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Abstract 

We build a theoretical model of morphogenesis. This model describes cell fate in the 

developing organism using the notion of epigenetic code of each cell. Namely, given the 

epigenetic spectra of a cell and its neighboring cells, we can determine the corresponding cell 

event which it will perform. This means that the properties of a group of cells (comprising an 

embryo or its part) at any time point are also known, and thus, the evolution of an embryo can be 

described. By this strategy it is possible to establish the tissue, organ or embryo shapes at any 

time, starting from a zygote. As an essential part of the model, the formalization of the notion of 

cell potency is introduced, and the related properties are discussed.   
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Introduction

Morphogenesis of biological organisms is determined by the behavior of it cells, such as 

growth, division, differentiation, movement and death. These behaviors are affected by cell-cell 

interactions and cell-environment interactions (Hayashi et al. (2015), Sagner and Briscoe 

(2017)). The important components of morphogenesis machinery, such as morphogen gradients, 

electrical and mechanical signaling and differential gene expression are well described for many 

concrete developmental cases, being reflected in numerous mathematical models (Gilmour et al. 

(2017), Meinhardt (2013), Menshykau et al. (2014), Pauzi et al. (2018), McLaughlin and Levin 

(2018), Adjei and Heffernan (2015), Gordon and Gordon (2016)).  

However, the conceptual gap between a set of particular mechanisms important for the 

process of morphogenesis and the creation of a concrete morphology of organisms is still not 

filled, thus representing an intriguing theoretical field (Levin (2011), Lobo et al. (2012), Wolpert 

and Flanagan (2016), Delile et al. (2017)).

The prevailing concept that the formation of a species-specific life form of organisms is a 

result of the implementation of the genetic program via differential gene expression does not 

explain the fine regulation of the shape of an organism and its parts, and, moreover, the 

coordinated development of the whole body. For the deterministic shaping all set of various 

intracellular processes important for morphogenesis should be coordinated and controlled by 

certain general law(s) (Wolpert and Flanagan (2015); Gilmour et al. (2017)).A fundamental 

theoretical question is: what are the “instructions” for building an organism or rebuilding its parts 

(during regeneration), where are they located, and what is the mechanism for their 

implementation?



Here we aim to uncover the conceptual laws underlying the creation of determined 

morphology (geometry) of organisms, applicable for both embryonic development and 

regeneration processes. The present work is a sequel to Morozova and Shubin (2013), Morozova 

and Penner (2015) and Minarsky et al. (2018) and is devoted to elaborating appropriate 

mathematical formalizations of the pattern formation process in morphogenesis. 

In our previous works we conjecture the existence of an additional biological code 

(epigenetic code) which bears information about geometrical pattern of an organism and thus 

coordinates the cascades of molecular events implementing a pattern formation (e.g., differential 

gene expression, directed protein traffic, growth of cytoskeleton). We understand the term 

epigenetic in a broad sense, as any information in a cell additional to the genetic one, which can 

be inherited by cells and be involved in regulation of their cell fates in a tight interplay with the 

genetic code. By that, we can consider a wide spectrum of possible levels of epigenetic 

information. We assume that a vast set of all intracellular processes, important for 

morphogenesis, is governed and controlled by such an epigenetic code. For the time being, we do 

not aim to point out the exact molecular mechanisms, implementing this control, and a fortiori do 

not aim to model all set of different mechanisms (such as morphogen gradients or differential 

gene expression) and their possible interconnection with an epigenetic code signaling. Thus, we 

omit the details of the mechanisms, presenting a particular parts of implementation process in a 

concrete particular cases, and discuss a conceptual framework based on an epigenetic control 

theory.

The proposed theory of morphogenesis comprises the following fundamental hypotheses, 

which are revised from Minarsky et al. (2018):



– For each cell in an organism, the cell-surface distribution of chemical substances, which is 

called its (epigenetic) spectrum, governs morphogenesis.

– One cell affects its neighboring cells through signaling, which is determined by its epigenetic 

spectrum.

