
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Available online at www.sciencedirect.com

Advances in Mathematics 245 (2013) 587–624
www.elsevier.com/locate/aim

Perfect forms, K-theory and the cohomology of
modular groups

Philippe Elbaz-Vincenta, Herbert Ganglb, Christophe Souléc,∗
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1. Introduction

Let N > 1 be an integer and let SLN (Z) be the modular group of integral matrices
with determinant one. Our goal is to compute its cohomology groups with trivial coefficients,
i.e. Hq

SLN (Z), Z). The case N = 2 is well-known and follows from the fact that SL2(Z) is
the amalgamated product of two finite cyclic groups ([29,7], II.7, Ex.3, p. 52). The case N = 3
was done in [31]: for any q > 0 the group Hq

SL3(Z), Z


is killed by 12. The case N = 4
has been studied by Lee and Szczarba in [19]: modulo 2, 3 and 5-torsion, the cohomology group
Hq

SL4(Z), Z


is trivial whenever q > 0, except that H3SL4(Z), Z


= Z. In Theorem 7.3
below, we solve the cases N = 5, 6 and 7.

For these calculations we follow the method of [19], i.e. we use the perfect forms of Voronoı̈.
Recall from [34,20] that a perfect form in N variables is a positive definite real quadratic form
h on RN which is uniquely determined (up to a scalar) by its set of integral minimal vectors.
Voronoı̈ proved in [34] that there are finitely many perfect forms of rank N , modulo the action
of SLN (Z). These are known for N 6 8 (see Section 2 below).

Voronoı̈ used perfect forms to define a cell decomposition of the space X∗

N of positive real
quadratic forms, the kernel of which is defined over Q. This cell decomposition (cf. Section 2)
is invariant under SLN (Z), hence it can be used to compute the equivariant homology of X∗

N
modulo its boundary. On the other hand, this equivariant homology turns out to be isomorphic
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to the groups Hq

SLN (Z), St N


, where St N is the Steinberg module (see [6] and Section 3.4

below). Finally, Borel–Serre duality [6] asserts that the homology H∗


SLN (Z), St N


is dual to

the cohomology H∗

SLN (Z), Z


(modulo torsion).

To perform these computations for N 6 7, we needed the help of a computer. The reason is
that the Voronoı̈ cell decomposition of X∗

N gets soon very complicated when N increases. For
instance, when N = 7, there are more than two million orbits of cells of dimension 18, modulo
the action of SLN (Z) (see Fig. 2 below). For this purpose, we have developed a C library [23],
which uses PARI [22] for some functionalities. The algorithms are based on exact methods. As
a result we get the full Voronoı̈ cell decomposition of the spaces X∗

N for N 6 7 (with either
GL N (Z) or SLN (Z) action). Those decompositions are summarized in the figures and tables
below. The computations were done on several computers using different processor architectures
(which is useful for checking the results) and for N = 7 the overall computational time was more
than a year.

The paper is organized as follows. In Section 2, we recall the Voronoı̈ theory of perfect forms.
In Section 3, we introduce a complex of abelian groups that we call the “Voronoı̈ complex”
which computes the homology groups Hq


SLN (Z), St N


. In Section 4, we explain how to get an

explicit description of the Voronoı̈ complex in rank N = 5, 6 or 7, starting from the description
of perfect forms available in the literature (especially in the work of Jaquet [15]). In Figs. 1
and 2 we display the rank of the groups in the Voronoı̈ complex and in Tables 1–5 we give the
elementary divisors of its differentials. The homology of the Voronoı̈ complex (hence the groups
Hq(SLN (Z), St N )) follows from this. It is given in Theorem 4.3.

We found two methods to test whether our computations are correct. First, checking that
the virtual Euler characteristic of SLN (Z) vanishes leads to a mass formula for the orders of
the stabilizers of the cells of X∗

N (cf. Section 4.5). Second, the identity dn−1 ◦ dn = 0 for the
differentials in the Voronoı̈ complex is a non-trivial equality when these differentials are written
as explicit (large) matrices.

In Section 5 we give an explicit formula for the top homology group of the Voronoı̈ complex
(Theorem 5.1). In Section 6 we prove that the Voronoı̈ complex of GL5(Z) is a direct factor of
the Voronoı̈ complex of GL6(Z) shifted by one. In Section 7 we explain how to compute the
cohomology of SLN (Z) and GL N (Z) (modulo torsion) from our results on the homology of the
Voronoı̈ complex in Section 4. Our main result is stated in Theorem 7.3. In Section 8 we compute
some homology groups of GL N (Z) with coefficients the Steinberg module. In Section 9, we use
these results to get some information on Km(Z), when m = 5, 6 and 7. Some of these results had
already been announced in [10].

Notation. For any positive integer n we let Sn be the class of finite abelian groups the order of
which has only prime factors less than or equal to n.

2. Voronoı̈’s reduction theory

2.1. Perfect forms

Let N > 2 be an integer. We let CN be the set of positive definite real quadratic forms in N
variables. Given h ∈ CN , let m(h) be the finite set of minimal vectors of h, i.e. vectors v ∈ ZN ,
v ≠ 0, such that h(v) is minimal. A form h is called perfect when m(h) determines h up to
scalar: if h′

∈ CN is such that m(h′) = m(h), then h′ is proportional to h.
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Example 2.1. The form h(x, y) = x2
+ y2 has minimum 1 and precisely 4 minimal vectors

±(1, 0) and ±(0, 1). This form is not perfect, because there is an infinite number of positive
definite quadratic forms having these minimal vectors, namely the forms h(x, y) = x2

+axy+y2

where a is a non-negative real number less than 1. By contrast, the form h(x, y) = x2
+ xy + y2

has also minimum 1 and has exactly 6 minimal vectors, viz. the ones above and ±(1, −1). This
form is perfect, the associated lattice is the “honeycomb lattice”.

Denote by C∗

N the set of non-negative real quadratic forms on RN the kernel of which
is spanned by a proper linear subspace of QN , by X∗

N the quotient of C∗

N by positive real
homotheties, and by π : C∗

N → X∗

N the projection. Let X N = π(CN ) and ∂ X∗

N = X∗

N − X N . Let
Γ be either GL N (Z) or SLN (Z). The group Γ acts on C∗

N and X∗

N on the right by the formula

h · γ = γ t hγ, γ ∈ Γ , h ∈ C∗

N ,

where h is viewed as a symmetric matrix and γ t is the transpose of the matrix γ . Voronoı̈ proved
that there are only finitely many perfect forms modulo the action of Γ and multiplication by
positive real numbers ([34], Thm. p.110).

The following table gives the current state of the art on the enumeration of perfect forms.

rank 1 2 3 4 5 6 7 8 9
#classes 1 1 1 2 3 7 33 10916 > 500000

The classification of perfect forms of rank 8 was achieved by Dutour, Schürmann and
Vallentin in 2005 [9,28]. They have also shown that in rank 9 there are at least 500000 classes of
perfect forms. The corresponding classification for rank 7 was completed by Jaquet in 1991 [15],
for rank 6 by Barnes [2], for ranks 5 and 4 by Korkine and Zolotarev [16,17], for dimension 3 by
Gauss [13] and for dimension 2 by Lagrange [18]. We refer the reader to the book of Martinet [20]
for more details on the results up to rank 7.

2.2. A cell complex

Given v ∈ ZN
− {0} we let v̂ ∈ C∗

N be the form defined by

v̂(x) = (v | x)2, x ∈ RN ,

where (v | x) is the scalar product of v and x . The convex hull in X∗

N of a finite subset B ⊂ ZN
−

{0} is the subset of X∗

N which is the image under π of the quadratic forms


j λ j v̂ j ∈ C∗

N , where
v j ∈ B and λ j > 0. For any perfect form h, we let σ(h) ⊂ X∗

N be the convex hull of the set m(h)

of its minimal vectors. Voronoı̈ proved in [34], Sections 8–15, that the cells σ(h) and their inter-
sections, as h runs over all perfect forms, define a cell decomposition of X∗

N , which is invariant
under the action of Γ . We endow X∗

N with the corresponding CW -topology. If τ is a closed cell
in X∗

N and h a perfect form with τ ⊂ σ(h), we let m(τ ) be the set of vectors v in m(h) such that
v̂ lies in τ . Any closed cell τ is the convex hull of m(τ ), and for any two closed cells τ , τ ′ in X∗

N
we have m(τ ) ∩ m(τ ′) = m(τ ∩ τ ′).

3. The Voronoı̈ complex

3.1. An explicit differential for the Voronoi complex

Let d(N ) = N (N + 1)/2 − 1 be the dimension of X∗

N and n 6 d(N ) a natural integer.
We denote by Σ ⋆

n = Σ ⋆
n (Γ ) a set of representatives, modulo the action of Γ , of those cells of
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dimension n in X∗

N which meet X N , and by Σn = Σn(Γ ) ⊂ Σ ⋆
n (Γ ) the cells σ for which any

element of the stabilizer Γσ of σ in Γ preserves the orientation. Let Vn be the free abelian group
generated by Σn . We define as follows a map

dn : Vn → Vn−1.

For each closed cell σ in X∗

N we fix an orientation of σ , i.e. an orientation of the real vector
space R(σ ) of symmetric matrices spanned by the forms v̂ with v ∈ m(σ ). Let σ ∈ Σn and let
τ ′ be a face of σ which is equivalent under Γ to an element in Σn−1 (i.e. τ ′ neither lies on the
boundary nor has elements in its stabilizer reversing the orientation). Given a positive basis B ′ of
R(τ ′) we get a basis B of R(σ ) ⊃ R(τ ′) by appending to B ′ a vector v̂, where v ∈ m(σ )−m(τ ′).
We let ε(τ ′, σ ) = ±1 be the sign of the orientation of B in the oriented vector space R(σ ) (this
sign does not depend on the choice of v).

Next, let τ ∈ Σn−1 be the (unique) cell equivalent to τ ′ and let γ ∈ Γ be such that τ ′
= τ · γ .

We define η(τ, τ ′) = 1 (resp. η(τ, τ ′) = −1) when γ is compatible (resp. incompatible) with
the chosen orientations of R(τ ) and R(τ ′).

Finally we define

dn(σ ) =


τ∈Σn−1


τ ′

η(τ, τ ′)ε(τ ′, σ )τ, (1)

where τ ′ runs through the set of faces of σ which are equivalent to τ .

