CHAPTER I

ARITHMETIC INTERSECTION

by Christophe Soulé

1. Introduction

Intersection Theory in projective varieties is a topic in algebraic ge-
ometry which goes back to the eighteen century. An example is Bé-
zout’s theorem, which says that two projective plane curves C and D,
of degrees ¢ and d and which have no components in common, meet
in at most cd points. This result can be extended to closed subvari-
eties Y and Z in the projective space P of dimension n over k, with
dim(Y) + dim(Z) = n and for which Y N Z consists of a finite num-
ber of points: this number is at most deg(Y') deg(Z). Here the degree
deg(Y) of Y C P can be defined as follows. Let L be the canonical line
bundle on P. The integer deg(Y") is characterized by the following two
properties:

i) When Y = y is a closed point with residue field k(y)

deg(Y) = [k(y) : K] .
ii) When s is a non-trivial rational section of L over Y, with divisor
div(s) = Y4 naYas

deg(Y) = Zna deg(Yy) .

Note that induction on the dimension of Y shows that i) and ii) define
the degree deg(Y') uniquely. One proves that it does not depend on
the choice of s made in ii). We refer the reader to [7] §2 for a brief
introduction to classical intersection theory.

In 1974, Arakelov discovered an intersection theory on arithmetic
surfaces. Namely, if C is a smooth projective curve over Q, consider
a regular projective scheme X over Z with generic fiber equal to C.
Since the Krull dimension of X is two, one thinks of it as a surface.
And since Z is affine, this surface X is not complete. To complete X,
Arakelov adds to it the set of complex points X (C), viewed as the fiber
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at oo of the map X — Spec(Z). An arithmetic divisor is a formal sum
D+ X where D is a classical divisor on X and A is a real number. Given
two arithmetic divisors D + X and D’ + X (such that D and D’ have
no common components) Arakelov defines their intersection number,
which is not an integer but a real number. He proves several properties
of these numbers, e.g. an adjunction formula.

It appears that every notion or result in the classical algebraic ge-
ometry of varieties over fields has an arithmetic analog in the Arakelov
geometry of schemes over Z. In the eighties, the Arakelov intersection
theory was extended to higher dimensions by Gillet and myself [9].

In this chapter, we shall discuss the arithmetic analog of the notion
of degrees, namely heights of varieties. To be more precise, we fix a
regular projective scheme X over Z. As arithmetic analogs of algebraic
line bundles we take hermitian line bundles , i.e. line bundles L on X
equipped with a smooth hermitian metric h on the restriction of L to
the set of complex points X (C). If L = (L, h) is such an hermitian line
bundle on X and if Y C X is an integral closed subset of X, the height
of Y is a real number hz(Y) which can be defined in several ways. It
was first introduced by Faltings using arithmetic intersection theory [6]
in his work on diophantine approximation on abelian varieties. Alter-
natively, hz(Y) can be defined axiomatically by axioms similar to i)
and ii) above [2]. This is the point of view we shall take here. When
the unicity of hy(Y) is easy to deduce from the axioms by induction on
the dimension of Y (see §2), it is more difficult to show that hz(Y) is
independent on choices. Actually, the existence of hz(Y') is the main
result of this chapter, as we try to make it self-contained (see §3). The
section §4 is a survey, without proof, of arithmetic intersection theory
[9]. We conclude with a third definition of hz(Y'), as the integral on Y
of a suitable power of the first Chen class of L (Theorem 3.7).

The interested reader may want to read in [2] several properties of
the height, including arithmetic Bézout’s theorems.

2. Definition of the height

Let X be a regular projective flat scheme over Z, and L an hermitian
line bundle over X. For every integral closed subset ¥ C X we shall
define a real number hy (Y'), called the (Faltings) height of Y ([6]). For
this we need a few preliminaries.
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2.1. Algebraic preliminaries

2.1.1. Length. — Let A be a noetherian (commutative and unitary)
ring, and M an A-module of finite type.
There exists a filtration

(1) M=MyDMy DMyD...OM,=0
such that M; 1 # M; and M;/M; 11 = A/gp;, where g; is a prime ideal,
0<i<r—1(83], th.1, p.312).

Definition 2.1. — The module M has finite length when there exists
a filtration as above where, for all 4, g; is a maximal ideal in A.

