ON THE SLOPES OF THE LATTICE OF SECTIONS OF
HERMITIAN LINE BUNDLES

T. CHINBURG, Q. GUIGNARD, AND C. SOULE

ABSTRACT. In this paper we apply Arakelov theory to study the distribution of the
Petersson norms of classical cusp forms as well as the distribution of the sup norms
of rational functions on adelic subsets of curves. The method in both cases is to
study the limiting distribution of the successive minima of norms of global sections
of powers of a metrized ample line bundle as one takes increasing powers of the
bundle. We develop a general method for computing the measure associated to this
distribution. We also study measures associated to the zeros of sections which have
small norm.
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The development of Arakelov theory has benefited from a close study of applications

to classical questions. The proofs of the conjectures of Mordell and Lang are famous
examples. We study in this paper the distribution of norms of two kinds of classical
objects. The first consists of the Petersson norms of modular forms with integral Fourier

coefficients and increasing weight for SLy(Z). The second consists of the distribution of
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sup norms of polynomials with integer coefficients on compact subsets of the complex
plane. More generally, we consider the sup norms of rational functions with prescribed
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poles on adelic subsets of curves over number fields. These subjects are linked by
the fact that they both concern the successive minima of the norms of global sections
of increasing powers of metrized line bundles on arithmetic surfaces. We treat both
subjects in this paper because there is a substantial overlap in the underlying theory
needed to study them.

Finding successive minima of norms of global sections of powers of metrized line
bundles has a long history in Arakelov theory. The arithmetic Hilbert-Samuel theorem
([I7], [1]) concerns the existence of sections with small norm. In [9], Chen developed a
theory of convergence for distributions associated to the successive minima of sequences
of lattices. He applied this theory to show the existence of limiting distributions associ-
ated to the successive minima of norms of sections of increasing powers of line bundles
with smooth metrics on arithmetic varieties. For our applications we need to work with
some particular metrics which are not smooth, using work on such metrics developed
by Bost [6] and Kithn [19]. In the case of Petersson norms of cusp forms, this leads to a
new phenomenon not appearing in the work of Chen. Namely, the limiting distribution
associated to the successive minima of norms as the weight of the cusp forms increases
does not have compact support.

One consequence of our results has to do with congruences between modular forms.
We show that most of the small successive minima of the Petersson norms of cusp
forms with integral Fourier coeflicients arise from non-trivial congruences between
Hecke eigenforms. To see why congruences lead to small Petersson norms, suppose
f1 and fo are distinct normalized Hecke eigencuspforms, so that the first coefficient in
each of their Fourier expansions at infinity is 1. A non-trivial congruence between these
forms amounts to the statement that g = (f; — f2)/m has integral Fourier coefficients
for some integer m > 1. In this case, g will often have smaller Petersson norm than
either f1 or fo. More general congruences involving several eigenforms are involved in
the precise statements of our results in Definition and Theorem [3.2.2[(iii).

Classical arithmetic capacity theory was motivated by the problem of finding whether
there is a non-zero polynomial with integer coefficients which has sup norm less than
one on a given subset of the complex plane. The generalization of this problem to
arbitrary curves involves studying global sections of powers of lines bundles which have
particular Green’s metrics. Classical capacity theory produces an upper bound for the
minimal such sup norm which is not sharp in general. We develop in this paper an
approach via local Chebyshev constants for obtaining better bounds over schemes of
arbitrary dimension, and we obtain additional information on successive minima. This
leads to new results about classical questions.

For instance, suppose E is a compact subset of the complex plane which is invariant
under complex conjugation. Let m(n, E) be the minimal sup norm over E of a non-zero
polynomial with integer coefficients and degree n. Since m(¢+n, E) < m(¢, E)-m(n, E),
the classical Fekete Lemma [9, p. 10] shows M(E) = lim, . m(n, E)Y/™ exists. A
classical result of Fekete [14] is that M(F) < y/v(E) when «(E) is the transfinite
diameter of E and y(E) < 1. (Szegd later proved that (FE) is the capacity of E;
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see [29] and [23| 24]). Our work on local Chebyshev constants provides more precise
information about M (FE). As an example, suppose E is the closed disk of radius 1/2
centered at 1/2. Then «(E) = 1/2, and we will use the machinery of §4| to show

0.64 < M(E) < 0.67 < \/7(E) = .707...

(see Example 4.3.2)).

The Chebyshev method is useful for showing that in some cases, the successive
minima are almost all equal. In this case, one says the associated metrized bundles are
asymptotically semi-stable, and the limiting measure associated to successive minima
is the Dirac measure supported on 0. We will show that this situation arises from
adelic subsets of curves which have capacity one. Motivated by work of Serre on
the distribution of eigenvalues of Frobenius on abelian varieties, we will also study the
distribution of zeros of sections of small norm with respect to capacity theoretic metrics.
We will show that in the case of adelic sets of capacity one, one can find sections
of approximately minimal norm whose zeros tend toward the associated equilibrium
distribution while avoiding any prescribed finite set of points.

A careful reader will notice that the classical questions we study involving Petersson
norms of cusp forms and the capacities of adelic sets lead to considering particular
metrics on line bundles. While some of our results could be generalized to other metrics,
we prefer to focus on the cases at hand. Similarly, we focus on the Petersson norms
of cusp forms for SLg(Z) rather than on developing in this paper generalizations to
arbitrary modular forms on reductive groups. Such generalizations are naturally of
interest. However, in this paper we are concerned with demonstrating the possibility
of obtaining explicit results. For example, we will show that the limiting measure
associated to Petersson inner products of cusp forms for SLy(Z) has support bounded
above by 2w + 6(1 —log(12)) = —2.62625.... We hope a detailed analysis of the SLa(Z)

case will motivate future research on more general modular forms.
This paper is organized in the following way.

In §2] we begin by recalling various kind of slopes associated to an hermitian adelic
vector bundle over a number field. The example of primary interest is provided by the
global sections of an ample metrized line bundle on an arithmetic variety. The naive
adelic slopes associated to such sections s arise from a height \(s) recalled in Definition
Here A(s) is the negative of the natural logarithmic norm of s. For this reason,
the successive minima of norms of sections correspond to successive maxima of heights.
We recall in §2|some results of Chen [9] concerning various kinds of successive maxima
of heights associated to the global sections of metrized line bundles.

In §3| we consider slopes associated to lattices of cusp forms f of increasing weight
for SLy(Z) which have integral g-expansions. We begin by recalling work of Kiihn and
Bost concerning the interpretation of Petersson norms of such cusp forms via Arakelov
theory. When the g.c.d. of the Fourier coefficients is one, the height A(f) of f is simply
one half the negative of the logarithm of the Petersson norm of f. A key issue is that
the adelic metrics which arise on the line bundle L appropriate to this application are
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singular at infinity. Thus one cannot apply Chen’s work directly. Instead we consider
forms which vanish to at least prescribed orders at infinity, and then let these orders
tend to 0. An interesting conclusion in our main result, Theorem is that the
probability measure v which results in limit of large weights has support bounded
above but not bounded below. In Definition we define a nonzero cusp form f to
not arise from a congruence between Hecke eigenforms if when we write f as a linear
combination ), ¢;f; of distinct normalized eigenforms f;, the ¢; are algebraic integers
divisible in the ring of all algebraic integers by the g.c.d. of the Fourier coefficients
of f. We will show that Petersson norms of such f are very large and contribute a
vanishingly small proportion of successive minima as the weight tends to infinity. The
measure v thus has to do with non-trivial congruences between eigenforms which give
rise to forms with integral ¢ expansions having much smaller Petersson norms.

In §4] we will apply the theory of Okunkov bodies to study successive maxima of
heights for X of any dimension. We introduce local and global Chebyshev transforms
which are maps from the Okounkov body of X to the real numbers. The global Cheby-
shev transform is the sum of the local ones. We prove in Corollary [£.1.0.1] that, if the
global Chebyshev transform is a constant function, the limit distribution v is a Dirac
measure. We compute explicitly the local Chebyshev transforms in some particular
cases when X is a projective space. The main strength of this technique is that in
some cases one can compute explicitly the limit distributions of the successive maxima
associated to heights.

In §5| we study the distribution of zeros of those sections of powers of a metrized line
bundle which have at least a prescribed height, i.e. those sections whose norms are
small in the corresponding way. We begin with an example in which suggests that
sections of “small” norm may have to have at least some of their zeros at particular
points, the remaining zeros being variable. To formulate this precisely we recall a result
of Serre concerning the decomposition into atomic and diffuse parts of limits of measures
in the weak topology on the space of positive Radon measures. The connection of this
theory to zeros of cusp forms of small Petersson norms is discussed in Remark
and Question [5.2.3

In §6] we consider applications to adelic capacity theory. This has to do with the
possible sup norms of rational functions on adelic subsets of curves. We will apply
work of Rumely to show that in the case of capacity metrics associated to adelic sets
of capacity one, the associated metrized bundles are asymptotically semi-stable, and
the measure v is the Dirac measure supported at 0. We will also study the locations
of the zeros of sections which arise in this case using the work in

Acknowledgements. T.C. would like to thank the I.LH.E.S. for support during the
Fall of 2015. Q.G. took part in this project during the preparation of his Ph.D. thesis,
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2. SEMISTABILITY, SUCCESSIVE MAXIMA, SLOPES AND PRIOR RESULTS

2.1. Measures associated to successive maxima a la Chen. Let E = (E, (||-|»))
be an hermitian adelic vector bundle of rank r = rank(E) > 0 over a number field K
of degree 0 over Q (see [15], Definition 3.1).

Definition 2.1.1. We consider three sequences of slopes for E:

i. The (unnormalized) Harder-Narasimhan-Grayson-Stuhler slopes (A;)7_; = (Mi(E))i_;,
as defined in [15], Definition 5.10. One has

D> Ai(B) = deg(E) = rA(E),
i=1

where d/(%(E) is the adelic degree of E ([I5], Definition 4.1), and A\(E) =
1deg(E) is the slope of E.
ii. The naive adelic successive maxima (\;)/_; = (X\i(E))!_; of E, where \;(E) is

the largest real number A such that the set E of elements of E satisfying
(2.1) A(s) == kylog|ls|ly > A,

generates a K-vector space of dimension at least 7. Here, k, is defined as follows,
for each valuation of v of K. When v is finite of residual characteristic p, if K,
is the completion of K at v, k, is the degree of K, over Q,. When v is real
k, = 1, and when v is complex k, = 2.

iii. The adelic successive maxima (\})7_; = (MJ(E))"_, of E (see [15], Definition
5.19) : the number \,(E) is the supremum of the quantities — > k,logr,,
where (), ranges over all families of positive real numbers such that the set
of elements s € E satisfying

VU, HSHU S Ty,
generates a K-vector space of dimension at least i.

By [15], Theorem 5.20, one has

Z N.(E deg E) + Ok(rlog(2r)).

Since the same holds for the slopes (A; (E))r_,, the inequalities XN(E) > N(E) > N(E L(E)
ensure that the same estimate also holds for the slopes (A\;(E))’_,. From this one

deduce the following :

Proposition 2.1.2. Let (E,),>1 be a sequence of hermitian adelic vector bundles of
ranks (rp)n>1 over K, such that logry, = o(n). Assume that the sequence of probability

measures
Tn
2>
Ty, A= i Ni(En)
=1
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weakly converges to some probability measure v with compact support on R. Then the
sequence

Tn
1 1)
VE, = = D 01\ E.)
"oi=1

weakly converges to v.