 – Based on its own epigenetic spectrum and received signaling, each cell in an organism 

performs one of several possible cell events, such as spectrum change, movement, shape change 

including growth, mitotic division, and apoptosis.

– The rules that determine cell events are universal throughout nature.

It is important to emphasize that generally we consider a wide spectrum of possible 

epigenetic information,  while the cell surface location of it is suggested only as a particular  

possibility, which seems to be the most attractive one, as discussed in Bessonov et al. (2019). 

The same applies for the suggestion of the encoding by special type of chemical substances, 

which we have conjectured in Minarsky et al. (2018) and Bessonov et al. (2019) just for the 

illustration of corresponding universal rules, leading to interconnection between such a code and 

spatial structure of an organism.

In this work we suggest that the mathematical formalization of cell events is in a form of 

linear operators, acting on epigenetic spectrum, and then search for possible principles by which 

the epigenetic spectrum can determine cell events. We propose an individual-collective model of 

cell behavior, meaning that if the epigenetic spectra and spatial information of all cells are 

known, then we can calculate the behavior of each cell at the next time point. Collectively the 

spatial (geometrical) and phenotypic property of each tissue at any time point can be determined 



likewise. One of the main tasks of the future work is to determine the concrete forms of related 

operators through biological and computational experiments (Bessonov et al. (2019)).

Results

§1. Definitions and formalizations

Basic notions. 

We choose a fixed coordinate system in R3, then the spatial status of a cell is denote as 

Se=(L,Or,Sh), where L is a point in R3, the location of cell; Or is a Cartesian coordinate structure 

based at L,  defining the orientation of the cell; Sh is the shape function with respect to Or, thus if 

a cell moves or rotates, Sh does not change. L, Or and Sh together determine a subset of R3, the 

space occupied by the cell.

We assume that in the simplified case an epigenetic spectrum of a cell c can be 

represented by a matrix showing the amount of each coding molecule in each spatial sector of the 

cell surface, namely a matrix M(c)=(mij), where mij is the number of molecule i located in the 

sector j of the surface of c. 

The cell state of a cell is defined as (Se,M), describing both spatial status and epigenetic 

spectrum.

Each cell c has a status of differentiation, describing a cell type; we assume that this 

status can be determined from M(c).

The potency of a cell is its ability to produce different cell types (Samsonraj et al. 

(2015)). It can be determined from the epigenetic spectrum of a cell. Its interpretation in our 

model is discussed in Section 3.



Cell events. 

We formalize development using the notion of cell events, which describes the evolution 

of cell states. We define the following set of cell events which can occur to a cell c:

Cell division: one cell produces two cells.

Internal cell event: a cell changes its spectrum.

Growth: a cell changes its shape, but retains its spectrum.

Movement: a cell changes its location or orientation, but keeps shape and spectrum.

We will call the last three cell events as “one-cell event” type, since they do not change the cell 

number.

Stagnation: no change of a cell state (also can be considered as “one-cell event” with zero 

changes.

Apoptosis: programmed cell death.

There are two particular cases of internal cell event, which are of high importance for 

formalizing the development:

Differentiation: a cell adopts a new differential status with lower potency; occurs in a course of 

normal development.

Dedifferentiation: a cell adopts a new differential status with higher potency; occurs in a course 

of abnormal development, which should be considered in the model as a part of re-construction 

of proper determined morphology in abnormal situations, such as regeneration, transplantation, 

growth of an isolated cell in a cell culture, and other processes of changing cell fate.

Generally, it implies that the process of dedifferentiation represents the conversion of  a 

partially or terminally differentiated cell to an earlier developmental stage (Bryant et al. (2002), 

McCusker et al. (2015), Kragl et al. (2009) and Tanaka et al. (2016)).



For example, during the process of regeneration after amputation, the new cells can be 

produced by division and differentiation of resident stem cells, and/or dedifferentiation of 

differentiated cells. In the case of limb regeneration, this leads to the formation of blastema (a 

mass of undifferentiated cells), which next regenerates the limb by cell migration, proliferation 

and differentiation. In other words, the process of dedifferentiation is that cells are 

reprogrammed to more embryonic-like states so as to acquire higher developmental potency. 