Lemma 2.2 (Jordan-Hoélder). — If M has finite length, r does not
depend on the choice of the filtration with @; mazximal. We call this
number the length of M and denote it (M) € N.

Lemma 2.3. — Let
0—-M —-M-—M'—0
be an exact sequence of A-modules of finite length. Then
(M) =0M') + o(M").
The proof of Lemma [2.2] (resp. Lemma [2.3)) can be found in [4], th.6,
p.41 (resp. [5], prop.16, p.21).
2.1.2. Order. — Let A be as above. The dimension of A is
dim(A) = max{n|3 a chain of prime ideals py C p1 C p2... C p, C A,

with ©; # @i+1}.
Let A be an integral ring of dimension 1, and a € A, a # 0.

Lemma 2.4. — A/aA has finite length.

Proof. — Let

?0C...Con
be a maximal chain in A/aA, with §; # pi+1, and ¢ : A — A/aA the
projection. Let p; = o~ 1(@;). We get a chain

po c...C pn
with ©; # pi+1. Since A is integral, (0) is a prime ideal. And g # (0)
since g contains a. We conclude that

dim(A4/aA) < dim(A4) — 1.
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Since dim(A) = 1 this implies that every prime ideal of A/aA is maxi-
mal. Therefore A/aA has finite length. O

Let A be as in Lemma [2.4]and K = frac(A) be the field of fractions
of A. If x € K — {0} we define, if x = a/b,
orda(z) = 0(A/aA) — L(A/VA) € Z.

Lemma 2.5. — i) orda(x) does not depend on the choice of a and b.
i) ord g (zy) = orda(z) + ord a(y).

The proof of Lemma [2.5]is left to the reader.

Ezample 2.6. — Assume A is local (i.e. A has only one maximal
ideal .#) and regular (i.e. dim A = dim(.# /.#*)). When dim(A) = 1,
K has a discrete valuation

v: K —ZU{oc0},

A = {x € K such that v(a) > 0}
and ord4(z) = n if and only if x € .#™ and x ¢ .#™ . Therefore

ordy(z) = v(x).

2.1.3. Divisors. — Let X be a noetherian scheme and Ox be the sheaf
of regular functions on X.

Definition 2.7. — A line bundle on X is a locally free Ox-module L
of rank one.

In other words L is a sheaf of abelian groups on X with a morphism
of sheaves
w:0x xL—L

such that there exists an open cover
X =] U
[0

such that

(i) L(Uq) = Ox(Ua);
(ii) pon L(Uy) is the multiplication.

Assume now that X is integral (for every open subset U C X, O(U)
is integral). Let n € X be the generic point.

Definition 2.8. — A rational section of L is an element s € L.
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Let Z'(X) be the free abelian group spanned by the closed irreducible
subsets Y C X of codimension one. We call Z!(X) the group of divisors
of X.

If s € L, is a non-trivial rational section, its divisor is defined as

div(s) =Y ny[Y] € Z'(X),
Y

where ny is computed as follows. If Y € X has codimension 1 and
Y = {y} is integral, the ring A = Ox,y is local, integral, of dimension
1. Its fraction field is
K =Ox,.
Choose an isomorphism L, ~ A, hence L, ~ K. If s € L,, — {0} = K*,
we let
ny = ord4(s)

(we shall also write ny = ordy (s)).

One can prove that ny does not depend on choices, and ny = 0 for
almost all Y.

Ezample 2.9. — Let K be a number field and X = Spec (Ok). Giv-
ing L amounts to give

A=L(X),
a projective Og-module of rank one. If s € A, s # 0, we have a
decomposition

A/OKS ~ H (OK/pnp)

© prime
where n,, = ordp,, (s), hence

div(s) = Z ne (9] .

)

2.2. Analytic preliminaries. — Let X be an analytic smooth man-
ifold over C, and Ox an the sheaf of holomorphic functions on X.

Definitions 2.10. — a) An holomorphic line bundle on X is a locally
free Ox an-module of rank one.
b) A metric || - || on L consists of maps

L(z) M R,

for any x, where L(x) = Ly /.#; is the fiber at x. We ask that

(@) [[Asl = [All[s] if A € C;
(i) |||l = 0 iff s = 0;
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(iii) Let U C X be an open subset and s a section of L over U vanishing
nowhere; then the map
2
z— [|s(@)]

is C*°.
We write L = (L, || - ||).