Proof. Since smooth functions are dense within the space of continuous functions having
compact support, it will suffice to show that for every smooth function h with compact

support,
1 & I Ly =
en = ; (h <n>\i(En)) —h <n>\i(En))>

converges to 0 as n tends to infinity. By the mean value theorem,

|17

‘6n| <
nry,

SR (E) — M(E).
=1

The discussion preceding the statement of the proposition shows

D N (ER) = M(E) =D N(En) = > Xi(En) = O(rylog(2ry)).
=1 =1 i=1
This gives
len| = O(log(2ry,)/n) = o(1)
as claimed. n

Let X be a projective variety of dimension d over a number field K, and let L be
an ample line bundle on X, endowed with a continuous adelic metric (| - |14)y, in the
sense of [34]. We assume that for all but a finite number of places, the metrics (|- |r,v)v
come from a single integral model of (X, L) over Og. The K-vector space H(X, L®")
is an adelic vector bundle, in the sense of [15], if equipped with the family of norms

Isl[pen, = sup [s(@)[F).
z€X(Cy)
Even if the adelic vector bundle H°(X, L®") is not hermitian, one can still define
its naive adelic successive maxima (\;,)", = (N(H?(X,L®")))i",. The following

theorem follows from work of Chen in [9, Th. 3.4.3, Th. 4.1.2, Th. 4.18].

Theorem 2.1.3. (Chen) Suppose the metrics | - |1, are smooth for archimedean v.
Under the above hypotheses, the sequence of probability measures

Vp = — 1
"y, = i
i=1

converges weakly to a compactly supported probability measure v on R.
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Indeed, replacing the L>®-norms at archimedean places by L?-norms with respect to a
fixed volume form only changes the normalized successive maxima %)\i,n by the neg-

ligible amount O (@) by Gromov’s Lemma. So one is left with a sequence of

hermitian adelic vector bundles over K which satisfies the hypotheses of Proposition

by Theorem 4.1.8 of [9].

Remark 2.1.4. In the next section we will deal with the case in which d = 1 and the
metrics at infinity have logarithmic singularities in the sense of Kiihn in [19, Def. 3.1].
We will do this using explicit computations to apply the results of Chen on various
quasi-filtered graded algebras on which Theorem [2.1.3|is based. We show in particular
that when there are logarithmic singularities, it is possible that the limit measure
described in Theorem [2.1.3] exists but does not have bounded support.

3. MODULAR FORMS AND PETERSSON NORMS

In we recall some work of Bost [6] and Kiihn [19] concerning the interpretation
of holomorphic modular forms of weight 12k for SLa(Z) as sections of the k" power of
a particular metrized line bundle on IP’% for £ > 1. We then study in the successive
maxima {); ; }¥_, associated to the lattice Syox (L', Z) of cusp forms of weight 12k with
integral Fourier coefficients with respect to the Petersson inner product.

3.1. Modular forms as sections of a metrized line bundle. Let H be the upper
half plane and let I' = PSL(2,Z) be the modular group. Then X = T'\(H U P}(Q))
has a natural structure as a Riemann surface. The classical j function of z € H has
expansion

1 = :
jz)= -+ 744+ Zanq" in ¢q=e*",
q n=1
The map z — j(z) defines an isomorphism X — PF.

The volume form of the hyperbolic metric on H is

_dxANdy  idzNdz

3.1 .
(3:-1) y? 2 Im(z)?
This form has singularities at the cusp and at the elliptic fixed points of I', as described
in [19, §4.2].
Define
(3.2) AR =q - =q+> bud"
n=1 n>1

to be the normalized cusp form of weight 12 for I'. Let S;oc be the unique cusp of X,
so that Sj is associated with the orbit of P1(Q) under T.
Suppose k is a positive integer. In [19, Def. 4.6] the line bundle

Migp(T) oo = Ox (Sine)®*
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is defined to be the line bundle of modular forms of weight 12k with respect to I'.
This is shown to be compatible with the usual classical definition of modular forms. In
particular, there is an isomorphism

(3.3) Migi(T) = H°(X, Ox(Sios)®¥)

between the space Mjgr(I') of classical modular forms f = f(z) of weight 12k and
HO(X, 0x(Si00)®) which sends f to the element f/A* of the function field C(j) of X
over C.

The Petersson metric | | on Mok (I is defined in [I9, Def. 4.8] by

(3-4) [f13%(2) = [/ (2) (47 Tm(2))"**

if f is a meromorphic section of Miox(I")so. It is shown in [19, Prop. 4.9] that this
metric is logarithmically singular with respect to the cusp and elliptic fixed points of
X. See [19, p. 227-228] for the reason that the factor 47 is used on the right side of

B4
As in [19] §4.11], we define an integral model of X to be

X = Proj(Z[Zy, Z1])

with Zy and Z; corresponding to the global sections 7 - A and A of the ample line
bundle M13(I')s. The point Sjs defines a section Sjs of X = ]P’% — Spec(Z). We
extend Mo, (I")s to the line bundle

Mok (T) = Ox(Sino)®*

on X. This model then gives natural metrics | |, at all non-archimedean places v for
the induced line bundle Ma;(I")g on the general fiber Xg = Q ®7 X. When v is the
infinite place of Q, we let | |, be the Petersson metric | |oo-

Proposition 3.1.1. The global sections H°(X, M2 (T)) are identified with the Z-
lattice of all modular forms f of weight 12k with respect to I' which have integral
q-expansions at Sieo. These are the sections f of H(Xgp, M2k (T')g) such that for all
finite places v of Q one has

(3.5) 1My ()0 = SUPzexq ) [ flo(2) < 1.
If f is not in B - HO(X, My2x(T)) for any integer B > 1 then
[ fl| Mygp(r)w =1 for all finite v.

The sublattice S1ox(T',Z) of all cusp forms in HO(X, Miox(T)) has corank 1 and rank
k. If f € S1ox(T,Z), the L? Hermitian norm at the infinite place v = oo of f is the
usual Petersson norm

2 _ 2 _ 204 12k dzdy
(3.6) 1y cerm = /X o (o) = /X o R

associated to f, where p(z) is the volume form of the hyperbolic metric given in .
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Proof. The first statement is a consequence of the fact that the ¢ expansions of j and
A have integral coefficients and begin with 1/¢ and ¢, respectively. The statements
concerning finite places v is just the definition of the metrics at such places which are
associated to integral models of line bundles. The rank of H?(X, M1 (T)) over Z is
the dimension over C of H(X, Miox(I)eo) = H(X, Ox (Sino)®¥), which equals k + 1
by Riemann Roch. The last statement concerning cusp forms is the definition of the
Petersson norm when this is normalized as in . O

Remark 3.1.2. Since the sections (j¥~¢A*)k_ form an integral basis of HO(X', M2 (1)),
the norm || - || o4, ()0 18 given at non archimedean places by

k
k—l Ak
H ZZ; apj A ”Mlzk(F),v = ongllag)ic ‘al|v-

In particular, for any f in HO(X, Mi2,(T))q,, the norm || f||u,,, (1), belongs to the
valuation semigroup |Q,|.

3.2. Successive maxima and modular forms. To state our main result we need a
definition.

Definition 3.2.1. A non-zero form f € Syo;(I",Z) does not arise from a congruence
between eigenforms if when we write f as a finite linear combination ), ¢;f; of dis-
tinct normalized eigenforms f;, the ¢; are algebraic integers divisible in the ring of all
algebraic integers by the g.c.d. of the Fourier coefficients of f.

This terminology arises from the fact that if the ¢; are integral but the last require-
ment in the definition fails, there is a non-trivial congruence modulo the g.c.d. of the
Fourier coefficients of f between the forms f;.

Theorem 3.2.2. Let {\;12x}F_, be the naive adelic successive marima associated to
S12x (T, Z) in Definition |2.1.1\(ii) with respect to the L? Hermitian norm defined by the
Petersson norm in

i. The sequence of probability measures

k
Z 5%&',121@
=1

converges weakly as k — oo to a probability measure v.

ii. The support of the measure v is bounded above by 2w + 6(1 — log(12)) =
—2.62625.... The support of v is not bounded below.

ii. As k — o0, the proportion of successive maxima which are produced by f €
S10k (T, Z) which do not arise from a congruence between eigenforms goes to 0.

Y2k =

T =

This result shows that in Remark the limit measure need not have compact
support when the metrics involved are allowed to have mild singularities. We will prove
in more quantitative results about the successive maxima A; 195 in this Theorem.
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Remark 3.2.3. Consider the divisors zer(f) of complex zeros of elements f of S =
Ug>0 S12k(I', Z). Recall that each such zer(f) = > cm (C) Ma® defines a Dirac measure
wu(zer(f)) = m >, mydy. It follows from work of Holowinsky and Soundarara-
jan [I8, Remark 2] and Rudnick [22] that as f ranges over any sequence of non-zero
Hecke eigencusp forms of weights going to infinity, the corresponding Dirac measures
p(zer(f)) converge weakly to the measure 21 when i is the the standard area form in
(3.1]). However, due to part (iii) of Theorem we cannot conclude from this much
information about the measures associated to the zeros of forms with large height. For
a discussion of the latter measures, see and It would be interesting to know
whether cusp forms with integral g-expansions which have small Petersson norms must
vanish at particular points in the upper half plane.

3.3. Petersson norms and Fourier expansions. We begin with a well known ar-
gument for bounding Petersson norms from below.

Lemma 3.3.1. Suppose that 0 # f = > >, ang™ € S12x(I,C). Let N = orde(f).
Then 1 < N < k, and the L?> Hermitian norm at the infinite place v = 0o of f in (@
has the property that

12k dzdy

2 = z 2 47
110, 0. comerm /X IUCE

_ 12k —
> Z|an‘24ﬂ_e 47rn( e 1)

—47rN(12k — )

(3.7) N12k—1

v

lan|? - 4me

Proof. Since the ay,, are in C, we have f(q) =Y .2, @,q". For a fixed y > 1 we have (as
in [27, p. 786]) that

1/2 1/2 _
/ @+ iy)Pde = / f(@) @)z

—1/2 -1/2

1/2 0
= / > antmg"q"

-1/2 n,m=1

— Z anam/ 27rz ((n—m x+(n+m)zy)dm

n,m=1 1/2

o0

(3.8) = > lapfe ™

n=1
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The standard fundamental domain for the action of SLo(Z) on H contains the set
T={z=z+iy:—1/2<x<1/2 and y > 1}. Therefore

dxd dxd
| @R =T > )l
X(C) Y y?
x=1/2
= / / | f(x + i) |2z (4m) 2Ry 1224y
7_1/2
(3‘9) —_ (47T)12k2|an|2/ 16—47myy12k—2dy
n=1 y=

For all constants ¢ # 0 and all integers £ > 0, one has the indefinite integral

fjgl

—cy, £ _ —c
(310 /e ydy = —e ZCJH

as one sees by differentiating the right side. Settlng ¢ =4mn and ¢ = 12k — 2 and then
integrating the left hand side from y = 1 to oo gives
(3.11)

) 12k—2 | |
—4rny, 12k—2 __—4mn (12k B 2) —4mn (12k B 2)

e Y dy=e , — =€ o N12k—1
/yzl ;O (4rn)it1(12k — 2 — j)! (47rn)12k—1

Substituting this back into (3.9) gives the claimed inequalities.
O

3.4. Bounds on successive maxima. The following result will be used later to an-
alyze the support of limit measures associated to successive maxima.

Theorem 3.4.1. The rank of Siox (', Z) over Z is k, and S1ox(T', Z) has {AFj+=¢:1 <
¢ <k} as a basis over Z. Suppose 0 # f =" anq™ € Siox(I', Z). Let ordss(f) be the
smallest n such that an, # 0. Then 1/k < ordo(f)/k < 1. Let A\(f) be the logarithmic
height of f with respect to the metrics of Proposition [3.1.1] Let ¢ : Rso — R be the
monotonically increasing function defined by

0(c) = 2mc + 6(log(c) + 1 — log(12)).
i. For e > 0, there are only finitely many k and f for which

A(f)/k = lordec(f)/K) = €
up to replacing f by non-zero rational multiple of itself (which does not change
A(f) or ordeo(f)).
ii. Suppose ro > (1) = 2w +6(1 —log(12)) = —2.62625.... Then for all sufficiently
large k and all f € S121 (T, Z) one has A(f)/k < ro.
1. Suppose 1 > ¢ > 0 and € > 0. For all sufficiently large k, there are at least ck
successive mazrima \; 12, among the total of k successive mazima associated to

S12k(1, Z) for which

Ai
22’“ < lc) + e



12 CHINBURG, GUIGNARD, AND SOULE

One has lim._,g+ ¢(c) = —o0.