3.2. A spectral sequence

According to [7], VII.7, there is a spectral sequence Er
pq converging to the equivariant

homology groups HΓ
p+q(X∗

N , ∂ X∗

N ; Z) of the homology pair (X∗

N , ∂ X∗

N ), and such that

E1
p,q =


σ∈Σ ⋆

p

Hq(Γσ , Zσ ),

where Zσ is the orientation module of the cell σ and, as above, Σ ⋆
p is a set of representatives,

modulo Γ , of the p-cells σ in X∗

N which meet X N . Notice that the action of Γσ on Zσ is given by
η described above. Since σ meets X N , its stabilizer Γσ is finite and, by Lemma 7.1 in Section 7
below, the order of Γσ is divisible only by primes p 6 N + 1. Therefore, when q is positive, the
group Hq(Γσ , Zσ ) lies in SN+1.

When Γσ happens to contain an element which changes the orientation of σ , the group
H0(Γσ , Zσ ) is killed by 2, otherwise H0(Γσ , Zσ ) ∼= Zσ . Therefore, modulo S2, we have

E1
n 0 =


σ∈Σn

Zσ ,

and the choice of an orientation for each cell σ gives an isomorphism between E1
n 0 and Vn .

3.3. Comparison

We claim that the differential

d1
n : E1

n 0 → E1
n−1,0
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coincides, up to sign, with the map dn defined in Section 3.1. According to [7], VII, Prop. (8.1),
the differential d1

n can be described as follows.
Let σ ∈ Σ ⋆

n and let τ ′ be a face of σ . Consider the group Γστ ′ = Γσ ∩ Γτ ′ and denote by

tστ ′ : H∗(Γσ , Zσ ) → H∗(Γστ ′ , Zσ )

the transfer map. Next, let

uστ ′ : H∗(Γστ ′ , Zσ ) → H∗(Γτ ′ , Zτ ′)

be the map induced by the natural map Zσ → Zτ ′ , together with the inclusion Γστ ′ ⊂ Γτ ′ .
Finally, let τ ∈ Σ ⋆

n−1 be the representative of the Γ -orbit of τ ′, let γ ∈ Γ be such that τ ′
= τ · γ ,

and let

vτ ′τ : H∗(Γτ ′ , Zτ ′) → H∗(Γτ , Zτ )

be the isomorphism induced by γ . Then the restriction of d1
n to H∗(Γσ , Zσ ) is equal, up to sign,

to the sum
τ ′

vτ ′τ uστ ′ tστ ′ , (2)

where τ ′ runs over a set of representatives of faces of σ modulo Γσ .
To compare d1

n with dn we first note that, when τ ∈ Σn−1,

vτ ′τ : H0(Γτ ′ , Zτ ′) = Z → H0(Γτ , Zτ ) = Z

is the multiplication by η(τ, τ ′), as defined in Section 3.1. Next, when σ ∈ Σn , the map

uστ ′ : H0(Γστ ′ , Zσ ) = Zσ = Z → H0(Γτ ′ , Zτ ′) = Z

is the multiplication by ε(τ ′, σ ), up to a sign depending on n only. Finally, the transfer map

tστ ′ : H0(Γσ , Zσ ) = Z → H0(Γστ ′ , Zσ ) = Z

is the multiplication by [Γσ : Γστ ′ ]. Multiplying the sum (2) by this number amounts to the same
as taking the sum over all faces of σ as in (1). This proves that dn coincides, up to sign, with d1

n
on E1

n 0 = Vn . �
In particular, we get that dn−1 ◦ dn = 0. Note that this identity will give us a non-trivial test

of our explicit computations of the complex.

Notation. The resulting complex (V•, d•) will be denoted by VorΓ , and we call it the Voronoı̈
complex.

3.4. The Steinberg module

Let TN be the spherical Tits building of SLN over Q, i.e. the simplicial set defined by the
ordered set of non-zero proper linear subspaces of QN . The reduced homology H̃q(TN , Z) of TN
with integral coefficients is zero except when q = N − 2, in which case

H̃N−2(TN , Z) = StN

is by definition the Steinberg module [6]. According to [30], Prop. 1, the relative homology
groups Hq(X∗

N , ∂ X∗

N ; Z) are zero except when q = N − 1, and

HN−1(X∗

N , ∂ X∗

N ; Z) = StN .
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From this it follows that, for all m ∈ N,

HΓ
m (X∗

N , ∂ X∗

N ; Z) = Hm−N+1(Γ , StN )

(see e.g. [30], Section 3.1). Combining this equality with the previous sections we conclude that,
modulo SN+1,

Hm−N+1(Γ , StN ) = Hm(VorΓ ). (3)

4. The Voronoı̈ complex in dimensions 5, 6 and 7

In this section, we explain how to compute the Voronoı̈ complexes of rank N 6 7.

4.1. Checking the equivalence of cells

As a preliminary step, we develop an effective method to check whether two cells σ and σ ′

of the same dimension are equivalent under the action of Γ . The cell σ (resp. σ ′) is described by
its set of minimal vectors m(σ ) (resp. m(σ ′)). We let b (resp. b′) be the sum of the forms v̂ with
v ∈ m(σ ) (resp. m(σ ′)). If σ and σ ′ are equivalent under the action of Γ the same is true for b
and b′, and the converse holds true since two cells of the same dimension are equal when they
have an interior point in common.

To compare b and b′ we first check whether or not they have the same determinant. In case they
do, we let M (resp. M ′) be the set of numbers b(x) with x ∈ m(σ ) (resp. b′(x) with x ∈ m(σ ′)).
If b and b′ are equivalent, then the sets M and M ′ must be equal.

Finally, if M = M ′ we check if b and b′ are equivalent by applying an algorithm of Plesken
and Souvignier [24] (based on an implementation of Souvignier).

4.2. Finding generators of the Voronoı̈ complex

In order to compute Σn (and Σ ⋆
n ), we proceed as follows. Fix N 6 7. Let P be a set

of representatives of the perfect forms of rank N . A choice of P is provided by Jaquet [15].
Furthermore, for each h ∈ P , Jaquet gives the list m(h) of its minimal vectors, and the list of all
perfect forms h′γ (one for each orbit under Γσ(h)), where h′

∈ P and γ ∈ Γ , such that σ(h) and
σ(h′)γ share a face of codimension one. This provides a complete list C1

h of representatives of
codimension one faces in σ(h).

From this, one deduces the full list F1
h of faces of codimension one in σ(h) as follows: first

list all the elements in the automorphism group Γσ(h); this can be obtained by using a second
procedure implemented by Souvignier [24] which gives generators for Γσ(h). We represent the
latter generators as elements in the symmetric group SM , where M is the cardinality of m(h),
acting on the set m(h) of minimal vectors. Using those generators, we let GAP [12] list all the
elements of Γσ(h), viewed as elements of the symmetric group above.

The next step is to create a shortlist F2
h of codimension 2 facets of σ(h) by intersecting all the

translates under SM of codimension 1 facets with each member of C1
h and only keeping those

intersections with the correct rank (= d(N ) − 2). The resulting shortlist is reasonably small and
we apply the procedure of Section 4.1 to reduce the shortlist to a set of representatives C2

h of
codimension 2 facets.

We then proceed by induction on the codimension to define a list F p
h of cells of codimension

p > 2 in σ(h). Given F p
h , we let C p

h ⊂ F p
h be a set of representatives for the action of Γ . We

then let F p+1
h be the set of cells ϕ ∩ τ , with ϕ ∈ F1

h , and τ ∈ C p
h . As a result, we get directly
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Fig. 1. Cardinality of Σn and Σ⋆
n for N = 5, 6 (empty slots denote zero).

Fig. 2. Cardinality of Σn and Σ⋆
n for GL7(Z).

the cellular structure of the quotient space (X∗

N , ∂ X∗

N )/Γ without computing the full cellular
structure of X∗

N which is not required (and of greater computational complexity).
Next, we let Σ ⋆

n be a system of representatives modulo Γ in the union of the sets Cd(N )−n
h , h ∈

P . We then compute generators of the stabilizer of each cell in Σ ⋆
n with the help of another

algorithm developed by Plesken and Souvignier in [24], and we check whether all generators
preserve the orientation of the cell. This gives us the set Σn as the set of those cells which pass
that check.

Proposition 4.1. The cardinality of Σn and Σ ⋆
n is displayed in Fig. 1 for rank N = 5, 6 and

in Fig. 2 for rank N = 7.

Remark 4.2. The first line in Fig. 1 has already been computed by Batut (cf. [3], p. 409,
second column of Table 2). The running time for the computation of the cell structure (with the
differentials and the checking) for N = 7 using [23] was 18 months on several servers including
quadri-processors computers, while for N = 6 this can be done in a few seconds.

4.3. The differential

The next step is to compute the differentials of the Voronoı̈ complex by using formula (1)
above. In Table 3, we give information on the differentials in the Voronoı̈ complex of rank 6.
For instance the second line, denoted by d11, is about the differential from V11 to V10. In the
bases Σ11 and Σ10, this differential is given by a matrix A with Ω = 513 non-zero entries, with
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Table 1
Results on the rank and elementary divisors of the differentials
for SL4(Z).

A Ω n m Rank ker Elementary divisors

d4 0 1 0 0 1
d5 1 1 1 1 0 1(1)
d6 0 1 1 0 1
d7 0 0 1 0 0
d8 0 1 0 0 1
d9 2 2 1 1 1 2(1)

Table 2
Results on the rank and elementary divisors of the differentials for GL5(Z).

A Ω n m Rank ker Elementary divisors

d8 0 1 0 0 1
d9 2 7 1 1 6 1(1)
d10 18 6 7 5 1 1(4), 2(1)
d11 5 1 6 1 0 1(1)
d12 0 0 1 0 0
d13 0 2 0 0 2
d14 4 3 2 2 1 5(1), 15(1)

Table 3
Results on the rank and elementary divisors of the differentials for GL6(Z).

A Ω n m Rank ker Elementary divisors

d10 17 46 3 3 43 1(3)
d11 513 163 46 42 121 1(40), 2(2)
d12 2053 340 163 120 220 1(120)
d13 4349 544 340 220 324 1(217), 2(3)
d14 6153 636 544 324 312 1(320), 2(1), 6(2), 12(1)
d15 5378 469 636 312 157 1(307), 2(3), 60(2)
d16 2526 200 469 156 44 1(156)
d17 597 49 200 44 5 1(41), 3(1), 6(1), 36(1)
d18 43 5 49 5 0 1(5)

m = 46 = card(Σ10) rows and n = 163 = card(Σ11) columns. The rank of A is 42, and the rank
of its kernel is 121. The elementary divisors of A are 1 (multiplicity 40) and 2 (multiplicity 2).