Denote by A"(X) the C-vector space of C*° complex differential
forms of degree n on X. Recall that A™(X) decomposes as

ANX)= P AM(X),
ptg=n

where AP4(X) consists of those differential forms which can be written
locally as a sum of forms of type

udzl-l/\.../\dzip/\déjl/\.../\déjq

where u is a C* function, dzy, = dxq +1dys and dZq = dxy — i d Y-
The differential

d: A"(X) —» A"TH(X)
is a sum d = 0 + 0 where
d: API(X) — APTLI(X)

and
9: AP(X) — Ap’q“(X) .

We have 92 = 52 =d? =0 and we let

0—0
d¢ =
dmi’
so that
00
dd® = — .
271

Lemma 2.11. — Let L = (L,|| - ||) be an analytic line bundle with
metric. There exists a smooth form

C1 (f) € Al’l (X)

such that, if U C X is an open subset and s € T'(U,L) is such that
s(z) # 0 for every x € U,

C1(Z)|U = —ddlog H3H2 .
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Proof. — Let s’ € T'(U, L) be another section such that s(z) # 0 when
x € U. We need to show that

(2) — dd°log ||s'||2 = —dd° 10g||s||2 in Al’l(U).
There exists f € I'(U, Ox,,) such that
s'=fs.
We get
—dd°log||s'||* = — dd° log |s||* — dd° log | f|*.
But
_ ] of ~0(f
/ f /
and follows. O

The form c1(L) is called the first Chern form of L.

2.3. Heights. — Let X be a regular, projective, flat scheme over Z.
We denote by X(C) the set of complex points of X; it is an analytic
manifold.

Definition 2.12. — An hermitian line bundle on X is a pair L =
(L,|| - ||), where L is a line bundle on X and || - || is a metric on the
holomorphic line bundle

Lo =Lix(o)-
We also assume that || - || is invariant by the complex conjugation
Fo:X(C)— X(C).
Let L be an hermitian line bundle on X. We let
c1(L) = e1(Le) € AVH(X(C)).

Theorem 2.13. — There is a unique way to associate to every integral
closed subset Y C X a real number
hy (Y) e R

i such a way that:

(1) If dim(Y) =0, i.e. when Y = {y} where y € X is a closed point,
we let k(y) = Oxy/ Mx,y be the residue field. Then r(y) is finite and

hg (V) = log # (k(y)) -
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(ii) If dim(Y’) > 0, let s be a non-trivial rational section of L over Y.
If
divy (s) = Z Na Yo ,

then

h—(Y) = o h= (Y, —/ ] T)dimY(C)
7 (Y) Xa:n 7 (Ya) ) og||s]| e1(L)

3. Existence of the height

3.1. Resolutions. — To prove Theorem 2.13] we first need to make
sense of the integral in ii). For that we use Hironaka’s resolution theo-
rem.

Theorem 3.1 (Hironaka). — Let X be a scheme of finite type over
C, and Z C X a proper closed subset of X such that X — Z is smooth.
Then there exists a proper map

T: X > X

such that:
(i) X is smooth;
(i) X -7 1(2) = X - Z;
(iii) 7=1(Z) is a divisor with normal crossings.

In the situation of ii) in Theorem [2.13} we apply Theorem to
X =Y(C), and to the union Z = |div(s)| U Y (C)*"¢ of the support

of div(s) and the singular locus of Y(C). Let # : Y — Y(C) be a
resolution of Y(C), d the dimension of Y(C) and w € A% (Y (C) — Z)
with compact support. Then we define

| toglisllw = [ log x*(s)1 7" () .
Y(C) Y

To see that the integral converges choose local coordinates 21,. .., 24 of
Y such that

7w (s) = 2l u,
with © a non-trivial section. Therefore

log ||7*(s)|| = nlog|z1| + «,
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with « of class C°°, and

d
=B][dzdz:,

with 8 of class C*°. Since

e 2w
/ log\z|dzd§=2/ / log(r) rdr df < +oo,
|z|<e 0 J0O
the integral converges.

3.2. — By induction on dim(Y’), the unicity of hz (Y') is clear.
Now we handle the case X = Spec (Ok) for a number field K . If ¥
is the set of complex embeddings of K we have

= H Spec (C
oY

To give L = (L,|| - ||) amounts to give a pair A = (A, || - ||o) where
A = L(X) is a projective Ox-module of rank one and, for any o € ¥,
| - |lo is a metric on A ® C ~ C such that

[ Foo (@) | Facoor = [|2][o -
If s € A, s # 0, we have

div(s Z n@

and

hp (X) =) nplog(Np) — > loglo(s)[|o ,
Y oceY

where Np = # (0/p).

