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Abstract: We summarize and announce some recent results initiating spectral analysis

on pseudo-Riemannian locally symmetric spaces �nG=H, beyond the classical setting where H is

compact (e.g. theory of automorphic forms for arithmetic �) or � is trivial (e.g. Plancherel-type

formula for semisimple symmetric spaces).
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1. Introduction. A pseudo-Riemannian

manifold is a smooth manifold M equipped with a

smooth, nondegenerate symmetric bilinear tensor g

of signature ðp; qÞ. It is called Riemannian if q ¼ 0,

and Lorenzian if q ¼ 1. As in the Riemannian case,

the metric g induces a Radon measure on M and a

second-order differential operator

�M ¼ div grad

called the Laplacian. It is a symmetric operator on

the Hilbert space L2ðMÞ. The Laplacian �M is not

an elliptic differential operator if p; q > 0.

A semisimple symmetric space X is a homoge-

neous space G=H where G is a semisimple Lie group

and H an open subgroup of the group of fixed

points of G under some involutive automorphism.

The manifold X carries a G-invariant pseudo-

Riemannian metric induced by the Killing form of

the Lie algebra g of G. The group G acts on X by

isometries, and the C-algebra DGðXÞ of G-invariant

differential operators on X is commutative.

In this note we consider quotients X� ¼ �nX of

a semisimple symmetric space X ¼ G=H by discrete

subgroups � of G acting properly discontinuously

and freely on X (‘‘discontinuous groups for X’’).

Such quotients are called pseudo-Riemannian lo-

cally symmetric spaces. They are complete

ðG;XÞ-manifolds in the sense of Ehresmann and

Thurston, and they inherit a pseudo-Riemannian

structure from X. Any G-invariant differential

operator D on X induces a differential operator

D� on X� via the covering map p�:X ! X�. For

instance, the Laplacian �X on X is G-invariant, and

ð�XÞ� ¼ �X�
. As in [7,8], we think of

P :¼ fD� : D 2 DGðXÞg

as the set of ‘‘intrinsic differential operators’’ on

the locally symmetric space X�. It is a subalgebra of

the C-algebra DðX�Þ of differential operators on

X�:

DGðXÞ !
� P � DðX�Þ; D 7! D�:ð1:1Þ

For a C-algebra homomorphism �: DGðXÞ !
C, we denote by C1ðX�;M�Þ the space of smooth

functions f on X� (joint eigenfunctions) satisfying

the following system of partial differential equa-

tions:

ðM�Þ D�f ¼ �ðDÞf for all D 2 DGðXÞ:

Let L2ðX�;M�Þ be the space of square-integrable

functions on X� satisfying ðM�Þ in the weak sense.

It is a closed subspace of the Hilbert space L2ðX�Þ.
We are interested in the following problems.

Problems 1. For intrinsic differential oper-

ators on X� ¼ �nG=H,

(1) construct joint eigenfunctions on X�;

(2) find a spectral theory on L2ðX�Þ.
In the classical setting where H is a maximal

compact subgroup K of G, i.e. X� is a Riemannian

locally symmetric space, a rich and deep theory has

been developed over several decades, in particular,

in connection with automorphic forms when � is

arithmetic. For compact H, the spectral decompo-
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sition of L2ðX�Þ is closely related to a disintegration

of the regular representation of G on L2ð�nGÞ:

L2ð�nGÞ ’
Z �
bG m�ð�Þ� d�ð�Þ;ð1:2Þ

where d� is a Borel measure on the unitary dual bG
and m�: bG! N [ f1g a measurable function called

multiplicity. There is a natural isomorphism

L2ðX�Þ ’ L2ð�nGÞHð1:3Þ

and the Hilbert space L2ðX�Þ is decomposed as

L2ðX�Þ ’
Z
ðbGÞH m�ð�Þ �H d�ð�Þ;ð1:4Þ

where �H denotes the space of H-invariant vectors

in the representation space of � and

ð bGÞH :¼ f� 2 bG : �H 6¼ f0gg:

Since the center ZðgCÞ of the universal enveloping

algebra UðgCÞ acts on the space of smooth vectors of

� as scalars for every � 2 bG, the decomposition (1.4)

respects the actions of DGðXÞ and ZðgCÞ via the

natural C-algebra homomorphism d‘: ZðgCÞ !
DGðXÞ. This homomorphism is surjective e.g. if G

is a classical group.