The cases of SL4(Z), GL5(Z) and SL6(Z) are treated in Table 1, Table 2 and Table 4,
respectively.

Our results on the differentials in rank 7 are shown in Table 5. While the matrices are sparse,
they are not sparse enough for efficient computation. They have a poor conditioning with some
dense columns or rows (this is a consequence of the fact that the complex is not simplicial and
non-simplicial cells can have a large number of non-trivial intersections with the faces). We have
obtained full information on the rank of the differentials. For the computation of the elementary
divisors complete results have been obtained in the case of matrices of dn except for n = 19.
For this case, the computational cost is currently too high. The computations have required a full
year on a parallel computer (including checking). For n = 19 alone, the computational cost is
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Table 4
Results on the rank and elementary divisors of the differentials for SL6(Z).

A Ω n m Rank ker Elementary divisors

d7 12 10 3 3 7 1(3)
d8 8 18 10 7 11 1(7)
d9 140 43 18 11 32 1(11)
d10 613 169 43 32 137 1(32)
d11 2 952 460 169 136 324 1(129), 2(6), 6(1)
d12 7 614 815 460 323 492 1(318), 2(3), 4(2)
d13 12 395 1132 815 491 641 1(491)
d14 14 966 1270 1132 641 629 1(637), 3(3), 12(1)
d15 12 714 970 1270 629 341 1(621), 2(5), 6(1), 60(2)
d16 6 491 434 970 339 95 1(338), 2(1)
d17 1 832 114 434 95 19 1(92), 3(2), 18(1)
d18 257 27 114 19 8 1(17), 2(2)
d19 62 14 27 8 6 1(7), 10(1)
d20 28 7 14 6 1 1(1), 3(4), 504(1)

Table 5
Results on the rank and elementary divisors of the differentials for GL7(Z), middle entries are cited from the thesis of
A. Urbanska [33]. The elementary divisors for d19 were computed by B. Boyer and J.-G. Dumas using refinements of
the techniques described in [8].

A Ω n m Rank ker Elementary divisors

d10 8 60 1 1 59 1
d11 1 513 1 019 60 59 960 1 (59)
d12 37 519 8 899 1 019 960 7 939 1 (958), 2 (2)
d13 356 232 47 271 8 899 7 938 39 333 1 (7937), 2 (1)
d14 1 831 183 171 375 47 271 39 332 132 043 1 (39300), 2 (29), 4 (3)
d15 6 080 381 460 261 171 375 132 043 328 218 1(131993), 2(46), 12 (4)
d16 14 488 881 955 128 460 261 328 218 626 910 1 (328183), 2 (33), 4(1), 12(1)
d17 25 978 098 1 548 650 955 128 626 910 921 740 1 (626857), 2(52), 4 (1)
d18 35 590 540 1 955 309 1 548 650 921 740 1 033 569 1 (921637), 2 (100), 42 (2), 252 (1)
d19 37 322 725 1 911 130 1 955 309 1 033 568 877 562 1 (1033458), 2 (110)
d20 29 893 084 1 437 547 1 911 130 877 562 559 985 1 (877526), 2 (33), 6 (3)
d21 18 174 775 822 922 1 437 547 559 985 262 937 1 (559895), 2 (88), 6 (2)
d22 8 251 000 349 443 822 922 262 937 86 506 1 (262835), 2 (98), 4 (3), 12 (1)
d23 2 695 430 105 054 349 443 86 505 18 549 1 (86488), 2 (12), 6 (3), 42 (1), 84 (1)
d24 593 892 21 074 105 054 18 549 2 525 1 (18544), 2 (4), 4 (1)
d25 81 671 2 798 21 074 2 525 273 1 (2507), 2 (18)
d26 7 412 305 2 798 273 32 1 (258), 2 (7), 6 (7), 36 (1)
d27 600 33 305 32 1 1 (23), 2 (4), 28 (3), 168 (1), 2016 (1)

equivalent to 3 CPU-years on a current processor. See [8,33] for a detailed description of the
computations.

4.4. The homology of the Voronoı̈ complexes

From the computation of the differentials, we can determine the homology of the Voronoı̈
complex. Recall that if we have a complex of free abelian groups

· · · → Zα f
→ Zβ g

→ Zγ
→ · · ·
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with f and g represented by matrices, then the homology is

ker(g)/Im( f ) ∼= Z/d1Z ⊕ · · · ⊕ Z/dℓZ ⊕ Zβ−rank( f )−rank(g),

where d1, . . . , dℓ are the elementary divisors of the matrix of f .
We deduce from Tables 1–5 the following result on the homology of the Voronoı̈ complex.

Theorem 4.3. The non-trivial homology of the Voronoı̈ complexes associated to GL N (Z) with
N = 5, 6 modulo S5 is given by:

Hn(VorGL5(Z)) ∼= Z, if n = 9, 14,

Hn(VorGL6(Z)) ∼= Z, if n = 10, 11, 15,

while in the case SL6(Z) we get, modulo S7, that

Hn(VorSL6(Z)) ∼=


Z, if n = 10, 11, 12, 20,

Z2, if n = 15.

Furthermore, for N = 7 we get, modulo S7, that

Hn(VorGL7(Z)) ∼=


Z if n = 12, 13, 18, 22, 27,

0 otherwise.

Notice that, if N is odd, SLN (Z) and GL N (Z) have the same homology modulo S2. Notice also
that, for simplicity, in the statement of the theorem we did not use the full information given by
the list of elementary divisors in Tables 1–5.

4.5. Mass formulas for the Voronoı̈ complex

Let χ(SLN (Z)) be the virtual Euler characteristic of the group SLN (Z). It can be computed in
two ways. First, the mass formula in [7] gives

χ(SLN (Z)) =


σ∈E

(−1)dim(σ ) 1
|Γσ |

=

d(N )
n=N−1

(−1)n


σ∈Σ ⋆
n

1
|Γσ |

,

where E is a family of representatives of the cells of the Voronoı̈ complex of rank N modulo the
action of SLN (Z), and Γσ is the stabilizer of σ in SLN (Z). Second, by a result of Harder [14],
we know that

χ(SLN (Z)) =

N
k=2

ζ(1 − k),

hence χ(SLN (Z)) = 0 if N > 3.
A non-trivial check of our computations is to test the compatibility of these two formulas, and

the corresponding check for rank N = 5 had been performed by Batut (cf. [3], where a proof of
an analogous statement, for any N , but instead pertaining to well-rounded forms, which in our
case are precisely the ones in Σ ⋆

• , is attributed to Bavard [4]).
If we add together the terms 1

|Γσ |
for cells σ of the same dimension to a single term, then we

get for N = 6, starting with the top dimension,

45047
1451520

−
10633
11520

+
6425
576

−
12541
192
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+
7438673

34560
−

3841271
8640

+
9238
15

−
266865

448
+

14205227
34560

−
14081573

69120

+
830183
11520

−
205189
11520

+
61213
20736

−
1169
3840

+
17

1008
−

1
2880

= χ(SL6(Z)) = 0.

For N = 7 we obtain similarly

−
290879
107520

+
13994381
103680

−
31815503

13824
+

1362329683
69120

−
6986939119

69120

+
7902421301

23040
−

340039739981
414720

+
174175928729

120960
−

132108094091
69120

+
27016703389

13824
−

13463035571
8640

+
14977461287

15360
−

22103821919
46080

+
8522164169

46080
−

17886026827
322560

+
1764066533

138240
−

101908213
46080

+
12961451

46080

−
10538393

414720
+

162617
103680

−
721

11520
+

43
32256

= χ (SL7(Z)) = 0.

5. Explicit homology classes

5.1. Equivariant fundamental classes

Theorem 5.1. The top homology group Hd(N )


VorSLN (Z)⊗Q


has dimension 1. When N = 4, 5,

6 or 7, it is represented by the cycle
σ

1
|Γσ |

[σ ],

where σ runs through the perfect forms of rank N and the orientation of each cell is inherited
from the one of X N /Γ .

Proof. The first assertion is clear since, by (3) above and (6) below we have

Hd(N )


VorSLN (Z) ⊗ Q


∼= Hd(N )−N+1


SLN (Z), St N ⊗ Q


∼= H0(SLN (Z), Q) ∼= Q.

In order to prove the second claim, write the differential between codimension 0 and
codimension 1 cells as a matrix A of size n1 × n0, with ni = |Σd(N )−i (Γ )| denoting the number
of codimension i cells in the Voronoı̈ cell complex. It can be checked that in each of the n1 rows
of A there are precisely two non-zero entries. Moreover, the absolute value of the (i, j)-th entry
of A is equal to the quotient |Γσ j |/|Γτi | (an integer), where σ j ∈ Σd(N )(Γ ) and τi ∈ Σd(N )−1(Γ ).
Finally, one can multiply some columns by −1 (which amounts to changing the orientation of
the corresponding codimension 0 cell) in such a way that each row has exactly one positive and
one negative entry. �

Example 5.2. For N = 5 the differential matrix d14 (cf. Table 2) between codimension 0 and
codimension 1 is given by

40 0 −15
40 −15 0


,
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so the kernel is generated by (3, 8, 8) = 11520
 1

3840 , 1
1440 , 1

1440


, while the orders of the three

automorphism groups are 3840, 1440 and 1440, respectively.

Example 5.3. Similarly, the differential d20 : V20 → V19 for rank N = 6 (cf. Table 3) is
represented by the matrix

0 0 96 0 0 0 −21
3240 0 0 0 −21 0 0

0 0 1440 0 0 −3 0
0 0 0 18 0 −6 0

−12960 0 0 0 0 12 0
−3240 0 0 9 0 0 0

0 −360 0 1 0 0 0
−4320 0 0 12 0 0 0

0 0 960 −6 0 0 0
0 −216 96 0 0 0 0

−45 45 0 0 0 0 0
−2592 0 1152 0 0 0 0
−3240 0 1440 0 0 0 0
−432 0 192 0 0 0 0



.

Its kernel is generated by

(28, 28, 63, 10080, 4320, 30240, 288)

while the orders of the corresponding automorphism groups are, respectively,

103680, 103680, 46080, 288, 672, 96, 10080,

and we note that 28 · 103680 = 63 · 46080 = 10080 · 288 = 4320 · 672 = 30240 · 96.