Since

A/Oks =[](0p/9"™)
P
we get

S log(Np) = log # (A/Oxcs).
2
Lemma 3.2. — hg (X) does not depend on the choice of s.

Proof. — Let
d(s) =log# (A/Oks) — ZlogHa Mo -

ceY
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If s € A, s # 0, we have

with f € K*. Therefore

:va( log(Np) — Zlog”a
o

oeY

by the product formula. O

3.3. — Let us prove Theorem when Y has dimension one and Y
is horizontal, i.e. Y maps surjectively onto Spec (Z). We have then

Y ={y},
where y is a closed point in X @Zi) Q. The residue field K = k(y) is a
number field and

Y = Spec (R)

where R is an infegral ring with fraction field K. Denote by R the
integral closure of R in K (i.e. R = Of) and let

7:Y =Spec(R) =Y

be the projection. If
s € F(Y7 L) - {0}7

n*(s) € D(Y,n"L) — {0}

We shall prove that

(3) d(s) = d(7*(s)) -
By 2.2 this will imply that d(s) is independent of the choice of s. To
prove we first notice that
Y(C)=Y(C) = H Spec (C
oED
hence

(4) > loglslle = Y logl|m*(s)]|s -

oeY gEY
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Next we consider the commutative diagram

0
0 0 K"
0 R—2> L(Y) L/Rs—=0
0 R— 1 L/R5——>0
0 K’ R/R L/L K" 0
0 0 0

where § = n*(s) € L = n*(L).
By diagram chase (snake lemma) we get

#K,N:#K/.

On the other hand, for any prime ideal p in Ok, we have

+(2) -+ (),

since Ep =L, ® ﬁp and L and L are locally trivial. This implies

Rp
#K = # K"
and # K" = # K". Therefore
(5) #(L/Rs)=#(L/Rs).

The assertion follows from and .

11

When dim(Y) = 1 and Y is vertical i.e. its image in Spec(Z) is a
closed point of finite residue field k, Theorem is proved by consid-

ering the normalisation

Y —>Y.
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The proof is the same as in the case Y is horizontal, the product formula
being replaced by the equality

> val(f) [k(z) - k] =0
zeY
for any f € k(y)*. Indeed,

log# k(x) = [k(x) : k]log# k.

3.4. — Assume from now on that dim(Y) > 2, with ¥ C X a closed
integral subscheme, Y = {y}. If s € L,, s # 0,

div(s) = Z N Yo -

Lemma 3.3. — There exists t € L, such that, for every «, the re-
striction of t to Y, is neither zero nor infinity.
Proof. — Let Y4 = {ya}. The ring
R = hg o)
Us.t.Va, yo €U
is semi-local, i.e. it has finitely many maximal ideals .#,, o € A. Let

I= () Mo

acA
be the radical of R, and

A= li L(U).
Us.t.Va, ya €U
Note that, for every «,
R///a = Oya
and, for every pair a # (8
Mo+ Mz = R.
Since L is locally trivial

A®R/T=T[(A®Oy,)/ Mo =] Oy, /Mo = R/T.

(67

Denote by ¢t € A an element such that its class in A ® R/I maps to
1 € R/I by the above isomorphism. The module

M =A/Rt
is such that M = I'M. Therefore, by Nakayama’s lemma, M = 0. Since
A =Rt,
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for every a € A the restriction of ¢ to Y, does not vanish.

3.5. — Given s and t as above we write
div(s Z Na Yo

and
le Z mp Zﬁ y
with Zg # Y, for all 8 and «. Con81der

div(s) - div(t Znadlv (t|Ya)

and
div(t) - div(s ng div(s | Zg) .
B

These are cycles of codimension two in Y.

Proposition 3.4. — We have
div(s) - div(t) = div(t) - div(s).

The proof of Proposition will be given later.
Assume dim Y (C) = d, and define

) =g (@iv(s) ~ [ ogllsl (D).

By induction hypothesis we have

Zna (div(ty,))
- S ] o eltla@ = [ oglsha @

= hz(dlv( s) - dlv( ) — I(s,1)

where
D=3ra [, loglila@ + [ toglslad)’.