The situation changes drastically beyond the

aforementioned classical setting, namely, when H is

not compact anymore. New difficulties include:

(1) (Representation theory) If H is noncompact,

then L2ð�nGÞH ¼ f0g (because the fact that �

acts properly on X ¼ G=H implies that H acts

properly on �nG), and so (1.3) fails:

L2ðX�Þ 6’ L2ð�nGÞHð1:5Þ

and the irreducible decomposition (1.2) of the

regular representation L2ð�nGÞ of G does not

yield a spectral decomposition of L2ðX�Þ.
(2) (Analysis) In contrast to the usual Riemannian

case (see [22]), the Laplacian �X�
is not elliptic

anymore, and thus even the following subpro-

blems of Problem 1.(2) are open in general for

X� ¼ �nG=H with H noncompact.

Questions 2.

(1) Does the Laplacian �X�
, defined on C1c ðX�Þ,

extend to a self-adjoint operator on L2ðX�Þ?
(2) Does L2ðX�;M�Þ contain real analytic func-

tions as a dense subspace?

(3) Does L2ðX�Þ decompose discretely into a sum

of subspaces L2ðX�;M�Þ when X� is compact?

Detailed proofs of Theorems 9, 10, 11, 15, and

16 below will appear elsewhere.

2. Standard quotients. We observe that

a discrete group of isometries on a pseudo-

Riemannian manifold X does not always act

properly discontinuously on X, and the quotient

space X� ¼ �nX is not necessarily Hausdorff. In

fact, some semisimple symmetric spaces X do not

admit infinite discontinuous groups of isometries

(Calabi–Markus phenomenon [2,11]), and thus it is

not obvious a priori whether there are interesting

examples of pseudo-Riemannian locally symmetric

spaces X� beyond the classical Riemannian case.

Fortunately, there exist semisimple symmetric

spaces X ¼ G=H admitting ‘‘large’’ discontinuous

groups �, e.g. such that X� is compact or of finite

volume. Let us recall a useful idea for finding such

X and �. Suppose a Lie subgroup L of G acts

properly on X. Then the action of any discrete

subgroup � of L on X is automatically properly

discontinuous, and this action is free whenever � is

torsion-free. Moreover, if L acts cocompactly (e.g.

transitively) on X, then volðX�Þ < þ1 if and only

if volð�nLÞ < þ1.

Definition 3 (Standard quotient X�, see [8,

Def. 1.4]). A quotient X� ¼ �nX of X ¼ G=H by

a discrete subgroup of G is called standard if � is

contained in a reductive subgroup L of G acting

properly on X.

A criterion on triples ðG;L;HÞ of reductive Lie

groups for L to act properly on X ¼ G=H was

established in [11], and a list of irreducible sym-

metric spaces G=H admitting proper and cocom-

pact actions of reductive subgroups L was given

in [18]. Recently, Tojo [23] announced that the

list in [18] exhausts all such triples ðL;G;HÞ with L

maximal.

3. Construction of discrete spectrum.

Let X ¼ G=H be a semisimple symmetric space.

Let j be a maximal semisimple abelian subspace in

the orthogonal complement of h in g with respect

to the Killing form, and let W be the Weyl group for

the root system �ðgC; jCÞ. The Harish-Chandra

isomorphism �:SðjCÞW !
�

DGðXÞ (see [6]) induces

a bijection

��: HomC-algðDGðXÞ;CÞ �!
�

j
�
C=W:ð3:1Þ

The dimension of j is called the rank of the

symmetric space X ¼ G=H. Let K be a maximal

compact subgroup of G such that H \K is a

maximal compact subgroup of H. Assume that G

70 F. KASSEL and T. KOBAYASHI [Vol. 96(A),



is connected without compact factor and that the

following rank condition is satisfied:

rankG=H ¼ rankK=ðH \KÞ:ð3:2Þ

Then we can take j to be a subspace of k. We fix

compatible positive systems �þðgC; jCÞ and

�þðkC; jCÞ, denote by � and �c the corresponding

half sums of positive roots counted with multi-

plicities, and set

� :¼ 2�c � �þ Z-spanfhighest weights of ð bKÞH\Kg:
For C � 0, we consider the countable set

�C :¼ f� 2 � : h�; �i > C for all � 2 �þðgC; jCÞg:

Fact 4 (Flensted-Jensen [5]). If the rank

condition (3.2) holds, then there exists C > 0 such

that

L2ðX;M�Þ 6¼ f0g for all � 2 �C:

In fact one can take C ¼ 0 [19]. We now turn to

locally symmetric spaces X�:

Theorem 5 ([7], [8, Th. 1.5]). Under the

rank condition (3.2), for any standard quotient X�

with � torsion-free, there exists C� > 0 such that

L2ðX�;M�Þ 6¼ f0g for all � 2 �C�
:

Thus the discrete spectrum SpecdðX�Þ, which is

by definition the set of � 2 HomC-algðDGðXÞ;CÞ
such that L2ðX�;M�Þ 6¼ f0g, is infinite.