Proof. By Proposition S12k(T', Z) has corank 1 in HO(X, My9,(T)). The rank of
HO(X, Myox(T)) is k41, s0 Syo1 (T, Z) has rank k. The form A* %~ lies in Syo (T, Z) for
0 < i < k, and its first non-zero term in its Fourier expansion at oo is ¢*. Hence the set
of these forms is a Z-basis for Syox(I',Z), and 1 < ordeo(f) < k for 0 # f € S1o9x (T, Z).

The logarithmic height of f with respect to the metrics || ||1,,, we have defined on
L = M9, (T") for each place v of Q is

A(f) == log|fllz.0-

By the product formula, multiplying f by a non-zero rational number does not change
A(f). We now replace f by a rational multiple of itself without changing A(f) to be
able to assume f € Sy9;(I',Z) is not in B - My9x(T', Z) for any integer B > 1.

Proposition shows ||f||r,» = 1 for each finite v, while if v = vy is the infinite
place,

(3.12) I 12 42y

2 _ 2 T
- /X o R

is the Petersson norm. Since f has integral Fourier coefficients, we find from (3.7)) of
Lemma [3.3.3] that

IA(f) = —log( /X . \f<z>|2<4wy>”kd§§y>

ey (12— 2)!1
N12k—1 )

(3.13) = —log(4m) + 47N —log((12k — 2)!) + (12k — 1)log(N).
Suppose N = ck for some constant c. Since log(N) > 0, (3.13) gives
A(S) < _ log(4m) ~ log((12k —2)1)

< —log(4me

2 e S ’ + 47me k + (12 = 1/k) - (log(c) + log(k))
— |
< drest log(12k 1}1 +log(12k) log(]tQk). 12 (log(c) + log(k))
< dmwe+ 2log(12k) /k — 12(log(12) — 1) + 12log(c)
(3.14)
since log((12k)!) > 12klog(12k) — 12k. We conclude from that
(3.15) )\(kf) —l(c) <log(12k)/k

when ¢(c) = 2me+6(log(c) +1—1og(12)). Thus implies that if % —l(c) >e>0

then k is bounded above by a function of €. For each fixed k, we have ¢ = N/k > 1/k

so {(c) is bounded below. Thus A(f)/k — £(c) > € > 0 implies the Petersson norm

of f is bounded from above. So there are only finitely many possibilities for f up to

multiplication by a non-zero rational number, as claimed in part (i) of Theorem m
Part (ii) of Theorem now follows from part (i).
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To prove part (iii), suppose 1 < j < k. By part (i), if M(k,j) is the submodule of
forms f € S194(I', Z) for which orde(f) > j, the corank of M(k,7) in S1ok(I',Z) is j.
So at least j successive maxima of S1ox(I', Z) do not arise from forms in M (k, j). If f
is not in M (k, j), then shows

A(kf) < tordu(f) /) + log(12k) [k < €(j/k) + log(12k)/k

since £(c) is monotonically increasing with c¢. Therefore at least j of the successive
maxima {\; 125 }¥_; associated to Sjox (T, Z) satisfy the bound

i 12k
k

< 0(j/k) + log(12k) /k

Since £(c) = —o0 as ¢ = j/k — 0" and log(12k)/k — 0 as k — oo, this proves part

(iii) of Theorem O

Lemma 3.4.2. There exists a constant C > 0 such that for any element f of S1ok (T, Z)
vanishing with order at most N at infinity, we have

A f) < 6klog (g) + Ck.

Proof. By Lemma and by Stirling’s formula, we have

5 ok (12k)12F
HfHMlgk(l"),oo,herm ze W’

hence the result by taking logarithms and multiplying by —1. O

Lemma 3.4.3. There exists a constant ¢ > 0 such that for any integers k,{ with
1</l <k, we have

AMAF*8) > 6k log <£> — ck.
Proof. Since AFj*~* has integral g-expansion and unit leading coefficient, we have
AR5 (00 = 1,
for any finite place v. In particular, we have
AAFF) = —log || A" | Mg (1) 00,herm-
Let
(3.16) F={z=x+iy: -1/2<x<1/2,2° +y* > 1}

be the closure of the standard fundamental domain for the action of SLg(Z) on H.
There is a constant ¢ > 1 such that for any z = = + iy in F, we have |A(2)| < ce™?™
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and |j(2)| < ce?™. We thus have
e . _ dxdy
I Bty e = [ 1A () 2

0o dy
< C4k—2€ / e—47r€y(47ry)12k72
0 Y

< dmctF(12k — 1)1 12k

12k
_ (’;) (O)

hence the result by taking the logarithms of both sides of this inequality. O

Lemma 3.4.4. Let (Ajvk)?zl be the successive mazima of S12x(I', Q). We have
Ajik j—1
2k _Glog (1-2-=) + 00

where the implicit constant in O(1) is absolute.

Proof. The inequality
A —1
% > 6log <1 - ]) +0(1)

k
follows from Lemma by using the j linearly independent sections (AFj*—¢) k—j1<0<k-
We now prove the converse inequality. Let si,...,s; be linearly independent elements

of S125x(T, Q) such that A(s;) > Aj for any . By Proposition we can multiply
the s;’s by appropriate non zero rational numbers to be able to assume that

183l My ()0 = 1

for any finite place v and for any i. Therefore

)‘(51) = —log ||SZ| ‘Mle(F),OO,heT‘m'
The linear subspace of S19;(I", Q) consisting of forms vanishing at oo to order at least
k — j + 2 has dimension j — 1, and therefore can not possibly contain all s;’s. Thus

there exists an index ¢ such that s; vanishes at co to some order N < k —j+ 1. By
Lemma [3.4.2] we have
Ak _ Alsi)

N j—1
L — )+ < - "+
2 3 6 log < k) O(1) < 6log <1 A > o(1)

which completes the proof. [l

Lemma 3.4.5. There exists constants c1,ca > 0 such that for any element f of
S126(I', R), the quantity || || pyop(0),00,5up = SUP-ex () | floo(2) satisfies the inequalities

(3‘17) Cl||f”M12k(F),oo,herm < ||f”M12k(F),OO,SUP < 62k2 log(gk)Hﬂ’M12k(r)7°°7herm

Proof. One can take ¢; = Vol(X ((C))_%, and we therefore focus on the second inequal-
ity. The existence of a ¢y for which (3.17)) holds for a fixed k follows from the fact that
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non-degenerate norms on a finite dimensional real vector space are comparable. So it
is enough to show that a cy exists for all sufficiently large k.

Let f be an element of Sy9x(I', Z) and let F be as in (3.16]). Since |f|s(2) tends to
0 as the imaginary part of z € F' goes to infinity, there exists a point 2y = x¢ + Yo
of F such that || £ sy, (1),00,sup 15 €qual to | fleo(20). Writing f(2) = Y772 ang™ with

2miz
o) £ Y Janle=2mmm,

q = e“™* we obtain
n>1

and then the Cauchy-Schwarz inequality yields

12k—1 4mn(1—yo)
Za n o 12k—1 Zn €

n>1 n>1

1o (1) 00,0
3.18 < 125 (I"),00,herm 12k—1 j4mn(1-yo)
(3.18) =T an(12k — 2)! n;" ’

where the last inequality follows from Lemma [3.3.1
Let us first assume that yo > klog(3k). There is a positive integer kg such that if
k > ko and n > 1 then

(12k — 1) log(n) + 8mn < 4nklog(3k)(n — 1) + 87 < 4myo(n — 1) + 8.

This implies
n12k—1647m(1—y0) < e—47ry0+87re—47rn‘

Therefore we can increase kg, if need be, so that if yo > klog(3k) we will have for
k > ko that

1

12k 12k—1 _4mn(1—yo) 12k ,—4myo+87 _ _g(yo,k)
(4myo) 112k = 2)1 > n e O] < (dmyo) e TN = eI

n>1

where g(yo, k) = 12klog(4myo) — 4myo + 8m. Using yo > klog(3k) and k > ko we find
that g(yo, k) < 0 for kg sufficiently large. We thus obtain from (3.18]) that

Hf”,%\/llzk ,00,SUP |f|2 (20) |f(20)|2(47ry0)12k < ”f”_%\/ll%(l"),oo,herm‘

It remains to handle the case yo < klog(3k) and k sufficiently large. We first claim
that there exists a real number R such that 0 < R < 1/4 and for any z in F, the
projection from the disc D(z, R) = {w € C: |z — w| < R} to X(C) is at most three to
one. By a standard compactness argument, there exists a real number R €]0, %] such
that this property holds for any z in F' with imaginary part at most 2 because the inertia
groups in PSLy(Z) of points of F' have order at most three. It will therefore suffice to
show that the projection D(z,1/4) — X (C) is injective if z € F has Im(z) > 2. If this
is not true, there is a w € D(z,1/4) such that w # w’ = (aw +b)/(cw +d) € D(z,1/4)

for some <CCL 2) € SLy(Z). Then Im(w') = Im(w)/|cw +d|* > 1 and Im(w) > 1 so we
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have to have ¢ = 0. But then w’ — w is an integer, so w,w’ € D(z,1/4) forces w = w’,
contrary to hypothesis.
Let R, = k~'R. Then Ry, < 1/4 < v/3/2 < g since z is in F. We have

TR2| f(20)|* (47yo) 2% < (4myo)'?* / |f(2)|?dady,
D(20,Ry)
12k
Y dxdy
< g / [f12%(2) =
(Yo — Rk) D(z20,Rz) Y

12k

Yo 9
= SWHH‘Mlzk(F),w,hwm‘

where the second inequality follows from y > yo — R > 0 for y = Im(z) and z €
D(zg, Ri). We therefore obtain for sufficiently large k that
1 o (0 00,50p = [F136(20) < cak® G311 F 11 Rty (1) o0 herms

for some absolute constant ¢4 > 0. Since yo < klog(3k), this yields

1
Hf| |M12k(F),oo,sup < Ci k2 IOg(Bk)||f| |M12k(F),oo,he7"m'
1
We thus obtain the claimed inequality with ¢ = max(1,c¢; ). O

Lemma 3.4.6. There exists a real number ¢ such that for any elements f1, fo of
S12k, (I, R) and Sy, (I, R) respectively, we have

‘|flf2"Mlg(lier)(F),oo,herm < 61/J(k1)+w(k2)HleM12kl (F),oo,herm"f2HMlgk2(F),oo,herma

where (k) = 2log(k) + loglog(3k) + c.
Proof. Let c1,cy be as in Lemma We have
11 F2ll Maagy gy (Dcormerm < €1 LTl Migga g (D) 0ssup
< 1l Mgy (0,00, 5up | | F2 | Mg, (0).00,5up
< ¢ k7 1og(3k1)k3 10g(3k2) [ 11| My, (1) 00, herm 2l Ay o1, (1) 00 herms
and the result follows with ¢ = log(c2) — & log(c1).

0

3.5. Modified logarithmic heights. To apply Chen’s work in [9] on the distribution
of successive maxima, we will need some estimates for the behavior of a modification
of the logarithmic height of cusp forms.

