.2. The same conclusion

holds when G is locally isomorphic to Sp(n, 1) with n ≥ 2 or F4(−20), as

superrigidity holds for these rank-one groups as well.

Margulis superrigidity was further extended by Zimmer into a rigidity

result for cocycles, see [69]. This was the starting point of important new

directions of research at the intersection of group theory and dynamics

(see e.g. [72]), including the so-called Zimmer program (see [44, 68]).

The idea of this program is the following: for a lattice Γ in a simple

Lie group G with rankR(G) ≥ 2, Margulis superrigidity states that any

linear representation of Γ essentially comes from a linear representation

of G; in particular, the minimal dimension of a finite-kernel linear repre-

sentation of Γ is equal to the minimal dimension of a finite-kernel linear

representation of G. Zimmer asked whether this last property has a non-

linear analogue, for actions by diffeomorphisms of Γ on closed manifolds:

namely, is the minimal dimension of a closed manifold on which Γ acts

faithfully by diffeomorphisms equal to the minimal dimension of a closed

manifold on which G (or a compact form of the complexification of G)
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acts faithfully by diffeomorphisms? Brown, Fisher, and Hurtado have

recently answered this question positively in many cases, building on

new developments in dynamics and on recent strengthenings of Kazh-

dan’s property (T): see [44, 68]. This has led to intense research activity

around rigidity questions for actions by diffeomorphisms of higher-rank

lattices on manifolds.

4.3 A change of paradigm

We just saw that many important rigidity results have been established

for lattices since the 1960s, particularly in higher real rank, and that

this topic is still very active. On the other hand, since the 1990s and

early 2000s, there has been growing interest in flexibility : namely, there

has been increasing effort to find and study infinite discrete subgroups of

semisimple Lie groups which are more flexible than lattices, and which in

certain cases can have large deformation spaces. Such discrete subgroups

have been known to exist for a long time in real rank one, whereas

the investigation of their analogues in higher real rank has gathered

momentum only much more recently. We present a few examples below.

To be more precise, we are interested in infinite discrete subgroups Γ of

semisimple Lie groups G that admit continuous deformations (ρt)t∈[0,1)

⊂ Hom(Γ, G) as in Section 4.2.4 which, not only are nontrivial, but also

satisfy that each ρt is injective with discrete image, so that the ρt(Γ) for

t > 0 are still discrete subgroups of G isomorphic (but not conjugate)

to Γ. An ideal situation is when the natural inclusion ρ0 : Γ ↪→ G admits

a full open neighbourhood in Hom(Γ, G) consisting entirely of injective

and discrete representations, with a nonconstant image in Hom(Γ, G)/G.

We are thus led, for given discrete subgroups Γ of G, to study subsets

of Hom(Γ, G) consisting of injective and discrete representations, and

their images in the corresponding character varieties. In this framework,

we discuss so-called higher Teichmüller theory in Section 4.3.4 below.

Remark 4.5 In the sequel, we go back and forth between two equiv-

alent points of view: studying discrete subgroups Γ of G, or fixing an

abstract group Γ0 and studying the injective and discrete representa-

tions of Γ0 into G (corresponding to the various ways of realising Γ0

as a discrete subgroup of G). We sometimes allow ourselves to weaken

“injective” into “finite-kernel”.
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4.3.1 Examples in real rank one

Examples of flexible discrete subgroups in real rank one include classi-

cal Schottky groups (which are nonabelian free groups), quasi-Fuchsian

groups (which are closed surface groups), as well as other discrete sub-

groups which are fundamental groups of higher-dimensional manifolds.

We briefly review such examples, referring to [94, 112] for more details.

Schottky groups

For n ≥ 2, let X = Hn be the real hyperbolic space of dimension n,

with visual boundary ∂∞X ' Sn−1. Concretely, choosing a symmetric

bilinear form 〈·, ·〉n,1 of signature (n, 1) on Rn+1, we can realise X as the

open subset

Hn = {[v] ∈ P(Rn+1) | 〈v, v〉n,1 < 0} (4.1)

of the real projective space P(Rn+1) and ∂∞X as the boundary of X in

P(Rn+1). The geodesics of X are then the nonempty intersections of X

with projective lines of P(Rn+1), the geodesic copies of Hn−1 in X are

the nonempty intersections of X with projective hyperplanes of P(Rn+1),

and the isometry group G = Isom(X) of X is PO(n, 1) = O(n, 1)/{±I}.
An open disk in ∂∞X is the boundary at infinity of an open half-space

of X, bounded by a geodesic copy of Hn−1. (For n = 2, open disks are

just open intervals in ∂∞X ' S1.)

For m ≥ 2, choose 2m pairwise disjoint open disks B±1 , . . . , B
±
m in

∂∞X, such that ∂∞X r
⋃m
i=1(B−i ∪ B

+
i ) has nonempty interior, and

elements γ1, . . . , γm ∈ G such that γi · Int(∂∞X r B−i ) = B+
i for all i.

Let Γ be the subgroup of G generated by γ1, . . . , γm.

Claim 4.6 The group Γ is a nonabelian free group with free generating

subset {γ1, . . . , γm}. It is discrete in G.

Proof Consider any reduced word γ = γσ1
i1
. . . γσNiN in the alphabet

{γ±1
1 , . . . , γ±1

m }, where 1 ≤ ij ≤ m and σj ∈ {±1} for all 1 ≤ j ≤ N .

Since γ
σj
ij
·Int(∂∞XrB−sign(σj)

ij
) = B

sign(σj)
ij

for all j and sinceB
sign(σj)
ij

⊂
Int(∂∞X r B

−sign(σj−1)
ij−1

) for j ≥ 2, we see that the element of Γ corre-

sponding to γ sends ∂∞Xr
⋃m
i=1(B−i ∪B

+
i ) into the closure of B

sign(σ1)
i1

in

∂∞X. On the other hand, the set of elements g ∈ G sending

∂∞X r
⋃m
i=1(B−i ∪ B

+
i ) into the closure of

⋃m
i=1(B−i ∪ B

+
i ) in ∂∞X

is a closed subset of G that does not contain the identity element.

Such a group Γ is called a Schottky group. The proof of Claim 4.6 is
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based on the so-called ping pong dynamics of Γ on ∂∞X: imagine the

ping pong players are the generators γ1, γ
−1
1 , . . . , γm, γ

−1
m ; the ping pong

table is ∂∞X, which is divided into several open regions, namely the

B±i and the “central region” Int(∂∞X r
⋃
i(B
−
i ∪B

+
i )); the rules of the

game are that each player γ±1
i sends all regions but one (namely B∓i )

into a single region (namely B±i ). The ping pong ball is a point which is

initially in the central region. For any reduced word in the generators, we

successively apply the corresponding ping pong players; the ball ends up

in one of the B±i . We deduce that the element of Γ corresponding to this

reduced word is nontrivial in Γ, and not too close to the identity in G.

Remark 4.7 LetD := ∂∞Xr
⋃m
i=1(B−i ∪B

+
i ) and Ω := Int(

⋃
γ∈Γ γ·D).

Then Ω is an open subset of ∂∞X on which Γ acts properly discontinu-

ously with fundamental domain D.

(Here we have assumed that D has nonempty interior; therefore Ω 6= ∅
and Γ is not a lattice in G: it has infinite covolume for the Haar measure.)

See e.g. [116] for beautiful illustrations in dimension two, for X = H3.

Since Schottky groups Γ are nonabelian free groups, they admit, as

in Section 4.2.4, many nontrivial continuous deformations (ρt)t∈[0,1) ⊂
Hom(Γ, G), obtained by independently deforming the image of each gen-

erator γi. Some of these deformations (ρt)t∈[0,1) are “good” in the sense

that for every t ∈ [0, 1), the group ρt(Γ) still has a ping pong configura-

tion analogous to that of Γ, hence ρt is injective with discrete image by

arguing as in Claim 4.6. If the open disks B±1 , . . . , B
±
m in the initial con-

figuration have pairwise disjoint closures (i.e. Γ is a “strong” Schottky

group), then all small deformations are “good”: the natural inclusion

ρ0 : Γ ↪→ G admits an open neighbourhood in Hom(Γ, G) consisting

entirely of injective and discrete representations, with a ping pong con-

figuration analogous to that of Γ.

Quasi-Fuchsian groups

Quasi-Fuchsian groups are important infinite discrete subgroups of

PSL(2,C) which have been much studied (see [112]), and which are not

lattices in PSL(2,C). They are by definition the images of quasi-Fuchsian

representations. Let us briefly recall what these are.

Let S be a closed orientable surface of genus g ≥ 2. By the Uniformi-

sation Theorem (see Section 4.1), there exist injective and discrete rep-

resentations from the fundamental group π1(S) to PSL(2,R). These rep-

resentations form two connected components of Hom(π1(S),PSL(2,R)),

switched by conjugation by elements of PGL(2,R) r PSL(2,R) (i.e. by
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orientation-reversing isometries of H2). The image of either of these con-

nected components in Hom(π1(S),PSL(2,R))/PSL(2,R) identifies with

the Teichmüller space of S, which is homeomorphic to R6g−6.

Now view PSL(2,R) as a subgroup of PSL(2,C). Recall that PSL(2,C)

' PO(3, 1)0 acts by isometries on the hyperbolic space H3; the subgroup

PSL(2,R) ' PO(2, 1)0 preserves an isometric copy of H2 inside H3. We

see the injective and discrete representations ρ : π1(S) → PSL(2,R) as

representations with values in PSL(2,C), called Fuchsian. They preserve

a circle in ∂∞H3, namely the boundary ∂∞H2 of the isometric copy of H2

preserved by PSL(2,R).

The Fuchsian representations admit an open neighbourhood in

Hom(π1(S),PSL(2,C)) consisting entirely of injective and discrete rep-

resentations, called quasi-Fuchsian. Each quasi-Fuchsian representation

preserves a topological circle in ∂∞H3, but which may now be “wiggly”

as in Figure 4.3. Quasi-Fuchsian representations form an open subset of

Hom(π1(S),PSL(2,C)) which is dense in the set of injective and discrete

representations; its image in Hom(π1(S),PSL(2,C))/PSL(2,C) admits

a natural parametrisation (due to Bers) by two copies of the Teichmüller

space of S (hence by R12g−12). See e.g. [125] for details and references.

Figure 4.3 The limit set (an invariant topological circle) of a quasi-
Fuchsian group in ∂∞H3 ' C ∪ {∞}

Deformations of Fuchsian representations for

higher-dimensional groups

Recall that PSL(2,R) ' SO(2, 1)0 and PSL(2,C) ' SO(3, 1)0. We now

consider any integer n ≥ 2 and let Γ be a cocompact lattice of SO(n, 1)0.

As above, we can see Γ as a discrete subgroup of SO(n+1, 1) (which is not

a lattice anymore). Interestingly, although all continuous deformations of
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Γ in SO(n, 1) are trivial for n ≥ 3 (by Mostow rigidity, see Section 4.2.4),

there can exist nontrivial continuous deformations of Γ in SO(n+ 1, 1).

Such deformations were constructed in [93, 107] based on a construction

of Thurston called bending.

The idea is the following. The cocompact lattice Γ of SO(n, 1)0 de-

fines a closed hyperbolic manifold M = Γ\Hn whose fundamental group

π1(M) identifies with Γ. Suppose that M admits a closed totally geodesic

embedded hypersurface N . Its fundamental group π1(N) is a subgroup

of Γ contained in a copy of SO(n−1, 1) inside SO(n, 1). In particular, the

centraliser of π1(N) in SO(n+ 1, 1) contains a one-parameter subgroup

(gt)t∈R which is not contained in SO(n, 1).

If N separates M into two submanifolds M1 and M2, then by van

Kampen’s theorem π1(M) is the amalgamated free product

π1(M1) ∗π1(N) π1(M2) of π1(M1) and π1(M2) over π1(N). Let ρ0 :

Γ → SO(n + 1, 1) be the natural inclusion. A continuous deformation

(ρt)t∈[0,1) ⊂ Hom(Γ,SO(n + 1, 1)) is obtained by defining ρt to be ρ0

when restricted to π1(M1) and gtρ0(·)g−1
t when restricted to π1(M2)

(these two representations coincide on π1(N)).

Otherwise, M ′ := MrN is connected and π1(M) is an HNN extension

of π1(M ′): it is generated by π1(M ′) and some element ν with the rela-

tions ν j1(γ) ν−1 = j2(γ) for all γ ∈ π1(N), where j1 : π1(N) → π1(M)

and j2 : π1(N)→ π1(M) are the inclusions in π1(M) of the fundamental

groups of the two sides of N . Let ρ0 : Γ → SO(n + 1, 1) be the natural

inclusion. A continuous deformation (ρt)t∈[0,1) ⊂ Hom(Γ,SO(n + 1, 1))

is obtained by defining ρt to be ρ0 when restricted to π1(M ′) and set-

ting ρt(ν) := νgt (the relations ν j1(γ) ν−1 = j2(γ) for γ ∈ π1(N) are

preserved since gt centralises π1(N)).

In either case, Johnson and Millson [93] observed that for small enough

t > 0 the representation ρt has Zariski-dense image in SO(n + 1, 1);

moreover, ρt is still injective and discrete for small t (see Section 4.4.2).

Remarks 4.8 (1) In this construction, ρt is not injective and discrete

for all t ∈ R. Indeed, the one-parameter subgroup (gt)t∈R takes

values in a copy of SO(2) in SO(n+1, 1), which centralises ρ0(π1(N)).

For t ∈ R such that gt = −I in SO(2), the representation ρt takes

values in SO(n, 1) but is not injective and discrete.

(2) The fact that ρt is injective and discrete for small t also follows

from Maskit’s combination theorems, which generalise the idea of

ping pong to amalgamated free products and HNN extensions (see

[112, § VIII.E.3]).
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4.3.2 Ping pong in higher real rank

Examples of “flexible” discrete subgroups of higher-rank semisimple Lie

groups G which are nonabelian free groups can be constructed by gen-

eralising the classical Schottky groups of Section 4.3.1 in various ways.

Let us mention three geometric constructions.

Ping pong in projective space

The idea of the following construction goes back to Tits [127] in his

proof of the Tits alternative. The construction was later studied in a

more quantitative way by Benoist [15]. It works in any flag variety G/P

where G is a noncompact semisimple Lie group and P a proper parabolic

subgroup of G, but for simplicity we consider the projective space P(Rd)
which is a flag variety of G = SL(d,R), for d ≥ 3. We fix a Riemannian

metric dP(Rd) on P(Rd).
An element g ∈ G is said to be biproximal in P(Rd) if it admits a

unique complex eigenvalue of highest modulus and a unique complex

eigenvalue of lowest modulus, and if these two eigenvalues (which are

then necessarily real) have multiplicity 1; equivalently, g is conjugate to a

block-diagonal matrix diag(t, A, s−1) where t, s > 1 and A ∈ GL(d−2,R)

is such that the spectral radii of A and A−1 are < t and < s, respectively

(for instance, A could be the identity matrix). In this case, g has a unique

attracting fixed point x+
g and a unique repelling fixed point x−g in P(Rd),

corresponding to the eigenspaces for the highest and lowest eigenvalues.

More precisely, g has the following “North-South dynamics” on P(Rd):

• it preserves a unique projective hyperplane X+
g (resp. X−g ) of P(Rd)

containing x+
g (resp. x−g ), corresponding to the sum of the generalised

eigenspaces for the eigenvalues of nonminimal (resp. nonmaximal)

modulus,

• for any x ∈ P(Rd)rX∓g we have g±k ·x→ x±g as k → +∞, uniformly

on compact sets.

In particular, if we fix ε > 0, then any large power of g sends the comple-

ment of the open uniform ε-neighbourhood Bεg−1 of X−g into the closure

of the open ball bεg of radius ε centred at x+
g for dP(Rd), and g−1 has a

similar behavior after replacing (Bεg−1 , X−g , b
ε
g, x

+
g ) by (Bεg , X

+
g , b

ε
g−1 , x−g )

(see Figure 4.4).

Let γ1, . . . , γm ∈ G be biproximal elements which are “transverse” in

the sense that x+
γi , x

−
γi /∈ X

+
γj ∪X

−
γj for all 1 ≤ i 6= j ≤ m (in other words,

the configuration of pairs (x•γi , X
•
γi)1≤i≤m, •∈{+,−} with x•γi ∈ X•γi is
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bεg
X+
g

x−g

Bεg−1

x+
g Bεg

bεg−1

X−g

Figure 4.4 Left (resp. right) panel: the dynamics of a large power of
g (resp. g−1) on P(Rd) for a biproximal element g ∈ SL(d,R)

generic). Up to replacing each γi by a large power, we may assume that

there exists ε > 0 such that P(Rd) r
⋃m
i=1(Bεγi ∪ B

ε
γ−1
i

) has nonempty

interior and such that for any α 6= β in {γ1, γ
−1
1 , . . . , γm, γ

−1
m }, the sets

bεα and Bεβ have disjoint closures in P(Rd) and α sends the interior of

P(Rd)rBεα−1 into bεα (see Figure 4.5 for m = 2). Let Γ be the subgroup

bεγ1

Bε
γ−1
1

bε
γ−1
1

Bεγ1

bεγ2

Bε
γ−1
2

bε
γ−1
2

Bεγ2

Figure 4.5 A ping pong configuration as in Claim 4.9

of G generated by γ1, . . . , γm. The following is analogous to Claim 4.6.