Proposition 3.5. — I(s,t) =1(t,s).
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From Proposition 3.4 and Proposition [3.5] we deduce that d(s) = d(t)
when div(s) and div(t) are transverse. When s and s’ are two sections
of L there exists a section ¢ such that div(s) and div(¢) (resp. div(s’)
and div(t)) are transverse. Therefore

d(s) = d(t) = d(s')
and Theorem follows.

3.6. — To prove Proposition [3.4] we write
div(s) - div(t) =Y nw [W]
w

with codimy (W) = 2. Let W = {w} and
R =O0y,.

Since Ly, =~ Oy, one can assume that ¢ (resp. s) corresponds to a € R
(resp. b € R). Since R is integral and a # 0, we know from the proof
of Lemma that, if A= R/a R,

dim(A) < dim(R) —-1=1.

Let b € A be the image of b and let  C A be a minimal prime ideal
of A. The inverse image o C R of p is a minimal nontrivial prime
ideal. Since a € p , the closed subset defined by p in X = Spec(R) is
contained in the image in X of the support of div(¢). Since div(t) and
div(s) are transverse, b does not belong to o, hence b does not belong
to p. According to Theorem 5.15, ii), in [10] chapter 2|, it follows that

dim(A/b) = dim(A4) — 1.

Since dim(A4) < 1 we get dim(A) = 1 and dim(A/b) = 0. This implies
that A/b has finite length. If (a,b) C R is the ideal spanned by a and
b, A/b = R/{a,b) and we shall prove that

nw = ((R/{a,b)).

3.7. — Let A be as above and let M be an A-module of finite type.
If x € A we have an exact sequence

(6) 0— Mlz] = M =25 M — M/zM — 0.
If M[x] and M /x M have finite length we define
e(x, M) =0(M/x M) —t(M[z]) € Z.
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Lemma 3.6. — i) M[b] and M/bM have finite length.
ii)
e(b,M)= > la,(My)e(b,A/p).

pCA
© minimal

i)

e(b, Afp) =L(A/(p+bA)).
Proof of i) and 1i). — Note that both sides in ii) are additive in M for
exact sequences. Therefore we can assume that M = A/q where ¢ is a
prime ideal. We distinguish two cases:

a) If ¢ is maximal, for any minimal prime ideal p we have M, = 0.
Therefore ¢(M) is finite. From Lemma and (6)) we conclude that

e(b,M)=0.

b) Assume ¢ = p is minimal. If ' # © is any prime ideal different from
p we have
My =0.
Therefore the right hand side reduces to one summand and i) holds.
Furthermore
Ca, (M) =1
and
e(b, M) = e(b, A/p)

so ii) is true.

To prove iii) we let M = A/p. We saw that b ¢ p and A/p is
integral, therefore M[b] = 0.

On the other hand

dim(A/(p + bA)) < dim(A4/p) —1=0.

Therefore B
e(b, A/p) = L(A/(p+ bA)).

3.8. — We shall apply Lemma to

M=A=R/aR.
Let p be a minimal prime in A and Y C |div(s)| the corresponding
component of the support of div(s). We have

{(Ay) = ordy (t)

and
L(A/(p +bA)) = ordw (t)y) -
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Lemma [3.6]iii) says that
e(b, A) = ny .
But b does not divide zero, so
e(b,A) = L(R/{a,b
Therefore ny = ¢(R/{a,b)). Since (a,b) =
div(s) - div(t) = ZnW[W}
w

This ends the proof of Proposition

)

b, a) we conclude that

)
{

div(t) - div(s) .

3.9. — We shall now prove Proposition For this we need some
more analytic preliminaries. Let X be a smooth complex compact man-
ifold of dimension d.

Definition 3.7. — A current T € DP4(X) is a C-linear form
T:APd9X) & C
which is continuous for the Schwartz’ topology.

Ezamples 3.8. — i) If n € L}Y(X) ® APY(X) is an integrable
Ce°(X)

differential, 7 defines a current by the formula

n(w) :/ nAw.
X
i) If Z = > nyZy is a cycle of codimension p on X, it defines a
(0%

Dirac current 0 € DPP(X) by the formula

0z(w) = Za:na /Za w,

where the integrals converge by Hironaka’s theorem.