The vector space V = S19x(I", Q) has a filtration defined by letting V, for a € R be
the Q-span of all 0 # f € S19x(I', Q) for which A(f) > a. Lemma shows that
V. = {0} if a is sufficiently large. Following Chen in [9, p. 15, eq. (2)], we define a
modified logarithmic height by

(3.19) Af)=sup{aeR: feV,}
The proof of [9, Prop. 1.2.3] now shows 5\( f) has the following properties:



ON THE SLOPES OF THE LATTICE OF SECTIONS OF HERMITIAN LINE BUNDLES 17

Lemma 3.5.1. Suppose f and g # —f are non-zero elements of S121(T", Q).
i é\(rf)zj\(f) forr e Q —{0}. ) )
ii. Mf +g9) = min(A(f), A(g)), with equality if A(f) # A(g)

Lemma 3.5.2. Let ¢ be as in Lemma[3.4.6 For any elements fi, f2 of Sizk, (I', Q)
and Sk, (I, Q) respectively, we have

(3.20) A(fif2) = A(f1) + A f2) — ©(k1) — (ka).

Proof. Let us write f; = Zj gi.j, where A(gi ;) > S\(fl) For any j1, 72 and any non-
archimedean place v, we have

Hglaj1927j2HMlg(kl+k2>(F),’U S Hgl7jl HMIZkl (F),’UHngZH./\/l12k2(r),v7
and by Lemma we also have

< ¥(k1) (ke

| |gl,j1 92,52 | |M12(k1+k2) (T),00,herm = ) | ’gl,jl | ’Mlzkl (T),00,herm | |.92,j2 | |M12k2 (T"),00,herm-

This implies
Ag151922) = Mg11) + Ag2,50) — (k1) — ¥ (k2)

> MA) + Af2) = (k1) — ¢(ka),
hence the result, since fifs = ij’z 91,1 92,jz - O

3.6. Cusp forms vanishing to increasing orders at infinity. We study in this
section the successive maxima of heights associated to cusp forms f € Syo(T',Z) for
which ord(f) is at least a certain positive constant times k.

Lemma 3.6.1. Suppose k,L € Z, k > 0 and L > 1. Define B(0,L) =Z, and if k > 1
let B(12k,L) be the Z-lattice of all f € S19x(I',Z) for which orde(f) > k/L. Then
B(12k, L) is the free Z-module with basis {A*j*=¢: k/L < ¢ < k}. One has

(3.21) k(1 —1/L) < rankg(B(12k, L)) = k+1— [k/L] < k(1 —1/L) + 1

Proof. This is clear from the fact that if & > 1, A¥j*=¢ lies in Sjox(I",Z) and its first
non-zero term in its Fourier expansion at oo is qg. ([l

Lemma 3.6.2. Fiz an integer L > 1. Let {)\i,12k7L}§:+11*U€/L1 be the naive successive
mazxima associated in Definition|2.1.1|(ii) to B(12k, L) with respect to the L? Hermitian
norm defined by the Petersson norm. The sequence of probability measures

] k+1—[k/L]

o1 _T/71 4]
k+1—T[k/L] ; FTTTR7E] Mi12k,L

(3.22) Vigk,L =

converges weakly as k — oo to a probability measure Vs 1, having compact support.

Proof. For integers r in the range 0 < 7 < L, let Br(r) = ®2(B(12(¢L + 1), L). If
r = 0, then 12(¢L + r)/L = 12q is an integer for all ¢ > 0 and Br(0) is a graded
algebra. It follows from Lemma that the subgroup B(12¢L, L) - B(12¢'L, L) of
B(12(q+q')L, L) generated by all products of elements of B(12¢L, L) and B(12¢'L, L)
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is equal to B(12(¢ + ¢')L,L). The work in now shows that By, (0) is integral and
y-quasifiltered in the sense of [0, Def. 3.2.1] with respect to the modified logarithmic
heights X on the summands of By (0), where ¢ is the function from Lemma We
now observe that \; 1957, is the it" successive maxima associated to the modified height
5\, since A; 1257, is the largest real number a such that the vector space spanned by all
f € B(12k, L) with A(f) > a has dimension at least i. Lemma shows that there is
an upper bound independent of ¢ on Apqe(B(12¢L, L)) /(12qL) when Aoz (B(12¢L, L))
is the maximal value of A on B(12¢L, L). One can now apply [9, Thm. 3.4.3] to conclude
that

(3.23) Voo, L = qli)rgo Vi2gL,L

exists and has compact support when vy9y, 1, is defined as in .

Suppose now that 0 < r < L. When k = gL +r and 0 < q € Z, B(12k, L) has
Z-basis b(12k, L) = {A*j*~* . k/L < ¢ < k}. Here k/L = (qL +r)/L = q+ r/L and
0<r/L<1,s0k/L<{<kisthesameasq+1</{¢<k=qL-+r. Wehave

(3.24) (AL—er—r—l) ) (Akjk—e) _ AL(CH-l)jL(q—i-l)—Z—l

since k = gL + r, where 0 # AL—mjl—r=1 ¢ Si2(1—ry(I',Z). Taking the description of
bases for B(12k, L) and B(12(q + 1)L, L) in Lemma into account, we see from
(3.24) that multiplication by (AL~"jL="=1) defines an injective homomorphism from
B(12k, L) to B(12(¢+ 1)L, L). The dimension of the cokernel of this homomorphism
is
(g+1)L+1—(¢g+1)—(k+1—(¢g+1)=L—r

which is bounded independently of ¢. From Lemma we have

A7 AR 2 () KA ) e log(h)
(3.25) > Af) + c2log(k)
for all 0 # f € B(12k, L) where the constants ¢; and ¢z depend only on L. It follows
that for any bounded increasing continuous function f : R — R, one has

Via(qr+r),L(f) < Vig(g+1)r,0(f) +o(1)

where o(1) — 0 as ¢ — co. Hence

1iHi>Sllp Vig(qr4r),L(f) < Voo, L.(f)-
q o

From (3.24)) we also have
(326) (Akjkféfl) — Aququf . (Arjrfl)
In a similar way, this shows that multiplication by A™j"~! € S15.(T',Z) defines an

injection from B(12Lq, L) to B(12k, L). The dimension of the cokernel of this injection
is r — 1, which is bounded independently of q. By arguments similar to the one above,

we obtain from (3.26)) that

hqrgégf VlZ(qL—f—r),L(f) > VOO,L(f)'
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This completes the proof of Lemma [3.6.2 O

3.7. Proof of parts (i) and (ii) of Theorem In order to prove the weak
convergence of the v9; stated in part (i) of the Proposition, we will use the limit mea-
sures (Voo,r,)r, introduced in Lemma The Lipschitz norm of a bounded Lipschitz
function h : R — R is defined to be
hlzap = sup [A(@)] + sup 1L W)L
x £y |ZL‘ - y|

Lemma 3.7.1. For every pair of positive real constants € and M there is a constant
Lo = Lo(g, M) for which the following is true. Let h : R — R be a bounded Lipschitz
function with Lipschitz norm |h|py, < M. Suppose L > Lo(e, M). Then there exists
ko = ko(L,e,h) such that for any k > ko, we have

|v12k(h) — viok,n(R)] < e.

Proof. Let k > L > 2 be integers, and let ¥’ = k+ 1 — [k/L] be the rank of B(12k, L).
We denote by (\jr)i<j<i and (Ajk,1)i<j<i’ the successive maxima of Syox(I', Z) and
B(12k, L) respectively. Let us write

(3.27) I/lgk(h) — 1/12]€7L(h) =51+ 595 + 53+ Sy,

where we have set

A similar estimate holds for Sy:

k—FK
Sil < == D M <
i<k

M
7

In order to estimate S3, we first notice that an argument similar to the proof of Lemma

yields
\j K
?f:oObw—kﬂ+Q:O®%E»



20 CHINBURG, GUIGNARD, AND SOULE

Thus there exists an absolute constant ¢; such that

(3.28) INjkr| < c1klog(3L).
This implies
M k—k c1Mlog(3L
|S3| < ? Z Wp\j,k,ﬂ < L(>
J<K

It remains to estimate Sa. The inclusion homomorphism of B(12k, L) into Siox (I, Z)
preserves slopes, hence \; 5 1, < ;i for any j < k’. We therefore have

M
|2 < 75 > k= Akr)

J<Kk
M k2
= ? Z )\ng - M (k‘) V12k7L(id)
J<K
M . k c1M log(3L)
(329) < ﬁ Z];l )\j,k — MVlgk’L(ld) + (E + 1)T
IS

Consider the injective homomorphism Si9;(I',Z) — B(12(k + s), L) induced by mul-
k—1

tiplication by A®, where s = |f=| > 1. This is an isomorphism because the rank of
B(12(k+s),L) is
(3.30) K'=k+s+1—[(k+s)/L] = k = ranky(S15(T', Z))
The set of successive maxima of B(12(k+s), L) is (A\jk+s,0)1<j<k. Lemma yields
A(A%g) = Ag) + sA(A) = (k) — s9p(1)
for any non zero element g of S19;(T", Z). Correspondingly, we have
Njkrs,L = Ajk + SAA) — (k) — s¥p(1),
for any j < k. We thus have
(3.31) % Z Ajk < kjlg Z Aj ks, L + K k) + Sq}igl) —sA4))
J<K J<K

From ((3.28]) we have

1 k—k log(3L
B Wokentl < e (4 9)1og(31) < o0 00

K <j<k

for some absolute constant cy, since s = [£=1| and ¥’ = k + 1 — [k/L]. Applying this

to (3.31)) gives

1 1 log(3L) = K'(¢(k) + sy(1) — sA(A))
72 ]%; Ajk < 2 ;g Ajkts,L + €2 i3 + 2
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Here
F (k) + s9(1) — sA(A)) _ c3
k2 L
for an absolute constant ¢3 and k > L log(3L). Combining this with (3.29) gives
c4M log(3L)

|S2| < M (V12k+5),0.(id) — v126,0(id)) + 7 ,

for some absolute constant cy.

The sequence (v12,1,(id))s is convergent by Lemma Using this together with
our estimates, we see that given £, M > 0 we can find an Ly = Lo(e, M) such that
for any L > Lo(e, M) there is a ko(L,e, M) such that |S;| < § for i = 1,2,3,4 if
k > ko(L,e, M). Now completes the proof.

]

Corollary 3.7.2. Let h be a bounded Lipschitz function from R to R. Then the se-
quences (V12x(h))r and (Voo,r,(R)) 1 are convergent and have the same limit.

Proof. Let € > 0 be a positive real number. Let Ly = Lo(e,h) be as in Lemma
For any L > Ly, we have
limsup v195(h) < voo,r.(h) + €,
k—oo
and
liminf vy95(h) > veo,r.(h) — €.
k—o00
In particular, we have
lim sup 95 (h) < liminf vq9x(h) + 2e.
k—o0 k—o0

Since ¢ is arbitrary small, this yields the convergence of the sequence k +— vqox(h).
Moreover, for any L > Ly we have

|Voo,r.(h) — lim vyg5(R)| <&,
k—o0
hence the convergence of the sequence (Voo 1,(h))r, to the limit limy_, o 125 (h). O

There exists a finite Borel measure v on R such that for any continuous function A
with compact support,

(3.32) v(h) = klim vigk(h) = lim lim w9 1,(h).
—00

L—o00 k—o00

A limit of a weakly convergent sequence of probability measures on R might not be
a probability measure. However, it is true in our case that the weak limit v is a
probability measure. Indeed, we have the following result, which shows that the sets
of measures {191} and {p12k, 1 }x>1 are uniformly tight.

Lemma 3.7.3. The equalities hold for every bounded continuous function h.
In particular, v is a probability measure, and the sequences of probability measures
{Voo,1.} 1 and {v121 }r converge weakly to v.