Claim 4.9 The group Γ is a nonabelian free group with free generating

subset {γ1, . . . , γm}. It is discrete in G.

Proof Consider any reduced word γ = γσ1
i1
. . . γσNiN in the alphabet
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{γ±1
1 , . . . , γ±1

m }, where 1 ≤ ij ≤ m and σj ∈ {±1} for all 1 ≤ j ≤ N .

Using the inclusions α · Int
(
P(Rd) r Bεα−1

)
⊂ bεα for α = γ

σj
ij

and

bεα ⊂ Int
(
P(Rd)rBεβ−1

)
for (α, β) = (γ

σj
ij
, γ
σj−1

ij−1
) with j ≥ 2, we see that

the element of Γ corresponding to γ sends P(Rd) r
⋃m
i=1(Bεγi ∪ B

ε
γ−1
i

)

into the closure of bε
γ
σ1
i1

(hence of Bε
γ
σ1
i1

) in P(Rd). On the other hand,

the set of elements g ∈ G sending P(Rd) r
⋃m
i=1(Bεγi ∪ B

ε
γ−1
i

) into the

closure of
⋃m
i=1(Bεγi ∪ B

ε
γ−1
i

) in P(Rd) is a closed subset of G that does

not contain the identity element.

Similarly to the classical strong Schottky groups of Section 4.3.1,

the group Γ admits nontrivial continuous deformations (ρt)t∈[0,1) ⊂
Hom(Γ, G), obtained by independently deforming the image of each gen-

erator γi; moreover, there is a neighbourhood of the natural inclusion

ρ0 : Γ ↪→ G consisting entirely of injective and discrete representations.

Schottky groups with disjoint ping pong domains

In certain situations it is possible to construct discrete subgroups of G,

with ping pong dynamics, for which the ping pong domains are pair-

wise disjoint, as in the case of the classical rank-one Schottky groups

of Section 4.3.1. Achieving this disjointness may require using a slightly

modified ping pong compared to Figures 4.4 and 4.5, allowing the at-

tracting and repelling subsets of the generators to be larger than points.

Such a construction has been made in G = PGL(2n,K), acting on

the projective space P(K2n), for K = R or C: the first examples were

constructed by Nori in the 1980s, for K = C, then generalised by Seade

and Verjovsky (see [123]); it was observed in [90] that the construction

also works for K = R. The idea is to consider pairwise disjoint (n− 1)-

dimensional projective subspaces X+
1 , X

−
1 , . . . , X

+
m, X

−
m of P(K2n) and

elements γ1, . . . , γm ∈ G such that for any 1 ≤ i ≤ m we have γ±ki · x→
X±i for all x ∈ P(K2n)rX∓i as k → +∞, uniformly on compact sets. Up

to replacing each γi by a large power, we may assume that there exist

tubular neighbourhoods B±i of X±i such that B+
1 , B

−
1 , . . . , B

+
m, B

−
m are

pairwise disjoint, P(K2n) r
⋃m
i=1(B−i ∪B

+
i ) has nonempty interior, and

γi ·Int(P(K2n)rB−i ) = B+
i for all i. Then the subgroup Γ of G generated

by γ1, . . . , γm is a nonabelian free group with free generating subset

{γ1, . . . , γm}. It is discrete in G, and it acts properly discontinuously on

Ω := Int(
⋃
γ∈Γ γ · D) with fundamental domain D, as in Remark 4.7.

As for the classical strong Schottky groups of Section 4.3.1, there is a
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neighbourhood of the natural inclusion ρ0 : Γ ↪→ G consisting entirely

of injective and discrete representations.

Crooked Schottky groups

Here is another ping pong construction, introduced and studied in [36].

Let G = Sp(2n,R) be the group of elements of GL(2n,R) that pre-

serve the skew-symmetric bilinear form ω(v, v′) =
∑2n
i=1(−1)iviv

′
2n+1−i

on R2n. A symplectic basis of R2n is a basis in which the matrix of ω is an-

tidiagonal with entries 1,−1, . . . , 1,−1; for instance, the canonical basis

is a symplectic basis. To any symplectic basis (e1, . . . , e2n) of R2n we as-

sociate an open simplex B = P(R>0-span(e1, . . . , e2n)) in P(R2n), which

we call a symplectic simplex. Its dual B∗ := {[v] ∈ P(R2n) |P(v⊥)∩B = ∅}
(where v⊥ denotes the orthogonal of v with respect to ω and B the clo-

sure of B in P(R2n)) is still a symplectic simplex, associated to the

symplectic basis (e2n,−e2n−1, . . . , e2,−e1). Note that B and B∗ are two

of the 22n−1 connected components of P(R2n)r
⋃2n
i=1 e

⊥
i (see Figure 4.6).

We also make the elementary observation that for any symplectic sim-

plices B1 and B2, we have B1 ⊂ B∗2 if and only if B2 ⊂ B∗1 .

[e1]

[e2]

[e3] [e4]

B

B∗

B∗

Figure 4.6 A symplectic simplex B of P(R4), associated to a sym-
plectic basis (e1, e2, e3, e4) of R4, and its dual B∗

Lemma 4.10 For any m ≥ 2, there exist 2m symplectic simplices B±1 ,

. . . , B±m in P(R2n) such that B ⊂ B′∗ for all B 6= B′ in {B±1 , . . . , B±m}.

Proof Choose any symplectic simplex B1. Note that any nonempty
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open subset of P(R2n) contains a symplectic simplex; therefore, we can

find a symplectic simplex B2 such that B2 ⊂ B∗1 . Moreover, any neigh-

bourhood of the closure of a symplectic simplex meets the dual of the

simplex; therefore B∗1∩B∗2 is nonempty. By induction, we construct sym-

plectic simplices B1, . . . , B2m such that Bj ⊂
⋂j−1
i=1 B

∗
i for all 2 ≤ j ≤

2m. We then have Bj ⊂ B∗i for all 1 ≤ i < j ≤ 2m. By the elementary

observation above, we also have Bi ⊂ B∗j for all 1 ≤ i < j ≤ 2m. We

can then take (B+
i , B

−
i ) := (Bi, Bm+i) for all 1 ≤ i ≤ m.

For m ≥ 2, choose symplectic simplices B±1 , . . . , B
±
m as in Lemma 4.10,

and elements γ1, . . . , γm ∈ G such that γi ·(B−i )∗ = B+
i for all 1 ≤ i ≤ m

(these exist since G acts transitively on the set of symplectic simplices).

A ping pong argument as in Claim 4.6 shows that the subgroup Γ of G

generated by γ1, . . . , γm is a nonabelian free group with free generating

subset {γ1, . . . , γm}, and that it is discrete in G.

Moreover, there is an interesting counterpart of Remark 4.7, not in the

projective space P(R2n), but in the space Lag(R2n) of Lagrangians of

(R2n, ω), i.e. of n-dimensional linear subspaces of R2n which are totally

isotropic for ω. For this, we associate to any symplectic simplex B =

P(R>0-span(e1, . . . , e2n)) of P(R2n) an open subset of Lag(R2n), namely

H(B) := {L ∈ Lag(R2n) | L∩B 6= ∅} where we see each L ∈ Lag(R2n) as

an (n − 1)-dimensional projective subspace of P(R2n). In [36] we prove

the following remarkable property: for any symplectic simplex B, we

have Lag(R2n) = H(B) t H(B∗). In other words, H(B) and H(B∗) are

two open “half-spaces” of Lag(R2n), bounded by their common bound-

ary ∂H(B) = H(B) r H(B) = H(B∗) r H(B∗). We observe [36] that

these boundaries ∂H(B) are nice geometric objects which for n = 2 co-

incide with the crooked surfaces of Frances [71] in the Einstein universe

Ein3 ' Lag(R4). Remark 4.7 generalises as follows: consider symplectic

simplices B±1 , . . . , B
±
m and elements γ1, . . . , γm ∈ G as above. If we set

D := Lag(R2n)r
⋃m
i=1(H(B−i )∪H(B+

i )), then the group Γ generated by

γ1, . . . , γm acts properly discontinuously on Ω := Int(
⋃
γ∈Γ γ · D) with

fundamental domain D. We call Γ a crooked Schottky group.

As in the classical case of Section 4.3.1, continuous deformations of

configurations of symplectic simplices yield nontrivial continuous de-

formations (ρt)t∈[0,1) ⊂ Hom(Γ, G) of crooked Schottky groups Γ for

which each ρt is injective with discrete image. If the symplectic simplices

B±1 , . . . , B
±
m in the initial configuration have pairwise disjoint closures

(i.e. Γ is a “strong” crooked Schottky group), then the natural inclusion
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ρ0 : Γ ↪→ G admits an open neighbourhood in Hom(Γ, G) consisting

entirely of injective and discrete representations.

4.3.3 Higher-rank deformations of Fuchsian

representations

Inspired by the quasi-Fuchsian representations and their higher-dimen-

sional analogues from Section 4.3.1, here is one strategy for constructing

“flexible” infinite discrete subgroups, beyond nonabelian free groups, in

semisimple Lie groups G of higher real rank. Consider a finitely gener-

ated group Γ0, an injective and discrete representation σ0 of Γ0 into a

simple Lie group G′ of real rank one, and a nontrivial Lie group homo-

morphism τ : G′ → G. Consider the composed representation

ρ0 : Γ0
σ0
↪−→ G′

τ
↪−→ G.

In some important cases (see e.g. Facts 4.30 and 4.31), there will be an

open neighbourhood of ρ0 in Hom(Γ0, G) consisting entirely of injective

and discrete representations. The goal is then to deform ρ0 nontrivially

in Hom(Γ0, G) outside of Hom(Γ0, G
′), so as to obtain discrete subgroups

of G that are isomorphic to Γ0 but not conjugate to Γ0 or any subgroup

of G′ (ideally Zariski-dense discrete subgroups of G).

This strategy works well, for instance, for Γ0 = π1(S) where S is a

closed orientable surface of genus ≥ 2 as in Section 4.3.1, and G′ =

SL(2,R) or PSL(2,R). Let us give three examples in this setting.

Barbot representations

For d ≥ 2, consider the standard embedding τ : G′ = SL(2,R) ↪→ G =

SL(d,R), preserving a 2-dimensional linear subspace of Rd. Then there

is a neighbourhood of ρ0 in Hom(Γ0, G) consisting entirely of injective

and discrete representations (see Section 4.5.1). Nontrivial continuous

deformations (ρt)t∈[0,1) ⊂ Hom(Γ0, G) exist; for d = 3, they were studied

by Barbot, who particularly investigated [8] the case that the ρt take

values in GL(2,R) n R2, seen as the subgroup of G consisting of lower

block-triangular matrices with blocks of size (2, 1).

Hitchin representations

For d ≥ 2, consider the irreducible embedding τd : G′ = PSL(2,R) ↪→
G = PSL(d,R). It is unique modulo conjugation by PGL(d,R), and given

concretely as follows: identify Rd with the vector space R[X,Y ]d−1 of



24

real polynomials in two variables X,Y which are homogeneous of degree

d− 1. The group SL(2,R) acts on R[X,Y ]d−1 by(
a b

c d

)
· P
(
X

Y

)
= P

((
a b

c d

)−1(
X

Y

))
,

and this defines an irreducible representation SL(2,R)→ SL(R[X,Y ]d−1)

' SL(d,R), which is injective if d is even, and has kernel {±I} if d is

odd. It factors into an embedding τd : PSL(2,R) ↪→ PSL(d,R). In this

setting, the following result was proved by Choi–Goldman [46] for d = 3,

and by Labourie [108] and Fock–Goncharov [70] for general d (recall that

the case d = 2 is due to Goldman [76]).

Theorem 4.11 Let Γ0 = π1(S) be a closed surface group and σ0 :

Γ0 → PSL(2,R) an injective and discrete representation. For any d ≥ 2,

the connected component of ρ0 := τd ◦σ0 in Hom(Γ0,PSL(d,R)) consists

entirely of injective and discrete representations.

The image of this connected component in the PSL(d,R)-character

variety of Γ0 had previously been studied by Hitchin [91], and is now

known as the Hitchin component. The corresponding representations are

called Hitchin representations.

Rough sketch of the proofs of Theorem 4.11 The proof of Choi–Gold-

man [46] for d = 3 is geometric. The point is that the group τ3(PSL(2,R))

' SO(2, 1)0 preserves a nondegenerate symmetric bilinear form 〈·, ·〉2,1
of signature (2, 1) on R3; in particular, it preserves the open subset

Ω = {[v] ∈ P(R3) | 〈v, v〉2,1 < 0}

of the projective plane P(R3), which is a model for the hyperbolic plane

H2 (see (4.1)). This set Ω is properly convex : it is convex and bounded

in some affine chart of P(R3) (e.g. it is the open unit disk in the affine

chart {v3 = 1}, see Figure 4.7, left). The group PSL(2,R) acts properly

and transitively on Ω via τ3, hence Γ0 acts properly discontinuously

with compact quotient on Ω via ρ0 = τ3 ◦ σ0. By work of Koszul, the

set of representations through which Γ0 acts properly discontinuously

with compact quotient on some nonempty properly convex open subset

of P(R3) is open in Hom(Γ0,PSL(3,R)). Choi and Goldman proved that

this set is also closed. Therefore the entire connected component of ρ0

consists of such representations, and they are injective and discrete.

The proofs of Labourie and Fock–Goncharov for general d are dynam-

ical. They involve two key objects. The first one is the Gromov boundary
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Figure 4.7 The left-most picture shows the projective model of H2

(an open disk in an affine chart of the projective plane P(R3)), tiled
by fundamental domains for the action of a triangle group T given
by some injective and discrete representation ρ0 : T → PO(2, 1) ⊂
PGL(3,R). (Note that T admits a finite-index subgroup which is a
closed surface group Γ0 = π1(S) as in the proof of Theorem 4.11.) The
other pictures show the effect of a continuous deformation of ρ0 in
Hom(T,PGL(3,R)): the open disk deforms into an invariant properly
convex open subset of P(R3) which is not a disk anymore, and the
tiling deforms as the action of T remains properly discontinuous and
cocompact. These pictures are taken from [16].

∂∞Γ0 of Γ0: by definition, this is the visual boundary of a proper geodesic

metric space on which Γ0 acts properly discontinuously, by isometries,

with compact quotient; in our situation, Γ0 is a closed surface group

and ∂∞Γ0 is the visual boundary of H2, namely a circle. The second

key object is the space Flags(Rd) of full flags (V1 ⊂ · · · ⊂ Vd−1 ⊂ Rd)
of Rd (where each Vi is an i-dimensional linear subspace of Rd); this space

Flags(Rd) is compact with a transitive action of G = PSL(d,R), and may

be thought of as a kind of “boundary” for G or its symmetric space. The

point of the proof is then to show that for any Hitchin representation

ρ : Γ0 → G, there exists a continuous, injective, ρ-equivariant “bound-

ary map” ξ : ∂∞Γ0 → Flags(Rd). See Figure 4.10. (By ρ-equivariant we

mean that ξ(γ · z) = ρ(γ) · ξ(z) for all γ ∈ Γ0 and all z ∈ ∂∞Γ0.) The

existence of such a boundary map ξ easily implies that ρ is injective

and discrete: see the proof of Lemma 4.27.(3). Indeed, the idea is that

the continuous, injective, equivariant map ξ “transfers”, to Flags(Rd),
the dynamics of the intrinsic action of Γ0 on ∂∞Γ0, which is a so-called

convergence action: any sequence (γk)k∈N of pairwise distinct elements

of Γ0 comes with some contraction in ∂∞Γ0, hence (using ξ) the sequence

(ρ(γk))k∈N comes with some contraction in Flags(Rd), and this prevents

(ρ(γk))k∈N from converging to the identity element of G.

We note that the existence of continuous, injective, equivariant bound-

ary maps for Hitchin representations is obtained by an open-and-closed

argument, using stronger properties satisfied by these maps (namely,
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some uniform forms of contraction and transversality for Labourie, and

a positivity property for Fock and Goncharov).

Maximal representations

For n ≥ 2, consider the embedding τ : G′ = PSL(2,R) ' SO(2, 1)0 ↪→
SO(2, n). Then the entire connected component of ρ0 in Hom(Γ0, G) con-

sists of injective and discrete representations, as was proved by Burger,

Iozzi, and Wienhard [38]. This is an example of a so-called maximal com-

ponent : it consists of representations (called maximal representations)

that maximise the Toledo invariant (a topological invariant generalising

the Euler number, see e.g. [39, § 5.1]).