However, the dedifferentiation can be a part of a normal developmental program, for 

example, in the cases of gamete formation, or in the process of metamorphosis.

Another mechanism, which has been reported for the regeneration of lost or damaged 

tissue is a process of transdifferentiation, in which a differentiated cell is converted into another 

cell type (Jopling et al. (2011), Kikuchi (2015), Frasch (2016), Cieslar-Pobuda et al. (2017)). 

Initially the term transdifferentiation (also referred as lineage reprogramming, or conversion, or 

metaplasia) was introduced to determine a process in which one specialized cell directly changes 

into another cell type without entering a pluripotent state. But further it was argued that in reality 

transdifferentiation occurs in two steps: first, dedifferentiation of cells, regressing to a point 

where they can switch lineages; and second, the activation of natural developmental program 

with differentiation into the new cell lineage. The question if direct (i.e. without reverting to 

pluripotency state) conversion of specialized cells to another cell type can occur or not still 

seems to be under a hot discussion.

Taking into consideration all these biological details, we will make a definition of cell 

event Dedifferentiation more precise and consider two distinct cases of cell events corresponding 

to it, namely: Dedifferentiation as an internal cell event, mapping a matrix of a cell to the matrix 

of  its  ancestor,  thus  assigning  to  it a differential  status  with  higher  potency;  and 



Transdifferentiation as any other type of internal  cell  event,  which a cell  can undergo under 

abnormal signaling, hence, it can lead to a cell with increased cell potency, the equal one or even 

with a decreased potency.

Figure 1 illustrates a set of possible cell events for a cell in a cell state (Se,M).

Figure 1. A set of possible cell events for a cell in cell state (Se,M). Cell event division (dv) 

results in two cells; cell events differentiation (df), growth (g), movement (m), internal cell event 

(i) produce one resulting cell; cell events dedifferentiation (dd), transdifferentiation (tr), 

stagnation (s) and apoptosis (a) are the particular cases, discussed in the text.

Operators of cell events: 



To describe the evolution of epigenetic spectrum, we introduce four linear operators A1, 

A2, A3, A4. Each operator maps a spectrum matrix into another spectrum matrix. Linear means 

that for a matrix M, each entry of AM is a linear combination of entries of M. Thus if the size of 

M is m*n, then A has a representation as an (m*n)*(m*n) matrix. We do not assume that the 

operators A1, A2, A3, A4 are invertible.

Operators A1 and A2 correspond to cell event division, A3 is for one-cell events in normal 

situations, and A4 is for one-cell events in abnormal situations. In normal situations, depending 

on the particular spectrum M of a cell c, a one-cell event can be differentiation, growth, 

movement, internal cell event or stagnation. In abnormal situations, the internal cell event can be 

dedifferentiation or transdifferentiation.

We assume that once a spectrum of a cell c meets the conditions, corresponding to 

programmed cell death (apoptosis), this cell immediately starts the apoptosis procedure. These 

conditions can be represented by a subset Map of a set of all matrices M, and the resulting AM 

matching Map can occur under action of each of the operators A1, A2, A3, A4, depending on the 

matrix M.

To describe the evolution of spatial status Se=(L,Or,Sh), we introduce operators B1, B2, 

B3, B4, corresponding to operators A1, A2, A3, A4. Each spatial operator Bi maps a spatial status 

Se=(L,Or,Sh) into another spatial status Se=(L',Or',Sh').

Operators of cell division A1 and A2, producing two matrices M1 and M2 corresponding to 

two daughter cells, are related due to the fact that according to our conjecture (Minarsky et al. 

(2018), Bessonov et al. (2019)) the matrices M1 and M2  should have certain interrelation, for 

example, by the rule of complementarity (Bessonov et al. (2019)).  Here we do not discuss the 

concrete form of such interrelation, but state a general description of it.