22 CHINBURG, GUIGNARD, AND SOULE

Proof. Tt is sufficient to prove that (3.32)) holds for any bounded Lipschitz function on
R. Let h : R — R be such a function. Let a,b > 0 be real numbers such that the
supports of the measures (v121); and (v125,1,) are all contained in the interval |—oo, b],

and let x : R — [0, 1] be a continuous function with compact support, whose restriction
to the interval [—a, b] is equal to 1. Lemma implies that we have

viok,1(]—00, —a]) < ce=8(1-1)

for all kK > L > 1, where ¢ is an absolute constant. The same estimate holds as well for
the measure v. In particular, we have

|12k, (R) = vaak, L (x0)| = |v12k,L((1 = X)R)| < ¢f|h]|oce ™.
Letting k, and then L, tend to infinity, we obtain by Corollary that

_a
6.

| lim 119 (h) = v(xh)| < c|[h]|e
k—o0

Since we also have
v(h) = v(xh)| < cl|h|lce ™,
this yields
p(h) — Jim vasg(h)] < 2| oce ™%

Letting a tend to infinity, we obtain that the common limit of the sequences (v121(h))x
and (Voo ,(h))r is v(h), hence the result.
U

Part (i) of Theorem is shown by Corollary Part (ii) of this Theorem
concerns the support of v now follows directly from this and Theorem [3.4.1

3.8. Proof of part (iii) of Theorem We suppose 0 # f € S1ok(I,Z) and
that f does not arise from a congruence between eigenforms, in the sense of Definition
We will develop an upper bound on A(f). We have A\(f) = A(f/m) when m
is the g.c.d. in Z of the Fourier coefficients of f. In view of Definition [3.2.1] we can
replace f by f/m in order to be able to assume that

(3.33) f= Zcifi

in which the ¢; are non-zero algebraic algebraic integers and the f; are distinct normal-
ized Hecke eigenforms in Syox(I", C). The Fourier coefficients of each f; are algebraic
integers. Since f is fixed by Gal(Q/Q), the terms on the right side of break into
orbits under Gal(Q/Q) in the following sense. If o € Gal(Q/Q) and f; is given, then
o(fi) = fj and ¢; = o(¢;) for a unique j.

Since the g.c.d. of the Fourier coefficients of f is now 1, we have

(3.34) 2X(f) = —1log((f, f))
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where (f, f) is the Petersson norm. The Petersson inner product (f;, f;) is 0 if ¢ is not
Jj since then f; and f; have distinct Hecke eigenvalues and the Petersson inner product
is Hermitian with respect to Hecke operators. So

(3.35) (1) = leil*(fir fi)-

)

Since each 0 # ¢; is by assumption an algebraic integer, and we have shown that every
Galois conjugate of ¢; arises as ¢; for some j, we conclude there must be an 4 for which

lei] > 1. Thus gives
(3.36) (f: ) = (fi, fi)

Recall now that since f; is a normalized eigenform, f; = > 7, a,q¢™ has a1 = 1. So
N =1 in Lemma Combining Lemma with (3.34), (3.35) and (3.36) gives

(3.37) 2M(f) = —log((f, f)) < —log({fi, fi)) < —log(4me™ " (12k — 2)!)

It follows that A(f)/k is bounded above by —clog(k) for some constant c. Since the
measure v in part (i) of Theorem is a probability measure on the real line, it
follows that as k — oo the proportion of successive maxima arising from f of the above

kind among all the successive maxima associated to Syox (I, Z) must go to 0.

4. CHEBYSHEV TRANSFORMS

4.1. Overview. Let X be a projective variety of arbitrary dimension d over a number
field K, and let L be a metrized line bundle on X. We will assume that L is big, in the
sense that dimgx HO(X, L®™) > ¢ m? for some ¢ > 0 and all m >> 0. In this section
we will develop a Chebyshev transform method for obtaining an upper bound on the
height A(s) defined in (2.1)). We need lower bounds on the sup norms ||s||, as v varies.
We obtain such lower bounds by considering the behavior of s near a regular point
x € X(K). Consider the first non-vanishing coefficient a = a(s, z) in a suitably defined
Taylor expansion of s at . This a lies in K. The product formula shows there is some
place v where |al, is not too close to 0. At this v we will obtain a lower bound for ||s||,
which leads to a useful lower bound for A(s).

To illustrate the details involved in this method, let us first consider the case d = 1,
so that X is a curve. Choosing a local parameter ¢ for the local ring Ox , and a local
trivialization o, of the stalk L,, we find that s has a local expansion at x given by

o
Sz = ( Z ant™) - oy

n=ordz(s)

where a, € K and agq,(s) # 0. Here the a,, depend on the choice of o, but ord,(s)
does not.
The integer o = ord,(s) lies in the interval [0, deg(L)]. To bound

A(s) == kylog||s||,
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from above, we define the local Chebyshev constant caLj’z’t(a) to be the supremum over

all non-zero sections s of L with ord,(s) = a of

’aordz (s) ’v

sl

(4.1) — log [[s][» + log |aordz(s)’v = log

This may be studied by v-adic analysis. We obtain an upper bound
(4.2) As) < kel 7 (@) = ¢ (@)

if s is a section of L vanishing to order « at x, since ), k, log |@ord, (s)lv = 0 by the
product formula.

The function ¢§* : [0,deg(L)] — R defined by a — ¢}'(a) is a global Chebyshev
transform. Since we know that « lands in [0, deg(L)] for all s, we obtain finally a bound
of the form

A(s) < sup ci’t(a).

0<a<deg(L)

We now generalize the above approach to regular varieties X of arbitrary dimension
d over K using Okounkov bodies. Following Witt-Nystrom [21] and Yuan [32], we take
a regular point € X (K), and t1,...,tq € Ox, a system of parameters of the reg-

ular local ring Ox ,, which identifies the completion (’7)-(\,,3 to the ring of power series
K{[t1,...,tq]] in d variables over K. We also choose a local trivialization o € L, of L
around x.

. . —~® —
Any section s € HO(X, L®") has a germ at z in L, "= Ler R0y, Oxa = Ox 0",
which can be uniquely written as a a power series

Sp = E ant® | o®",

a€eNd

with aq € K. Here we have set t* = t7* ... t;*. The order of vanishing of s at x is
defined by the formula

ord, +(s) = min{a € N? | a, # 0},

where the minimum is taken with respect to the lexicographic order on N : this does
not depend on o. Likewise, we define the leading coefficient of s at = as

lead:c,a,t(s) = Qordg ¢ (s) 7é 0.
This depends in general on the choices of ¢ and o.

One strategy for upper bounding the height A(s) of a section s is to apply the product
formula

1 =[] leady o (s)5",
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and to give an upper bound of |lead; 4¢(s)|, in terms of |[s||,on ,, which is a problem
of local nature; namely it only depends on the v-adic metric on L. This motivates the
introduction of the local quantities

lleady ¢.(5)]o
seH(X,L), [Is]|z,
ordg,¢(s)=a
where o belongs to the finite set ord, ;(H°(X, L)\{0}) and H°(X, L), = K, ®x H(X, L).
It is shown in [32] that the quantity

Frvi(a) =

)

1 n
(4.3) @) = lim = log F2Z ! (an),

n—oo n L®m v

where (a,)n is a sequence such that oy, € ord,(H%(X,L¥")\ {0}), and such that Loy,
converges to «, is well-defined for any « in the interior of the closure A, (L) of the set

U %ordm(Ho(X, Lo\ {0}).

n>1

The set A, (L) is a convex body in R : this is the Okounkov body of L, which
depends on the choice of t = (t1,...,t4). For example, if X is a curve then A, (L) is
the interval [0,deg(L)]. Also, if (X, L) = (P4, (1)), then A, (L) is a d-dimensional
simplex, as can be seen be reducing to the case in which z is the origin of A}l( and ¢ is
the vector of standard coordinate functions of A;l(.

The concave function
x,0,t . ° x,0,t
Cry €Ay (L)— e () €R

is called the local Chebyshev transform of L at x. The domain Az,;(L) of ¢, does
not depend on the metric on L, but cf’fj’t itself does.

Ezample 4.1.1. Consider the particular case (X, L) = (]P’é, O(1)), with the line bundle
metric
|s(z0, 210

max(|x0\v,7’v_1\x1|v)7

Is([zo : z1])|L0 =

for some r, € |K}|,. The maximum modulus principle if v is archimedean, and a direct
computation otherwise, shows that
Isl|eny = sup |s(1,2)o.
|2lv=rv

Let us consider the regular point = [1 : 0] with a local parameter t = %, and a local

trivialization o = Xy. We have
n 1,0)]
Fa:,o’ﬂ® ,t(a) _ sup ‘8( 3 v
Lem 5€Qu[Xo X1]n_a 1 XT8l|LEn 0
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with

IXfsllion, = sup [2s(L 2] = r][sl oo,
|2lu=rs

Xn
so that Fyg, | () equals r;®. In particular, we have

ci’g}’t(a) = —alogr,
for v € [0,1] = Ay (L).

We now define the global Chebyshev transform as the sum
Ci’t — Z kvci’f:’;t’
v

which still depends on ¢, but not on the choice of the local trivialization ¢ any more.
While this global Chebyshev transform breaks down into a sum of local components,
it allows to control global invariants, such as the heights of nonzero sections :

Proposition 4.1.2. The height of a nonzero global section s of L™ satisfies

As)<n sup H(B).

BEAZ(L)

Proof. If a section s € HY(X, L®") \ {0} vanishes at order a at z, we claim that

® z,0t 1
(4.4) lleady, o.4(s)|o < Fy ()]sl gon o < €L G [s]|pon .-

The first inequality is clear, while the second one follows from the convergence of
the limit in (4.3) on considering powers of the sections of L®" which go into defining
F gé"f:’t(a). Raising the inequalities in || to the power k,, and taking the product
over all places v yields

x,t x,t
1= T eadeoe(s)li < e E GO T sl , = nF ),
v v ’
7t 1 ’t
so that A(s) < ncj'(+a) < NSUPg A py it (B). O
Likewise, a theorem of Yuan [32] ensures that under the hypotheses of Theoremm
the mean value of cz’t computes the expectation of the limit distribution v appearing

in Theorem
1 / x,t /
e e (a)da = xdv.
vol(Ag ¢ (L)) Ja, i) L) R

In particular, if cf’t is a constant function, then by the preceding proposition, the left
hand side is an upper bound for the support of v, so that the expectation of v is an
upper bound for its support. This proves:

Corollary 4.1.0.1. If the global Chebyshev transform cz’t is a constant function, then
the limit distribution v is a Dirac measure supported at one point.
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Intuitively, the limit distribution v is expected to be completely described by cz’t
when the zeroes of sections of large height concentrate at the point x. Since this is
not the case in general (see for instance the introductory paragraph of Section , we
should obtain better results by considering

sup leady, o.(5)]o
s€HO(X,L), sl L

ordg, t(s)=a1,...,ordz,. t(s)=ar

where x1, ..., x, are distinct rational regular points (with a choice of local parameters
at each of these points).