4.3.4 Higher Teichmüller theory

We already encountered in Sections 4.2.4 and 4.3.1 the Teichmüller space

of a closed surface S of genus ≥ 2. It is a fundamental object in many

areas of mathematics, which can be viewed both as a moduli space for

marked complex structures on S or, via the Uniformisation Theorem,

as a moduli space for marked hyperbolic structures on S. In this second

point of view, the holonomy representation of the fundamental group

Γ0 = π1(S) naturally realises the Teichmüller space of S as a connected

component of the G-character variety of Γ0 for G = PSL(2,R), corre-

sponding to the image, modulo conjugation by G at the target, of a

connected component of Hom(Γ0, G) consisting entirely of injective and

discrete representations.

An interesting and perhaps surprising phenomenon, which has led

to a considerable amount of research in the past twenty years, is that

for certain semisimple Lie groups G of higher real rank, there also exist

connected components of Hom(Γ0, G) consisting entirely of injective and

discrete representations, and which are nontrivial in the sense that they

are not reduced to a single representation and its conjugates by G. The

images in the G-character variety of these components are now called

higher(-rank) Teichmüller spaces. We saw two examples in Section 4.3.3:

• Hitchin components when G is PSL(d,R), or more generally a real

split simple Lie group; these are by definition components contain-

ing a Fuchsian representation ρ0 : Γ0 ↪→ PSL(2,R) ↪→ G, where

PSL(2,R) ↪→ G is the so-called principal embedding ;

• maximal components when G is SO(2, n), or more generally a simple

Lie group of Hermitian type; these are by definition components of

representations that maximise the Toledo invariant.
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See [39, 41, 102, 119, 133] for details about these examples.

Towards a full list of higher Teichmüller spaces

Recently, new higher Teichmüller spaces were discovered in [22, 33, 82]

when G is O(p, q) with p 6= q or an exceptional simple Lie group whose

restricted root system is of type F4. These higher Teichmüller spaces

consist of so-called Θ-positive representations, introduced by Guichard

and Wienhard [84, 85]. Notions of positivity for Hitchin representa-

tions and maximal representations had been previously found by Fock–

Goncharov [70] (based on Lusztig’s total positivity [110]) and Burger–

Iozzi–Wienhard [38]; the notion of Θ-positivity encompasses them both.

Together with Hitchin components and maximal components, these new

Θ-positive components conjecturally (see [84]) form the full list of higher

Teichmüller spaces.

Without entering into technical details, let us mention briefly the role

of Higgs bundles in this conjectural classification. See [32, 34, 73] for

details.

Let Σ be a Riemann surface homeomorphic to S. By definition, a G-

Higgs bundle over Σ is a pair (E,ϕ) where E is a holomorphic KC-bundle

over Σ and ϕ (the Higgs field) is a holomorphic section of a certain natu-

ral bundle over Σ associated to E. (Here KC is the complexification of a

maximal compact subgroup K of G.) The non-Abelian Hodge correspon-

dence of Hitchin, Donaldson, Corlette, Simpson, and others (see [74]),

gives a homeomorphism between the G-character variety of π1(S) and

the moduli spaceMG(Σ) of so-called polystable G-Higgs bundles over Σ.

This was used by Hitchin to define and study the Hitchin component.

Some of the connected components of the G-character variety of π1(S)

can be distinguished using topological invariants. However, such invari-

ants are not sufficient to distinguish them all in general. One fruitful

approach is to use the fact, proved by Hitchin, that (E,ϕ) 7→ ‖ϕ‖2L2(Σ)

defines a proper Morse function f from MG(Σ) to R≥0; therefore, the

connected components ofMG(Σ) can be studied by examining the local

minima of f . The zero locus f−1(0) of f corresponds, in the G-character

variety, to representations of π1(S) whose image lies in a compact sub-

group of G; in particular, these representations are not injective and

discrete, and so connected components for which f has a local minimum

of 0 cannot be higher Teichmüller spaces. This approach has already been

successfully exploited to find and count almost all connected components

of the G-character variety of π1(S) for simple G, including conjecturally

all higher Teichmüller spaces: see [32, 33, 34, 73].
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Similarities with the classical Teichmüller space

The study of higher Teichmüller spaces, or higher Teichmüller theory,

has been very active in the past twenty years. In particular, striking

similarities have been found between higher Teichmüller spaces and the

classical Teichmüller space of S, including:

• associated notions of positivity (see above);

• for Hitchin components: the topology of Rdim(G)|χ(S)| (Hitchin);

• the proper discontinuity of the action of the mapping class group

(Labourie, Wienhard);

• good systems of coordinates (Goldman, Fock–Goncharov, Bonahon–

Dreyer, Strubel, Zhang);

• analytic Riemannian metrics invariant under the mapping class group

(Bridgeman–Canary–Labourie–Sambarino, Pollicott–Sharp);

• natural maps to the space of geodesic currents on S (Labourie,

Bridgeman–Canary–Labourie–Sambarino, Martone–Zhang, Ouyang–

Tamburelli);

• versions of the collar lemma for the associated locally symmetric

spaces (Lee–Zhang, Burger–Pozzetti, Beyrer–Pozzetti, Beyrer–Gui-

chard–Labourie–Pozzetti–Wienhard);

• interpretations of higher Teichmüller spaces as moduli spaces of geo-

metric structures on S or on closed manifolds fibering over S (Choi–

Goldman, Guichard–Wienhard, Collier–Tholozan–Toulisse).

There are also conjectural interpretations of higher Teichmüller spaces as

moduli spaces of “higher complex structures” on S (Fock–Thomas), as

well as various approaches to see higher Teichmüller spaces as mapping-

class-group-equivariant fiber bundles over the classical Teichmüller space

of S (Labourie, Loftin, Alessandrini–Collier, Collier–Tholozan–Toulisse).

We refer to [39, 102, 119, 133] for more details and references.

Higher higher Teichmüller spaces

Phenomena analogous to Theorem 4.11 have also been uncovered for

fundamental groups of higher-dimensional manifolds, in two situations.

The first one is in the context of convex projective geometry, which

is by definition the study of properly convex open subsets Ω of real

projective spaces P(Rd), as in Choi–Goldman’s proof of Theorem 4.11

for d = 3. Let Γ0 = π1(M) where M is a closed topological manifold of

dimension n ≥ 2. Generalising Theorem 4.11, Benoist [17] proved that if

Γ0 does not contain an infinite nilpotent normal subgroup, then the set

of representations through which Γ0 acts properly discontinuously with



F. Kassel, Discrete subgroups of semisimple Lie groups 29

compact quotient on some properly convex open subset of P(Rn+1) is

closed in Hom(Γ0, G) for G = PGL(n + 1,R). This set is also open in

Hom(Γ0, G) by Koszul, and so it is a union of connected components of

Hom(Γ0, G). It consists entirely of injective and discrete representations.

Recent results of Marseglia and Cooper–Tillman extend this to some

cases where M and the quotients of the properly convex sets are not

necessarily closed (see [50]).

The second situation is in the context of pseudo-Riemannian hyper-

bolic geometry, which is by definition the study of pseudo-Riemannian

manifolds (i.e. smooth manifolds with a smooth assignment, to each

tangent space, of a nondegenerate quadratic form) which have con-

stant negative sectional curvature. In signature (p, q), such manifolds

are locally modeled on the pseudo-Riemannian symmetric space Hp,q =

PO(p, q + 1)/P(O(p) × O(q + 1)), which can be realised as an open set

in projective space, namely {[v] ∈ P(Rp+q+1) | 〈v, v〉p,q+1 < 0} where

〈·, ·〉p,q+1 is a symmetric bilinear form of signature (p, q+ 1) on Rp+q+1.

For q = 0 we recover the real hyperbolic space Hp, with its projective

model (4.1), and for q = 1 the space Hp,1 is the (p+1)-dimensional anti-

de Sitter space (a Lorentzian analogue of the real hyperbolic space). Let

Γ0 = π1(M) where M is a closed hyperbolic p-manifold, with holonomy

σ0 : Γ0 → O(p, 1), and let τ : O(p, 1) ↪→ G = PO(p, q + 1) be the

standard embedding. For q = 1, Barbot [9] proved that the connected

component of ρ0 = τ ◦ σ0 in Hom(Γ0, G) consists entirely of injective

and discrete representations (corresponding to holonomies of so-called

globally hyperbolic spatially compact anti-de Sitter manifolds, studied in

[113] for p = 2). This was recently extended in [21] to general p ≥ 2 and

q ≥ 1. In fact, the following more general result is proved in [21]: for

Γ0 = π1(M) where M is any closed topological manifold of dimension

p ≥ 2, the set of so-called Hp,q-convex cocompact representations is a

union of connected components in Hom(Γ0, G). These Hp,q-convex co-

compact representations are injective and discrete representations with

a nice geometric behavior in Hp,q (see Section 4.5.2); they include the

representations τ ◦ σ0 : Γ0 = π1(M) → O(p, 1) ↪→ G = PO(p, q + 1)

above where M is a closed hyperbolic manifold, but also other examples

where M can be quite “exotic” (see [109, 114] for q = 1). These repre-

sentations can have Zariski-dense image in G: see e.g. [21] for a bending

argument as in Section 4.3.1.

In these two situations, there are connected components in Hom(Γ0, G)

consisting entirely of injective and discrete representations, where Γ0 is

the fundamental group of an n-dimensional closed manifold with n > 2
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and G is a semisimple Lie group with rankR(G) ≥ 2. It is natural to

call higher-dimensional higher-rank Teichmüller spaces (or higher higher

Teichmüller spaces for short) the images of these components in the G-

character variety of Γ0. It would be interesting in the future to investigate

whether these higher higher Teichmüller spaces have any topological or

geometric analogies with classical Teichmüller space or its higher-rank

counterparts, as above. See also [133, § 14] for some further discussion.

4.4 Classes of discrete subgroups in real rank one

In Section 4.3 we saw various examples of “flexible” infinite discrete

subgroups of semisimple Lie groups. We now present some general theory

in which these examples fit, first in real rank one (this section), then in

higher real rank (Section 4.5).

More precisely, throughout this section we consider a semisimple Lie

group G with rankR(G) = 1. We discuss two important classes of finitely

generated discrete subgroups of G that have received considerable atten-

tion, namely convex cocompact subgroups and geometrically finite sub-

groups. The inclusion relations between these classes and lattices of G

are shown in Figure 4.8.

Cocompact
lattices

Noncocompact
lattices

Convex cocompact
subgroups Geometrically

finite subgroups

Figure 4.8 Inclusions between four important classes of discrete sub-
groups of G for rankR(G) = 1
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4.4.1 Definitions

Consider, as in Section 4.2.1, the Riemannian symmetric space X =

G/K, where K is a maximal compact subgroup of G. If G = SO(n, 1)

(resp. SU(n, 1), resp. Sp(n, 1)), then X is the n-dimensional hyperbolic

space over R (resp. C, resp. the quaternions). If G is the exceptional

group F4(−20), then X is the “hyperbolic plane over the octonions”.

There is a natural notion of convexity in X: any two points x, y of X

are joined by a unique geodesic segment; we say that a subset C of X is

convex if this segment is contained in C for all x, y ∈ X. See [66, § 1.6]

for more details. For any ε > 0 and any subset C of X, we denote by

Uε(C) the uniform ε-neighbourhood of C in X.

Definition 4.12 Suppose rankR(G) = 1. A discrete subgroup Γ of G

is convex cocompact (resp. geometrically finite) if it is finitely generated

and there is a nonempty Γ-invariant convex subset C of X such that the

quotient Γ\C is compact (resp. the quotient Γ\Uε(C) has finite volume

for some ε > 0).

Alternatively (see Remark 4.5), given a group Γ0, we say that a repre-

sentation ρ : Γ0 → G is convex cocompact (resp. geometrically finite) if

it has finite kernel and discrete, convex cocompact (resp. geometrically

finite) image.

Remark 4.13 If there is a nonempty Γ-invariant convex subset C of X

such that Γ\C is compact, then Γ is automatically finitely generated, by

the Švarc–Milnor lemma (see e.g. [65, Th. 8.37]). Thus the assumption

that Γ be finitely generated can be omitted in the definition of convex

cocompactness. On the other hand, this assumption cannot be omitted

in general in the definition of geometric finiteness: see [87].

Remark 4.14 Bowditch [31] gave several equivalent definitions of ge-

ometric finiteness. Here we use a variation on his definition F5, where

the uniform bound on the orders of finite subgroups of Γ is replaced

by the assumption that Γ be finitely generated. The two definitions are

equivalent by [31] and the Selberg lemma [124, Lem. 8].

We now explain how Definition 4.12 can be rephrased in terms of a

specific convex set in G/K. For this, we first recall the important notion

of the limit set of a discrete subgroup of G.

Limit sets and convex cores

Let ∂∞X be the visual boundary of X = G/K, i.e. the set of equivalence

classes of geodesic rays in X for the equivalence relation “to remain at
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bounded distance”. There is a natural topology on X := X t ∂∞X
that extends that of X and makes X compact, and the action of G

on X extends continuously to X (see e.g. [66, § 1.7]). For instance, as

in Sections 4.3.1 and 4.3.4, if G = PO(n, 1) and X = Hn, then we can

realise X as the open subset (4.1) of P(Rn+1) where some quadratic

form of signature (n, 1) is negative, and X is then the closed subset

of P(Rn+1) where the quadratic form is nonpositive, endowed with the

topology from P(Rn+1) and the natural action of G = PO(n, 1).

Definition 4.15 Let Γ be a discrete subgroup of G. The limit set

of Γ is the set ΛΓ of accumulation points in X of a Γ-orbit of X; it is

contained in ∂∞X and does not depend on the choice of Γ-orbit. The

convex core CcorΓ ⊂ X of Γ is the convex hull of ΛΓ in X (i.e. the smallest

closed convex subset of X whose closure in X contains ΛΓ).

Note that ΛΓ and CcorΓ are both invariant under the action of Γ on X.

The limit set ΛΓ is nonempty if and only if Γ is infinite. This set has

either at most two elements (in which case we say Γ is elementary), or

infinitely many. If Γ is not elementary, then the action of Γ on ΛΓ is min-

imal (all orbits are dense), and any nonempty Γ-invariant closed subset

of ∂∞X contains ΛΓ (see e.g. [31, § 3.2]); in particular, any nonempty

Γ-invariant closed convex subset of X contains the convex core CcorΓ . We

deduce the following.

Fact 4.16 Suppose rankR(G) = 1. A finitely generated infinite discrete

subgroup Γ of G is convex cocompact (resp. geometrically finite) if and

only if the quotient Γ\CcorΓ is compact and nonempty (resp. the quotient

Γ\Uε(CcorΓ ) has finite volume for some ε > 0).

Remark 4.17 In our setting where rankR(G) = 1, the group G acts

transitively on ∂∞X. The stabilisers inG of points of ∂∞X are the proper

parabolic subgroups of G. Thus ∂∞X is G-equivariantly homeomorphic

to G/P where P is a proper parabolic subgroup of G.

4.4.2 Properties

Let us briefly mention a few useful properties of geometrically finite and

convex cocompact representations.

Domains of discontinuity

We first observe that any discrete subgroup Γ of G acts properly dis-

continuously on the open subset ΩΓ := ∂∞X r ΛΓ of ∂∞X, and in fact
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on X ∪ΩΓ. Indeed, let C be a nonempty Γ-invariant closed convex sub-

set of X. One can check that the closest point projection from X to C
extends to a continuous Γ-equivariant map from X ∪ ΩΓ to C. The fact

that Γ acts properly discontinuously on C ⊂ X then implies that Γ acts

properly discontinuously on X ∪ ΩΓ.

If Γ is convex cocompact, then the quotient Γ\ΩΓ is compact (possibly

empty), and Γ\(X ∪ ΩΓ) is a compactification of Γ\X.

If Γ is geometrically finite, then Γ\(X∪ΩΓ) is not necessarily compact,

but it has only finitely many topological ends, each of which is a “pa-

rabolic end”; this actually characterises geometric finiteness: see [31].

Deformations

Convex cocompactness is stable under small deformations:

Fact 4.18 Suppose rankR(G) = 1. For any finitely generated group Γ0,

the space of convex cocompact representations is open in Hom(Γ0, G).

On the other hand, geometric finiteness is in general not stable under

small deformations. If one restricts to small deformations that are cusp-

preserving (i.e. that keep parabolic elements parabolic), then stability

holds for G = PO(n, 1) when n ≤ 3 or when all cusps have rank ≥ n−2,

but not in general. See e.g. [81, App. B] for more details and references.

Homomorphisms

Convex cocompactness behaves well under Lie group homomorphisms:

Fact 4.19 Suppose rankR(G) = 1. Let G′ be another semisimple Lie

group with rankR(G′) = 1 and let τ : G′ → G be a Lie group homomor-

phism with compact kernel. For any finitely generated group Γ0 and any

representation σ0 : Γ0 → G′, the composed representation τ◦σ0 : Γ0 → G

is convex cocompact if and only if σ0 is.

4.4.3 Examples

• If Γ is a lattice in G, then ΛΓ = ∂∞X and CcorΓ = X, and Γ is geomet-

rically finite. If Γ is cocompact in G, then it is convex cocompact.