Formalization of development as a graph 

We formalize the development process as a graph (rooted tree)  starting from a zygote, 

where each vertex corresponds to a cell state (Se,M) at a time point, and each edge corresponds 

to a cell event (Figure 2).  The x-axis is time, and the y-axis corresponds to cell states, including 

spectrum, location, orientation and shape, therefore the dimension of the y-axis is very high. 

We postulate that for the normal development of a particular organism there exists a graph (tree) 

of optimal cell states and cell events (TOE), which can be reconstructed from the matrix Mz of 

the zygote by application of operators optimal for each matrix at each moment of time; the slice 

of this tree at any moment t will then make up the shape of an organism at this time.

The tree illustrates the relationship between any two cell states at different time points. 

Also, at each time point, we can take a slice, and obtain the states of all cells at this time point, 

from which we can reconstruct a graph of adjacency, where vertices of cell states corresponding 

to the directly neighboring cells, are connected by the edges (Figure 1, in the box).



Figure 2. Developmental graph (rooted tree) starting from a zygote. Each vertex corresponds to a 

cell state at a time point, where the square vertex represents a dead cell. Each edge is a cell event, 

possibly division, differentiation, dedifferentiation, growth, movement, internal cell event, 

stagnation, or apoptosis. In the box, the graph of adjacency reconstructed for the last time slice is 

shown.

Signaling.

Cells exchange information between each other and with the environment, and such 

information influence the cell behaviors. This phenomenon is called signaling and has been 

widely discussed in the literature (Bando et al. (2018), Byambaragchaa et al. (2018), Pusapati et 

al. (2018)).

Among many different types of considered signals the most frequently mentioned one is 

the signaling by biochemical substances, such as hormones or morphogens, which can provide 

distant regulation of cell behavior, but there are also reports about electrical and mechanical 

signaling, and many types of cell-to-cell communication via extracellular proteins.

The regulation by morphogens, the molecules forming the gradients of their concentration in a 

local part of a body and thus inducing various specific cellular responses (e.g. extracellular 

proteins, such as FGF, BMP, TGF-β, Wnt, Hh; metabolites such as retinoic acid in animals or 

auxin in plants (Sagner and Briscoe (2017), Lander (2013), Cunningham and Duester (2015), 

McCusker et al. (2015), Tuazon and Mullins (2015), Paque and Weijers (2016)) has been 

simulated in numerous mathematical models (Meinhardt (2013), Menshykau et al. (2014), Pauzi 

et al. (2018)).  



The role of the electrical (Law and Levin (2015), Funk (2015), McLaughlin and Levin 

(2018)) and the mechanical (Adjei and Heffernan (2015), Gordon and Gordon (2016)) signals in 

the process of morphogenesis were also reflected in many mathematical models.

Though these important components of signaling are well described for many concrete cases, no 

one of them can be considered as the main instructive signaling, governing  the formation of the 

determined morphology of an organism.

In the framework of our model we define signaling as the transmission of epigenetic 

spectrum of a cell to a collection of its neighbors (Minarsky et al. (2018)).

We assume that this signaling can account for changes in cell fates as within a normal 

course of development, so in the crises like regeneration, transplantation, cell isolation, etc. For 

the time being, we do not aim to point out the exact molecular mechanisms involved in 

implementation of this signaling, and a fortiori do not aim to model all set of different types of 

signals and signaling mechanisms in living organisms and their interconnection with this 

“epigenetic signaling”. We assume that all other types of signaling mechanisms mentioned above 

       can be governed by signaling cascades, started from the epigenetic code varying, and represent 

in different local cases local implementation of the main instructions, governed by this code.

Thus, we assert that the signal received by a cell c is a matrix S(c) which can be written 

as:

S(c)=ΣkG(c,k)M(k),

where the summation is taken over all neighbors k of the cell c. Here G(c,k) is a non-negative 

number, from the graph of influence of a cell c, which corresponds to the graph of adjacency of 

cell c supplemented with a non-negative real number for each edge, determined by the properties 

of cell c and cell k. We do not require that G(c,k) equals G(k,c).



After signaling, we define a new matrix

M(c)S=M(c)+h(c)S(c),

where the positive real number h(c) is called the sensitivity of a cell c to signals.