5.2. An explicit non-trivial homology class for rank N = 5

The integer kernel of the 7 × 1-matrix of d9 for GL5(Z), given by (0, 0, 0, 0, −1, 0, 1), is
spanned by the image of d10 (the latter being given, up to permutation of rows and columns,
by the transpose of the matrix (4) below), together with (2, 1, −1, −1, −1, 1, 1). The latter
vector therefore provides the coefficients of a non-trivial homology class in H9


VorGL5(Z)


∼=

H5(GL5(Z), Z) (modulo S5), given as a linear combination of cells (in terms of minimal vectors)
as follows:

2ϕ

[e1, e2, ē23, ē13, e3, ē34, ē14, ē45, ē35, ē25]


+ ϕ


[e1, e2, e3, e4, e24, e34, e5, e15, e35, e1245]


− ϕ


[e1, ē12, e2, ē23, e3, ē34, ē14, ē45, ē35, ē25]


− ϕ


[e1, e2, e3, e4, e14, e24, e34, e5, e35, e1245]


− ϕ


[e1, ē12, e2, ē13, e3, ē14, e4, u, ē45, v]


+ ϕ


[e1, e2, e3, e14, e24, e34, e5, e15, e35, e1245]


+ ϕ


[e1, e2, e3, e4, e24, e34, e25, e35, e1245, e1345]


where we denote the standard basis vectors in R5 by ei , and we put ei j = ei + e j , ēi j = −ei + e j
and ei jkℓ = ei + e j + ek + eℓ, as well as u = e5 − e1 − e4 and v = e5 − e2 − e3.
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6. Splitting off the Voronoı̈ complex VorN from VorN+1 for small N

In this section, we will be concerned with Γ = GL N (Z) only and we adopt the notation
Σn(N ) = Σn(GL N (Z)) for the sets of representatives.

6.1. Inflating well-rounded forms

Let A be the symmetric matrix attached to a form h in C∗

N . Suppose the cell associated to
A is well-rounded, i.e., its set of minimal vectors S = S(A) spans the underlying vector space
RN . Then we can associate to it a form h̃ with matrix Ã =


A 0
0 m(A)


in C∗

N+1, where m(A)

denotes the minimum positive value of A on ZN . The set S̃ of minimal vectors of Ã contains the
ones from S, each vector being extended by an (N + 1)-th coordinate 0. Furthermore, S̃ contains
the additional minimal vectors ±eN+1 = ±(0, . . . , 0, 1), and hence it spans RN+1, i.e., Ã is
well-rounded as well. In the following, we will call forms like Ã as well as their associated cells
inflated.

The stabilizer of h in GL N (Z) thereby embeds into the one of h̃ inside GLN+1(Z) (at least
modulo ±Id) under the usual stabilization map.

Note that, by iterating the same argument r times, A induces a well-rounded form also in
Σ ⋆

• (N + r) which, for r > 2, does not belong to Σ•(N + r) since there is an obvious orientation-
reversing automorphism of the inflated form, given by the permutation which swaps the last two
coordinates.

6.2. The case N = 5

Theorem 6.1. The complex VorGL5(Z) is isomorphic to a direct factor of VorGL6(Z), with degrees
shifted by 1.

Proof. The Voronoı̈ complex of GL5(Z) can be represented by the following weighted graph
with levels

0 : P1
5

−15 >>
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> P2
5

40��
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��
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1 : σ 1
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jjjjjjjjjjjjjjjjjjjjjjjjjjjjj
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��
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��
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Here the nodes in line j (marked on the left) represent the elements in Σd(N )− j (5), i.e. we
have 3, 2, 0, 1, 6, 7 and 1 cells in codimensions 0, 1, 2, 3, 4, 5 and 6, respectively, and
arrows show incidences of those cells, while numbers attached to arrows give the corresponding
incidence multiplicities. Since entering the multiplicities relating codimensions 4 and 5 would
make the graph rather unwieldy, we give them instead in terms of the matrix corresponding to the
differential d10 connecting dimension 10 to 9 (columns refer, in this order, to σ 1

5 , . . . , σ 7
5 , while

rows refer to σ 1
4 , . . . , σ 6

4 )
−5 0 −5 0 −1 0 0
0 −2 0 2 −2 0 0
2 −2 1 0 0 0 0
0 0 2 1 0 0 0

−1 −2 1 0 1 0 0
0 4 0 0 0 −1 −1

 . (4)

As is apparent from the picture, there are two connected components in that graph.
The corresponding graph for GL6(Z) has three connected components, two of which are
“isomorphic” (as weighted graphs with levels) to the one above for GL5(Z), except for a shift
in codimension by 5 (e.g. codimension 0 cells in Σ•(5) correspond to codimension 5 cells in
Σ•(6)), i.e. a shift in dimension by 1.

In fact, it is possible, after appropriate coordinate transformations, to identify the minimal
vectors (viewed up to sign) of any given cell in the two inflated components of Σ•(6) alluded
to above with the minimal vectors of another cell which is inflated from one in Σ•(5), except
precisely one minimal vector (up to sign) which is fixed under the stabilizer of the cell.

Let us illustrate this correspondence for the top-dimensional cell σ of the perfect form
P1

5 ∈ Σ14(5), also denoted by P(5, 1) in [15] and D5 in [19], with the list m(P1
5 ) of minimal

vectors given already at the end of Section 5.2.
Using the algorithm described in Section 4.1, the corresponding inflated cell σ in Σ15(6) can

be found to be, in terms of its 21 minimal vectors of the perfect form P1
6 in Jaquet’s notation

(see [15] and Section 5.2 for the full list m(P1
6 )),

v1 v2 v4 v5 v10 v12 v13 v14 v16 v17 v18 v22 v24 v25 v26 v27 v29 v33 v34 v35 v36

1 −1 0 −1 0 0 0 −1 1 1 0 1 1 0 1 0 0 1 0 0 1
0 1 −1 0 0 0 −1 0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0 −1 0 0 −1 0 0 −1 0 0 −1 −1 0 −1 −1 0 −1
0 0 0 0 1 0 0 0 −1 −1 −1 0 0 0 −1 −1 −1 0 0 0 −1
0 0 0 0 0 1 1 1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2

The transformation

γ =


0 −1 −1 0 0 0
0 0 −1 0 −1 −1
0 0 0 1 0 1
0 0 0 1 0 0
0 0 1 −1 0 0

−1 −1 −1 0 −1 0


sends v1 to (0, 0, 0, 0, 0, 1) and sends each of the other vectors to the corresponding one of the
form (v, 0) where v is the corresponding minimal vector for P1

5 (in the order given above).
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One can verify that the other two perfect forms P2
5 and P3

5 (denoted by Voronoı̈ A5 and ϕ2,
respectively) give rise to a corresponding inflated cell in Σ15(6) in a similar way.

Concerning the cells of positive codimension in Σ•(5), it turns out that these all have a
representative which is a facet in σ . Furthermore, the matrix γ induces an isomorphism from
the subcomplex of Σ•(6) spanned by σ and all its facets to the complex obtained by inflation, as
in Section 6.1 above, from the complex spanned by σ5 and all its facets. Finally, one can verify
that the cells attached to P2

5 and P3
5 are conjugate, after inflation, to cells in Σ15(6), and that the

differentials for VorGL5 and VorGL6 agree on these. This ends the proof of the theorem. �

6.3. Other cases

A similar situation holds for Σ•(3) and Σ•(4), but as Σ•(3) consists of a single cell only, the
picture is far less significant.

For N = 4, there is only one cell leftover in Σ•(4), in fact in Σ6(4), and it is already inflated
from Σ5(3). Hence its image in Σ ⋆

7 (5) will allow an orientation reversing automorphism and
hence will not show up in Σ7(5). This illustrates the remark at the end of Section 6.1.

Finally, for N = 6, the cells in the third component of the incidence graph for GL6(Z)

mentioned in the proof of Theorem 6.1 above appear, in inflated form, in the Voronoı̈ complex
for GL7(Z) which inherits the homology of that component, since in the weighted graph of
GL7(Z), which is connected, there is only one incidence of an inflated cell with a non-inflated
one. Therefore we do not have a splitting in this case.

7. The cohomology of modular groups

7.1. Preliminaries

Recall the following simple fact.

Lemma 7.1. Assume that p is a prime and g ∈ GLN (R) has order p. Then p 6 N + 1.

Proof. The minimal polynomial of g is the cyclotomic polynomial x p−1
+x p−2

+· · ·+1. By the
Cayley–Hamilton theorem, this polynomial divides the characteristic polynomial of g. Therefore
p − 1 6 N . �

We shall also need the following result.

Lemma 7.2. The action of GLN (R) on the symmetric space X N preserves its orientation if and
only if N is odd.

Proof. The subgroup GLN (R)+ ⊂ GLN (R) of elements with positive determinant is the
connected component of the identity, therefore it preserves the orientation of X N . Any g ∈

GLN (R) which is not in GLN (R)+ is the product of an element of GLN (R)+ with the diagonal
matrix ε = diag (−1, 1, . . . , 1), so we just need to check when ε preserves the orientation of
X N . The tangent space T X N of X N at the origin consists of real symmetric matrices m = (mi j )

of trace zero. The action of ε is given by m · ε = εt mε (cf. Section 2.1) and we get

(m · ε)i j = mi j

unless i = 1 or j = 1 and i ≠ j , in which case (m ·ε)i j = −mi j . Let δi j be the matrix with entry
1 in row i and column j , and zero elsewhere. A basis of T X N consists of the matrices δi j + δ j i ,
i ≠ j , together with N − 1 diagonal matrices. For this basis, the action of ε maps N − 1 vectors
v to their opposite −v and fixes the other ones. The lemma follows. �
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7.2. Borel/Serre duality

According to Borel and Serre ([6], Thm. 11.4.4 and Thm. 11.5.1), the group Γ = SLN (Z) or
GL N (Z) is a virtual duality group with dualizing module

Hv(N )(Γ , Z[Γ ]) = StN ⊗ Z̃,

where v(N ) = N (N −1)/2 is the virtual cohomological dimension of Γ and Z̃ is the orientation
module of X N . It follows that there is a long exact sequence

· · · → Hn(Γ , StN ) → Hv(N )−n(Γ , Z̃) → Ĥv(N )−n(Γ , Z̃) → Hn−1(Γ , StN ) → · · · (5)

where Ĥ∗ is the Farrell cohomology of Γ [11]. From Lemma 7.1 and the Brown spectral
sequence ([7], X (4.1)) we deduce that Ĥ∗(Γ , Z̃) lies in SN+1. Therefore

Hn(Γ , StN ) ≡ Hv(N )−n(Γ , Z̃), modulo SN+1. (6)

When N is odd, then GLN (Z) is the product of SLN (Z) by Z/2, therefore

Hm(GLN (Z), Z) ≡ Hm(SLN (Z), Z), modulo S2.