4.2. Computation of Chebyshev local transforms at archimedean places :
the L? method. Here we assume for simplicity that X is a curve, i.e. d = 1, so that
Ay (L) = [0, D] where D = deg(L), and we focus on a particular archimedean place
v. We choose a volume form dV on X(C,), so that H°(X, L®"), is endowed with the
hermitian norm

HS”%@’”,v,herm = /X((C ) |S(l‘)‘%®n7vd‘/($)

One can show using Gromov’s lemma (see [32, Lemma 2.7] and [31, Prop. 2.13]) that
the Chebyshev local transform Ci’t(a) can be computed using

[lead, yen ¢(5)]

Fgé;n@:ﬁerm(a) = Sup
77 s€HO(X,L®™), ||s||L®”,v,herm
ordz, ¢ (s)=a

XRn
instead of F7:7, (). Let us denote by [a] the linear form on HO(X, L®"(—ax)),
which takes a section s to the coefficient of t* in its Taylor series expansion around z,
so that
x,0®" t
FL®",v,herm

W (sl
SEHO(X,LO™ (—azx))y | |8| |L®",v,herm

is the operator norm of [a] on the hermitian space H°(X, L®"(—ax)),. In particular,
if (84,4,;); is an orthonormal basis of H(X, L*"(—ax)),, then we have

0Ot
F§®Unvv7herm(a)2 = Z Ha](sma,j”g-
J

For a = 0, this equals the value of the n-th Bergman kernel at x, for which precise
asymptotics are known. The case a > 0 is much more elusive in general, but we will see
in the remaining of this section how to handle completely the case of the Fubini-Study
metric, and partially the case of the capacity metric of a disc on the projective line, by

F$,O'®n,t

computing L®n » herm

(a) with an explicit orthonormal basis.
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4.3. The L? method in use : the Chebyshev local transform of the capacity
metric of a disc. Let us consider (X(C,), L) = (P}(C,), O(1)), with the line bundle
metric

|s(z0, 21) o

max(m()‘var;l‘xﬂv)’

Is([zo : z1])|L0 =

at an archimedean place v, which is the capacity metric associated to a disc of radius
ry in the complex projective line, just as in example Contrary to the situation
considered in 4.1.1L we choose the point = [1 : r,] with a local parameter t = Xl_Xi’”(;’XO,
and a local trivialization 0 = X|. Instead of considering a volume form dV as above,

we rather use the distribution dV defined by

/ fav =2 7 F(1: rye®) sin(0)|0.
P1(C,) 4 ) %

By approximating this distribution by volume forms, one can check that the corre-
sponding Fren 4 pherm Still computes cr ,. We now show that we have the formula

2 — j+2a\?
50 nvt - - Y
Frfon y perm (2007 = 4729700 Y (2 + 20+ 1)< ; ) .
j=0
Using Stirling’s formula, this will imply the following :
Proposition 4.3.1. With z,0,t as above, the local Chebyshev transform of the capacity

metric associated to a disc of radius v, on the complex projective line, as defined above,
with respect to a point on the boundary of the disc, is given by the formula

1 1
ci’i’t(a) = —alog(4ry) + 5(1 +a)log(l+ a) — 5(1 —a)log(l — a) — alog(a).

for a € 10,1].

Fa:,a®2”,t
L®2n gy herm

(Cv[X07X1]2n—2a = V+ @ V_,

In order to compute (2a), let us consider the orthogonal decomposition

where V* is the space of polynomials s € C,[Xq, X1]2,_24 such that s(Xo, X;) =
+s(ry; 1 X1, 7,Xp). Since any s in V™~ satisfies s(1,7,) = 0, we get

(2a)) = sup [5(L, 7)o

FI,J®2",t )
seVt H(Xl - TUXO)zasHL@Q”,v,herm

L®27 g herm

However, the linear map
U:T =T, Y1) € Cy[Yo,Vi]n-a — T(roXoX1, 2 X2 + X}) c VT

is an isomorphism, with

4n ™
T ] ,
X0 = 7o X0 22T By o = 2 [ 1T(1,2c05(0)) | sin(6) | — 140
7,411 2 5 5
== [ |T(1,y)(2 - y)**dy,
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by using the substitution y = 2cos(f). There is an explicit orthogonal basis of
Cy[Y0, Y1]n—o for this scalar product, given by the Jacobi polynomials

J ) . )
'ngj Yo' (2Y0 + Y1) (2Y0 — Y1)T R
J-ory
for 0 < 7 < n — a. The explicit formulae
Jj+ 2a>

U(Jacq,;)(1,7y) = r3"20‘(—4)j< i

H(Xl - TUX0)2Q\IJ(J3‘COC7]')’|L®2",v,herm = T3n4j+a(2j + 20 + 1)7%7

Jacy ; (Yo, Y1) = (2Yp — Y1)~

yield
jd) ,0®2n ¢ Z ‘\I/ Jaca])(l TU)|
L®2n vherm H X1 — 1y X, )QQ\Ij(JaC )H
v0 .7/ 11 L®2n 1 herm
n—o . 2
2
= 47201 N (25 4 20+ 1) (‘7 +j O‘) ,
=0

hence the result.
Ezample 4.3.2. Let us consider (X, L) = (}P’}@, O(1)), with the line bundle metric

|5(z0, 21) v
)
maX(\JCo’m |$1‘v>

|s([zo : @1])L.0 =

for non-archimedean v, and

|5(20, 21) o
max(|zoly, [4z1 — 1)’

‘8([1"0 : xl])|L,v =

at the archimedean place. We pick the point = [1 : 0], with the parameter ¢ = %
Then Proposition yields

(@) = %(1 +a)log(1+a) — %(1 —a)log(l — a) — alog(a),

which attains its maximum log(1 + v/2) = 0,881... at o = % By Proposition |4.1.2

and by using Example for the archimedean places, we obtain that any nonzero
global section s of O(n) satisfies

1
—X(s) <log(1++2) < 0,89.
n
On the other hand, the section
s = X32X, — X0)(5X7 —4X1 Xo + X2)2 (29X — 44X X0+ 2TX2 X2 - 8X 1 X3 + X)),
of O(50), labeled as s5 in the introductory paragraph of Section [5| satisfies
1
—A(s) > 0,82.
“A(s)

By taking logarithms, we obtain that for large n the smallest supremum norm on
the disc of radius % and center %, of a nonzero polynomial of degree n with integer
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coefficients is a quantity between 0,42" and 0,44". The change of variable (X{, X]) =
(X2, X1(Xo — X1)) yields that the corresponding quantity for a disc of radius 3 and
center % is between 0,64™ and 0,67".

4.4. The L? method in use : the Chebyshev local transform of the Fubini-
Study-metric. Let us consider the complex projective space (X (C,), L) = (P4(C,), O(1)),
with the Fubini-Study metric

|50, 2110
Viwolg + - Jeal?

at an archimedean place v. We pick a point x = [xg : --- : 24] of P4(C,). We have a
natural identification

T,PYC,) = {T € Cy[Xo,..., Xgl1 | T(z0,...,24) = 0}.

Let Y1,..., Yy bealinear basis of C,[Xy, ..., X4]1, such that Y7, ..., Yy span T,P4(C,)
under the identification above. The functions ¢; = %erl, for j =1,...,d, then form a

|s([zo : z1])|Lw =

system of local parameters at x, while 0 = Yy is a local trivialization of L around x.

We proceed as in section using the Fubini-Study volume form dV = d, , where

wrs = 100 log(|Xo|* + -+ + [ Xal*).

Let Uy,...,Uq+1 be the output of the Gram-Schmidt orthonormalization process ap-
plied to the basis Y7,...,Yg41. In particular, Uy, ..., U4 form an orthonormal basis
of C,[Xo,..., X1, and each coefficient
-1
Vi = <}/}‘U>

is strictly positive. Again, the functions u; = ,for j=1,...,d, form a system of

U +1
local parameters at x, and 7 = Uy, is a local trivialization of L around z. One can

check the formulae
ordg +(s) = ordy ,(s)
lead, ;on () = v 1 S lead, yen ,(s) if o = ordg.(s) € N4,

with agq =1 — Z?Zl a;. In particular, we have,

x,09™ ¢ o g1 e, u
FL®" K herm( ) 7 Va+1 FL®” K] herm(a)'
Since the sections U™ ... UJU, "~ % = u*r", for a1 + ...oq < n, form an or-
1 d+1 )

thogonal basis of the hermltlan space
Co[Xo, ..., Xgln = HO(X, L®™),

we have by an elementary computation

®n e 1 n+d 2
F:c , T _ Ual ) UadUn [e%1 [P} 1 -V 2
L®n y, herm( ) H 1 d+1 HL‘Xm,v,herm d,ai,...,o0q ’

where V = (2;?(1 is the volume of P?(C,) with respect to dV. Using Stirling’s formula,
we get the following result :
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Proposition 4.4.1. With x,0,t,3,v as above, the Chebyshev local transform of the
Fubini-Study metric on the d-dimensional projective space is given by the formula
d+1 1
ep' (@) =) ailog(y;) + Sha()
j=1
on the Okounkov body
Api(L) ={a €RE | an +...aqg < 1},

where hq is the entropy functional, defined by

d+1 d
1
hag:a€ Ay(L) — g aj log (Oq) where agi1 =1 — g a;.

j=1 j=1

5. MEASURES ASSOCIATED TO ZEROS OF SECTIONS

5.1. An Example. Recall from that HO(X, L®")Z* denotes the set of sections of
L®" of slope at least . In {5 and §6| we will study the zeros of the non-zero elements
of U HO(X, L¥™)2A. To motivate this we first discuss an example.

Let X = Pg and L = O(1). As in Example we endow L with the non
archimedean metrics coming from the integral model (P, O(1)), and the archimedean
metric given in affine coordinates by

|s(2)|
max(1, |4z —1])

This is the capacity metric associated to the disc of center % and radius %. For the sake
of the computation, we rather use the L? metric on the boundary of this disc, rather
than the supremum norm : this does not affect the asymptotic slopes.

Let s, denote a degree n nonzero integer polynomial of smallest norm. A computa-

|5(2)|L.00 =

tion performed with Magma yields a small list of explicit irreducible integer polynomials
f1, f2, f3, ..., starting with

==z,
fo=22z-1,
fz3 =522 —4z 41,
fa=292* —442% 42722 — 82 + 1,
such that
s50 = £ 13 13 fas
s100 = £1° fa' f3 a5 fes
s200 = 177135215 12 fs fo fr
ss00 = £/ 5 [ FL 13 18 e

The polynomials fs, fs, f7, fs have degree 6,8,8 and 2 respectively. Numerically, the
quantity tordy, (s,) seems to converge to a limit (close to 0,63) as n grows. Similarly,



32 CHINBURG, GUIGNARD, AND SOULE

limy, — 00 %ord f;(s8n) appears to exist for higher j. This suggests the existence of a limit
distribution of zeros associated to sections of maximal norm which is discrete.
However, replacing the disc of center i and radius % by the disc of center 0 and
radius 1, the corresponding lattices become asymptotically semistable, and one doesn’t
expect such a discreteness result, but rather a uniform distribution of the zeros of small
sections along the boundary of the unit disk.
In below we recall some work of Serre in [26] which is useful for quantifying the

intuition that the general case must interpolate between these two situations.

5.2. Measures. Let Z be a compact metrizable topological space. Define C'(Z) to be
the set of continuous real valued functions f on Z. A positive Radon measure on Z is an
R-linear R-valued function p on C(Z) such that pu(f) > 0if f(x) > 0 for allx € Z. We
will sometimes write [, f(x)u(x) or [, fu for u(f). The weak topology on the space of
positive Radon measures is defined by saying lim,, oo ttn, = p if im0 i (f) = p(f)
for all f € C(Z). The mass of a measure p is the value p(1). The space M(Z) of
positive Radon measures of mass 1 is compact for the weak topology (c.f. [26, §1.1]).

Suppose now that X is a smooth projective curve over a global field K. For each
place v of K of X we let C, be the completion of an algebraic closure K, of K,.
If v is archimedean, we let the topological space Z = Z, in the above discussion be
X (Cy) = X(C) with the archimedean topology. If v is non-archimedean, we let Z = Z,
be the Berkovich space Xpgerk,c, described in [3], which is compact and metrizable by
[8, §1]. There is a canonical inclusion of sets X(C,) C Xperk,c,. For all v we define
M, = M(Z,).

Let v be an arbitrary place of K and suppose x € X(C,). If v is archimedean, let
b, € M, be the Dirac measure associated to x. If v is non-archimedean, we view = as a
point of Xpe,r c, and we again let d, € M, be the associated Dirac measure. Suppose
D=3 . x(c,) M= 18 a non-zero effective divisor of X (Cy) that is stable under the
action of Aut(C,/K), so that m, = 0 for almost all x. We define the Dirac measure of
D to be .

(D) = D) > mads.
2€X(Cy)
If D is the zero divisor, we let (D) be the zero measure pg on Z,.