Theorem 5 applied to ðG� f1g; G�G;DiagGÞ
instead of ðL;G;HÞ (group manifold case) implies:

Example 6. Suppose rankG ¼ rankK. For

any torsion-free discrete subgroup � and any

discrete series representation �� of G with suffi-

ciently regular Harish-Chandra parameter �,

HomGð��; L2ð�nGÞÞ 6¼ f0g:ð3:3Þ

This sharpens and generalizes classical results

asserting that if � is an arithmetic subgroup of G,

then (3.3) holds after replacing � by a finite-index

subgroup �0 (possibly depending on ��), see Borel–

Wallach [1], Clozel [3], DeGeorge–Wallach [4],

Kazhdan [10], Rohlfs–Speh [20], and Savin [21].

Remark 7. (1) Theorem 5 extends to a

more general setting where X� is not necessarily

standard: namely, the conclusion still holds as long

as the action of � on X satisfies a strong properness

condition called sharpness [8, Th. 3.8].

(2) The rank condition (3.2) is necessary for

SpecdðXÞ to be nonempty (see Matsuki–Oshima

[19]), in which case Fact 4 applies. On the other

hand, SpecdðX�Þ may be nonempty even if (3.2)

fails. This leads us to the notion of discrete

spectrum of type I and II, see Definition 12 below.

4. Spectral decomposition of L2ðX�Þ. In

this section, we discuss spectral decomposition on

standard quotients X�. We do not impose the rank

condition (3.2), but require that LC act spherically

on XC, i.e. a Borel subgroup of LC has an open orbit

in XC. To be precise, our setting is as follows:

Setting 8. We consider a symmetric space

X ¼ G=H with G noncompact and simple, a reduc-

tive subgroup L of G acting properly on X such that

XC ¼ GC=HC is LC-spherical, and a torsion-free

discrete subgroup � of L.

For compact H, we can take L ¼ G. However,

our main interest is for noncompact H, in which

case the proper action of L in the setting 8 forces

L 6¼ G (see [11, Th. 4.1] for a properness criterion).

In Theorems 9 and 10 below, we allow the case

where volðX�Þ ¼ þ1.

Theorem 9 (Spectral decomposition). In

the setting 8, there exist a measure d� on Hom :¼
HomC-algðDGðXÞ;CÞ and a measurable family

ðF�Þ�2Hom of linear maps, with

F� : C1c ðX�Þ �! C1ðX�;M�Þ;

such that any f 2 C1c ðX�Þ can be expanded into

joint eigenfunctions on X� as

f ¼
Z

Hom

F�f d�ð�Þ;ð4:1Þ

with a Parseval–Plancherel type formula

kfk2
L2ðX�Þ ¼

Z
Hom

kF�fk2
L2ðX�Þ d�ð�Þ:

The measure d� can be described via a ‘‘trans-

fer map’’ discussed in Section 5, see (5.4). In

particular, we see that (4.1) is a discrete sum if

X� is compact, answering Question 2.(3) in our

setting. The proof of Theorem 9 gives an answer to

Questions 2.(1)–(2):

Theorem 10. In the setting 8,

(1) the pseudo-Riemannian Laplacian �X�
defined

on C1c ðX�Þ is essentially self-adjoint on L2ðX�Þ;
(2) any L2-eigenfunction of the Laplacian �X�

can

be approximated by real analytic L2-eigenfunctions.