When N is even, then the action of GLN (Z) on Z̃ is given by the sign of the determinant (see
Lemma 7.2) and Shapiro’s lemma gives

Hm(SLN (Z), Z) = Hm(GLN (Z), M), (7)

with

M = IndGLN (Z)
SLN (Z)

Z ≡ Z ⊕ Z̃, modulo S2.

7.3. The cohomology of modular groups

When Γ = SLN (Z) or GL N (Z), where N 6 7, we know Hm(Γ , Z̃) by combining (3) (end of
Section 3.4), Theorem 4.3 and (6). As shown above, this allows us to compute the cohomology
of Γ with trivial coefficients. The results are given in Theorem 7.3 below.

Theorem 7.3. (i) Modulo S5 we have

Hm(SL5(Z), Z) =


Z if m = 0, 5,

0 otherwise.

(ii) Modulo S7 we have

Hm(GL6(Z), Z) =


Z if m = 0, 5, 8,

0 otherwise,

and

Hm(SL6(Z), Z) =

Z2 if m = 5,

Z if m = 0, 8, 9, 10,

0 otherwise.

(iii) Modulo S7 we get that

Hm(SL7(Z), Z) =


Z if m = 0, 5, 9, 14, 15,

0 otherwise.
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For the proof of the final statement on integral cohomology (modulo S7) we use the fact that
there are no primes p > 7 that divide the elementary divisors of the corresponding differentials
or the order of the stabilizer of a cell in Σ27−m .

Remark 7.4. Morita asks in [21] whether the class of infinite order in H5(GL5(Z), Z) survives
in the cohomology of the group of outer automorphisms of the free group of rank six.

Remark 7.5. It was shown by A. Borel [5] that, for N large enough, H5(SLN (Z), Q) has
dimension one. In view of Theorem 7.3 it is tempting to believe that the restriction map from
H5(SLN (Z), Q) to H5(SL5(Z), Q) is an isomorphism. We have been unable to show that.
An analogous statement holds for H9(SLN (Z), Q). Theorem 7.3 suggests that the non-trivial
cohomology class already occurs when N = 6 and 7, i.e., in the “non-stable range”.

8. Homology of modular groups with coefficients in the Steinberg module

In this section we compute some homology groups of GL N (Z) with coefficients the Steinberg
module. Note that, when N > 1, the group H0(GL N (Z), StN ) vanishes [19].

Theorem 8.1. (i) Modulo S2 we have

H3(GL3(Z), St3) ∼= Z (8)

and

H3(GL4(Z), St4) ∼= Z. (9)

(ii) The following groups lie in S2:

H4(GL2(Z), St2), H5(GL2(Z), St2),

H4(GL3(Z), St3),

H2(GL4(Z), St4),

H1(GL5(Z), St5), H2(GL5(Z), St5),

H1(GL6(Z), St6).

(iii) The groups H2(GL6(Z), St6) and H1(GL7(Z), St7) lie in S5.

In order to prepare for the proof, we first compute several terms in the spectral sequence E1
pq

of Section 3.2. This is done in five lemmas, dealing with GL4(Z), GL5(Z), GL6(Z) (separating
the cases p + q = 6 and p + q = 7) and GL7(Z), respectively. We will show that the E1

terms of the respective equivariant spectral sequences, in the desired ranges, are all zero modulo
some torsion classes (mostly S2) which will allow us to deduce the claims. The general strategy
is as follows: if G is the stabilizer of a cell, we will construct the maximal normal subgroup
H of G which acts trivially on the cell. The quotient G/H will be in S2. Hence, using the
Lyndon/Hochschild/Serre spectral sequence (denoted by LHS in the remainder of the paper), the
computation of the homology of G with coefficients in Z̃ (i.e., Z endowed with the G-action on
the cell) will be reduced to the computation of the homology of H with trivial coefficients. It
will result that, in general, the corresponding homology groups lie in S2. We start by giving two
general lemmas, with straightforward proofs, that will be systematically used in our arguments.

Lemma 8.2. Let Γ be a subgroup of GL N (Z) and let σ be a cell. Let Γσ be the stabilizer of the
cell σ in Γ . Then there exists a normal subgroup H of Γσ , acting trivially on the cell σ and with
quotient Γσ /H isomorphic to Z/2.
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Proof. The action on the cell is given by η (see Section 3.1). It defines a morphism Γσ → Z/2
mapping γ to η(γ · σ, σ ). We define H to be the kernel of this map. �

Lemma 8.3. Consider a short exact sequence of finite groups

1 → H → G → Q → 1.

Assume Q ∈ Sp for some prime p. Let M be a G-module and k a positive integer. If
Hi (H, M) ∈ Sp for all positive i 6 k, then Hk(G, M) ∈ Sp.

Now, we can compute the relevant parts of the equivariant spectral sequences of Section 3.2.

Lemma 8.4. The terms E1
5,1, E1

4,2, E2
3,3, E2

4,1 and E1
3,2 of the equivariant spectral sequence

associated to Γ = GL4(Z) lie in S2.

Proof. • Computation of E1
5,1. According to [19], Lemma 3.2, the set Σ ⋆

5

SL4(Z)


consists of

four cells, denoted by σ 5
i (i = 2, 3, 4, 5) in [19].

The stabilizer of σ 5
5 in PGL4(Z) is isomorphic to S2×S3 ([19], p. 121), each factor acting

non-trivially on the orientation module of σ 5
5 . It follows that Stab(σ 5

5 ) contains a subgroup
isomorphic to S3 and preserving the orientation of σ 5

5 . Therefore, modulo S2, we get

H1

Stab(σ 5

5 ), Z̃


= H1(S3, Z).

From the exact sequence

1 −→ Z/3 −→ S3 −→ Z/2 −→ 1

we deduce that, modulo S2,

H1(S3, Z) = H0

Z/2, H1(Z/3, Z)


= 0.

The stabilizer Stab(σ 5
4 ) in GL4(Z) has order 32. Therefore its first homology group lies in

S2.
The cell σ 5

3 of [19] (p.110) has its stabilizer (in GL4(Z)) generated by the matrices

g2,1 =


0 0 0 1

−1 −1 0 −1
0 1 1 1
1 0 0 0

 , g2,2 =


1 1 1 1
0 −1 −2 −2
0 0 0 1
0 0 1 0

 ,

g2,3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , g2,4 =


1 0 0 0

−1 −1 −2 −2
0 0 1 0
0 0 0 1

 .

Denote by G2 this group. It is of order 288 = 25
· 32. All the generators have a non-trivial

action on the cell, except g2,2. Let H2 be the subgroup of G2 generated by g2,1g2,3, g2,2
and g2,1g2,4. By construction H2 acts trivially on the cell. Using GAP, we can check that
H2 is normal in G2 and the quotient G2/H2 is isomorphic to Z/2. Furthermore, the derived
subgroup of H2 is isomorphic to Z/6×Z/3 and its abelianization is isomorphic to Z/4×Z/2.
As a result H1(G2, Z̃) = H0(Z/2, H1(H2, Z̃)) = H0(Z/2, H1(H2; Z)) = 0 mod S2.
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The last cell to consider is σ 5
2 . Let G4 be the stabilizer of this cell. A set of generators of

G4 is given by the matrices

g4,1 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , g4,2 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,

g4,3 =


1 1 1 1
0 −1 0 −1
0 0 −1 −1
0 0 0 1

 , g4,4 =


1 0 0 0
0 1 0 0
0 0 1 0

−1 −1 −1 −1

 ,

g4,5 =


1 0 0 0

−1 0 −1 −1
−1 −1 0 −1
0 0 0 1

 .

Its order is 96 = 25
· 3. The group G4 is isomorphic to Z/2 × Z/2 × S4. Among

the generators, only g4,3 and g4,5 have a non-trivial action. The subgroup generated
by g4,1, g4,2, g4,4, g4,3g4,5 is normal and isomorphic to Z/2 × S4. Its abelianization is
isomorphic to Z/2 × Z/2. We deduce that H1(G4, Z̃) = H0(Z/2, H1(Z/2 × S4, Z)) =

0 mod S2, and this ends the computations of E1
5,1.

• Computation of E1
4,2 and E2

4,1. According to [19], Lemma 3.2, the set Σ ⋆
4

SL4(Z)


consists

of the three cells σ 4
2 , σ 4

3 and σ 4
4 . The stabilizer of σ 4

4 in PGL4(Z) is isomorphic to S5

([19], p. 121). Modulo S2, the group H2

Stab(σ 4

4 ), Z̃


is thus a quotient of H2(Z/5, Z) ⊕

H2(Z/3, Z) = 0.
Furthermore, the alternating subgroup A5 ⊂ S5 preserves the orientation of σ 4

4 ([19],
Lemma 3.4), and it is equal to its commutator subgroup. Therefore, modulo S2,

H1

Stab(σ 4

4 ), Z̃


= H0

Z/2, H1(A5, Z)


= 0.

Using the presentation of [19], the stabilizer of σ 2
4 is isomorphic to Z/2 ×S3 × D8. Let G be

the maximal subgroup of Stab(σ 2
4 ) with trivial action on the cell. Then G fits in the following

central extension

0 → Z/2 × Z/2 → G → D12 → 1.

Modulo S2, we have H1(D12, Z) = H2(D12, Z) = 0. Therefore, as D12 acts trivially on
Z/2 × Z/2, modulo S2,

Hi (Stab(σ 2
4 ), Z̃) = 0, i = 1, 2.

The stabilizer of σ 3
4 is isomorphic to Z/2 × Z/2 × S4 and modulo S2, we have

Hi (Stab(σ 3
4 ), Z̃) = Hi (A4, Z) for i = 1, 2. Thus, modulo S2, H1(Stab(σ 3

4 ), Z̃) = Z/3 and
H2(Stab(σ 3

4 ), Z̃) = 0. We can now conclude that modulo S2, we have E1
4,2 = 0. According

to [30], Section 3.2, the map d1 induces an isomorphism between the homologies of Stab(σ 3
4 )

and Stab(σ 3
4 ). Therefore E2

4,1 lies in S2.