• Suppose G = PSL(2,R) ' PO(2, 1)0. Then every finitely generated

discrete subgroup Γ of G is geometrically finite; Γ is convex cocompact

if and only if the associated hyperbolic surface Γ\H2 has no cusps.

Remark 4.20 On the other hand, for G = PO(n, 1) with n ≥ 3,

there exist finitely generated discrete subgroups of G which are not
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geometrically finite. The first examples were constructed by Bers for

n = 3 (“singly degenerate” Kleinian groups, for which the domain of

discontinuity ΩΓ is simply connected): see [94, § 2].

• Any discrete subgroup of G = PO(n, 1) generated by the orthogonal

reflections in the faces of a finite-sided right-angled polyhedron of Hn
is geometrically finite; it is convex cocompact if and only if no distinct

facets of the polyhedron have closures meeting in ∂∞Hn (see [60, § 4]).

• The Schottky groups of Section 4.3.1 are geometrically finite; the

strong Schottky groups (for which B±1 , . . . , B
±
m have pairwise disjoint

closures) are convex cocompact. Their limit sets are Cantor sets. The

set Ω of Remark 4.7 is the domain of discontinuity ΩΓ = ∂∞X r ΛΓ

of Γ in ∂∞X from Section 4.4.2.

• Any quasi-Fuchsian group Γ = ρ(π1(S)) as in Section 4.3.1 is con-

vex cocompact. The limit set ΛΓ is a topological circle in ∂∞H3 (see

Figure 4.3). The quotient Γ\CcorΓ is homeomorphic to S × [0, 1].

• The small deformations of cocompact lattices of G′ = SO(n, 1) inside

G = SO(n + 1, 1) from Section 4.3.1 are convex cocompact by Facts

4.18 and 4.19 (see also Remark 4.8.(2)).

4.4.4 A few characterisations of convex cocompactness

Preliminaries

Given a finitely generated group Γ0, we choose a finite generating subset

F of Γ0 and denote by Cay(Γ0) = Cay(Γ0, F ) the corresponding Cayley

graph, with its metric dCay(Γ0).

As in Section 4.2.3, a group Γ0 is called Gromov hyperbolic if it is

finitely generated and acts properly discontinuously, by isometries, with

compact quotient, on some Gromov hyperbolic proper geodesic met-

ric space Y ; in that case, we can take Y to be Cay(Γ0). As in the

proof of Theorem 4.11, the Gromov boundary ∂∞Γ0 of Γ0 is then the

visual boundary of Y , endowed with the action of Γ0 extending that

on Y . The Gromov boundary ∂∞Γ0 does not depend on Y up to Γ0-

equivariant homeomorphism. An important property is that the action

of Γ0 on ∂∞Γ0 is a convergence action: for any sequence (γk)k∈N of pair-

wise distinct elements of Γ0, up to passing to a subsequence, there exist

w+, w− ∈ ∂∞Γ0 such that γk · w → w+ for all w ∈ ∂∞Γ0 r {w−}, uni-

formly on compact sets. Moreover, any infinite-order element of Γ0 has

two fixed points in ∂∞Γ0, one attracting and one repelling. The group

Γ0 is called elementary if it is finite (in which case ∂∞Γ0 is empty) or
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if it admits a finite-index subgroup which is cyclic (in which case ∂∞Γ0

consists of two points). If Γ0 is not elementary, then the set of attracting

fixed points of infinite-order elements of Γ0 is infinite and dense in ∂∞Γ0.

See e.g. [14] for details.

Examples 4.21 If Γ0 is a nonabelian free group with finite free gen-

erating subset F , then Γ0 is Gromov hyperbolic, Cay(Γ0) is a tree, and

∂∞Γ0 is a Cantor set. If Γ0 = π1(M) for some closed negatively-curved

manifold M , then Γ0 is Gromov hyperbolic, we can take Y to be the uni-

versal cover M̃ of M , and ∂∞Γ0 = ∂∞M̃ . In particular, if Γ0 = π1(S)

for some closed orientable surface of genus ≥ 2, then Γ0 is Gromov hy-

perbolic and ∂∞Γ0 is a circle (as in the proof of Theorem 4.11).

Remark 4.22 A Gromov hyperbolic group can never contain a sub-

group isomorphic to Z2 or to a Baumslag–Solitar group BS(m,n) :=

〈a, t | t−1amt = an〉. Understanding how close this is to characterising

Gromov hyperbolic groups is an important question in geometric group

theory: see e.g. [75].

For any isometry g of a metric space (M, dM ), we define the translation

length of g in M to be

translM (g) := inf
m∈M

dM (m, g ·m) ≥ 0. (4.2)

Finally, we denote by dX the metric on the Riemannian symmetric

space X = G/K (see Section 4.2.1). We fix a basepoint x0 ∈ X, and a

Riemannian metric d∂∞X on the visual boundary ∂∞X.

A few classical characterisations

Many interesting characterisations of convex cocompactness have been

found by various authors including Beardon, Bowditch, Maskit, Sullivan,

Thurston, Tukia, and others. We now give a few. We refer to [94, 95] for

more details and references, as well as further characterisations (e.g. in

terms of conical limit points). We also refer to [31, 94] for characterisa-

tions of geometric finiteness.

Theorem 4.23 Suppose rankR(G) = 1. For any infinite group Γ0 and

any representation ρ : Γ0 → G, the following are equivalent:

(1) ρ is convex cocompact (Definition 4.12);

(2) Γ0 is finitely generated and ρ is a quasi-isometric embedding: there

exist c, c′ > 0 such that for any γ ∈ Γ,

dX(x0, ρ(γ) · x0) ≥ c dCay(Γ0)(e, γ)− c′; (4.3)
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(3) Γ0 is Gromov hyperbolic and ρ is well-displacing: there exist c, c′′ > 0

such that for any γ ∈ Γ,

translX(ρ(γ)) ≥ c translCay(Γ0)(γ)− c′′; (4.4)

(4) Γ0 is Gromov hyperbolic and there exists a ρ-equivariant map

ξ : ∂∞Γ0 −→ ∂∞X

which is continuous, injective, and dynamics-preserving (i.e. for any

infinite-order element γ ∈ Γ0, the image by ξ of the attracting fixed

point of γ in ∂∞Γ0 is an attracting fixed point of ρ(γ) in ∂∞X);

(5) Γ0 is Gromov hyperbolic and there exists a ρ-equivariant map

ξ : ∂∞Γ0 −→ ∂∞X

which is continuous, injective, and strongly dynamics-preserving

(i.e. for any (γk) ∈ ΓN
0 and any w+, w− ∈ ∂∞Γ0, if γk · w → w+

for all w ∈ ∂∞Γ0 r {w−}, then ρ(γk) · z → ξ(w+) for all z ∈
∂∞X r {ξ(w−)});

(6) ρ has finite kernel, discrete image, and the action of Γ on ∂∞X

via ρ is expanding at Λρ(Γ0), i.e. for any z ∈ Λρ(Γ0), there exist a

neighbourhood U of z in ∂∞X and an element γ ∈ Γ0 such that

inf
z1 6=z2 in U

d∂∞X(ρ(γ) · z1, ρ(γ) · z2)

d∂∞X(z1, z2)
> 1. (4.5)

Remarks 4.24 • Using the triangle inequality, one sees that condi-

tion (2) does not depend on the choice of basepoint x0 ∈ X (changing

x0 may change the values of c, c′ but not their existence).

• One also sees that for Γ0 with finite generating subset F , the reverse

inequality dX(x0, ρ(γ) · x0) ≤ C dCay(Γ0)(e, γ) to (4.3) holds for any

representation ρ : Γ0 → G, with C := maxf∈F dX(x0, ρ(f) · x0).

• In condition (3) we cannot remove the assumption that Γ0 be Gromov

hyperbolic: for instance, there exist finitely generated infinite groups

Γ0 with only finitely many conjugacy classes [117], and for such Γ0

any representation ρ : Γ0 → G is well-displacing.

• In condition (4), dynamics-preserving implies that for any γ ∈ Γ0

of infinite order, ρ(γ) is a hyperbolic element of G (i.e. an element

with two fixed points in ∂∞X, one attracting and one repelling). In

condition (5), strongly dynamics-preserving means that ξ preserves

the convergence action of Γ0 on ∂∞Γ0 mentioned above.
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Sketches of proofs

Proof of (1) ⇒ (2): We may assume that the basepoint x0 belongs

to the convex core Ccorρ(Γ0). By the Švarc–Milnor lemma (see e.g. [65,

Th. 8.37]), if Γ0 acts properly discontinuously, by isometries, with com-

pact quotient, on a proper geodesic metric space M , then Γ0 is finitely

generated and any orbital map γ 7→ γ ·m is a quasi-isometric embedding:

there exist c, c′ > 0 such that dM (m, γ ·m) ≥ c dCay(Γ0)(e, γ)− c′ for all

γ ∈ Γ0. We apply this to the convex core M = Ccorρ(Γ0), endowed with the

restriction of the metric dX .

Proof of (2) ⇒ (1): Since dX(x0, ρ(γ) · x0)→ +∞ as dCay(Γ0)(e, γ)→
+∞, the representation ρ has finite kernel and discrete image.

The orbital map γ 7→ ρ(γ) · x0 from Γ0 to X extends to a map from

Cay(Γ0) to X sending edges of Cay(Γ0) to geodesic segments of X.

The fact that ρ is a quasi-isometric embedding implies the existence

of c, c′ > 0 such that any geodesic of Cay(Γ0) is sent to a (c, c′)-

quasigeodesic in X, and the Morse lemma (see e.g. [65, Th. 11.40 &

11.105]) states that (c, c′)-quasigeodesics are uniformly close to actual

geodesics in X. Therefore the orbit ρ(Γ0) ·x0 is quasiconvex : there exists

a uniform neighbourhood U of ρ(Γ0) · x0 in X such that any geodesic

segment between two points of ρ(Γ0) ·x0 is contained in U . We conclude

using the fact (see [31, Prop. 2.5.4]) that any quasiconvex subset of X

lies at finite Hausdorff distance from its convex hull in X.

In order to prove (2)⇒ (3), we consider, for any metric space (M, dM )

and any isometry g of M , the stable length

length∞M (g) := lim
k

1

k
dM (m, gk ·m) ≥ 0

of g. It is an easy exercise to check, using the triangle inequality, that

this limit exists (because the sequence (dM (m, gk ·m))k∈N is subadditive)

and that it does not depend on the choice of m ∈M . Note that

length∞M (g) ≤ translM (g). (4.6)

Indeed, for any m ∈ M and any k ≥ 1 we have dM (m, gk · m) ≤
k dM (m, g ·m) by the triangle inequality. Dividing by k and passing to

the limit yields length∞M (g) ≤ dM (m, g ·m), and we conclude by taking

an infimum over all m ∈M on the right-hand side.

Proof of (2) ⇒ (3): Applying (4.3) to γk instead of γ, dividing by k,

and passing to the limit yields length∞X (ρ(γ)) ≥ c length∞Cay(Γ0)(γ) for
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all γ ∈ Γ. In order to obtain (4.4), it is sufficient to use (4.6) for M = X

and to check that

(i) for M = Cay(Γ0), the inequality (4.6) is “almost” an equality:

length∞Cay(Γ0)(g) ≥ translCay(Γ0)(g)− 8δ where δ ≥ 0 is a hyperbol-

icity constant for Cay(Γ0) (i.e. all triangles of Cay(Γ0) are δ-thin).

Indeed, then (4.4) will hold with c′′ = 8δ. We note that actually

(ii) for M = X = G/K, the inequality (4.6) is an equality.

Indeed, (ii) is based on the fact that X is a CAT(0) space: any geodesic

triangle of X is “at least as thin” as a triangle with the same side

lengths in the Euclidean plane. Applying this to a geodesic triangle with

vertices m, g ·m, g2 ·m, we see that if m′ is the midpoint of the geodesic

segment [m, g · m] (so that g · m′ is the midpoint of [g · m, g2 · m]),

then dX(m′, g · m′) ≤ dX(m, g2 · m)/2. By induction on k, we obtain

that for any m ∈ M and any k ≥ 1, there exists mk ∈ M such that

dX(m, g2k · m) ≥ 2k dX(mk, g · mk) ≥ 2k translM (g). We conclude by

dividing by 2k and passing to the limit.

(i) can be proved in a similar way, replacing the CAT(0) inequality

dX(m′, g ·m′) ≤ dX(m, g2 ·m)/2 by the Gromov hyperbolicity inequality

dX(m′, g ·m′) ≤ dX(m, g2 ·m)/2 + 4δ (see [51, Ch. 10, Prop. 5.1]).

Proof of (3) ⇒ (2): The Gromov hyperbolic group Γ0 has the follow-

ing property: there exist a finite subset S of Γ and a constant C ′ > 0

such that for any γ ∈ Γ0 we can find s ∈ S with translCay(Γ0)(sγ) ≥
dCay(Γ0)(e, γ) − C ′. (If Γ0 is nonelementary, then we can take S =

{γN1 , γ−N1 , γN2 , γ
−N
2 } for some large N , where γ1, γ2 ∈ Γ0 are infinite-

order elements such that the attracting fixed points in ∂∞Γ0 of γ1, γ−1
1 ,

γ2, and γ−1
2 are pairwise distinct: see e.g. [138, Lem. B.2].)

Given γ ∈ Γ0, consider s ∈ S as above. Applying (4.4) to sγ yields

translX(ρ(sγ)) ≥ c translCay(Γ0)(sγ)− c′′ ≥ c dCay(Γ0)(e, γ)− (cC ′+ c′′).

To conclude, we observe that

translX(g1g2) ≤ dX(x0, g1g2 · x0) ≤ dX(x0, g1 · x0) + dX(x0, g2 · x0)

for all g1, g2 ∈ G. Applying this to (g1, g2) = (ρ(s), ρ(γ)), we obtain (4.3)

with c′ = cC ′ + c′′ + maxs′∈S dX(x0, ρ(s′) · x0).

Proof of (1) ⇒ (5): We have seen in the proof of (1) ⇒ (2) that for

any m ∈ Ccorρ(Γ0), the orbital map γ 7→ ρ(γ) ·m is a quasi-isometry from

Γ0 to Ccorρ(Γ0). It is a classical result in geometric group theory (see e.g.
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[65, Th. 11.108]) that such a quasi-isometry extends to a Γ0-equivariant

homeomorphism ξ from ∂∞Γ0 to ∂∞Ccorρ(Γ0). Here ∂∞Ccorρ(Γ0) is a subset of

∂∞X (namely the intersection of ∂∞X with the closure of Ccorρ(Γ0) in X).

Thus we can view ξ as a ρ-equivariant, continuous, injective map from

∂∞Γ0 to ∂∞X, such that for any (γk) ∈ ΓN
0 and any w+, w− ∈ ∂∞Γ0, if

γk · w → w+ for all w ∈ ∂∞Γ0 r {w−}, then ρ(γk) · z → ξ(w+) for all

z ∈ ∂∞Ccorρ(Γ0) r {ξ(w
−)}.

In order to see that this last convergence holds for all z ∈ ∂∞X r
{ξ(w−)}, one possibility is to use the fact (Cartan decomposition) that

if we choose a point x ∈ X and a geodesic line G of X through x

with endpoints z+
0 , z

−
0 ∈ ∂∞X, then any element ρ(γk) ∈ G can be

written as ρ(γk) = κkakκ
′
k where κk, κ

′
k ∈ G fix x and ak ∈ G is a pure

translation along G towards z+
0 . The subgroup of G fixing x is compact

(it is conjugate to K); therefore, up to passing to a subsequence we may

assume that (κk)k∈N, (κ
′
k)k∈N converge respectively to some κ, κ′ ∈ G.

Since ρ has finite kernel and discrete image, we have ak · z → z+
0 for all

z ∈ ∂∞Xr{z−0 }. Therefore ρ(γk)·z → κ·z+
0 for all z ∈ ∂∞Xr{κ′−1·z−0 }.

Necessarily κ · z+
0 = ξ(w+) and κ′

−1 · z−0 = ξ(w−).

The implication (5)⇒ (4) is immediate by considering, for any infinite-

order element γ ∈ Γ0, the sequence (γk) := (γk) ∈ ΓN
0 . The implication

(4) ⇒ (2) can be proved using flows as in Section 4.5.1 below (see Re-

mark 4.29 and the implication (1) ⇒ (2) in Theorem 4.37).

Proof of (1) ⇒ (6): We treat the case that X is Hn, seen as the open

unit ball of Rn for a Euclidean norm ‖ · ‖, that 0 belongs to Ccorρ(Γ0), and

that d∂∞X is the metric induced by ‖ · ‖ on the unit sphere ∂∞X of Rn.

We first observe that for any element g ∈ G that does not fix 0, the

closed subset

Hg := {x ∈ X | ‖x‖ ≤ ‖g · x‖} = {x ∈ X | dX(0, x) ≤ dX(0, g · x)}

of X is bounded by the bisector between 0 and g−1 · 0. Moreover, for

any neighbourhood V in X of the closure of Hg in X, the restriction of

g to ∂∞X r V is uniformly expanding in the sense that

inf
z1 6=z2 in ∂∞XrV

d∂∞X(g · z1, g · z2)

d∂∞X(z1, z2)
> 1.