Theorem 11. In the setting 8, the discrete

spectrum SpecdðX�Þ is infinite whenever � is

cocompact or arithmetic in the subgroup L.
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Let D0ðXÞ be the space of distributions on

X, endowed with its standard topology. Let

p��:L2ðX�Þ ! D0ðXÞ be the pull-back by the projec-

tion p�:X ! X�. For � 2 SpecdðX�Þ, we denote by

L2ðX�;M�ÞI the preimage under p�� of the closure

in D0ðXÞ of L2ðX�;M�Þ, and by L2ðX�;M�ÞII its

orthogonal complement in L2ðX�;M�Þ.
Definition 12. For i ¼ I or II, the discrete

spectrum of type i of X� is the subset SpecdðX�Þi of

SpecdðX�Þ consisting of those elements � such that

L2ðX�;M�Þi 6¼ f0g.
By construction, SpecdðX�ÞI is contained in

SpecdðXÞ, hence it is nonempty only if (3.2) holds

(Remark 7.(2)); in this case SpecdðX�ÞI is actually

infinite for standard X� by Theorem 5. On the

other hand, Theorem 11 has the following refine-

ment.

Theorem 13. In the setting 8, SpecdðX�ÞII
is infinite whenever � is cocompact or arithmetic

in L.

Example 14. For any compact standard

anti-de Sitter 3-manifold M ¼ �nSOð2; 2Þ=SOð2; 1Þ,
both SpecdðX�ÞI and SpecdðX�ÞII are infinite, and

SpecdðX�ÞI � ½0;þ1Þ; SpecdðX�ÞII � ð�1; 0	:

5. Transfer maps. Let L be a reductive

subgroup of G acting properly on X ¼ G=H and � a

discrete subgroup of L. In Section 1 we considered

spectral analysis on the standard locally symmetric

space X� through the algebra P ð’ DGðXÞÞ of

intrinsic differential operators on X�. Another

C-algebra Q of differential operators on X� is

obtained from the center ZðlCÞ of the enveloping

algebra UðlCÞ: indeed, ZðlCÞ acts on smooth func-

tions on X by differentiation, yielding a C-algebra

of L-invariant differential operators on X, hence a

C-algebra of differential operators on X� ¼ �nX
since � � L. In general, there is no inclusion

relation between P and Q. In order to compare

the roles of P and Q, we highlight a natural

homomorphism ZðgCÞ ! P and a surjective one

d‘: ZðlCÞ ! Q. Loosely speaking, the algebras ZðgCÞ
and ZðlCÞ separate irreducible representations of

the groups G and L, respectively, hence it is

important to understand how irreducible represen-

tations of G behave when restricted to the subgroup

L (branching problem) in order to utilize the algebra

Q for the spectral analysis on X� via the algebra

P (see [15,16]). We shall return to this point in

Theorem 15 below.

Now assume the proper action of L on X ¼
G=H is also transitive, so that X ’ L=LH where

LH :¼ L \H is compact. Up to conjugation, we

may assume that LK :¼ L \K is a maximal com-

pact subgroup of L containing LH . Then the

pseudo-Riemannian symmetric space X fibers over

the Riemannian symmetric space Y ¼ L=LK with

fiber F :¼ LK=LH , and this induces a fibration for

the quotients by �:

F �! X� ’ �nL=LH �! Y� ¼ �nL=LK:ð5:1Þ

To expand functions on X� along the fiber F ,

we define an endomorphism p� of C1ðX�Þ by

ðp�fÞð
Þ :¼
1

dim �

Z
K

fð
 kÞTrace �ðkÞ dk

for every � 2 cLK . Then p� is an idempotent, namely,

p2
� ¼ p� . The �-component of C1ðX�Þ is defined by

C1ðX�Þ� :¼ Imageðp� Þ ¼ Kerðp� � idÞ:

We note that C1ðX�Þ� 6¼ f0g if and only if � has a

nonzero LH-invariant vector, i.e. � 2 ðcLKÞLH . It is

easy to see that the projection p� commutes

with any element in Q ð’ d‘ðZðlCÞÞÞ, but not

always with ‘‘intrinsic differential operators’’ D� 2
P ð’ DGðXÞÞ, and consequently it may well happen

that

p� ðC1ðX�;M�ÞÞ 6� C1ðX�;M�Þ:

To make a connection between the two sub-

algebras P and Q, we introduce a third subalgebra

R of DðX�Þ, coming from the fiber F in (5.1).

Namely, R is isomorphic to the C-algebra DLK ðF Þ
of LK-invariant differential operators D on F , and

obtained by extending elements of DLK ðF Þ to

L-invariant differential operators on X, yielding

differential operators on the quotient X�.