The format of S(c) can be more complicated. For example, we can calculate S(c) sector 

by sector.

§2. Model of Development 

A cell c with epigenetic spectrum M can divide to produce two new cells with epigenetic 

spectra T1 and T2, or perform a one-cell event in normal situations to produce one new cell with 

epigenetic spectrum T3, or perform a one-cell event in abnormal situations to produce one new 

cell with epigenetic spectrum T4, or die. These four new epigenetic spectra form a set 

{T1,T2,T3,T4}, which is called the target image of c. This set consists of all four possible 

epigenetic spectra that might appear after one cell event. As mentioned, the matrix for apoptosis 

can be a particular case of any spectrum from T1,T2,T3,T4.

We conjecture the existence of a group of rules, obeyed by nature, due to which (1) the 

spectrum of a cell c and (2) a signaling from its neighboring cells determine which spectrum or 

spectra in target image will be chosen.

We introduce three models, where the difference lies in the construction of target image.

1. Minimal model.



This is a model with a fully defined set of possible cell states. For this version of the 

theory, we assume that the set of possible spectra of a cell which occurs after one cell event is 

determined only by the spectrum of a cell M and by the operator Ai. Thus, the target image is 

{T1,T2,T3,T4}={A1M,A2M,A3M,A4M}. 

Thus, the resulting matrix M'(c) is the one which is pre-determined for the normal 

development of a particular organism for the proper shape formation (belonging to a graph (tree) 

of optimal cell events (TOE)). 

In the minimal model, neighboring cells can affect the choice in the target image through 

signaling, but the target image itself is independent from signaling. 

2. Normal model.

In this model, the deterministic dependence of the descendent (advanced) cell state on the 

state of the ancestor is also preserved. However, here we assume that for a given cell c with a 

cell state (Se(c),M(c)), among all possible matrices MS(c) after signaling there exists a 

determined normal signal N(c) and the matrix M(c)N corresponding to it:

M(c)N=M(c)+h(c)N(c).

For example, we can assume that in the case of normal development the spatial arrangement of 

surrounding cells should not change. This means that each cell should have special types of 

interrelations with its neighbor cells (e.g. by the already mentioned “rule of complementarity”) 

because each pair of cells are produced by one mother cell. We can state that if a pair of cells has 

such interrelations, then the number G(c,k) on the corresponding edge of the graph of adjacency 

should be equal to zero. In this case for the normal development the normal signal N(c) will be 

equal to zero, which means that the resulting matrix M(c)N  will be the one which is pre-

determined for the normal development of a particular organism (belonging to TOE). 



Thus, in this model the target image relies on the normal signaling: 

{T1,T2,T3,T4}={A1MN,A2MN,A3MN,A4MN}. 

The “normal” model needs the signaling-dependent rules of choice of the cell event 

similar to those in the “minimal” model.

3. Direct model.

In this model, signaling (neighboring cells) directly influences the resulting spectrum. 

The target image is {T1,T2,T3,T4}={A1MS,A2MS,A3MS,A4MS}.

Rules of choice

The rules of choice are applied to each of the suggested models for selecting the 

evolution result in target image set {T1,T2,T3,T4} with taking into account the signaling received 

by a cell. 

We define M0=(A1MS+A2MS+A3MS)/3 as the auxiliary image of c. The auxiliary image 

contains the information of signaling. To make a choice in the target image, we compare the 

auxiliary image with the target image, and choose the best match. This is how the signaling from 

neighboring cells influence the result of cell event.

The match is described by the distance between spectra. For two matrices M and M', we 

define the distance between them by d(M,M')=||M-M'||F, where ||*||F is the Frobenius norm. To 

calculate Frobenius norm, sum up the square of all entries, then take its square root.

We suggest the following rules of choice:

First, we calculate the distances d1=d(M0,T1), d2=d(M0,T2), d3=d(M0,T3). If (d1+d2)/2<d3, 

then M0 matches more with T1 and T2, and the cell divides into two cells with spectra T1 and T2. If 

(d1+d2)/2>d3, then M0 matches more with T3, and the cell becomes another cell with spectrum T3. 