Let T be a non-empty collection of such D which is closed under taking sums. Note
that T" is countable. We define M, (T") to be the closure of {u(D) : D € T'} in M, with
respect to the weak topology. The argument of [26, Prop. 1.2.2] shows that M, (T) is
convex and compact. Let IT be the set of irreducible K-divisors which are components
of some element of T. Suppose S is a finite subset of Ip. If S # Ip, define M, (T, S)
be the closed convex envelope in M, of the measures {u(D): D € Ip — S}. If S = Ip
define M, (T, IT) = {po}. Define

(5.1) M,(T, 00) = Ng My(T, S).

where the intersection is over all finite subsets S of I7. Then M, (T, o) is a compact,
convex subset of M, if I is infinite, and M, (T, 00) = {uo} if I is finite.
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The following Theorem can be proved the same way as [26, Thm. 1.2.11].

Theorem 5.2.1. Suppose p € M,(T). There is a unique set of non-negative real
numbers {co} U{cp : D € It} such that co+ ) pcp. cp =1 and

(5.2) = Z cp u(D)+v with v e co My(T,00)
Delp

where cg = 0 if Ip is finite

In [26], the sum »_p.r cp p(D) is called the atomic part gt of p1, and v is called
the diffuse part of u.

We can apply these notions to the zeros of sections of a metrized line bundle L on
X in the following way.

Definition 5.2.2. Suppose A € RU {—o0}. Let T'(L, \) be the set of divisors zer(f)
of zeros associated to non-zero elements f of U,>1 H?(X, L¥")>2,

Fix a place v of K. It is a natural question whether all the elements of T'(L, \)
must contain particular irreducible divisors with at least a certain multiplicity. We can
approach this question by considering the set M, (T (L, \)) of measures which are limits
of Dirac measures associated to zer(f) as above.

Serre’s Theorem [5.2.1]shows that such limits will have atomic parts and diffuse parts.
The example discussed in suggests the following question.

Question 5.2.3. Fiz a place v of K. Suppose that for each n > 1, HO(X, L®")2*
has non-zero elements, and f, € HO(X, L®")Z* has mazimal slope among all such ele-
ments. Since M,(T'(L, X)) is compact, there is an infinite subsequence of the measures
{u(zer(fn))}n>1 which has a limit pn € M,(T(L,\)). For all such limits pu, does the
atomic part pgee of p depend only on L? Which measures arise as the diffuse parts of
such 1 ?

In Theorems and we will show that some particular diffuse measures arise
as limit measures u of the sort in this question.

6. ADELIC SETS OF CAPACITY ONE

6.1. Statement of results. In this section we assume X is a smooth projective geo-
metrically irreducible curve over a number field K. Let K be an algebraic closure of K,
and let X be a finite Gal(K /K)-stable subset of X(K). By an adelic subset of X we
will mean a product & =[], E, over all the places v of K of subsets E, of X (K,) — X
when K, is an algebraic closure of K,. As noted in at the beginning of [23, §4.1],
subsets of X (K,) are better suited for global capacity theory than those of X (C,).
We will assume that the F, satisfy the standard hypotheses described in [23] Def.
5.1.3] relative to X'. In particular, each F, is algebraically capacitifiable with respect

to X. We will assume each E, has positive inner capacity ¢ (E,) with respect to every

point ¢ € X(K,) — E, in the sense of |23 p. 134-135, 196].



34 CHINBURG, GUIGNARD, AND SOULE

In [23] Def. 5.1.5], Rumely defined a capacity (&, X') of such an & relative to X.
For each ample effective divisor D = ECE y a¢ ¢ supported on X one has the sectional
capacity S (€, D) of & relative to D ([10], [20]). We will show in Lemma below
that Rumely’s results in [25] imply that (&, X) is the infimum of S (&, D)l/deg(D)2 as
D ranges over all ample effective divisors supported on X provided v(&,X) > 1.

We will recall in the next section Rumely’s definition in [23] of the Green’s function
G(z,¢; B,) € RU{oo} of pairs 2,( € X(K,). Define G(z, D; E,) = >ocex ac Gz, G Ey).
We will regard meromorphic sections of powers of L = Ox (D) as elements of the
function field K(X). Then 1 is an element of H(X, L) with divisor D. Define a v-adic
metric on L via

(6.1) 11],(2) = exp(~G(z,D; E,)) for z¢e X(K,)

We will call these the Green’s metrics on L associated to £.
We will show the following result.

Theorem 6.1.1. Suppose that D is an ample effective divisor with support X such
that

(6.2) Y(E, X) = 8,(€, D)/ esP)F =1

Give L = Ox (D) the Green’s metrics associated to £, and suppose E, is compact if v
is archimedean. Let {\,;}., be the set of successive maxima of H°(X, L®™). Let v be
the limiting distribution associated to the sets {\,;/n};", as n — oco. Then v is the
Dirac measure supported on 0.

Thus lattices associated to metrized line bundles associated to adelic sets of capacity
one are asymptotically semi-stable, in the sense that all of their successive maxima are
approximately equal.

Corollary 6.1.2. Suppose there is a non-constant morphism h : X — P! over K all
of whose poles are at one point ( € X(K). Write P! = AtU{oc} and N = deg(h), and

let D = N( = h*(c0). Suppose E, = {z € X(K,) : |h(2)|, < 1} for all v. Then the
hypotheses of Theorem hold, so that v s the Dirac measure supported at 0.

Proof. The equality (6.2)) in this case is a consequence of Rumely’s pullback formula
[23, Thm. 5.1.14] together with the computation of capacities of adelic disks in P!
given in [23, §5.2]. O

We will discuss zeros of successive maxima in the case described in Corollary
Identify the morphism h : X — P! of this Corollary with an element of the function
field K(X). Let z be the affine coordinate for P! which has image h under the induced
map K(P') = K(z) — K(X) of function fields.

Theorem 6.1.3. Let v be an archimedean place of K. Let ug be the uniform measure on
the boundary of the unit disk B, = {z € P1(K,) = PL(C) : |z|, = 1}. Then %h~(uo)
is the equilibrium measure u(E,, D) of E, = E, = h™1(B,) in the sense of [23, p.
214-215] with respect to the polar divisor D = N( of h. The measure u(E,, D) is an
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element of Nx<oMy(T (L, \),00) where M,(T(L,\),00) is the set of diffuse probability
measures associated by and Theorem to the set T(L, \) of divisors of zeros
of non-zero sections of Up>1 HO(X, L®™)ZA,

We now state a version of this result for a non-archimedean place v of K. Define E,
to be the closure of E, = {z € X(K,) : |h(2)|y < 1} in Xperkc,- Let h: X — IP%K
be the minimal regular model of the morphism h : X — P} (see [12]). Let 50 be the
section of IP)}OK — Spec(Of ) defined by the point at infinity. Then h*(30) = N(+J for
some vertical divisor J when ( is the closure in X of the point ¢ € X(K). Let {Y;}{_,
be the set of reduced irreducible components of the special fiber X, of X, and let m;
be the multiplicity of ¥; in &),. There is a unique point §; € Xpe,i,c, Whose reduction
is the generic point of Y;. Let d; be the delta measure supported on & on Xpgerkc,,
and let (h*(30),Y;) be the intersection number of h*(30) and Y;. Writing D = N, we
have a measure

14
(63) p(Bo, D) = 1= S il (), V)5,
i=1

on XBerk,(Cv .

Theorem 6.1.4. Suppose v is a non-archimedean place of K. The measure u(E,, D)
in is a probability measure lying in Nx<oMy(T(L, ), 00) where M,(T(L,\),0)
1s the set of diffuse probability measures associated by and Theorem to the
set T(L,\) of divisors of zeros of non-zero sections of Up>1 HO(X, L®™)ZA.

Thus under the hypotheses of Theorems [6.1.3] and [6.1.4] to achieve sections that
demonstrate semi-stability, one can use sections whose zeros approach the measures

u(E,, D) while avoiding any prescribed finite set of points. The measure in Theorem
was defined by Chambert-Loir in [§], and we will use his results in the proof.

6.2. Green’s functions in Rumely’s capacity theory. Following [23], let ¢, be the
order of the residue field of a finite place v of K. If v is a real place, let ¢, = e, while if
v is complex let g, = e%. Define a v-adic log by log, (r) = log(r)/log(gy) for 0 < r € R.
We let || ||, be the standard absolute value | |, if v is finite, and we let || ||, be the
Fuclidean absolute value if v is archimedean. The product formula then becomes

> log, |all, - log(g,) =0

for a € K — {0}.

Suppose now that ¢ € X(K,) — E,. In [23, §3 - §4] Rumely defines a real valued
canonical distance function [z, w] of pairs of points z,w € X(K,) — {¢}. He then
defines a Green’s function G(z, (; E,) in the following way.

Suppose first that F, is compact. Rumely shows that there is a unique positive Borel

measure [, = i, (Fy, () supported on E, that minimizes the energy integral

(6.4) Ve(Ey) = - /E | togy [ () )
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One then has a conductor potential

(6.5) us(¢) = = [ tog, [z, ulc (o)
This function vanishes at almost all z € E,. One lets

Ve(Ey) —up(z,¢) if z¢ E,U{C}
(6.6) G2, G By) = x T

0 if z € R,

Suppose now that v is a finite place. A PL; domain (see [23, Def. 4.2.6]) is a subset
of the form

(6.7) Up = {2z € X(Ku) : |f(2)ls <1}
for a non-constant function f(z) € K,(X) having poles only at ¢. Define

m log, [f(2)ly if 2z&U,U{C}
(6'8) G(Z7C§Uv) = .
00 if z=_(
0 if zeU,

Suppose now that v is finite and that F, is an arbitrary algebraically capacitifiable
subset of X (K,) — {¢} in the sense of [23]. In [23] §3 - §4], Rumely shows that there
exists an infinite increasing sequence {E! v.itie1 of compact subsets of E), and an infinite
decreasing sequence {U, ]} °,of PL¢ domains containing E, with the property that

(6.9) lim v¢(Ey ;) = ve(Ey) = lim ¢ (Uy,5)
1—00 j—o0

when v¢(E,) is the local capacity of E, with respect to (. It is shown in [23, Thm.
4.4.4] that the fact that E, is algebraically capacitable implies

(6.10) lim G(z,; E,,) = lim G(2,¢;Us))
1—>00 ’ J—00

except for a set A of z of inner capacity zero contained in F,, and the left hand limit
in is 0 for all z € E,. By [23 Prop. 4.4.1], G(z,(; qum) is non-increasing with 1,
(z C Uy,j) is non-decreasing with j, G(z,(; E}, ;) > G(z,(;Uy ;) for all i and j. The
convergence in (6.10]) is uniform over z in compact subsets of X (K,) — {¢} — A.
We now define
lim; 00 G(2,C By ,) i 2 #C
(6.11) G(z,( Ey) =
o0 if z=¢(
. Suppose now that D = ZC n¢¢ an effective divisor of degree deg(D) = Zg ne > 0.
et

(6.12) (z,D; E,) an
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and

(6.13) 11 (B!

UZ’

deg Z CMU UwC

6.3. Successive maxima for adelic sets of capacity one. The object of this section
is to prove Theorem We must first make a slight extension of Lemma 4.9 of [I1].

Lemma 6.3.1. Supposey(E,X) > 1. Then(E,X) is the infimum of S (&, D')1/deg(D")?
as D' ranges over all ample effective divisors supported on X .