We can derivate a current T' € DP¢(X) by the formula
OT(w) = (1P 1 T(dw)
and
0T (w) = (~1)PT 1 T(w).
By the Stokes formula we get a commutative diagram

DP4(X) i> Dp+1,q(X)
U U

APA(X) AN APHLa(X)
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and idem for 9 and d = 0 + 0.

Proposition 3.9 (Poincaré-Lelong). — Let L be an hermitian line
bundle on X and s a meromorphic section of L. Then we have the
following formula in DV'(X)

(7) dd*(—1log||s]|*) + baiv(s) = c1 (L)

3.10. — To prove Proposition 3.9)let Z = |div(s)| be the support of
the divisor of s. By Theorem there exists a birational resolution

X > X
where 771(Z) has local equation z; ...z, = 0. Therefore
T (s) = 21 ..zt
locally. If Proposition [3.9/holds for 7*(L) and 7*(s), by applying 7. we

get 1’ So we can assume that X = X. By additivity we can assume
that

) [lsll = ||
or

b) log [lsll = p € C(X). -
In case b) div(s) = 0 and (7)) is true by definition of ¢; (L) (Lemma/[2.11]).
In case a) we have to show that, for every differential form w with
compact support in U, and for € > 0 small enough,

—/ log|zl|2ddc(w):/ w.
U |z1]|=¢

But, by Stokes’ theorem, we have

— lim log |z1|? dd®(w)

e—0 |z1|>€

= lim log |z1|? d° w + lim dlog|z1|? d°w.
e—0 |z1|=¢ €=U J|z1 |2

The first summand vanishes and, applying Stokes’ theorem again,

lim dlog|z1|? d°w = — lim dlog |z |* dw
=0 J|z|>e =0 J|z|ze

= lim dlog |z1|* w — lim dd“log|z1|*w.
e—0 |Zl‘:6 e—0 |Zl|>€

The second summand vanishes and, taking polar coordinates z; =
r1 et we get
do
d°log |=|* = ——
27
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. d 6y
lim —w= w
e=0 J]zy|=e 2 21=0

3.11. — Coming back to Proposition [3.5 we consider the current
Tt = datv(s) log [|tl|* + log [|s]|* c1 (L) -

and

Then
I(s,t) = Tsy(er (D)) /2.
Proposition implies
Tyi = (c1(L) + dd°log||s|[*) log [|¢]|* + log ||s[|* e1 ()

at least formally: we have to make sense of the product of currents
(dd°log ||s]|?) log ||t||>. By Stokes’ theorem we have (at least formally)

dd*(Ty) Tp = d(d(Th) 1) + d°(T1) d(T>)
d(d(Th) Tz) + d°(T1 d Ty) — Ty d°d(T3) .
Since d°d = —dd® and d(cy (L)% ') = d°(c1 (L)1) = 0 we get
2(s,t) = Ty 1(c1(L)Y) = Ty o(cr (D)) = 21(2, s) .
O

3.12. The height of the projective space. — Let N > 1 be an
integer and P¥ the N-dimensional projective space over Z. The tauto-
logical line bundle O(1) on P¥ is a quotient of the trivial vector bundle
of rank N +1

OfFT = 0(1) = 0.
We equip ON'H with the trivial metric and O(1) with the quotient
metric.

Proposition 8.10. — The height of PN is

2k:l

m=
Proof. — Let s be the section of O(1) defined by the homogeneous
coordinate Xg. Then div(s) = PV~! and we get, from Theorem m

ii),

Mz

1
hg (PY) = 5

Il
i

1
m’
ed

—~

WPY) = hPYY) = [ ogls] dn
PN (C)



ARITHMETIC INTERSECTION 19

where dy is the probability measure on P (C) invariant under rotation
by U(N + 1). If dv is the probability measure on the sphere S*V+1
invariant under U(N + 1) we have

Lo toglislidn= [ log|Xoldv
PN (C) S2N+1

and Proposition follows from

Lemma 3.11. — The integral on the sphere is given by
N
/52N+l 10g|X0|dU: 5 WLZZI %

4. Arithmetic Chow groups

4.1. Definition. — Let X be a regular projective flat scheme over Z
and p > 0 an integer. Let ZP(X) be the group of codimension p cycles
on X.