If both (d1+d2)/2 and d3 are larger than a chosen threshold (which can depend on the cell 

sensitivity), then the results of division (T1,T2) and one-cell event in normal situations (T3) do not 

match the auxiliary image, then this indicates an abnormal situation, manifesting in abnormal 

signaling (Figure 3).

As a reply for abnormal signaling a cell can undergo internal cell event (which includes 

dedifferentiation or transdifferentiation), “de-division”, apoptosis or stagnation, where

- transdifferentiation is the internal cell event resulting in the matrix M other than pre-determined 

for normal development (belonging to a graph (tree) of optimal cell events (TOE)); a cell 

acquires another cell state with spectrum T4.

-dedifferentiation is  the case of  internal cell event resulting in the matrix M matching with  one 

of the preceding states on the TOE; a cell acquires another cell state with spectrum T4.

- de-division is the division of a cell with at least one daughter cell with matrix M fitting with a 

transdifferentiated or dedifferentiated matrix of a cell, corresponding to a particular case of a 

spectrum T2. This is possible in some special cases in the direct model.

Also, in the direct model, since the signaling directly affects the target image, there exists 

a possibility that the result of A3 corresponds to dedifferentiation or transdifferentiation.

When ((d1+d2)/2,d3) is very close to the boundaries of these three cases, namely, when  

(d1+d2)/2≈d3,  (d1+d2)/2 or d3 almost meets the threshold, the result is randomly chosen from 

either side. For example, if (d1+d2)/2>d3, both are much smaller than the threshold, but (d1+d2)/2-

d3 is very small, the result is more likely to be T3, and less likely to be T1 and T2. If it is exactly 

on the boundary, the chance is half-half for each side.



Figure 3: Rules of choice for a cell event. If (d1+d2)/2<d3, then the cell divides into two cells 

under operators A1 and A2. If (d1+d2)/2>d3, then the cell acquires another cell state under operator 

A3. If both (d1+d2)/2 and d3 are larger than a threshold, then the cell acquires an abnormal cell 

state under operator A4. 

The set of possible resulting spectra {Mdv1, Mdv2, Mdf, Mdd, Mg, Mm, Mi, M, 0} (as presented 

in Figure 1) is much larger than the target image set {T1,T2,T3,T4}, because, as it was already 

discussed, T3 from A3 can match Mdf, Mg, Mm, Mi and M, and T4 from A4 can match Mdd, Mi. and 

M.

When the change of epigenetic spectrum is determined, the change of spatial status is 

correspondingly determined. If M becomes A1M and A2M, then Se=(L,Or,Sh) becomes 

Se1 =B1(L,Or,Sh) and Se2=B2(L,Or,Sh), if M becomes A3M or A4M, then Se becomes 

correspondingly Se3=B3(L,Or,Sh) or  Se4 =B4(L,Or,Sh).



If a cell acquires another cell state through operators (A3,B3) or (A4,B4), then one can use 

the change of cell state (Se,M) to determine the type of cell event which happens: differentiation, 

dedifferentiation, growth, movement, internal cell event, stagnation or apoptosis. 

By this model, from a zygote we can calculate the spectrum matrix, location, shape, 

orientation of all cells at all time points. Then using this information, we can reconstruct the 

developmental graph and corresponding tissue, organ and organism shape at any time.

§3. Formalization of biological concepts.

Based on the proposed model, we suggest the formalization of several important 

biological concepts.