Proof. This result is shown in [II, Lemma 4.9] if v(£,X) > 1. We now suppose
v(€,X) =1, so the Green’s matrix I'(£, X') has val(I'(€, X)) = 0. By [23] Prop. 5.1.8,
Prop. 5.1.9], I'(€, X) is a symmetric real matrix with non-negative off diagonal entries
that has all non-positive eigenvalues and at least one eigenvalue equal to 0. Let I be the
identity matrix of the same size as I'(€, X'). For all € > 0, the matrix I'c = I'(§, X) — el
is negative definite, symmetric and has non-negative off diagonal entries. We now apply
the arguments of [I1, Lemma 4.9] to I'. and let ¢ — 0. Since the space of probability
vectors of a prescribed size is compact, this implies Lemma |6.3.1 ]

Lemma 6.3.2. Let | |, be the Green’s metric on Ly, and let | |$™ be the resulting
metric on LE". For f, € HY(X,L®") and z € X( o) let | f,|2™(2) be the norm with

respect to | \f?” of the image of f, in the fiber of L™ at z. Regarding f, as an element
of the function field K,(X), let f,(z) € K, U {oo} be the value of f, at z. Then

(614) HfUHL‘X’",v = SupzeX(fU)’fU|®n('z) equals Sup(fvav) = SupzeEU‘fv(zﬂv-
Proof. In view of ), the Green’s metric on f, € H°(X, L®") is specified by
(6.15)  log|fuly"(2) = log(|fu(2)lv) +log(|1]5" (2)) = log | fu(2)|s — nG (2, D; Ey).

Suppose first that v is archimedean. We have supposed in this case that F, is compact.
Then log|fy(2)|y — nG(z, D; E,) is a well defined harmonic function on the open set
X(K,)—E, = X(C)— E,, so it achieves its maximum on the boundary of X (K,)— E,.
This boundary lies in E, and G(z,D;E,) = 0 for z € E, by , SO holds.
Suppose now that v is non-archimedean. By [23], p. 282, Def. 4.4.12], G(z, D; E,) is the
supremum of G(z, D;U,) over RL domains U, D F, defined by functions having poles
in X. The fact that holds is now a consequence of the formula for G(z, D;U,)
when U, is a RL-domain in ([23] p. 277, eq. (2)]) together with the maximum modulus
principle of [23, Thm. 1.4.2]. O

Lemma 6.3.3. There is no section f € H°(X, L®") that has height A(f) > 0.

Proof. Suppose f € H°(X,L®") is a section with A(f) = =, kylog||f]|zen, > 0
Then f defines a morphism X — P! such that f~!(c0) = D’ is supported on X, since
f is a section of L®" = Ox(nD) and D is supported on X. Write r, = sup(f, Ey).
We let & = [], E., be the adelic polydisc of the projective line P! such that each
E! ¢ AY(K,) = P'(K) — {co} is the disc around the origin with radius r, > 0 with
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respect to | |,. By the definition of the r,, we have & C f~1(&’). This and Rumely’s
pullback formula [25, Prop. 4.1] give

(6.16) S1(8, D) < 8,(7HE, D) = 5,(€',00) 4P,

By Lemma [6.3.2 A(f) = — >, kulog||fllen, = — 22, [Ky : Qpllog(r,) and this is
—log(S,(&’',00)) by [25, Prop. 3.1] and |23, p. 339]. Because A(f) > 0 we conclude
from that S,(€,D’) < 1. Hence SAY(S,D’)l/deg(D,)2 < 1. This contradicts the
hypothesis in because of Lemma m ([l

Lemma 6.3.4. Suppose € > 0. There is a finite place vo of K and a subset ELO of Ey,
with the following properties:

1. B, is capacitifiable with respect to D, and |G (z, D; E;)) — G(z, D; Ey,)| < € for
all z € X(Cy).

2. The set &' = Ey X ([0, Ev) has capacity S,(E', D) < Sy(€,D) = 1.

3. Let MN(s) = =3, kylog||s||pen,, be the height of a section s € HY(X,L®")
associated to the Green’s metrics for €, and let N'(s) is the corresponding height
for & Then |\(s) — N (s)|/n < kyye.

4. There is a rational function f € K(X) whose divisor of poles is a positive
integral multiple of D with the following properties: we have sup(f, E,) <1 for
all finite v # vo, sup(f, E;,)) < 1 and sup(f, Ey,) < 1 for all archimedean v.

Proof. Choose a place vg where E,, is X-trivial in the sense of [23] Def. 5.1.1] By

[23, Prop. 4.4.13], the Green’s function G(z,(; E,,) for any z € X(K,,) and any

¢ € X(Ky) — By, is the infimum of G(z,(; E; ) over compact subsets E, of E,.
Furthermore, we have G(z,(; Ey,) < G(z,¢; E},) for z € X(K,) — Ey, by the compu-
tations in [23, §5.2.B] since we took E,, to be X-trivial. So we can take £ to be a
compact subset of E,,, such that the global Green’s matrix I'(X, £) defined in [23 The-
orem 5.1.4] differs from I'(X,E’) by a matrix with positive entries that are arbitrarily
close to 0. Then Ej  is capacitifiable by [23, Theorem 4.3.4], so (1) holds. The value
of the game defined by T'(X, ') is larger than that defined by T'(X, ), so we get (2);
see [23 p. 327-328]. The log of the Green’s metric on L at vy associated with E;O and
with E,, differs by a constant we can make arbitrarily close to 0, so we get (3) from
(6.1). To prove (4), we first note that hypothesis in Theorem implies the
following. When we write D = ), ngx, then n, > 0 for all z and the probability
vector P = (ng/deg(D))zexr must define an optimum strategy for the game associated
to I'(X, £). Furthermore S, (&, D) = 1 says that this optimum strategy achieves value
0. Since I'(X, &) — T'(X, &) has all positive entries, playing P in the game defined by
(X, &) leads to a positive value. This means that the construction of Rumely in 23]
§6, Corollary 6.2.7] produces a function with the properties in (4). O

Lemma 6.3.5. Let &' be as in Lemma m There is a constant c independent of n
such H°(X, L®™) has a basis of sections s for which X' (s) > c.

Proof. Let f in part (4) of Lemma have divisor mD for some m > 0. By Riemann-
Roch, we can find a finite subset {h;};c; of elements of the function field K (X) with
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the following properties. The poles of the h; are supported on X = supp(D), and the
height A(h;) of h; with respect to the Green’s metrics associated to &’ is finite. Further,
for all n, the collection of functions {h;f*}jecs0<; contains a basis for HO(X, L®") =
H°(X,0x(nD)). Now Lemma gives

N(hjf') == kylog(sup(h; f', E})) > =Y kylog(sup(hy, E})) = X (hy)

because sup(f*, E!) < 1 for all i by Lemma Since there are finitely many h;, this
proves the Lemma. O

Remark 6.3.6. Lemma could be deduced from a result of Zhang in [33, Thm. 4.2]
about arithmetic ampleness by verifying that the capacity theoretic metrics involved
satisfy the hypotheses of this result.

Proof of Theorem [6.1.1]

Let ¢ be as in Lemma Lemmas [6.3.5] [6.3.4] and [6.3.3] imply that for each ¢ > 0,
there is a basis of sections s of H°(X, L®") such that when A(s) is the height function
associated to the Green’s metrics coming from &, we have

0>A(s)/n>c/n—ce.

Letting n — oo and then ¢ — 0 shows that the limiting measure v associated to the
ratios \;/n as \; ranges over the successive maxima of H°(X, L®") is the Dirac measure
supported at 0.

6.4. Measures associated to zeros of small sections. The object of this subsection
is to prove Theorems [6.1.3] and [6.1.4. Accordingly we suppose there is a morphism
h: X — P! such that D = h*(co0) = N( for some point ¢ € X (K), where N = deg(h).
We also suppose

E,={z¢€ X(K,): |h(2)], <1} =h 1(B,)
for all v when

B,={z€K,:|zl, <1} c PY(K,) — {oc}.
Here h*Opi(00) = Ox(D) and for all n > 0 we have a global section ®,(z) in
HO(P', Op1(¢(n)o0)) when ®,,(2) is the n'h cyclotomic polynomial. The set zer(®,,(z))
of zeros of ®,,(z) is just the set of all primitive n'" roots of unity.

We now fix a place v of K. Define B, = B, and E, = E, if v is archimedean. If v is
non-archimedean, we let B, be the closure of B, in IP)}B o and we let FE, be the closure
of EU in XBerk,(CU .

Suppose first that v is archimedean. In Theorem [6.1.3] we let uo be the uniform
measure on the boundary of the unit disk B, = {z € P}(K,) = P1(C) : |2|, = 1}, and
we defined p(E,, D) to be %h_l(uo), where D = N( is the polar divisor of h. By [23]
Prop. 4.1.25], pu(Ey, D) is the equilibrium measure of E, with respect to D.

Suppose now that v is non-archimedean. The probability measure u(E,, D) on
XBerk,c, described in Theorem is well defined by [8, §2.3] and the paragraph
following [8, Theorem 3.1].
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We claim that for all v,

(617) ,U/(Ev?D) = lim 5zer(h*(¢’2m(z))

m—0o0

where h*(®om(2)) is a section of HY(X, h*Op1 (p(2™) ) = HY(X, Ox(p(2™)D)) and
Ozer(h* (®4m (z)) 18 the Dirac measure associated to the zeros of this section.

Suppose first that v is archimedean and that h : X — P! is the identity map. The
zeros of h*(®am(2)) are simply all the odd powers of a primitive root of unity of order
2™ Then is clear from the fact that in this case, E, = B, is the unit disc about
the origin, so u(E,, D) is the uniform measure on the boundary of the unit disc. For
archimedean v, the case of all h : X — P! satisfying our hypotheses follows from this
and the fact that u(E,, D) = +h™ (1o).

Suppose now that v is non-archimedean. As in Theorem leth: X — IP’}OK be
the minimal regular model of the finite morphism h : X — P;.. We give the line bundle
Opy B () = L on IP%K the adelic metric associated to the Weil height. Then IP’}QK and

the divisors defined by the zeros of ®am(z) have height equal to 0. We give h*L the
pull back of the adelic metric of £. For any cycle Z on X we have from [5, Prop. 3.2.1]
that

(6.18) Hyep(Z) = He(hoZ)

where Hp here is the height before normalization that is defined in [5, §3.1.1]. If Z
is the cycle X = h*P! we have h,h*P! = N . P! by the projection formula so we
conclude Hp«p(X) = 0 Suppose now that Z is a cycle contained in the divisor of
zeros of h*(®am(z)). Then h,Z is contained in the divisor of zeros of ®am(z), and so
Hp(h.Z)) = 0. Thus Hy+£(Z) = 0 by (6.18). By [5, §3.1.4], the same is now true
if we replace Z by by any cycle contained in the base change of Z by a morphism
Spec(Ok+) — Spec(Of) associated to a finite extension K’ of K. We conclude that
the Galois conjugates of any zero of h*(®9m(2)) have adelic height 0 with respect to
the above adelic metric on h*(L£), and this is also the height of X with respect to this
metric. So these zeros as m — oo form a generic sequence of points of X (K,) in the
sense of [8, Thm. 3.1]. Now [8 Thm. 3.1] shows that the limit on the right hand side
of equals the Berkovich measure described in just before [8, Example 3.2], and
this equals the measure u(E,, D) defined in Theorem We have now shown
in all cases.

Consider the normalized height A(h*(P2m(2))) of h*(Pam(z)) with respect to the
Green’s metrics on Ox(¢(2™)D) = h*Op1(p(2™)o0) associated to £ = [[, E,. We
have A(h*(®ym(2))) — 0 as m — oo because ®om(z) = (22" —1)/(22" ' — 1) has
normalized height tending toward 0 with respect to the Green’s metrics on Op1(c0)
which are associated to B = [[,, Bw. Since the zero sets of the ®om(2) are disjoint for
different m, for sufficiently large m the zeros of h*(®gom(z)) will avoid any prescribed
finite subset of X (K,). Hence the limit measure u(E,, D) in has mass 0 at every
point of X (K,), so Theorem shows p(Ey, D) lies in Ny<oM,(T (L, \), o). This
completes the proof of Theorems and
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