Indeed, one can check this when g is a pure translation along a geodesic

ofX through 0, and then conclude using the fact (Cartan decomposition)

that any g ∈ G can be written as g = κaκ′ where a ∈ G is such a pure

translation and κ, κ′ ∈ G fix 0 and preserve ‖ · ‖.
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Consider the Dirichlet domain of Ccorρ(Γ0) centred at 0:

D =
⋂
γ∈Γ0

Hρ(γ) ∩ Ccorρ(Γ0).

It is compact by (1). Since Γ0 acts properly discontinuously on Ccorρ(Γ0)

via ρ, the set F of elements γ ∈ Γ0 such that D ∩ ρ(γ) · D 6= ∅ and

ρ(γ) · 0 6= 0 is finite. One easily checks that D =
⋂
γ∈F Hρ(γ) ∩ Ccorρ(Γ0).

For each γ ∈ F , let Vρ(γ) be a closed neighbourhood in X of the closure

of Hρ(γ) in X. If we choose these neighbourhoods small enough, then

D′ :=
⋂
γ∈F Vρ(γ)∩Ccorρ(Γ0) is still a compact subset of X, and so Λρ(Γ0) ⊂⋃

γ∈F (∂∞X r Vρ(γ)). We conclude using the fact, observed above, that

(4.5) holds for U := ∂∞X r Vρ(γ) for each γ ∈ F .

Proof of (6) ⇒ (1): We again treat the case that X is Hn, seen as the

open unit ball of Rn for a Euclidean norm ‖ · ‖, and that the metric

d∂∞X is induced by ‖ · ‖. We denote by dEuc the Euclidean distance

on Rn associated to ‖ · ‖.
Suppose that (6) holds. Then Λρ(Γ0) contains at least two points. (In-

deed, by assumption ρ(Γ0) is an infinite discrete subgroup of G, hence

Λρ(Γ0) is nonempty; moreover, the expansion assumption prevents Λρ(Γ0)

from being a singleton, as follows e.g. from the classification of elemen-

tary discrete subgroups of G: see [31, Prop. 3.2.1].) Therefore Ccorρ(Γ0) is

nonempty. Moreover, one can check (e.g. using the Cartan decomposi-

tion as in the proof of (1) ⇒ (6) just above) that for any z ∈ Λρ(Γ0),

there exist a neighbourhood U of z in Rn (rather than just ∂∞X) and

an element γ ∈ Γ0 such that (4.5) holds for dEuc (rather than d∂∞X).

Suppose by contradiction that the action of Γ0 on Ccorρ(Γ0) via ρ is not

cocompact. Let (εm)m∈N be a sequence of positive reals going to 0. For

any m, the set Km := {x ∈ Ccorρ(Γ0) | dEuc(x,ΛΓ) ≥ εm} is compact, hence

there exists a ρ(Γ0)-orbit contained in Ccorρ(Γ0) rKm. By proper disconti-

nuity of the action on Ccorρ(Γ0), the supremum of dEuc(·,ΛΓ) on this orbit

is achieved at some point xm ∈ Ccorρ(Γ0), and by construction we have

0 < dEuc(ρ(γ) ·xm,ΛΓ) ≤ dEuc(xm,ΛΓ) ≤ εm for all γ ∈ Γ0. Up to pass-

ing to a subsequence, we may assume that (xm)m∈N converges to some

z ∈ ΛΓ. Consider a neighbourhood U of z in Rn and an element γ ∈ Γ0

such that (4.5) holds for dEuc, and let c > 1 be the infimum in (4.5).

For any m ∈ N, there exists zm ∈ ΛΓ such that dEuc(ρ(γ) · xm,ΛΓ) =

dEuc(ρ(γ)·xm, ρ(γ)·zm). For large enough m we have xm, zm ∈ U , and so

dEuc(ρ(γ) · xm,ΛΓ) ≥ c dEuc(xm, zm) ≥ c dEuc(xm,ΛΓ) ≥
c dEuc(ρ(γ) · xm,ΛΓ) > 0. This is impossible since c > 1.
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4.5 Classes of discrete subgroups in higher real rank

We have seen in Section 4.4 two important classes of discrete subgroups

of semisimple Lie groups G with rankR(G) = 1, namely convex cocom-

pact subgroups and geometrically finite subgroups. These classes have

been much studied, although many interesting questions remain even in

the case of G = PO(n, 1) for n ≥ 4 (see e.g. [94]).

We now turn to infinite discrete subgroups of semisimple Lie groups

G for rankR(G) ≥ 2. These discrete subgroups, beyond lattices, re-

main much more mysterious. Recently, an important class has emerged,

namely the class of Anosov subgroups, which are by definition the images

of the Anosov representations of Gromov hyperbolic groups introduced

by Labourie [108] as part of his study of Hitchin representations (see

Section 4.3.3). In fact, most examples in Section 4.3 are Anosov sub-

groups. We now discuss these subgroups, make the link with convex

cocompactness, and mention some generalisations.

4.5.1 Anosov subgroups

Given a noncompact semisimple Lie group G, there are several possible

types of Anosov subgroups of G, depending on the choice of one of the

(finitely many) flag varieties G/P of G, where P is a proper parabolic

subgroup of G. For simplicity, in these notes we consider G = PGL(d,K)

or SL±(d,K) = {g ∈ GL(d,K) | det(g) = ±1} where K = R or C; we

take P = Pi to be the stabiliser in G of an i-plane of Kd, for some 1 ≤ i
≤ d− 1, so that G/Pi = Gri(Kd) is the Grassmannian of i-planes of Kd.

Definition and first observations

Here is the original definition from Labourie, which appeared in [108]

for surface groups Γ0 = π1(S) and in [83] for general hyperbolic groups.

Definition 4.25 Let Γ0 be an infinite Gromov hyperbolic group and

G = PGL(d,K) or SL±(d,K). For 1 ≤ i ≤ d − 1, a representation

ρ : Γ0 → G is Pi-Anosov if there exist ρ-equivariant maps ξi : ∂∞Γ0 →
G/Pi = Gri(Kd) and ξd−i : ∂∞Γ0 → G/Pd−i = Grd−i(Kd) which

• are continuous,

• are transverse: ξi(w)⊕ ξd−i(w′) = Kd for all w 6= w′ in ∂∞Γ0;

• satisfy a uniform contraction property (Condition 4.28 below) which

strengthens the dynamics-preserving condition of Theorem 4.23.(4).
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By the dynamics-preserving condition of Theorem 4.23.(4) for ξi we

mean that for any infinite-order element γ ∈ Γ0, the image by ξi of the

attracting fixed point of γ in ∂∞Γ0 (see Section 4.4.4) is an attracting

fixed point of ρ(γ) in Gri(Kd).
We note that for an element g ∈ G, the property of admitting an at-

tracting fixed point in G/Pi can be characterised in terms of eigenvalues,

namely as (λi−λi+1)(g) > 0 (Notation 4.34). In this case the attracting

fixed point is unique and we say that g is proximal in Gri(Kd).

Remark 4.26 For our purposes, working with PGL(d,K) or SL±(d,K)

is equivalent. Indeed, a representation ρ : Γ0 → SL±(d,K) is Pi-Anosov

if and only if its composition with the natural projection SL±(d,K) →
PGL(d,K) is Pi-Anosov, and up to passing to a finite-index subgroup

(which does not change the property of being Pi-Anosov) any representa-

tion ρ : Γ0 → PGL(d,K) with Γ0 Gromov hyperbolic lifts to SL±(d,K).

The uniform contraction property in Definition 4.25 is reminiscent of

the condition defining Anosov flows in dynamics, which explains the ter-

minology Anosov representation. Before stating it (Condition 4.28), let

us make a few elementary observations that already follow from the fact

that ξi and ξd−i are continuous, transverse, and dynamics-preserving.

Lemma 4.27 If ρ : Γ→ G is Pi-Anosov, then

(1) the boundary maps ξi and ξd−i are unique, and compatible:

ξmin(i,d−i)(w) ⊂ ξmax(i,d−i)(w) for all w ∈ ∂∞Γ0; the image of ξi is

the proximal limit set of ρ(Γ0) in Gri(Kd), i.e. the closure in Gri(Kd)
of the set of attracting fixed points of proximal elements of ρ(Γ0);

(2) ξi and ξd−i are injective, hence they are homeomorphisms onto their

images;

(3) ρ has finite kernel and discrete image.

By (3), the images of Pi-Anosov representations are infinite discrete

subgroups of G; we shall call them Pi-Anosov subgroups.

Proof (1) Recall from Section 4.4.4 that the subset of ∂∞Γ0 consisting

of the attracting fixed points of infinite-order elements of Γ0 is dense

in ∂∞Γ0. Since ξi and ξd−i are dynamics-preserving, they are uniquely

determined on this subset, and compatible on this subset. By continuity,

they are uniquely determined and compatible on all of ∂∞Γ0. Moreover,

the image of ξi is the proximal limit set of ρ(Γ0) in Gri(Kd).
(2) For any w 6= w′ in ∂∞Γ0, the subspaces ξi(w) and ξd−i(w

′) are

transverse by definition, whereas ξi(w) and ξd−i(w) are not by (1) above.
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(3) Suppose Γ0 is nonelementary. In order to show that ρ has finite ker-

nel and discrete image, it is sufficient to consider an arbitrary sequence

(γk)k∈N of pairwise distinct points of Γ0 and to check that (ρ(γk))k∈N
does not converge to the identity of G. Recall from Section 4.4.4 that the

action of Γ0 on ∂∞Γ0 is a convergence action. Therefore, up to passing

to a subsequence, there exist w+, w− ∈ ∂∞Γ0 such that γk · w → w+

for all w ∈ ∂∞Γ0 r {w−}. By ρ-equivariance and continuity of ξi, we

then have ρ(γk) · ξi(w) = ξi(γk ·w)→ ξi(w
+) for all w ∈ ∂∞Γ0 r {w−}.

Since ∂∞Γ0 is infinite and ξi is injective, there exists w ∈ ∂∞Γ0 r {w−}
such that ξi(w) 6= ξi(w

+). The convergence ρ(γk) · ξi(w)→ ξi(w
+) then

implies that (ρ(γk))n∈N does not converge to the identity element of G.

This shows that ρ has finite kernel and discrete image.

If Γ0 is elementary, then it admits a finite-index subgroup Γ′0 which is

cyclic. The fact that ξi is dynamics-preserving implies that ρ is injective

and discrete in restriction to Γ′0. From this one easily deduces that ρ has

finite kernel and discrete image.

The uniform contraction condition

Let us state this condition in the original case considered by Labourie

[108], where Γ0 = π1(M) for some closed negatively curved manifold M .

We denote by M̃ the universal cover of M , by T 1 the unit tangent

bundle, and by (ϕt)t∈R the geodesic flow on either T 1(M) or T 1(M̃).

(For a general Gromov hyperbolic group Γ0, one should replace T 1(M̃)

by a certain flow space for Γ0, see [83] or [26, § 4.1].)

For simplicity, we take G = SL±(d,K) (see Remark 4.26). Any repre-

sentation ρ : Γ0 → G then determines a flat vector bundle

Eρ = Γ0\(T 1(M̃)×Kd)

over T 1(M) = Γ0\T 1(M̃), where Γ0 acts on T 1(M̃)×Kd by γ · (x̃, v) =

(γ · x̃, ρ(γ) ·v). The geodesic flow (ϕt)t∈R on T 1(M) lifts to a flow (ψt)t∈R
on Eρ, given by ψt · [(x̃, v)] = [(ϕt · x̃, v)].

Suppose, as in Definition 4.25, that there exist continuous, transverse,

ρ-equivariant boundary maps ξi : ∂∞Γ0 → Gri(Kd) and ξd−i : ∂∞Γ0 →
Grd−i(Kd). By transversality, for each x̃ ∈ T 1(M̃) we have a decomposi-

tion Kd = ξi(x̃
+)⊕ξd−i(x̃−), where x̃± = limt→±∞ ϕt · x̃ are the forward

and backward endpoints of the geodesic determined by x̃, and this defines

a decomposition of the vector bundle Eρ into the direct sum of two sub-

bundles Eρi = {[(x̃, v)] | v ∈ ξi(x̃+)} and Eρd−i = {[(x̃, v)] | v ∈ ξd−i(x̃−)}.
This decomposition is invariant under the flow (ψt). By definition, the
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representation ρ is Pi-Anosov if the following “dominated splitting” con-

dition is satisfied.

Condition 4.28 The flow (ψt)t∈R uniformly contracts Eρi with respect

to Eρd−i, i.e. given a continuous family (‖ · ‖x)x∈T 1(M) of norms on the

fibers Eρ(x), there exist C,C ′ > 0 such that for any t ≥ 0, any x ∈
T 1(M), and any nonzero υi ∈ Eρi (x) and υd−i ∈ Eρd−i(x),

‖ψt · υi‖ϕt·x
‖ψt · υd−i‖ϕt·x

≤ e−Ct+C
′ ‖υi‖x
‖υd−i‖x

,

By compactness of T 1(M), this condition does not depend on the

choice of continuous family of norms (‖·‖x)x∈T 1(M) (changing the norms

may change the values of C,C ′ but not their existence).

Remark 4.29 Guichard and Wienhard [83] showed that if there exist

ρ-equivariant maps ξi and ξd−i which are continuous, transverse, and

dynamics-preserving, and if the group ρ(Γ0) is Zariski-dense in G, then

condition 4.28 is automatically satisfied.

Properties

• Pi-Anosov is equivalent to Pd−i-Anosov, as the integers i and d−i play

a similar role in Definition 4.25 and Condition 4.28 (up to reversing

the flow, which switches contraction and expansion). In particular, we

may restrict to Pi-Anosov for 1 ≤ i ≤ d/2.

• When rankR(G) = 1 (i.e. d = 2 for G = PGL(d,K) or SL±(d,K)),

there is only one proper parabolic subgroup P of G up to conjugation

(see Remark 4.17), hence only one notion of Anosov. In that case, an

infinite discrete subgroup of G is Anosov if and only if it is convex

cocompact in the classical sense of Definition 4.12.

• When rankR(G) ≥ 2 (i.e. d ≥ 3 for G = PGL(d,K) or SL±(d,K)),

Anosov subgroups are not lattices of G (since Anosov subgroups are

Gromov hyperbolic unlike lattices, see Section 4.2.3).

• Uniform contraction over a compact space as in Condition 4.28 is

stable under small deformations, which implies the following analogue

of Fact 4.18.

Fact 4.30 Let G be a noncompact semisimple Lie group and P a

proper parabolic subgroup of G. For any infinite Gromov hyperbolic

group Γ0, the space of P -Anosov representations is open in Hom(Γ0, G).

• Anosov representations behave well under Lie group homomorphisms:
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the following holds similarly to Fact 4.19. (We refer to Remark 4.24

for the notion of a hyperbolic element of G′.)

Fact 4.31 (see [83]) Let G′ be a semisimple Lie group with rankR(G′)

= 1 and let τ : G′ → PGL(d,K) be a Lie group homomorphism with

compact kernel. For any Gromov hyperbolic group Γ0, any representa-

tion σ0 : Γ0 → G′, and any 1 ≤ i ≤ d−1, the following are equivalent:

(1) the representation τ ◦ σ0 : Γ0 → PGL(d,K) is Pi-Anosov;

(2) σ0 is convex cocompact (Definition 4.12) and (λi−λi+1)(τ(g′)) > 0

for some hyperbolic element g′ ∈ G′.

In this case, τ induces an embedding ∂∞τi : G′/P ′ ↪→ Gri(Kd) (where

G′/P ′ is the visual boundary of the symmetric space of G′, see Re-

mark 4.17) and the boundary map of ρ0 is the composition of the

boundary map ∂∞Γ0 → G′/P ′ of σ0 (see Theorem 4.23) with ∂∞τi.

Moreover, by Fact 4.30 there is in that case a neighbourhood of τ◦σ0 in

Hom(Γ0,PGL(d,K)) consisting entirely of Pi-Anosov representations

(hence with finite kernel and discrete image — see Lemma 4.27.(3)).

Examples in higher real rank

Many of the discrete subgroups in Section 4.3 were Anosov subgroups.

• Section 4.3.2: It follows from the work of Benoist [15] that the ping

pong groups of Claim 4.9 are quasi-isometrically embedded (see Re-

mark 4.35) in PGL(d,R). They are in fact P1-Anosov: see [42, 97].

• Section 4.3.2: When they are defined by B±1 , . . . , B
±
m which have pair-

wise disjoint closures, the Schottky groups in PGL(2n,K) of Nori and

Seade–Verjovsky are Pn-Anosov (see [83]) and the crooked Schottky

groups in Sp(2n,R) ⊂ SL(2n,R) are P1-Anosov (see [36]).