3.1. Cell potency, stem cells and differentiated cells

The cells in organism differ in their cell potency which is the ability to produce 

different cell types.  The cells which have a high potency and can develop in many ways are 

called stem cells. It is important to distinguish two different types of stem cells: embryonic stem 

cells, making up an early embryo starting from the zygote, and stem cells of adult organisms 

which are located in the specialized tissues of adult organisms. The potency of embryonic stem 

cells is very high, which manifests itself in the ability to produce many types of differentiated 

tissues under different signaling. This phenomenon is called totipotency or pluripotency of 

embryonic stem cells. In a course of development the potency of the most cells in an organism 

decreases, and the terminally differentiated cells in adult organism normally have zero potency 

(can not develop or divide), thus they do not change with time. According to the proposed 

model, this implies that for each step, A3 is the chosen operator, and the spectrum matrix does not 

change much. In the language of dynamical systems, this cell type is an attractor under the action 



of operator A3. Rigorously speaking, there exists one spectrum matrix M* in this cell type, which 

is a fixed point of A3, namely A3M*=M*. Further assume that the norm of A3 induced by the 

Frobenius norm is not greater than 1. Then for any spectrum matrix M and signaling S, we have

||A3MS-M*||F=||A3(MS-M*)||F≤||MS-M*||F,

which means that the distance between MS and M* does not increase. M* has a neighborhood, in 

which any M satisfies 

||A3M-M*||F<||M-M*||F,

which means that without signaling, M is attracted to M* after iteration of A3. This attracting 

neighborhood, as a subset of all possible spectrum matrices, corresponds to a fully differentiated 

cell type. For each cell in this type, if the chosen operator is A3, and the received signaling is not 

too strong such that MS is still in this subset, then after the action of A3, the result is still of this 

type. In this type, the rank of any spectrum matrix corresponds to zero potency.

For a stem cell of adult organisms, the general behavior is to divide asymmetrically, 

producing a stem cell of the same type, and a more differentiated cell. We can describe such 

stem cell similarly in our model. Assume there exists a spectrum matrix M# of this stem cell type, 

which is fixed under operator A1, namely A1M#=M#. Similarly assume that the norm of A1 

induced by the Frobenius norm is not greater than 1. Then ||A1MS-M#||F≤||MS-M#||F, and M# has a 

neighborhood, in which any M satisfies ||A1M-M#||F<||M-M#||F. This attracting neighborhood 

corresponds to a stem cell type in adult organisms. For each cell in this type, if the chosen 

operators are A1 and A2, and the received signaling is not too strong such that MS is still in this 

subset, then the result of A1 is still of this type, while the result of A2 might be of a more 

differentiated type. 



3.2 Formalization of cell potency

In our model we propose that the potency P(c) of a cell c is positively related to the 

rank of its matrix (epigenetic spectrum). It can be expressed as:

P(c)=f{rk[M(c)]},

where f is an increasing function.

This allows to obtain an important quantification of the phenomenon of the cell potency 

and to impose additional conditions (restrictions) on the operators of cell events.

According to this assumption, with each cell event occurring in normal development the 

rank of resulting new matrix(es) should decrease or at least not increase. For the "fully 

differentiated" cell, which has potency equal to zero, the rank of its matrix should be the minimal 

possible one. We conjecture the existence of such a minimal rank, and assume that all types of 

fully differentiated cells in an organism should have matrices of this rank. Moreover, we 

conjecture that all matrices with this minimal rank can be divided into characteristic classes, each 

of which corresponds to one type of specialized cells.

We will take into account the asymmetry between operators of divisions by the request 

that operator A1  should not increase the rank of matrix M, while operator A2 can decrease, 

increase the rank of matrix M or leave it unchanged. Thus, with each division, at least one of the 

descendants will be with the decreased potency. For the "minimal" model it will always be true, 

for the "normal" and "direct" model it will be true for normal  and weak (close to normal) 

signals. The situation, when as the result of A2 acting on M the rank of the resulting matrix is 

increased corresponds to “de-division” (production of a dedifferentiated cell in a course of 

division) in the case of abnormal signaling.



One-cell events in normal situations (A3) do not increase the rank of matrix M (the 

potency of a cell). Thus 

f{rk[Ai(M)]}≤f{rk(M)}, i=1,3.
Dedifferentiation,  which  increases  the  cell  potency,  is  a  possibility  of  one-cell  events  in 

abnormal situations (A4). Therefore operator  A4  can decrease, increase cell potency or leave it 

unchanged.