Suppose now that we are in the setting 8. The

subgroup L acts transitively on X by [17, Lem. 4.2]

and [12, Lem. 5.1]. Moreover, we can prove [9]

that

Q � hP;Rið5:2Þ

where hP;Ri denotes the subalgebra of DðX�Þ
generated by P and R. This implies the following

strong constraints on the restriction of representa-

tions:

Theorem 15. In the setting 8, any irreduci-

ble ðg; KÞ-module occurring in C1ðXÞ is discretely

decomposable as an ðl; L \KÞ-module.
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See [12–14] for a general theory of discretely

decomposable restrictions of representations. See

also [16] for a discussion on Theorem 15 when

dropping the assumption that L acts properly on X.

In addition to (5.2), the quotient fields of P and

hQ;Ri coincide [9, Th. 1.3 & §6.9], and we obtain:

Theorem 16 (Transfer map). In the set-

ting 8, for any � 2 ðcLKÞLH there is an injective map

�ð
; �Þ: HomC-algðDGðXÞ;CÞ ,! HomC-algðZðlCÞ;CÞ

such that for any � 2 HomC-algðDGðXÞ;CÞ, any f 2
C1ðX�;M�Þ, and any z 2 ZðlCÞ,

d‘ðzÞðp�fÞ ¼ �ð�; �ÞðzÞ p�f:

We write �ð
; �Þ for the inverse map of �ð
; �Þ on

its image. We call �ð
; �Þ and �ð
; �Þ transfer maps,

as they ‘‘transfer’’ eigenfunctions for P to those for

Q, and vice versa, on the �-component C1ðX�Þ� .
For an explicit description of transfer maps,

let

��: HomC-algðZðlCÞ;CÞ !
�

t
�
C=W ðlCÞ

be the Harish-Chandra isomorphism as in (3.1),

where WðlCÞ denotes the Weyl group of the root

system �ðlC; tCÞ with respect to a Cartan subalge-

bra tC in lC. We note that there is no natural

inclusion relation between jC and tC.

For each � 2 ðcLKÞLH , we find an affine map

S� : j
�
C ! t�C such that the following diagram com-

mutes:

:

A closed formula for the transfer map �ð
; �Þ is

derived from that of the affine map S� , which was

determined explicitly in [9, §6–7] for the complex-

ifications of the triples ðL;G;HÞ in the setting 8.

Via the transfer maps, we can utilize represen-

tations of the subgroup L efficiently for the spectral

analysis on X�, as follows. As in (1.2), let

L2ð�nLÞ ’
Z �
bL m�ð#Þ# d�ð#Þð5:3Þ

be a disintegration of the regular representation

L2ð�nLÞ of the subgroup L. Then the transform F�

in Theorem 9 can be built naturally by using (5.3)

and the expansion of C1c ðX�Þ along the fiber F in

(5.1). Consider the map

�: ð bLÞLH � ðcLKÞLH ! HomC-algðDGðXÞ;CÞ;

ð#; �Þ 7! �ð	#; �Þ, where 	# 2 HomC-algðZðlCÞ;CÞ is

the infinitesimal character of # 2 bL. Then the

Plancherel measure d� on HomC-algðDGðXÞ;CÞ in

Theorem 9 can be defined by

d� ¼ ��ðd�jðbLÞLH � ðcLKÞLH Þ:ð5:4Þ
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[ 19 ] T. Ōshima and T. Matsuki, A description of
discrete series for semisimple symmetric spaces,
in Group representations and systems of differ-
ential equations (Tokyo, 1982), 331–390, Adv.
Stud. Pure Math., 4, North-Holland, Amster-
dam, 1984.

[ 20 ] J. Rohlfs and B. Speh, On limit multiplicities of
representations with cohomology in the cuspi-
dal spectrum, Duke Math. J. 55 (1987), no. 1,
199–211.

[ 21 ] G. Savin, Limit multiplicities of cusp forms,
Invent. Math. 95 (1989), no. 1, 149–159.

[ 22 ] R. S. Strichartz, Analysis of the Laplacian on the
complete Riemannian manifold, J. Functional
Analysis 52 (1983), no. 1, 48–79.

[ 23 ] K. Tojo, Classification of irreducible symmetric
spaces which admit standard compact Clifford-
Klein forms, Proc. Japan Acad. Ser. A Math.
Sci. 95 (2019), no. 2, 11–15.

74 F. KASSEL and T. KOBAYASHI [Vol. 96(A),


	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8
	c_rf9
	c_rf10
	c_rf11
	c_rf12
	c_rf13
	c_rf14
	c_rf15
	c_rf16
	c_rf17
	c_rf18
	c_rf19
	c_rf20
	c_rf21
	c_rf22
	c_rf23