• Computation of E2
3,3. The only cell in Σ ⋆

3

GL4(Z)


is the cell σ 3

3 of [19], Lemma 3.2. The
action of Stab(σ 3

3 ) on the orientation module is not trivial ([19], Lemma 3.3). According
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to [30], Section 3.2, we have

H3

Stab(σ 3

3 ), Z̃


∼= H3(A4, Z) = Z/3

modulo S2, and the differential

d1
: H3


Stab(σ 4

3 ), Z̃


→ H3

Stab(σ 3

3 ), Z̃


is surjective. Therefore E2
3,3 lies in S2.

• Computation of E1
3,2. Modulo S2, we get that E1

3,2 = H2

Stab(σ 3

3 ), Z̃


is a quotient of
H2(Z/3, Z) = 0. �

Lemma 8.5. The terms E1
4,1, E1

4,2, E1
5,1 and E1

6,0 of the equivariant spectral sequence associated
to Γ = GL5(Z) are zero modulo S2.

Proof. • As none of the cells of Σ ⋆
6 has its orientation preserved by the action of its stabilizer

(see Fig. 1), we have E1
6,0 = 0 mod S2.

• Computation of E1
5,1. We need to know the group H1(StabΓ (σ ) , Z̃) for all five cells σ ∈ Σ ⋆

5
(cf. Table 2). Up to equivalence under GL5(Z), these cells are contained in σ(P2

5 ), where P2
5

is the perfect form of rank 5 described in [20], Section 6.4 (and mentioned above at the end
of Section 6.2). We will denote these five cells by σ ′

i with i = 1, . . . , 5.
Analyzing the cell σ ′

1. First, let us describe σ ′

1. The 15 minimal vectors of P2
5 are given

below, together with their label:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 1 0 0 0 1 0 0 1 1 0 1
0 1 0 0 0 1 0 0 0 1 0 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 0 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

The vertices of the cell σ ′

1 are the forms v̂ where v is one of the vectors labeled by 1, 2,
3, 4, 5 and 8. Set G ′

1 = StabΓ (σ ′

1). A set of generators of G ′

1 is given by the following six
matrices of GL5(Z), of respective order 6, 2, 2, 2, 2, 6:

g′

1,1 =


−1 0 0 1 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

 , g′

1,2 =


−1 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 ,

g′

1,3 =


−1 0 0 1 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

 , g′

1,4 =


0 0 0 −1 0
0 1 0 0 0
0 0 1 0 0

−1 0 0 0 0
0 0 0 0 1

 ,

g′

1,5 =


0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

 , g′

1,6 =


0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

−1 0 0 1 0
0 0 0 0 1

 .
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The order of G ′

1 is 576 = 26
· 32. Thus, a priori, we could expect some 3-torsion in the

homology of this group. Only g′

1,2 and g′

1,6 have a trivial action on the cells. Using GAP [12],
we get that the group G ′

1 is isomorphic to Z/2×Z/2×S3×S4. Let H ′

1 be the subgroup of G ′

1
generated by g′

1,2, g′

1,6, g′

1,1g′

1,3, g′

1,1g′

1,4, g′

1,1g′

1,5. By construction this subgroup has trivial
action on the cell. It is normal and has order 288. We then have G ′

1/H ′

1 = Z/2. Furthermore,
the derived subgroup of H ′

1 is isomorphic to Z/3 × A4 and the quotient H ′

1/[H ′

1, H ′

1] is
isomorphic to the product of three copies of Z/2. Thus the first homology group of H ′

1 with
trivial coefficients is zero modulo S2. By Lemma 8.3, we get

H1(G ′

1, Z̃) = H0(Z/2, H1(H ′

1; Z)) = 0 mod S2.

Analyzing the cell σ ′

2. The cell σ ′

2 is given by the vectors labeled by 1, 2, 3, 5, 6 and 8.
Denote its stabilizer by G ′

2. A set of generators of G ′

2 consists of the following six matrices
of GL5(Z), of respective order 2, 4, 4, 4, 2, 2:

g′

2,1 =


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 , g′

2,2 =


0 0 0 1 0
1 1 0 −1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 ,

g′

2,3 =


0 0 0 1 0
1 1 0 −1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 −1

 , g′

2,4 =


0 0 0 1 0
1 1 0 −1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

 ,

g′

2,5 =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 −1 0
0 0 0 0 1

 , g′

2,6 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 −1 0
0 0 0 0 1

 .

The order of the stabilizer is 384 = 27
· 3.

Using GAP we get that G ′

2 is isomorphic to Z/2 × S4 × D8. The generators g′

2,1, g′

2,2 and
g′

2,6 act trivially on the cell. Consider the subgroup H ′

2 of G ′

2 generated by g′

2,1, g′

2,2, g′

2,6,
g′

2,3g′

2,4 and g′

2,3g′

2,5. This subgroup is normal and acts trivially on the cell. Its order is 192,
thus the quotient G ′

2/H ′

2 is of order 2. We can check with GAP that the abelianization of H ′

2
is isomorphic to (Z/2)3. We deduce, by Lemma 8.3, that

H1(G ′

2; Z̃) = H0(Z/2; H1(H ′

2; Z)) = 0 mod S2.

Analyzing the cell σ ′

3. The cell σ ′

3 is given by the vectors labeled by 2, 3, 5, 6, 8, 9. Denote its
stabilizer by G ′

3. A set of generators of G ′

3 consists of the following three matrices of GL5(Z),
of respective order 2, 10, 4:

g′

3,1 =


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 , g′

3,2 =


0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

−1 0 0 1 1
0 −1 0 1 0

 ,
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g′

3,3 =


0 0 0 1 0
1 1 0 −1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 −1

 .

The order of the stabilizer is 480 = 25
· 3 · 5. Using GAP, we see that the group G ′

3 is
isomorphic to Z/2 × Z/2 × S5. Among the generators only g′

3,3 has a non-trivial action on

the cell. Let us consider the subgroup of G ′

3, denoted by H ′

3, generated by g′

3,1, g′

3,2 and g′

3,3
2.

The subgroup H ′

3 acts trivially on the cell, it is normal and isomorphic to Z/2 × Z/2 × A5.
Thus G ′

3/H ′

3 = Z/2 and, as An is perfect for n > 5, the abelianization of H ′

3 is isomorphic to
Z/2 × Z/2. By Lemma 8.3, we get

H1(G ′

3; Z̃) = H0(Z/2; H1(H ′

3; Z)) = 0 mod S2.

Analyzing the cell σ ′

4. The cell σ ′

4 is given by the vectors labeled by 1, 2, 3, 7, 11, 12. A set
of generators of its stabilizer is given by the following two matrices of GL5(Z), of respective
order 6, 2:

g′

4,1 =


0 0 0 0 1
0 0 0 −1 1

−1 −1 −1 1 1
0 −1 0 0 1

−1 0 0 0 1

 , g′

4,2 =


−1 0 0 1 0
0 0 0 1 −1
0 −1 −1 1 1
0 0 0 1 0
0 −1 0 1 0

 .

The order of the stabilizer is 240 = 24
· 3 · 5. Denote by G ′

4 this group, which is isomorphic
to Z/2 × S5. Only the generator g′

4,1 acts non-trivially on the cell. Let H ′

4 be the subgroup

generated by g′

4,1
2 and g′

4,2. This subgroup is normal and isomorphic to Z/2 × A5. So, as
above, we get H1(G ′

4; Z̃) = 0 mod S2.
Analyzing the cell σ ′

5. The cell σ ′

5 is given by the vectors labeled by 2, 3, 5, 7, 9, 10. A
set of generators of its stabilizer, denoted by G ′

5, is given by the following three matrices of
GL5(Z), of respective order 6, 6, 2:

g′

5,1 =


0 0 0 0 1
0 0 1 −1 0

−1 −1 0 1 1
0 −1 0 0 1

−1 0 0 0 1

 , g′

5,2 =


−1 −1 0 0 1
0 0 0 0 1
0 0 −1 0 0
0 0 0 −1 0
0 −1 0 0 1

 ,

g′

5,3 =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −1 0 0 1

 .

The stabilizer is of order 1440 = 25
· 32

· 5. The group is isomorphic to Z/2 × S6. Among
the generators only g′

5,3 has a non-trivial action. The subgroup generated by g′

5,1 and g′

5,2

is normal, it acts trivially on σ ′

5 and is isomorphic to Z/2 × A6. So we get H1(G ′

5; Z̃) =

0 mod S2.
• Computation of E1

4,2. The set Σ ⋆
4 consists of two cells contained (up to equivalence) in σ(P2

5 ).
We will denote those cells by τ ′

i with i = 1, 2.
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Analyzing the cell τ ′

1 and the cell τ ′

2. The cell τ ′

1 is given by the vectors labeled by 1, 2, 3,
4 and 8 in m(P2

5 ). A set of generators of its stabilizer is given by the following three matrices
of GL5(Z), of respective order 2, 6, 2:

t1,1 =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 , t1,2 =


0 −1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0

 ,

t1,3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

 .

The order of the stabilizer is 3840 = 28
· 3 · 5. Furthermore, only t1,2 has a non-trivial action

on the cell.

The cell τ ′

2 is given by the vectors 1, 2, 7, 11 and 12. A set of generators of its stabilizer is
given by the following three matrices of GL5(Z), of respective order 6, 4, 2:

t2,1 =


0 0 0 0 1
0 0 0 −1 1
1 −1 0 0 0
0 −1 0 0 1
1 0 1 −1 0

 , t2,2 =


−1 0 −1 0 1
0 0 0 −1 1
0 1 0 0 0
0 0 −1 0 1
0 1 0 −1 0

 ,

t2,3 =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 −1
0 0 0 1 0
0 0 −1 1 0

 .

The order of the stabilizer is 3840 = 28
· 3 · 5.

We need to analyze the first and second homology groups of the stabilizers of τ ′

1 and τ ′

2.
Using GAP, it is possible to show that these two stabilizers are isomorphic. Set

h1,1 = t−2
1,2 t1,1t1,2t1,1t−1

1,2 t1,1t2
1,2t1,1t1,2t1,1 =


0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−1 0 0 0 0

 ,

h1,2 = t1,1t1,3t−1
1,2 t1,1t−1

1,2 t1,1t1,2t1,1 =


0 −1 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 −1 0 0
0 0 0 −1 0

 ,
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h2,1 = t2,3t2,1t−1
2,2 t2

2,1t2,2t2
2,1 =


1 0 0 0 0
0 0 −1 1 0
0 1 1 0 −1
0 0 0 1 0
0 1 0 0 0

 ,

h2,2 = t2,3t−1
2,1 t2,3t−1

2,2 t2
2,1 =


0 −1 −1 1 0
1 0 0 0 −1
0 0 0 −1 0
0 0 0 0 −1
0 0 −1 0 0

 .