Definition 4.1. — A Green current for Z € ZP(X) is a real current
g € DP~1P=1(X(C)) such that F* (g) = (—1)P~! g and

dd°g+d7 =w
for a smooth form w € APP(X(C)).

We let ZP(X) be the group generated by pairs (Z,g), Z € ZP(X), g
Green current for Z, with (Z1,g1) 4+ (Z2, g2) = (Z1 + Z2, 91 + g2).

Examples 4.2. — i) Let Y C X be a closed irreducible subset with
codimyx (Y) = p—1, and f € k(y) a rational function on Y. Define
log |f|> € DP~1P=1(X(C)) by the formula

(05| )(w) = [ log|fw
Y (C)

(which makes sense by Theorem . We may think of f as a ratio-
nal section of the trivial line bundle on Y. Therefore Poincaré-Lelong
formula (Proposition reads

dd®(—log | f[?) + daiv(s) = 0-
Hence the pair
div(f) = (div(f), —log|f|?)

is an element of Z7(X).
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ii) Given u € DP~2P~1(X(C)) and v € DP~1P=2(X(C)) we have
dd°(du+0v) =0,
s0 (0,0u +dv) € ZP(X).
~ We let RP(X) C ZP(X) be the subgroup generated by all elements
div(f) and (0,0u + dv).

Definition 4.3. — The arithmetic Chow group of codimension p of
X is the quotient

CH'(X) = Z"(X)/RP(X).
4.2. Example. — Let Pic(X) be the group of isometric isomorphism
classes of hermitian hngﬁundles on X, equipped with the tensor prod-
uct. If L = (L, | -||) € Pic(X) and if s # 0 is a rational section of L we
let
div(s) = (div(s), — log||s||*) € Z"(X)
(Proposition 3.9)), and we define
— =1
c1(L) e CH (X)

to be the class of d/l;(s) It does not depend on the choice of s: if s’ is
another section of L we have

with f € k(X). Therefore
div(s) — div(s) = div(f) € R"(X).
Proposition 4.4. — The map ¢ induces a group isomorphism
& : Pic(X) — CH (X).

Proof. — To prove Proposition we consider the commutative dia-
gram with exact rows

b

0 — > 0°(X(C)) = Pic(X) —> Pic(X) — =0
(X(C)) ~“~ CH' (X) — CH!(X) —>0

0——=(C>

where a(y) is the trivial line bundle on X equipped with the norm such

that [[1]| = exp(p), (L) = L, d'(¢) = (0, —log|¢|*) and ((Z,9) = Z.
Since ¢; is an isomorphism the same is true for ¢;. O
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4.3. Products
4.3.1. — Denote by éﬁp(X)Q the tensor product CH' (X) @ Q.
Z

Theorem 4.5. — When p > 0 and q > 0 there is an intersection
pairing
CH'(X)® CH'(X) — CH "(X)q
rTR®Y —> Ty
It turns @ (/]ITIP(X)Q into a commutative graded Q-algebra.
p=0

Let ¢ : CH'(X) — CHP(X) be the map sending the class of (Z, g)
to the class of Z, and let w : CH"(X) — APP(X) be the map sending
(Z,9g) to dd°g + 0. Then

((z-y) =C(x)C(y)
and
w(@ - y) = w(z)w(y).
4.3.2. — To sketch a proof of Theorem let y = (Y, gy) € ZP(X)
and z = (Z,9z) € Z9(X).

We first define a cycle YN Z. For this we assume that the restrictions
Yq and Zq of Y and Z to the generic fiber Xq meet properly, i.e. the
components of |Yq| N |Zq| have codimension p+ ¢ ( the moving lemma
allows one to make this hypothesis). It follows that there exists a well
defined intersection cycle Yq-Zq € ZP19(Xq), supported on the closed
set |Yq| N |Zq|. Let

CHY (X)) = ker(CHP(X) — CHP(X —Y))
be the Chow group with supports in Y, and CHf (X) the union of the

groups CHY.(X) when Y C X runs over all closed subsets with empty
generic fiber. There is a canonical map

CHY (X) — CHE (X) ® ZP(Xq).
One can define an intersection paring
CHY (X) ® CHY,(X) — CHY (X)q.