• Section 4.3.3: By Facts 4.30 and 4.31, the Barbot representations of

closed surface groups into SL(d,R) are P1-Anosov. The Hitchin rep-

resentations into PSL(d,R) are Pi-Anosov for all 1 ≤ i ≤ d − 1: this

is Labourie’s original result from [108], where he introduced Anosov

representations. The maximal representations of closed surface groups

into SO(2, n) ⊂ SL(n+ 2,R) are P1-Anosov (see [37, 82]). We refer to

Figures 4.9 and 4.10 for some illustrations of boundary maps.

Remark 4.32 Being Pi-Anosov for all 1 ≤ i ≤ d−1 is the strongest

possible form of Anosov; in this case, the various boundary maps

ξi : ∂∞Γ0 → Gri(Kd) for 1 ≤ i ≤ d − 1 combine into a continu-

ous, injective, ρ-equivariant boundary map ξ : ∂∞Γ0 → Flags(Rd) as

in the proof of Theorem 4.11.
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Figure 4.9 The image of the boundary map ξ1 : ∂∞Γ0 → P(R3) of
a representation ρ : Γ0 = π1(S) → SL(3,R) which is a small defor-

mation of Γ0
σ0
↪−→ SL(2,R)

τ
↪−→ SL(3,R), where σ0 is injective and

discrete and τ is the standard representation. This image is a topo-
logical circle in P(R3) which has Hölder, but not Lipschitz, regularity.

• Section 4.3.4: All (known) higher Teichmüller spaces consist of Anosov

representations (see [22, 37, 82, 108]).

Remark 4.33 Not all Anosov representations of closed surface

groups belong to higher Teichmüller spaces. For instance, the Bar-

bot representations of π1(S) into SL(d,R) from Section 4.3.3 are P1-

Anosov, but their connected component in Hom(π1(S),SL(d,R)) con-

tains representations that are not injective and discrete.

• Section 4.3.4: The two known families of higher-dimensional higher-

rank Teichmüller spaces that we mentioned for Gromov hyperbolic

groups Γ0 = π1(M) are P1-Anosov: for holonomies of convex projec-

tive structures, see [16], and for Hp,q-convex cocompact representa-

tions, see [10] (case q = 1) and [53, 54] (general case).

Interlude: eigenvalues and singular values

Before giving (in Theorem 4.37 below) some characterisations of Anosov

representations that generalise Theorem 4.23, we introduce some nota-

tion and make a few preliminary observations.

Notation 4.34 For any g ∈ GL(d,C), we denote by λ1(g) ≥ · · · ≥
λd(g) the logarithms of the moduli of the complex eigenvalues of g, and

by µ1(g) ≥ · · · ≥ µd(g) the logarithms of the singular values of g (i.e. of

the square roots of the eigenvalues of gT g, which are positive numbers).

For any 1 ≤ i < j ≤ d, this defines functions λi − λj : GL(d,C) → R≥0

and µi − µj : GL(d,C)→ R≥0 which factor through PGL(d,C).



F. Kassel, Discrete subgroups of semisimple Lie groups 47

ξ1(w)

ξ2(w)

ξ1(w)

ξ2(w)
ξ3(w)

Figure 4.10 If ξ = (ξ1, . . . , ξd−1) : ∂∞Γ0 → Flags(Rd) is the bound-
ary map of a Hitchin representation ρ : Γ0 = π1(S) → PSL(d,R),
then the image of ξ1 is a C1 curve in P(Rd), and ξ(w) is the osculat-
ing flag to this curve at the point ξ1(w) for all w ∈ ∂∞Γ0. For d = 3
the curve is the boundary of the properly convex open subset of P(R3)
preserved by ρ, while for d = 4 the curve is homotopically nontrivial
in P(R4). This figure shows the curve ξ1(∂∞Γ0) and an osculating flag
ξ(w) when ρ : Γ0 → PSL(2,R) ↪→ PSL(d,R) is Fuchsian, for d = 3
(left) and d = 4 (right); for d = 4, the curve is the so-called twisted
cubic in P(R4), given by t 7→ (t, t2, t3) in some affine chart.

As in Section 4.4.4, for any finitely generated group Γ0, we choose a

finite generating subset of Γ0 and denote by Cay(Γ0) the corresponding

Cayley graph, with its metric dCay(Γ0). We denote by X = G/K the Rie-

mannian symmetric space of G, with its metric dX , and fix a basepoint

x0 ∈ X. We denote the translation length as in (4.2).

Our starting point is the following (see Theorem 4.23 and its proof).

Remark 4.35 Let Γ0 be a finitely generated group and ρ : Γ0 → G a

representation. Then

• ρ has finite kernel and discrete image if and only if dX(x0, ρ(γ) ·x0)→
+∞ as dCay(Γ0)(e, γ)→ +∞;

• ρ is called a quasi-isometric embedding if there exist c, c′ > 0 such

that dX(x0, ρ(γ) · x0) ≥ c dCay(Γ0)(e, γ)− c′ for all γ ∈ Γ;

• ρ is called well-displacing if there exist c, c′′ > 0 such that

translX(ρ(γ)) ≥ c translCay(Γ0)(γ)− c′′ for all γ ∈ Γ.
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(As in Remarks 4.24, the inequality dX(x0, ρ(γ)·x0) ≤ C dCay(Γ0)(e, γ)

always holds for C := maxf∈F dX(x0, ρ(f) · x0); it implies that the in-

equality translX(ρ(γ)) ≤ C translCay(Γ0)(γ) always holds too: see the

proof of the implication (2) ⇒ (3) of Theorem 4.23.)

We now reinterpret Remark 4.35 using Notation 4.34. Let ‖ · ‖Euc be

the standard Euclidean norm on Rd. For G = PGL(d,K) with K = R
or C, we can take K = PO(d) or PU(d) and x0 = eK ∈ G/K = X, so

that for any g ∈ G lifting to ĝ ∈ GL(d,K) with |det(ĝ)| = 1,

dX(x0, g · x0) = ‖(µ1(ĝ), . . . , µd(ĝ))‖Euc,

translX(g) = ‖(λ1(ĝ), . . . , λd(ĝ))‖Euc.

On the other hand, we have
∑d
i=1 µi(ĝ) =

∑d
i=1 λi(ĝ) = 0, and on the

linear hyperplane {v ∈ Rd |
∑d
i=1 vi = 0} of Rd the Euclidean norm

‖ · ‖Euc is equivalent to
∑d−1
i=1 |vi− vi+1|. In this setting we can therefore

rewrite Remark 4.35 as follows.

Remark 4.36 Let Γ0 be a finitely generated group and ρ : Γ0 → G =

PGL(d,K) a representation. Then

• ρ has finite kernel and discrete image if and only if∑d−1
i=1 (µi − µi+1)(ρ(γ))→ +∞ as dCay(Γ0)(e, γ)→ +∞;

• ρ is a quasi-isometric embedding if and only if there exist c, c′ > 0

such that
∑d−1
i=1 (µi − µi+1)(ρ(γ)) ≥ c dCay(Γ0)(e, γ)− c′ for all γ ∈ Γ;

• ρ is well-displacing if and only if there exist c, c′′ > 0 such that∑d−1
i=1 (λi − λi+1)(ρ(γ)) ≥ c translCay(Γ0)(γ)− c′′ for all γ ∈ Γ.

Remark 4.36 should be kept in mind will reading Theorem 4.37.(2)–

(3) below, as it explains how Anosov representations are refinements of

quasi-isometric embeddings and well-displacing representations.

Characterisations

The following characterisations of Anosov representations were estab-

lished by Kapovich–Leeb–Porti, Guéritaud–Guichard–Kassel–Wienhard,

Bochi–Potrie–Sambarino, and Kassel–Potrie. More precisely, (1)⇒ (2) is

easy and follows from a property of dominated splittings proved in [25].

The implication (2)⇒ (1) was proved in [100], with an alternative proof

later given in [26]. The implication (2) ⇒ (3) is easy and similar to the

implication (2) ⇒ (3) of Theorem 4.23 (note that λi(ĝ) = limk µi(ĝ
k)/k

for all ĝ ∈ GL(d,K)). The implication (3) ⇒ (2) was proved in [103].

The implications (1)⇔ (4)⇔ (5) and (1)⇒ (6) were proved in [80] and
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[97], and (6) ⇒ (1) was proved in [97]. We refer to [95, 98] for further

characterisations (e.g. in terms of conical limit points).

We fix a basepoint x0 ∈ X = G/K and a Riemannian metric on

G/Pi,d−i = Flagsi,d−i(Rd) = {(Vmin(i,d−i) ⊂ Vmax(i,d−i)) | dim(V•) = •}.
See Definition 4.25 for the notions of transversality and dynamics-preser-

ving, and Theorem 4.23.(6) for expansion at the limit set. The notion of

limit set that we use is discussed in the next section.

Theorem 4.37 Let G = PGL(d,K) or SL±(d,K) where K = R or C,

and let 1 ≤ i ≤ d − 1. Let Γ0 be a finitely generated infinite group and

ρ : Γ0 → G a representation. Then the following are equivalent:

(1) Γ0 is Gromov hyperbolic and ρ is Pi-Anosov,

(2) ρ is a quasi-isometric embedding “in the i-th direction”: there exist

c, c′ > 0 such that for any γ ∈ Γ,

(µi − µi+1)(ρ(γ)) ≥ c dCay(Γ0)(e, γ)− c′;

(3) Γ0 is Gromov hyperbolic and ρ is well-displacing “in the i-th direc-

tion”: there exist c, c′′ > 0 such that for any γ ∈ Γ,

(λi − λi+1)(ρ(γ)) ≥ c translCay(Γ0)(γ)− c′′;

(4) Γ0 is Gromov hyperbolic, there exist ρ-equivariant maps

ξ• : ∂∞Γ0 −→ G/P• = Gr•(Kd),

for • ∈ {i, d−i}, which are continuous, transverse, dynamics-preser-

ving, and (µi − µi+1)(ρ(γ))→ +∞ as dCay(Γ0)(e, γ)→ +∞;

(5) Γ0 is Gromov hyperbolic and there exist ρ-equivariant maps

ξ• : ∂∞Γ0 −→ G/P• = Gr•(Kd),

for • ∈ {i, d − i}, which are continuous, transverse, and strongly

dynamics-preserving (i.e. for any (γk) ∈ ΓN
0 and w+, w− ∈ ∂∞Γ0,

if γk · w → w+ for all w ∈ ∂∞Γ0 r {w−}, then ρ(γk) · z → ξi(w
+)

for all z ∈ G/Pi transverse to ξd−i(w
−) ∈ G/Pd−i);

(6) (µi−µi+1)(ρ(γ))→ +∞ as dCay(Γ0)(e, γ)→ +∞, any two points of

the limit set of ρ(Γ0) in G/Pi,d−i are transverse, and the action of

Γ0 on G/Pi,d−i via ρ is expanding at this limit set.

Remark 4.38 Recall that when rankR(G) = 1 (i.e. d = 2), an infinite

discrete subgroup of G is Anosov if and only if it is convex cocompact

in the classical sense of Definition 4.12. In that case, the flag variety

G/Pi = G/Pd−i identifies with the visual boundary ∂∞X of X = G/K
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(Remark 4.17) and conditions (2), (3), (4), (5), (6) of Theorem 4.37 are

the same as conditions (2), (3), (4), (5), (6) of Theorem 4.23 (see Re-

mark 4.36 and Lemma 4.27.(3)). On the other hand, when rankR(G) ≥ 2,

conditions (2) and (3) of Theorem 4.37 are strictly stronger than condi-

tions (2) and (3) of Theorem 4.23 (see Remark 4.36).

As in Remarks 4.24, in condition (3) we cannot remove the assumption

that Γ0 be Gromov hyperbolic. See [103, § 4.4] for further discussion.

Limit sets

We now explain the notion of limit set used in Theorem 4.37.(6). It is

based on an important decomposition of the noncompact semisimple Lie

group G: the Cartan decomposition G = K exp(a+)K. We refer to [89]

for the general theory for noncompact semisimple Lie groups G. For G =

PGL(d,K), as in Remark 4.36, we can take K = PO(d) or PU(d), and a+

to be the set of diagonal matrices in g = {y ∈Md(K) | tr(y) = 0} whose

entries t1, . . . , td ∈ R are in nonincreasing order, with t1 + · · ·+ td = 0;

the Cartan decomposition can then be stated as follows.

Fact 4.39 Any g ∈ PGL(d,K) can be written as g = κ exp(a)κ′ for

some κ, κ′ ∈ K and a unique a ∈ a+; the entries of a are µ1(ĝ), . . . , µd(ĝ)

(see Notation 4.34) where ĝ ∈ GL(d,K) is any lift of g with |det(ĝ)| = 1.

Proof By the polar decomposition, any element of GL(d,R) (resp.

GL(d,C)) can be written as the product of an orthogonal (resp. uni-

tary) matrix and a positive semi-definite real symmetric (resp. Hermi-

tian) matrix; on the other hand, any real symmetric (resp. Hermitian)

matrix can be diagonalised by an orthogonal (resp. unitary) matrix.

Here is a useful consequence of the Cartan decomposition.

Lemma 4.40 For 1 ≤ i ≤ d − 1 and a sequence (gm) of points of

G = PGL(d,K), consider the following two conditions:

(a) (µi − µi+1)(gm)→ +∞,

(b) there exist z+ ∈ G/Pi and z− ∈ G/Pd−i such that gm · z → z+ for

all z ∈ G/Pi transverse to z−.

If (gm) satisfies (a), then some subsequence of (gm) satisfies (b). Con-

versely, if (gm) satisfies (b), then it satisfies (a).

Proof Let z+
0 := span(e1, . . . , ei) ∈ G/Pi and z−0 := span(ei+1, . . . , ed)

∈ G/Pd−i, where (e1, . . . , ed) is the canonical basis of Kd. By Fact 4.39,

for any m we can write gm = κm exp(am)κ′m where κm, κ
′
m ∈ K and
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am ∈ a+ is diagonal; the entries of am are µ1(ĝm), . . . , µd(ĝm) where

ĝm ∈ GL(d,K) is any lift of gm with |det(ĝm)| = 1.

(a)⇒ (b): If (µi−µi+1)(gm)→ +∞, then am ·z → z+
0 for all z ∈ G/Pi

transverse to z−0 . Since K is compact, up to passing to a subsequence,

we may assume that (κm), (κ′m) converge respectively to some κ, κ′ ∈ K.

Then gm ·z → z+ := κ ·z+
0 for all z ∈ G/Pi transverse to z− := κ′

−1 ·z−0 .

(b)⇒ (a): If (µi−µi+1)(gm) does not tend to +∞, then up to passing

to a subsequence it converges to some nonnegative real number, and one

easily sees that the image by am of any open subset of G/Pi fails to

converge to a point. Up to passing to a subsequence, we may assume

that (κm), (κ′m) converge in K. Then the image by gm of any open

subset of G/Pi fails to converge to a point.

For (gm) and z+ as in condition (b) of Lemma 4.40, we say that z+

is a contraction point for (gm) in G/Pi. We then define the limit set in

G/Pi of a discrete subgroup Γ of G to be the set of contraction points in

G/Pi of sequences of elements of Γ. It is a closed Γ-invariant subset of

G/Pi. When Γ is Pi-Anosov, it coincides with the proximal limit set of Γ

in G/Pi, which is also the image of the boundary map ξi : ∂∞Γ→ G/Pi.

Similarly, sequences (gm) ∈ GN satisfying both (µi−µi+1)(gm)→ +∞
and (µd−i−µd−i+1)(gm)→ +∞ define contraction points in G/Pi,d−i =

Flagsi,d−i(Rd). This gives a notion of limit set in G/Pi,d−i of a discrete

subgroup Γ of G, as considered in Theorem 4.37.(6).

We note that in the setting of Theorem 4.37.(6), the limit set of ρ(Γ0)

in G/Pi,d−i is nonempty. Indeed, (µd−i−µd−i+1)(g) = (µi−µi+1)(g−1)

for all g ∈ G, and so (µi − µi+1)(ρ(γ)) → +∞ as dCay(Γ0)(e, γ) → +∞
implies (µd−i − µd−i+1)(ρ(γ))→ +∞ as dCay(Γ0)(e, γ)→ +∞.

Cocompact domains of discontinuity

We end this section by briefly mentioning a generalisation to Anosov

representations of a nice feature of rank-one convex cocompact repre-

sentations. Namely, we have seen in Section 4.4.2 that for rankR(G) = 1,

if X = G/K denotes the Riemannian symmetric space of G, then any

convex cocompact subgroup Γ of G acts properly discontinuously, with

compact quotient, on the open subset ΩΓ := ∂∞X r ΛΓ of ∂∞X. In

that case, ∂∞X is the unique flag variety G/P of G with P a proper

parabolic subgroup of G (Remark 4.17).

Guichard and Wienhard [83], inspired by work of Frances, gener-

alised this picture to show that in certain situations, for certain proper

parabolic subgroups P and Q of G, any P -Anosov subgroup Γ of G acts
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properly discontinuously, with compact quotient, on some open subset

Ω of G/Q which is obtained by removing all points of G/Q that are “not

transverse enough” (in some precise sense) to the limit set of Γ in G/P .