Then the group generated by h1,1 and h1,2 (resp. h2,1 and h2,2) is isomorphic to Stab(τ ′

1)

(resp. Stab(τ ′

2)). We can check that the mapping sending h1,1 (resp. h1,2) to h2,1 (resp.
h2,2) defines a group isomorphism. Hence it suffices to consider τ ′

1. Let H be the subgroup
generated by t1,1, t1,3, (t1,1t1,2)

2 and (t1,3t1,2)
2. Then H is normal, of order 1920 and it acts

trivially on τ ′

1. Using GAP, we can check that its abelianization is isomorphic to Z/2. Using a
composition series for H , we get a short exact sequence

0 → (Z/2)5
→ H → A5 → 1.

The homology of (Z/2)5 is trivial modulo S2 except

H0((Z/2)5, Z̃) = H0((Z/2)5, Z) = Z.

But as A5 is simple, we deduce that it acts trivially on H0((Z/2)5 , Z̃). Since Hi (A5, Z) lies
in S2 for i = 1, 2 [32], we deduce that

Hi (A5, H j ((Z/2)5, Z̃)) = 0 mod S2, with i + j = 1, 2.

Using the LHS spectral sequence associated to the above exact sequence, we get Hi (H, Z̃) =

0 modulo S2 and by Lemma 8.3, Hi (Stab(τ ′

1), Z̃) = 0 mod S2 for i = 1, 2. �

Lemma 8.6. The terms E1
5,1 and E1

6,0 of the equivariant spectral sequence associated to Γ =

GL6(Z) are zero modulo S2.

Proof. The claim that E1
6,0 is zero modulo S2 is again a consequence of the fact that none of

the cells of Σ ⋆
6 (GL6(Z)) has its orientation preserved by the action of its stabilizer. It remains to

show that E1
5,1 is zero modulo S2.

From our computations (cf. Fig. 1), we know that Σ ⋆
5 (GL6(Z)) has three cell representatives

which can be chosen inside σ(P1
6 ). We will denote these three cells by τi (i = 1, 2, 3). Here is

the ordered list of minimal vectors of P1
6 that we shall use:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 −1 0 0 −1 0 0 0 −1 0 0 0 0 −1 0 1 1 0
0 1 1 −1 0 0 0 −1 0 0 0 0 −1 0 0 1 0 1
0 0 0 1 1 1 −1 0 0 0 0 −1 0 0 0 −1 0 0
0 0 0 0 0 0 1 1 1 1 −1 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
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19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1
1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1
0 −1 −1 −1 0 0 0 −1 −1 −1 0 0 0 −1 −1 −1 0 −1
−1 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 0 0 0 0 −1
−1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Analyzing the cell τ1. The cell τ1 can represented by the vectors 1, 15, 24, 25, 31, 34. Set
G1 = StabΓ (τ1). A set of generators of G1 consists of the following four matrices of GL6(Z),
of respective order 4, 6, 4, 2:

g1,1 =


1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 −2 −2 −1 −2
0 −1 0 0 1 2

 , g1,2 =


1 1 −1 0 0 −1
0 0 1 0 0 1
0 −1 −1 −1 0 0
0 0 0 1 0 0
0 1 0 −1 −1 −2
0 0 0 0 0 1

 ,

g1,3 =


0 −1 1 0 0 1
1 0 −1 −2 0 −1

−1 −1 0 0 0 1
0 0 0 1 0 0
0 2 0 0 −1 −2
1 −1 −1 −2 0 0

 , g1,4 =


−1 −2 0 0 0 2
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The order of G1 is 46080 = 210
· 32

· 5. Only g1,3 has a non-trivial action on the cell. Consider
the subgroup H of G1 generated by g1,1, g1,2, g1,4 and (g1,1g1,3)

2. Then by construction, this
subgroup acts trivially on the cell. Using GAP, we can check that G1 is isomorphic to G M6(Z),
the subgroup of monomial matrices of GL6(Z) (semi-direct product of S6 and {±1}

6), and H
is normal, isomorphic to the semi-direct product of A6 and {±1}

6. Thus the quotient G1/H is
isomorphic to Z/2. Then, by the computation of the abelianization of semi-direct products, we
get that H/[H, H ] ∼= Z/2. We deduce that H1(H, Z̃) lies in S2 and by Lemma 8.3, we conclude
that H1(G1, Z̃) lies in S2.

Analyzing the cell τ2. The cell τ2 is given by the vectors 15, 24, 25, 28, 29, 34. Set
G2 = StabΓ (τ2). A set of generators of G2 consists of the following four matrices of GL6(Z),
of respective order 4, 6, 2, 2:

g2,1 =


0 0 0 1 0 0
0 1 0 1 0 0
0 0 1 −1 0 0
0 0 1 0 1 1
0 0 −1 −1 0 −1

−1 0 −1 1 −1 0

 ,
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g2,2 =


−1 −1 −1 −1 −1 0
0 1 1 −1 0 0
0 0 0 1 0 0
0 0 −1 1 0 0
0 0 0 0 1 0
0 1 1 −2 −1 −1

 ,

g2,3 =


1 0 0 0 0 0
0 −1 −2 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 2 2 0 1 0
0 −2 −2 0 0 1

 , g2,4 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−1 −1 −2 −1 −1 −1
0 0 0 0 0 1

 .

The order of G2 is 7680 = 29
· 3 · 5. Only the generators g2,3 and g2,4 have a non-trivial

action on the cell. Denote by H2 the subgroup of G2 generated by g2
2,1, g2

2,2, g2,3 and g2,4. Then
H2 acts trivially on the cell and can be checked, using GAP, to be normal and of order 3840.
Furthermore, its abelianization is isomorphic to Z/2 × Z/2. Using Lemma 8.3 as above, we
deduce that H1(G2, Z̃) lies in S2.

Analyzing the cell τ3. The cell τ3 is given by the vectors 2, 15, 25, 28, 29, 34. Set G3 =

StabΓ (τ3). A set of generators of G3 consists of the following three matrices of GL6(Z), of
respective order 6, 6, 2:

g3,1 =


0 0 0 0 1 0
0 0 −1 −1 −1 −2
0 0 0 1 0 1
0 0 1 1 0 1
0 −1 0 0 0 1
1 1 0 −1 0 −2

 ,

g3,2 =


−1 −1 −2 0 −1 0
0 0 1 −1 −1 0
0 0 0 0 1 0
0 0 1 1 1 1
0 1 0 0 0 −1
0 0 0 −1 −1 0

 ,

g3,3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−1 −1 −2 −1 −1 −1
0 0 0 0 0 1

 .

The order of G3 is 46080 = 210
· 32

· 5 and it is isomorphic to G1. Only g3,3 has a trivial action
on the cell. The subgroup of G3 generated by g2

3,1, g2
3,2, g3,1g3,2 and g3,3 acts trivially on the

cell and, using GAP, we can check that it is isomorphic to H1. As a result, we conclude that
H1(G3, Z̃) lies in S2. As all the terms of E1

5,1 lie in S2, the lemma is proved. �
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Lemma 8.7. The terms E1
5,2, E1

6,1 and E1
7,0 of the equivariant spectral sequence associated to

Γ = GL6(Z) are zero modulo S5.

Proof. Looking at the table of representatives for Σ ⋆
p(Γ ) (cf. Fig. 1), we see that there are three

5-cells, ten 6-cells and twenty-eight 7-cells. None of the 7-cells has its orientation preserved by
its stabilizer. Thus H0(StabΓ (σ ), Z̃) lies in S2 for all σ ∈ Σ ⋆

7 (Γ ). Among the 6-cells, only one
has a stabilizer with 7-torsion. It is the cell given by the minimal vectors

1 3 5 8 12 16 17

1 0 −1 0 0 0 0
0 1 0 −1 0 0 0
0 0 1 0 −1 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 −1 0
0 0 0 0 0 1 1

from P7
6 . We will denote by G0 its stabilizer. It is generated by the following matrices:

g0,1 =


0 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 1 0
0 −1 −1 −1 −1 −1
0 0 0 −1 −1 −1
0 0 1 1 1 1

 ,

g0,2 =


−1 0 −1 0 0 0
0 1 1 1 1 1
0 0 0 0 −1 0
0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 −1 0 0

 ,

g0,3 =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


all of which have a non-trivial action on the cell. The order of G0 is 10080 = 25

× 32
× 5 × 7.

From a composition series of G0, we can deduce the exact sequence

1 → H → G0 → Z/2 → 1

where H ∼= A7 × Z/2 and H is generated by g2
0,1, g2

0,2 and −Id. Hence the action of H on the
cell is trivial. Furthermore, the quotient H/[H, H ] is isomorphic to Z/2. From the previous data,
we deduce by a spectral sequence argument that H1(G0, Z̃) = 0 mod S2. Finally, among the
5-cells, none of them has a stabilizer with 7-torsion. Lemma 8.7 follows. �

Lemma 8.8. The terms E1
6,1 and E1

7,0 of the equivariant spectral sequence associated to Γ =

GL7(Z) are zero modulo S5.
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Proof. Looking at the table of representatives for Σ ⋆
p(Γ ) (cf. Fig. 2), we see that there are twenty-

eight 7-cells, none of them having its orientation preserved by the action of its stabilizer. As a
result, we can deduce that E1

7,0 = 0 mod S2. Among the six 6-cells, only three have a stabilizer
of order divisible by 7. They are the ones to investigate.

1. The first cell is given by the following seven minimal vectors

1 2 3 4 5 6 7

1 1 1 1 1 2 1
1 1 1 1 2 1 1
−1 −1 −1 0 −1 −1 −1
−1 −1 0 −1 −1 −1 −1
−1 0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 −1 −1
2 2 2 2 2 2 2

of P2
7 . A set of generators for its stabilizer, that we will denote by G1, consists of the following

matrices

g1,1 =



0 0 0 0 0 1 −1
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 1
0 0 0 0 0 0 1


,

g1,2 =



−1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 −1 1
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
0 0 −1 0 0 0 0
0 0 1 1 1 1 0
0 1 1 1 1 1 0


,

g1,3 =



1 0 0 0 0 0 0
0 0 0 0 0 1 −1
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 1
0 0 0 0 0 0 1


, g1,4 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 −1
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 0 1


,

g1,5 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 −1
0 0 0 0 1 0 0
0 0 0 1 0 0 1
0 0 0 0 0 0 1


, g1,6 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 −1
0 0 0 0 1 0 1
0 0 0 0 0 0 1


.
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The group G1 is of order 10080 = 25
× 32

× 5 × 7. The generators g1,1, g1,2, g1,5 and g1,6 have
a non-trivial action on the cell. A composition series of G1 is given by

1 ▹ A7 ▹ S7 ▹ G1,

with G1/S7 ∼= Z/2. The group A7 is generated by (g1,1g1,2)
2 and g1,3, and S7 is generated by

(g1,1g1,2)
2, g1,3 and g1,1. Using these generators, we deduce that the action of A7 on the cell is

trivial, while the one of S7 is not. There are two spectral sequences:

Hi (Z/2; H j (S7; Z̃)) H⇒ Hi+ j (G1; Z̃),

Hi (Z/2; H j (A7; Z̃)) H⇒ Hi+ j (S7; Z̃).