One method to do so ([8], [9], [L1]) is to interpret CHY. (X )q as the sub-
space of K} (X)q where the Adams operations 1* act by multiplication
by kP (k > 1), and to use the tensor product

KY(X)® K{(X) = K" (X).
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We let Y N Z € CHEM(X)q @ ZPT9(Xq)q be the image of
Y]®[Z] € CH{’/(X) ® CH‘%(X)
by the maps
CH}, (X) ® CHY,(X) — CH}, (X)q — CHE(X)q © Z7(X)q.
Next we define a Green current for Y N Z. For this we write
dd® gy + 0y = wy
and
dd® gz + 0z = wz,
and we let

gy * gz =0y gz + gy wz .

However gy dz, being a product of currents, is not well defined a priori.
But gy is defined up to the addition of a term d(u) + d(v) and one
shows that gy can be chosen to be an L'-form on X(C) — Y (C), with
restriction an L'-form 1 on Z(C) — Z(C)NY(C). We let gy 67 be the
current defined by 17 on Z(C) (see above Example [3.8):

gy 0z(w) = / nw.
Z(C)—(Z(C)nY(C))

To see that gy * gz is a Green current for Y N Z we proceed formally:
dd®(gy * 9z) = dd°(dy gz) + dd"(gy wz)
= dydd*(gz) + dd°(gy)wz
= dy(wz —0z) + (wy — d0y)wz
= wywgz — 0y oz
= wywz —0ynz-

We refer to [9] for the justification of this series of equalities.

4.4. Functoriality. — Let f: X — Y be a morphism.

Theorem 4.6. — For every p > 0 there is a morphism
o CH(Y) —» CH'(X).

If the restriction of f to X(C) is a smooth map of complex manifolds,
there are morphisms

f* : éﬁp(X) N @p—&—dim(Y)—dim(X) (Y) .
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Both f* and f. are compatible to ¢ and w. Furthermore
fr@-y)= (=) [ ()
and

felz- [ (y)) = f(2) -y

4.5. Heights and intersection numbers

4.5.1. — Let X be a projective regular flat scheme over Z and Y C X
a closed integral subscheme. We assume that X is equidimensional of
dimension d and codimx(Y) = p. One can then define as follows a
morphism

/ :@Idip(X) —R.
Y

First, assume that X = Y and that = € GI\-Id(X) is the class of
(Z,gz) where Z is a zero-cycle and gz € D¥~14=1(X(C)). The cycle
Z is then a finite sum

Z = Zna Yo
(e

where y, is a closed point with finite residue field k(y,), and there
exist currents u and v such that nz = gz + 0(u) + 0(v) is smooth. By

definition .
xT =) nglo k - =
/X za: o log # (K(ya)) = 3 o
In general we let gy be a Green current for Y in X(C), and y =

(Y,gy). If x € él\{dip(Y) we have x -y € GFId(X) and we define

1
/a::/:c-y—f w(x) gy .
Y X 2 Jx(c)

One checks that this number is independent on the choice of gy.

Theorem 4.7. — The height of Y is
(V) = / e,
Y

Proof. — To prove Theorem we shall check that the two properties
in Theorem hold true for the number [y ¢ (L)%P.
When p = d, Y is a closed point y and, if x is the class of (y,0) in

——d
CH (X), we have

[ @ =log# r(y) = hr(v).
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Assume dim(Y) > 0. Let gy be a Green current for ¥ and y =
(Y, gy). Choose a rational section s of L on Y, and an extension s of s
to X. Then

(L) = (div(3), — log |3]]*) -
If z = ¢;(L)4 P! we get, from the definition of [y,

(8) /Yaﬁfl(f):/xx a (L y—f/ w(xe (L)) gy

But
a(l)-y = z-(div(3| Y),~ log|ls]* * gv)
= - (div(s), —log||3]|? oy + c1(L) gy ).
If x =: ¢ (L)% P71 is the class of (Z, gz), we get
(9) @-&1(L)-y = (Z-div(s),w(@)(~log 5]y +c1(L) 9v) +927 Saiv(s)) -
Since

/X(Z - div(s), 97 daiv(s)) = / x

div(s)
we deduce from @ that
(10)

= 1 1 _
/ :c-cl(L)-y:/ r—— w(z) logHsHQ—i-f/ w(z)ei1(L) gy -
X div(s)  2Jy(c) 2 Jx(c)

Since w(z¢1 (L)) = w(z) c1(Le), (8) and imply that

o vdep—1 1 —\d—p—
[a@ir=[  a@irt-2 [ @i
% div(s) 2 )y
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