This phenomenon was then investigated and described in full generality

by Kapovich, Leeb, and Porti [99]. Let us give one concrete example.

Example 4.41 Let b be a nondegenerate symmetric bilinear form

on Rd with noncompact automorphism group G := Aut(b) ⊂ SL±(d,R).

(If b is symmetric, then G = O(p, q) for some p, q ≥ 1; we require p

and q to be distinct. If b is skew-symmetric, then d = 2n is even and

G = Sp(2n,R).) Let Γ0 be an infinite Gromov hyperbolic group, ρ :

Γ0 → G ⊂ SL±(d,R) a P1-Anosov representation, and Λρ(Γ0) the limit

set of ρ(Γ0) in P(Rd). Let L be the space of maximal b-isotropic subspaces

of Rd. (It identifies with G/Q where Q is the stabiliser in G of a maximal

b-isotropic subspace of Rd.) Then Γ0 acts properly discontinuously with

compact quotient, via ρ, on

Ωρ(Γ0) := Lr
⋃

z∈Λρ(Γ0)

Lz,

where Lz is the set of maximal b-isotropic subspaces of Rd that contain

the line z.

When b is skew-symmetric, i.e. G = Sp(2n,R), the set L is the space

Lag(R2n) of Lagrangians of R2n. In this setting, if ρ(Γ0) is a “strong”

crooked Schottky group as in Section 4.3.2, defined by B±1 , . . . , B
±
m with

pairwise disjoint closures, then the set Ωρ(Γ0) of Example 4.41 coincides

with the set Ω = Int(
⋃
γ∈Γ0

ρ(γ) · D) ⊂ Lag(R2n) of Section 4.3.2.

4.5.2 Anosov representations and convex cocompactness

Recall that when rankR(G) = 1, Anosov representations coincide with

convex cocompact representations in the classical sense of Definition 4.12.

When rankR(G) ≥ 2, Theorem 4.37 shows that Anosov representations

have a number of similarities, in terms of their dynamics, with rank-one

convex cocompact representations: see Remark 4.38. Another similar-

ity, of a more geometric nature, is the existence of cocompact domains

of discontinuity as in Example 4.41: given an Anosov representation

ρ : Γ0 → G, such a domain of discontinuity Ω ⊂ G/Q yields, by tak-

ing the quotient, a closed manifold ρ(Γ0)\Ω locally modeled on G/Q,

whose geometry can be quite interesting (see [133, § 5]). These mani-

folds ρ(Γ0)\Ω do not satisfy any kind of convexity properties in general.
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Given these similarities, it is natural to wonder if Anosov representa-

tions could also be characterised geometrically in terms of some suitable

notion of convex cocompactness. We will see below that this is indeed

the case. This will give more geometric intuition about Anosov repre-

sentations, and yield new examples constructed geometrically.

Two attempts

Our starting point is the following special case of Fact 4.31.

Fact 4.42 Let Γ0 be an infinite group and ρ : Γ0 → PO(n, 1) =

Isom(Hn) a representation. Then ρ is convex cocompact (Definition 4.12)

if and only if Γ0 is Gromov hyperbolic and ρ : Γ0 → PO(n, 1) ↪→
PGL(n+ 1,R) is P1-Anosov.

We would like to generalise this equivalence to higher-rank semisimple

Lie groups G.

A natural first attempt would be to replace Hn by the Riemannian

symmetric space of G. However, this turns out to be rather restrictive:

Kleiner–Leeb [105] and Quint [120] proved that if G is a real simple Lie

group of real rank ≥ 2, with Riemannian symmetric space X = G/K,

then any Zariski-dense discrete subgroup of G, acting with compact

quotient on some nonempty convex subset of X, is a cocompact lattice

in G; in particular, Γ is not Gromov hyperbolic and ρ is not Anosov.

Thus this approach does not provide a generalisation of Fact 4.42.

Instead, we make a second attempt by viewing Hn as a properly convex

open set in projective space as in (4.1); we can then try to generalise Fact

4.42 by replacing Hn with any properly convex open subset Ω of P(Rn+1).

Recall from the proof of Theorem 4.11 that Ω being properly convex

means that it is convex and bounded in some affine chart of P(Rn+1).

In this setting Ω carries a natural proper metric dΩ, the Hilbert metric,

which is invariant under Aut(Ω) := {g ∈ PGL(n + 1,R) | g · Ω = Ω}
(see Figure 4.11). In particular, any discrete subgroup of Aut(Ω) acts

properly discontinuously on Ω.

Note that Hn, viewed as a properly convex open subset of P(Rn+1),

does not contain any nontrivial projective segments in its boundary. For

properly convex open sets Ω with this property (also known as strictly

convex open sets), we consider the following analogue of Definition 4.12.

Definition 4.43 Let Ω be a properly convex open subset of P(Rd),
whose boundary ∂Ω does not contain any nontrivial projective segments.

Let Γ0 be a group and ρ : Γ0 → Aut(Ω) ⊂ PGL(d,R) a representation.
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x
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Ω

Figure 4.11 In a properly convex open subset Ω of P(Rd), the Hilbert
distance between two distinct points x, y ∈ Ω is given by dΩ(x, y) :=
1
2

log [a, x, y, b], where [·, ·, ·, ·] is the cross-ratio on P1(R), normalised
so that [0, 1, y,∞] = y, and a, b are the intersection points of ∂Ω with
the projective line through x and y, with a, x, y, b in this order. The
Hilbert metric dΩ coincides with the hyperbolic metric when Ω = Hn
as in (4.1), but in general dΩ is not Riemannian, only Finsler.

We say that the action of Γ0 on Ω via ρ is convex cocompact if it is

properly discontinuous and if there exists a nonempty ρ(Γ0)-invariant

convex subset C of Ω such that ρ(Γ0)\C is compact.

In that case, the representation ρ has finite kernel and discrete image

and, as in Remark 4.13, the group Γ0 is finitely generated.

Similarly to Fact 4.16, we can rephrase convex cocompactness in terms

of some specific convex set in Ω. Namely, define the orbital limit set

Λorb
ρ(Γ0)(Ω) of ρ(Γ0) in Ω to be the set of accumulation points in ∂Ω of

some ρ(Γ0)-orbit of Ω; one easily checks that Λorb
ρ(Γ0)(Ω) does not depend

on the choice of ρ(Γ0)-orbit, because ∂Ω does not contain any nontrivial

segments. Define the convex core Ccorρ(Γ0)(Ω) ⊂ Ω of ρ(Γ0) to be the convex

hull of Λorb
ρ(Γ0)(Ω) in Ω (i.e. the smallest closed convex subset of Ω whose

closure in P(Rd) contains Λorb
ρ(Γ0)). Similarly to Fact 4.16, for infinite Γ0,

the action of Γ0 on Ω via ρ is then convex cocompact if and only if it is

properly discontinuous and ρ(Γ0)\Ccorρ(Γ0)(Ω) is compact and nonempty.

The following result is a generalisation of Fact 4.42 in this setting. It

was first proved in [53] for representations ρ with values in PO(p, q), and

then in general in [54] and independently (in a slightly different form and

under some irreducibility assumption) in [140]. See also [10, 16, 52, 113]

for related earlier results.

Theorem 4.44 Let Γ0 be an infinite group and ρ : Γ0 → PGL(d,R) a
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representation. Suppose that ρ(Γ0) preserves a nonempty properly convex

open subset of P(Rd). Then the following are equivalent:

(1) Γ0 is Gromov hyperbolic and ρ : Γ0 → PGL(d,R) is P1-Anosov;

(2) ρ is strongly convex cocompact in P(Rd): the group Γ0 acts convex

cocompactly (Definition 4.43) via ρ on some properly convex open

subset Ω of P(Rd) such that ∂Ω is C1 and contains no segments.

Here we say that ∂Ω is C1 if every point of ∂Ω has a unique supporting

hyperplane. The phrase strongly convex cocompact is meant to reflect the

strong regularity imposed on ∂Ω (namely, C1 and no segments).

A few comments on Theorem 4.44

In certain situations, the assumption in Theorem 4.44 that ρ(Γ0) pre-

serve a properly convex open subset of P(Rd) is automatically satisfied

for P1-Anosov representations ρ. For instance, this is the case when

∂∞Γ0 is connected and ρ takes values in PO(p, q) ⊂ PGL(d,R) for some

p, q ≥ 1 with p+q = d, by [53]. In this case, the ρ(Γ0)-invariant properly

convex open set Ω given by Theorem 4.44.(2) can be taken in

{[v] ∈ P(Rp+q) | 〈v, v〉p,q < 0} = Hp,q−1

(we then say that ρ is Hp,q−1-convex cocompact) or in

{[v] ∈ P(Rp+q) | − 〈v, v〉p,q < 0} ' Hq,p−1

(we then say that ρ is Hq,p−1-convex cocompact), where 〈·, ·〉p,q is the

symmetric bilinear form of signature (p, q) on Rp+q defining PO(p, q).

On the other hand, there exist P1-Anosov representations that do

not preserve any properly convex open subset of P(Rd): e.g. Hitchin

representations (see Sections 4.3.3 and 4.5.1) into PSL(d,R) for even d.

However, one can always reduce to preserving a properly convex open

set by considering a larger projective space. Indeed, consider the natural

action of GL(d,R) on the vector space Symd(R) of symmetric (d×d) real

matrices by g · A = gAgT . It induces a representation τ : PGL(d,R) →
PGL(Symd(R)), which preserves the open subset Ωsym of P(Symd(R))

corresponding to positive definite symmetric matrices. The set Ωsym is

properly convex. One can check (see [83], or use one of the characteri-

sations of Theorem 4.37) that a representation ρ : Γ0 → PGL(d,R) is

P1-Anosov if and only if τ ◦ ρ : Γ0 → PGL(Symd(R)) is P1-Anosov.

Theorem 4.44 then implies the following.

Corollary 4.45 For any infinite group Γ0 and any representation ρ :

Γ0 → PGL(d,R), the following are equivalent:
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(1) Γ0 is Gromov hyperbolic and ρ : Γ0 → PGL(d,R) is P1-Anosov;

(2) τ ◦ ρ is strongly convex cocompact in P(Symd(R)).

This actually yields a characterisation of P -Anosov representations

into G for any proper parabolic subgroup P of any noncompact semisim-

ple Lie group G, by considering an appropriate representation of G to

some large projective linear group. For instance, for G = PGL(d,R) and

P = Pi with 1 ≤ i ≤ d− 1 as in Section 4.5.1, we can consider the nat-

ural representation τi : PGL(d,R) → PGL(S2(ΛiRd)) where S2(ΛiRd)
is the second symmetric power of the i-th exterior power of the stan-

dard representation of GL(d,R) on Rd. (For i = 1, this identifies with

τ : PGL(d,R) → PGL(Symd(R)) above.) Again, one can check that ρ :

Γ0 → PGL(d,R) is Pi-Anosov if and only if τi◦ρ : Γ0 → PGL(S2(ΛiRd))
is P1-Anosov. Theorem 4.44 then implies the following.

Corollary 4.46 For any infinite group Γ0, any representation ρ : Γ0 →
PGL(d,R), and any 1 ≤ i ≤ d− 1, the following are equivalent:

(1) Γ0 is Gromov hyperbolic and ρ : Γ0 → PGL(d,R) is Pi-Anosov;

(2) τi ◦ ρ is strongly convex cocompact in P(S2(ΛiRd)).

Sketch of proof of Theorem 4.44

Proof of (1) ⇒ (2): Suppose that ρ is P1-Anosov with boundary maps

ξ1 : ∂∞Γ0 → Gr1(Rd) = P(Rd) and ξd−1 : ∂∞Γ0 → Grd−1(Rd) =

P((Rd)∗), and that ρ(Γ0) preserves a nonempty properly convex open

subset Ω of P(Rd). Since Ω was chosen without care, it is possible that

∂Ω contains segments or that the action of Γ0 on Ω via ρ is not con-

vex cocompact. Therefore, we do not work with Ω itself, but consider

instead the connected component Ωmax of P(Rd) r
⋃
w∈∂∞Γ0

ξd−1(w)

containing Ω (where we view each ξd−1(w) as a projective hyperplane in

P(Rd)); it is ρ(Γ0)-invariant, open, and convex (not necessarily bounded)

in some affine chart of P(Rd). Using Lemma 4.40, one can show that the

action of Γ0 on Ωmax via ρ is properly discontinuous, and that the set

of accumulation points of any ρ(Γ0)-orbit of Ωmax is ξ1(∂∞Γ0).

Consider the convex hull C of ξ1(∂∞Γ0) in Ωmax. One easily checks,

using the transversality of ξ1 and ξd−1, that ξ1(∂∞Γ0) is not contained

in a single supporting hyperplane to Ωmax in P(Rd), and therefore that

C is nonempty. Using the expansion property (6) of Theorem 4.37 for

Anosov representations, a similar reasoning to the proof of (6) ⇒ (1) in

Section 4.4.4 then shows that ρ(Γ0)\C is compact: see [54, § 8].

By transversality of ξ1 and ξd−1, there are no nontrivial segments in



F. Kassel, Discrete subgroups of semisimple Lie groups 57

∂Ωmax between points of ξ1(∂∞Γ0). This makes it possible to “smooth

out” Ωmax to obtain a ρ(Γ0)-invariant properly convex open subset Ω′ ⊂
Ωmax containing C such that ∂Ω′ is C1 and contains no segments: see [54,

§ 9]. The action of Γ0 on Ω′ via ρ is convex cocompact as desired.

Proof of (2) ⇒ (1): Suppose that Γ0 acts convex cocompactly via ρ on

some properly convex open subset Ω of P(Rd) such that ∂Ω is C1 and

contains no segments. Because ∂Ω contains no segments, the geodesic

rays of Ω for the Hilbert metric dΩ are exactly the projective segments

between a point of Ω and a point of ∂Ω, and two such rays remain

at bounded Hausdorff distance for dΩ if and only if their endpoints

in ∂Ω are the same. Therefore the convex core Ccorρ(Γ0), endowed with

the restriction of dΩ, is a geodesic metric space whose visual boundary

∂∞Ccorρ(Γ0) identifies with its ideal boundary Ccorρ(Γ0) ∩ ∂Ω in ∂Ω.

Using the fact that ∂Ω contains no segments, one can check by a

limiting argument that all triangles in Ccorρ(Γ0) must be uniformly thin, i.e.

the metric space (Ccorρ(Γ0), dΩ) is Gromov hyperbolic: see [54, Lem. 6.3].

Since the action of Γ0 on (Ccorρ(Γ0), dΩ) via ρ is properly discontinuous,

by isometries, with compact quotient, we deduce that Γ0 is Gromov

hyperbolic and (as in the proof of (1) ⇒ (5) in Section 4.4.4) that any

orbital map Γ0 → Ccorρ(Γ0) extends to a continuous ρ-equivariant boundary

map ξ1 : ∂∞Γ0 → ∂∞Ccorρ(Γ0) ⊂ P(Rd).
Consider the dual Ω∗ = {H ∈ P((Rd)∗) |H ∩ Ω = ∅} of Ω (where

we view P((Rd)∗) as the set of projective hyperplanes in P(Rd)). It is a

properly convex open subset of P((Rd)∗). The boundary ∂Ω∗ of Ω∗ is C1

(because ∂Ω contains no segments), and it contains no segments (because

∂Ω is C1). One can show that the dual action of Γ0 on Ω∗ via ρ is still

convex cocompact: see [54, § 5]. Then the same reasoning as above yields

a continuous ρ-equivariant boundary map ξd−1 : ∂∞Γ0 → P((Rd)∗).
By construction, ξ1 and ξd−1 are transverse: indeed, ξd−1(w) is a sup-

porting hyperplane to Ω at ξ1(w) for any w, and ∂Ω contains no seg-

ments. One checks that ξ1 and ξd−1 are dynamics-preserving and (using

Lemma 4.40) that (µ1 − µ2)(ρ(γ)) → +∞ as dCay(Γ0)(e, γ) → +∞: see

[54, § 7]. We then apply the implication (4) ⇒ (1) of Theorem 4.37.

Applications

Theorem 4.44 and Corollaries 4.45–4.46 give geometric interpretations

for Anosov representations.

Example 4.47 For odd d, any Hitchin representation ρ : π1(S) →
PSL(d,R) as in Section 4.3.3 preserves a nonempty properly convex open
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subset of P(Rd) (see [53, 54, 140]). Therefore these representations are

strongly convex cocompact in P(Rd) by Theorem 4.44. This extends the

case d = 3 due to Choi and Goldman (see the proof of Theorem 4.11).

Example 4.48 For n ≥ 2, any maximal representation ρ : π1(S) →
SO(2, n) as in Section 4.3.3 preserves a nonempty properly convex open

subset of P(Rn+2), contained in H2,n−1 = {[v] ∈ P(Rn+2) | 〈v, v〉2,n < 0}
(see [47, 53]). Therefore these representations are strongly convex cocom-

pact in P(Rn+2) by Theorem 4.44, and in fact H2,n−1-convex cocompact

as in Section 4.3.4 (see the comments after Theorem 4.44).