It can happen that

rk(A3MN )  > rk(M),

which means that the target image contains a matrix with higher potency than the matrix of a 

given cell. This corresponds to the cell event dedifferentiation in normal situations, which is 

necessary, for example, for the formation of gametes, especially an ovule.

3.3. Inverse potency law and cell sensitivity

In Minarsky et al. (2018) we conjectured that the strength of the signal emitted by a cell c 

is inversely related to its potency P(c). We can formalize this conjecture in a following way . 

Let us consider a cell c with spectrum M(c). Its corresponding matrix with signaling is 

MS(c)=M(c)+h(c)ΣkG(c,k)M(k), 

where h(c) is its sensitivity to incoming signals, and the summation takes over all neighbors of c. 

The strength of signal emitted by c is 

t0=||M(c)||F. 

The strength of received signal is 

t=h(c)||ΣkG(c,k)M(k)||F.



We will assume that the cell potency is positively related to its sensitivity. We consider two 

cases: stem cells and fully differentiated cell.

For a stem cell, its potency (thus sensitivity) is high, therefore the strength of emitted 

signal t0 should be relatively small compared with the strength of received signal t. 

For a fully differentiated cell, its potency (thus sensitivity) is low, therefore the strength 

of emitted signal t0 should be relatively large compared with the strength of received signal t.

3.4. Cellular tissue

Minimal and normal models make possible to define cellular tissue. Let us define F as 

a  sequence of operators Ai, i=1,2,3,4. If we denote the spectrum of a zygote by Mz,  then FMz 

will be the spectrum of the cell produced by operator (event) sequence F from the zygote. Then 

we can define the cellular tissue of FMz by SF = {M: M=KFMz, ∀K}, where SF consists of all 

possible cell spectra produced from FMz , K is a sequence of operators Ai, i=1,2,3,4. If the 

spectrum of a cell is in SF, then this cell belongs to the biological tissue produced by the cell with 

spectrum FMz and its descendants.

Cellular tissue can be defined also in the direct model, though the signaling makes the 

expression more complicated. Since signaling directly influences target image in the direct 

model, we cannot define cellular tissue likewise.

Discussion and Conclusion 

In this paper, we propose a model of determining cell properties, which can be used to 

describe the developmental and regeneration processes.



One important comment which should be discussed is the modeling of a cell response to 

environmental changes (e.g. growth factors, oxygen, nutrients, etc.). We assume that this can be 

taken into account by proposition of “internal cell event” during which a code (matrix) of a cell 

is changed without any external cell event for a cell. Internal cell events are regarded as the 

necessary steps in realization of the determined developmental program, and they are included in 

the model exactly to be able to reflect a response of a cell to a set of biochemical factors, which 

should come to a cell at this step in a case of normal development (and as a result, the matrix will 

be changed).  But it is assumed that internal cell events can also occur as a response to the 

environmental changes. One example of it is presented in Bessonov et al. (2019), when it is 

proposed as a rule that a cell changes its matrix as a response to the changed information from its 

neighbor cells. For the time being the details of other types of abnormal environmental changes 

are not taken into account.

Another important comment is that in the framework of our model, the process of 

carcinogenesis can be understood as a loss by cancer cells the ability to maintain a proper content 

of coding matrices, which in turn causes the disturbance of corresponding signaling cascades, 

governed by the code.  A possible explanation is that some mutations that lead to cancer 

progression may influence the pathways responsible for the correct turnover of coding 

molecules, thus breaking from normal cell behavior. Another possibility may be a loss by cancer 

cells of the ability to accept the correct signals from the environment due to the pathologically 

lost sensitivity.

Our current model focuses on the dynamics of single cells. It is possible to develop 

mathematical results under this framework to better describe developmental processes on more 

macroscopic levels, such as gastrulation, axis formation and regeneration.



Another goal is to supplement the model with the experimental data. First, we can 

measure the quantities of different membrane molecules and cell behaviors, and use causal 

inference methods to determine the members of epigenetic spectrum, since epigenetic spectrum 

should be the distribution of membrane molecules that best describe the cell behavior. Next step 

is to determine the concrete forms of operators Ai, Bi.
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