Theorem 4.44 can also be used to construct new examples of Anosov

representations. One source of examples comes from representations of

Coxeter groups as linear reflection groups. Recall that a Coxeter group

is a group with a presentation by generators and relations of the form

W = 〈s1, . . . , sN | (sisj)
mi,j = e ∀1 ≤ i, j ≤ N〉 (4.7)

where mi,i = 1 (i.e. si is an involution) and mi,j ∈ {2, 3, 4, . . . } ∪ {∞}
for all i 6= j. (By convention, (sisj)

∞ = e means that sisj has infinite

order in the group W .) Vinberg [129] developed a theory of represen-

tations of W as a reflection group in a finite-dimensional real vector

space V : these are by definition representations ρ : W → GL(V ) such

that each ρ(si) is a linear reflection in a hyperplane of V and the con-

figuration of these reflections is such that ρ is injective, discrete, and

the associated fundamental polytope has nonempty interior. These rep-

resentations may preserve a nondegenerate quadratic form on V (e.g.

the image of ρ could be a discrete subgroup of O(n, 1) generated by

orthogonal reflections in the faces of a right-angled polyhedron of Hn
as in Section 4.4.3), but in general they need not preserve any nonzero

quadratic form. Representations of W as a reflection group constitute

a subset Homrefl(W,GL(V )) of Hom(W,GL(V )) which is semialgebraic

(defined by finitely many equalities and inequalities).

Example 4.49 ([53, 56, 109]) Let W be a Coxeter group in N gen-

erators as in (4.7). Suppose W is infinite and Gromov hyperbolic. Then

for any d ≥ N there exist representations ρ : W → SL±(d,R) of W as

a reflection group which are strongly convex cocompact in P(Rd); for

d ≥ 2N −2, they constitute the full interior of Homrefl(W,GL(d,R)). By

Theorem 4.44, these representations are P1-Anosov.

By [64], a conclusion similar to that of Example 4.49 holds if W is

an infinite Gromov hyperbolic group which is not necessarily a Coxeter
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group, but which embeds into a right-angled Coxeter group as a so-called

quasiconvex subgroup. Using celebrated work of Agol and Haglund–Wise,

this provides Anosov representations for a large class of infinite Gromov

hyperbolic groups, namely all those which admit a properly discontinu-

ous and cocompact action on a CAT(0) cube complex.

One can also use the geometric interpretation of Anosov representa-

tions from Theorem 4.44 to prove that free products Γ1 ∗ Γ2 of Anosov

subgroups Γ1,Γ2 are Anosov, using a generalisation of the ping pong

arguments of Sections 4.3.1–4.3.2. For instance, for 1 ≤ i ≤ d − 1, let

τi : SL(d,R) → SL(S2(ΛiRd)) be the second symmetric power of the

i-th exterior power of the standard representation as in Corollary 4.46,

let V ′i := S2(ΛiRd) ⊕ R, and let τ ′i : SL(d,R) → SL(V ′i ) be the direct

sum of τi and of the trivial representation. Then the following holds.

Example 4.50 ([55]) Let 1 ≤ i ≤ d− 1 and let Γ1,Γ2 be any discrete

subgroups of SL(d,R). Then there exists g ∈ SL(V ′i ) such that the rep-

resentation ρ : Γ1 ∗ gΓ2g
−1 → SL(V ′i ) induced by the restrictions of τ ′i

to Γ1 and gΓ2g
−1 has finite kernel and discrete image. If moreover Γ1

and Γ2 are Pi-Anosov, then we can choose g so that ρ is P1-Anosov.

(Note that beyond Anosov representations, this construction can be

used to prove that the free product of two Z-linear groups is Z-linear,

and that there exist Zariski-dense discrete subgroups of SL(V ′i ) which are

not lattices but contain cocompact lattices of τ ′i(SL(d− 1,R)): see [55].)

We refer to [61, 62] for other combination theorems for Anosov repre-

sentations which do not use Theorem 4.44.

4.5.3 Generalisations of Anosov subgroups

In the past few years, several fruitful generalisations of Anosov sub-

groups have appeared, which are currently being actively investigated.

These generalisations exploit both the dynamical definition of Anosov

subgroups from Section 4.5.1 and their geometric characterisation from

Section 4.5.2. Let us briefly mention three of these generalisations.

More general convex cocompact subgroups

We just saw in Theorem 4.44 and Corollaries 4.45 and 4.46 that Anosov

representations can be characterised geometrically by a strong convex

cocompactness condition in projective space. Here strong refers to the

regularity imposed on the properly convex open set Ω (its boundary ∂Ω

should be C1 and contain no segments).
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It is natural to try to generalise Anosov representations by relaxing

this strong regularity requirement. Removing it altogether in Defini-

tion 4.43 leads to a notion which is not stable under small deformations

(see [54, 55]). Instead, we impose the following mild condition, which

relies on the notions of full orbital limit set and convex core.

Definition 4.51 ([54]) Let Ω be a properly convex open subset of P(Rd).
Let Γ0 be a group and ρ : Γ0 → Aut(Ω) ⊂ PGL(d,R) a representation.

• The full orbital limit set Λorb
ρ(Γ0)(Ω) of ρ(Γ0) in Ω is the set of all

accumulation points in ∂Ω of all possible ρ(Γ0)-orbits of Ω.

• The convex core Ccorρ(Γ0)(Ω) ⊂ Ω of ρ(Γ0) is the convex hull of Λorb
ρ(Γ0)(Ω)

in Ω.

• The action of Γ0 on Ω via ρ is convex cocompact if it is properly

discontinuous and if there exists a nonempty ρ(Γ0)-invariant convex

subset C of Ω such that ρ(Γ0)\C is compact and C is “large enough”

in the sense that it contains the convex core Ccorρ(Γ0)(Ω).

Note that Definition 4.51 coincides with Definition 4.43 when ∂Ω does

not contain any nontrivial projective segments. Indeed, in that case the

full orbital limit set Λorb
ρ(Γ0)(Ω) is the set of accumulation points of any

single ρ(Γ0)-orbit of Ω, hence any nonempty ρ(Γ0)-invariant convex sub-

set C of Ω contains the convex core Ccorρ(Γ0)(Ω) (see the comments after

Definition 4.43).

Definition 4.52 Given a group Γ0, we say that a representation ρ :

Γ0 → PGL(d,R) is convex cocompact in P(Rd) if Γ0 acts convex cocom-

pactly via ρ on some properly convex open subset Ω of P(Rd). In that

case, we also say that the image ρ(Γ0) is convex cocompact in P(Rd).

As above, if ρ is convex cocompact in P(Rd), then it has finite kernel

and discrete image, and the group Γ0 is finitely generated.

This notion turns out to be quite fruitful: by [54], the set of convex

cocompact representations is open in Hom(Γ0,PGL(d,R)), and it is sta-

ble under duality and under embedding into a larger projective space;

moreover, a representation ρ : Γ0 → PGL(d,R) is strongly convex co-

compact in P(Rd) in the sense of Theorem 4.44.(2) if and only if it is

convex cocompact in P(Rd) and Γ0 is Gromov hyperbolic. Theorem 4.44

then shows that convex cocompact representations are generalisations of

P1-Anosov representations, for finitely generated infinite groups Γ0 that

are not necessarily Gromov hyperbolic, and that may therefore contain

subgroups isomorphic to Z2 (see Remark 4.22).
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We conclude this section by mentioning a few examples of convex

cocompact groups that are not necessarily Gromov hyperbolic (i.e. that

are not necessarily Anosov subgroups).

Example 4.53 Let Γ be a discrete subgroup of PGL(d,R) dividing

(i.e. acting properly discontinuously with compact quotient on) some

properly convex open subset Ω of P(Rd). Then Λorb
ρ(Γ0)(Ω) = ∂Ω and

the action of Γ on Ω is convex cocompact. By [16], the group Γ is

Gromov hyperbolic if and only if ∂Ω contains no segments. Examples

where ∂Ω contains segments include the symmetric divisible convex sets

Ωsym ⊂ P(Symd′(R)) ' P(Rd) with d = d′(d′+1)/2 ≥ 6 discussed before

Corollary 4.45. The first nonsymmetric irreducible examples were con-

structed in small dimensions (4 ≤ d ≤ 7) by Benoist [18]; examples in all

dimensions d ≥ 4 were recently constructed by Blayac and Viaggi [23].

Example 4.54 For Γ dividing Ω as in Example 4.53, we can lift Γ to

a subgroup Γ̂ of SL±(d,R) preserving a properly convex cone of Rd lift-

ing Ω, and then embed Γ̂ into PGL(D,R) for some D ≥ d. By the result

of [54] mentioned above, the discrete subgroup of PGL(D,R) obtained

in this way will be convex cocompact in P(RD); moreover, it will remain

convex cocompact in P(RD) after any small deformation in PGL(D,R).

Recall that, given a Coxeter group W as in (4.7), a subgroup of W

is called standard if it is generated by a subset of the generating set

{s1, . . . , sN}. The Coxeter group W is called affine if it is irreducible

(i.e. it cannot be written as a direct product of two nontrivial Coxeter

groups) and if it is virtually (i.e. it admits a finite-index subgroup which

is) isomorphic to Zk for some k ≥ 1. Affine Coxeter groups have been

completely classified; they include the Coxeter groups of type Ãk (which

are virtually isomorphic to Zk), where we say that W is of type Ã1 if

N = 2 and m1,2 =∞, and W is of type ÃN−1 for N ≥ 3 if mi,j = 3 for

all i 6= j with |i− j| = 1 mod N and mi,j = 2 for all other i 6= j.

Example 4.55 ([56]) As a generalisation of Example 4.49, let W be

a Coxeter group in N generators as in (4.7). Suppose W is infinite.

Then there exists a representation ρ ∈ Homrefl(W,GL(d,R)) which is

convex cocompact in P(Rd) for some d if and only if any affine standard

subgroup of W is of type Ãk for some k ≥ 1 and W does not contain

a direct product of two infinite standard subgroups. If this holds, then

we can take any d ≥ N and the convex cocompact representations then

constitute a large open subset of Homrefl(W,GL(d,R)): see [56, § 1.5].
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Examples 4.53, 4.54, and 4.55 provide many convex cocompact groups

which are not Gromov hyperbolic. (In Example 4.55, the group W is

nonhyperbolic as soon as it contains an affine standard subgroup of type

Ãk with k ≥ 2, see Remark 4.22.)

Some of these groups are still relatively hyperbolic: e.g. in Exam-

ple 4.55, the group W is relatively hyperbolic with respect to a collection

of virtually abelian subgroups of rank ≥ 2 (see [56, Cor. 1.7]). We refer

to [92] for general results about the structure of relatively hyperbolic

groups which are convex cocompact in P(Rd) and about the geometry of

the associated convex sets. On the other hand, Example 4.53 includes,

for d = d′(d′ + 1)/2 ≥ 6, discrete subgroups of PGL(d,R) which divide

a symmetric properly convex open set Ωsym ⊂ P(Rd) ' P(Symd′(R))

and which are isomorphic to cocompact lattices of PGL(d′,R), hence

not relatively hyperbolic (see Section 4.2.3).

In the case that Γ0 is relatively hyperbolic, Weisman [130] has recently

given a dynamical characterisation of convex cocompact representations

of Γ0 that extends the characterisation of Anosov representations of The-

orem 4.37.(6). The expansion now takes place in various Grassmannians

(not only projective space): namely, at each face of the full orbital limit

set in ∂Ω, there is expansion in the Grassmannian of i-planes of Rd
where i− 1 is the dimension of the face.

Relatively Anosov subgroups

Kapovich–Leeb [96] and Zhu [136, 137] have developed notions of a rela-

tively Anosov representation of a relatively hyperbolic group into a non-

compact semisimple Lie group G. They obtain various characterisations

similar to those of Theorem 4.37. The original definition of Anosov rep-

resentations using flows (Definition 4.25 and Condition 4.28) is recovered

in this more general setting by recent work of Zhu and Zimmer [138].

Extending Fact 4.30, if Γ0 is relatively hyperbolic with respect to

a collection of subgroups (called peripheral subgroups), then relatively

Anosov representations of Γ0 into a given G are stable under small defor-

mations that preserve the conjugacy class of the image of each peripheral

subgroup [96, 138].

Any relatively Anosov representation ρ : Γ0 → G has finite kernel and

discrete image ρ(Γ0), called a relatively Anosov subgroup of G. There are

many examples of relatively Anosov subgroups (see [96, 139]), including:

• geometrically finite subgroups of G for rankR(G) = 1 (Definition 4.12),

• some of the Schottky groups of Section 4.3.2,
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• the images of certain compositions τ ◦σ0 : Γ0 → G where σ0 : Γ0 → G′

is a geometrically finite representation into a semisimple Lie group G′

with rankR(G′) = 1 and τ : G′ → G is a representation with compact

kernel (e.g. Fact 4.31 generalises to the relative setting);

• similarly to Section 4.3.3, small deformations in G of such τ ◦ σ0(Γ0),

preserving the conjugacy class of the image of each peripheral sub-

group;

• certain representations of PSL(2,Z) into PGL(3,R) constructed by

Schwartz [122] by iterating Pappus’s theorem (see [139, § 13]);

• for a finite-volume hyperbolic surface S, the images of positive (in the

sense of Fock–Goncharov [70]) type-preserving representations of Γ0 =

π1(S) into a real split simple Lie group G, see [43] (for closed S, these

coincide with the Hitchin representations of Sections 4.3.3–4.3.4);

• discrete subgroups of PGL(d,R) preserving a properly convex open

subset Ω of P(Rd) with strong regularity (∂Ω is C1 with no segments),

and whose action on Ω is geometrically finite in the sense of [52].

It would be interesting to determine whether relatively Anosov repre-

sentations of relatively hyperbolic groups can also be fully characterised

geometrically similarly to Theorem 4.44 and Corollaries 4.45–4.46.

Extended geometrically finite subgroups

Recently, Weisman [131, 132] has introduced a notion of extended ge-

ometrically finite (or EGF for short) representation of a relatively hy-

perbolic group. This is a dynamical notion, which extends a dynamical

characterisation of Anosov representations in terms of multicones [26].

EGF representations include all Anosov or relatively Anosov representa-

tions, all representations of relatively hyperbolic groups which are convex

cocompact in the sense of Definition 4.52, as well as other examples (see

[132, Th. 1.5–1.7] and [23, Prop. 6.5 & Rem. 6.2]). They are stable un-

der certain small deformations, called peripherally stable, for which the

dynamics of the peripheral subgroups does not degenerate too much.

On the other hand, it would be interesting to define a general notion

of geometric finiteness in convex projective geometry (involving properly

convex open subsets Ω of P(Rd) where ∂Ω may contain segments or not

be C1), and to make the link with Weisman’s EGF representations. A

good notion of geometric finiteness should contain as a particular case

the notion of convex cocompactness from Definition 4.51. More precisely,

a convex projective manifold M = Γ\Ω should be geometrically finite if

its convex core Γ\CcorΓ (Ω) (see Definition 4.51) is covered by a compact
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piece and finitely many ends of M , called cusps, with a controlled geom-

etry. It is not completely clear what the right definition of a cusp should

be. Following Cooper, Long, and Tillmann [48], one could define a (full)

cusp to be the image in M of some convex open subset of Ω whose sta-

biliser in Γ is infinite and does not contain any hyperbolic element (i.e.

any element of this stabiliser has all its complex eigenvalues of the same

modulus); in that case, the cusp is diffeomorphic to the direct product

of R with an affine (d − 2)-dimensional manifold called the cusp cross-

section, and the stabiliser of the cusp is virtually nilpotent [48, Th. 5.3].

The cusp is said to have maximal rank if the cross-section is compact. A

more general notion of cusp of maximal rank, where the stabiliser may

contain hyperbolic elements but is still assumed to be virtually nilpo-

tent, was studied in [5]. A notion of geometric finiteness involving only

such generalised cusps of maximal rank was introduced and studied in

[135], where it was characterised in dynamical terms. Examples (both of

finite and infinite volume) were constructed in [6, 24] as small deforma-

tions of finite-volume real hyperbolic manifolds, using a stability result

from [49]; the corresponding representations are EGF by [132]. On the

other hand, the study of convex projective cusps of nonmaximal rank,

possibly allowing for hyperbolic elements, is still at its infancy, and a

good general notion of geometric finiteness in this setting still remains

to be found, together with appropriate dynamical characterisations.
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[44] S. Cantat, “Progrès récents concernant le programme de Zimmer [d’après
A. Brown, D. Fisher et S. Hurtado]”, Séminaire Bourbaki, Exposé 1136,
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groupes. Les groupes hyperboliques de Gromov”, Lecture Notes in Math-
ematics, vol. 1441, Springer-Verlag, Berlin, 1990.



68 References

[52] M. Crampon, L. Marquis, “Finitude géométrique en géométrie de
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