The action of A7 is trivial and this group is perfect, so we get H1(S7; Z̃) ∼= Z/2. We deduce that
H1(G1; Z̃) = 0 mod S2.

2. The second cell is given by the minimal vectors

1 2 3 5 8 12 23

−1 −1 0 0 0 0 0
−1 0 −1 0 0 0 0
−1 0 0 −1 0 0 0
−1 0 0 0 −1 0 0
−1 0 0 0 0 −1 0
−1 0 0 0 0 0 1
3 1 1 1 1 1 0

from P12
7 . We will denote its stabilizer by G2, which is of order 645120 = 211

× 32
× 5 × 7. A

set of generators for G2 is given by

g2,1 =



0 0 0 0 0 1 0
0 0 0 0 −1 1 0
0 0 0 −1 0 1 0
0 0 −1 0 0 1 0
0 −1 0 0 0 1 0
0 −1 −1 −1 −1 1 −1

−1 0 0 0 0 −3 −1


,

g2,2 =



−1 −1 −1 0 −1 0 −1
0 0 0 0 0 −1 0
0 0 0 0 −1 0 0
0 0 −1 0 0 0 0
0 −1 0 0 0 0 0
0 −1 −1 −1 −1 0 −1
0 1 1 −1 1 1 0


,

g2,3 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 1 1 1 1 −1 1
0 0 0 0 0 0 1


.



Author's personal copy

Ph. Elbaz-Vincent et al. / Advances in Mathematics 245 (2013) 587–624 617

Only g2,2 has a non-trivial action on the cell. Using a composition series for G2, we get the exact
sequence

1 → H → G2 → Z/2 → 1.

Using GAP, we can show that H is generated by g2,1, g2,3 and g2
2,2. It follows that the action of

H on the cell is trivial. We have the following spectral sequence

′E2
i, j = Hi (Z/2; H j (H ; Z̃)) H⇒ Hi+ j (G2; Z̃) .

Furthermore, the group H/[H, H ] is isomorphic to Z/2. As a result, we get that H1(G2; Z̃) =

0 mod S2.

3. The last cell is given by the minimal vectors

1 2 3 4 5 6 7

0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1
1 1 1 1 1 1 1

from P33
7 . We will denote its stabilizer by G3. Its order is 645120 = 211

× 32
× 5 × 7. The group

G3 is spanned by the following six matrices:

g3,1 =



−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1


,

g3,2 =



0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1


,
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g3,3 =



1 1 1 1 1 1 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 −2 −2 −2 −2 −2 −1


,

g3,4 =



1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1


,

g3,5 =



1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 2 0 0 0 0 1


,

g3,6 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−2 −2 −2 −2 −2 −2 −1


.

Only the generators g3,2 and g3,3 have a non-trivial action on the cell. The groups G2 and G3
turn out to be isomorphic. Hence the previous arguments will apply to G3.

We have an exact sequence

1 → H ′
→ G3 → Z/2 → 1,

where H ′ is generated by g3,1, g3,4, g3,5 and g3,6, together with the product g3,2g3,3. As a result,
the action of H ′ on the cell is trivial. Moreover, the quotient H ′/[H ′, H ′

] is isomorphic to Z/2
and we deduce that H1(G3; Z̃) lies in S2. �

Now we are ready to complete the proof of Theorem 8.1.

Proof (Of Theorem 8.1).

• In rank 2, we shall prove that H4(GL2(Z), St2) and H5(GL2(Z), St2) lie in S2. Let Z̃ be
the orientation module of the symmetric space X2 and let Ĥ∗


GL2(Z), Z̃


be the Farrell

cohomology of GL2(Z) [11]. From (5) in Section 7.2 it follows that

H4(GL2(Z), St2) ∼= Ĥ−3GL2(Z), Z̃

,
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and

H5(GL2(Z), St2) ∼= Ĥ−4GL2(Z), Z̃

.

As to the first claim, since the only 3-group contained in GL2(Z) is, up to conjugation, Z/3,
we get

Ĥ−5GL2(Z), Z̃


⊂ Ĥ−5(Z/3, Z̃


= 0.

As to the second claim, GL2(Z) is an extension

1 −→ SL2(Z) −→ GL2(Z) −→ ∆ −→ 1

with ∆ = Z/2, and SL2(Z) is the amalgamated product of Z/4 and Z/6 along Z/2 (see [29]).
Therefore

Ĥ−4SL2(Z), Z


= Ĥ−4GL2(Z), Z

⊕ Ĥ−4GL2(Z), Z̃


(see Section 7.2) and, modulo S2,

Ĥ−4SL2(Z), Z


= Z/3.

Let β be a generator of Ĥ−2SL2(Z), Z


= Z/3. Since Ĥ−4SL2(Z), Z


is spanned by β2,
the action of ∆ on this group is trivial. Therefore

Ĥ−4GL2(Z), Z


= Z/3

modulo S2 and Ĥ−4SL2(Z), Z̃


lies in S2.
• In rank 3, we know from [31], Thm. 5(iii), that H3(GL3(Z), St3) ∼= Z modulo S2. Moreover,

from [31], Thm. 5(ii), we have

H4(GL3(Z), St3) ∼= Ĥ−2(GL3(Z), Z)

where Ĥ∗ denotes the Farrell cohomology, and from [31], Corollary (i) on p. 9, we know that

Ĥ−2(GL3(Z), Z) lies in S2.

• In rank 4, we know from [19], Lemma 3.3, that Σ ⋆
p is empty when p < 3, hence E1

p,q = 0
when p < 3. We proved in Lemma 8.4 that E2

p,q lies in S2 when q > 0 and p + q = 5 or
p +q = 6. According to [19], Proposition 3.1, E2

6,0
∼= Z and E2

5,0 = 0 modulo S2. Therefore,
modulo S2, H3(GL4(Z), St4) ∼= Z and H2(GL4(Z), St4) = 0.

• In rank 5, we see in Fig. 1 that Σ ⋆
p is empty when p < 4. Therefore

E1
p,q =


σ∈Σ ⋆

p

Hq(Γσ , Z̃)

vanishes if p < 4. On the other hand, since Σ5(GL5(Z)) is empty, the group E1
5,0 lies in

S2. We proved in Lemma 8.5 that E1
4,1 is in S2. Therefore E1

p,q lies in S2 when N = 5 and
p + q = 5, hence H1(GL5(Z), St5) lies in S2.

Similarly, we know from Lemma 8.5 that E1
p,q is in S2 when p > 4 and p + q = 6.

Therefore H2(GL5(Z), St5) lies in S2.
• In rank 6, Σ ⋆

p is empty and E1
p,q = 0 when p < 5.

Lemma 8.6 shows that also E1
p,q = 0 when p > 5 and p + q = 6.

Therefore H1(GL6(Z), St6) lies in S2.
When p + q = 7 and p > 5, Lemma 8.7 shows that E1

p,q lies in S5. Therefore
H2(GL6(Z), St6) is in S5.
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• In rank 7, Σ ⋆
p is empty and E1

p,q = 0 when p < 6 (see Fig. 1). On the other hand, we know
from Lemma 8.8 that E1

6,1 and E1
7,0 lie in S5. Therefore H1(GL7(Z), St7) lies in S5. �

9. Application to K-theory

The homology of the general linear group with coefficients in the Steinberg module can also
be used to compute the K -theory of Z. Let P(Z) (resp. PN (Z)) be the exact category of free
Z-modules of finite rank (resp. of rank at most N ), let Q (resp. QN ) be the category obtained
from P(Z) (resp. PN (Z)) by the Q-construction [25], and let B Q (resp. B QN ) be its classifying
space. A definition of higher K -theory [25] is

Km(Z) = πm+1(B Q), m > 0.

On the other hand, Quillen proved in [26] that there are long exact sequences

· · · → Hm(B QN−1, Z) → Hm(B QN , Z) → Hm−N (GLN (Z), StN )

→ Hm−1(B QN−1, Z) → · · · , (10)

and, according to Lee and Szczarba [19], H0(GLN (Z), StN ) = 0 when N > 1. Therefore we can
compute Km(Z) if we understand the Hurewicz map

hm : Km(Z) → Hm+1(B Q, Z)

and if we compute the groups Hm+1−N (GLN (Z), StN ) for all N 6 m.

9.1. On the Hurewicz morphism

Let B Q = B Q P(Z) be the classifying space of Quillen’s Q-construction on the exact
category P(Z) of finitely generated free Z-modules. By definition, for every integer m > 1,

Km−1(Z) = πm(B Q).

In this section we shall be interested in the kernel Cm of the Hurewicz map

hm : πm(B Q) → Hm(B Q),

where Hm(X) stands for Hm(X; Z).

Proposition 9.1. The groups C6 and C7 lie in S2, and C8 lies in S5.

9.2. Proof

To prove this proposition, we use a morphism of spectra

K (E) → K (Z)

introduced by Rognes in [27], Section 4, where E is the category of finite sets. At level zero this
morphism is the map

Z × BΣ+
∞ → Z × BGL(Z)+,
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where Σ∞ is the infinite symmetric group, GL(Z) is the infinite general linear group over Z, and
()+ is the +-construction of Quillen. Let φ be the fiber of that map and consider the fibration

B // B Q

��
φ

(11)

where B is the first level of K (E). When m > 1, the group

πm+1(B) = πm(Z × BΣ+
∞) = π s

m

is the m-th homotopy group of spheres by the Barratt/Priddy/Quillen theorem. The map

π s
m → Km(Z)

is an isomorphism modulo S2 when m 6 4. Therefore the long exact sequence deduced from
(11)

· · · → π s
m → Km(Z) → πm+1(φ) → π s

m−1 → · · · (12)

implies that πm(φ) lies in S2 when m 6 5.
From [1] Theorem 1.5, which remains valid modulo a Serre class, it follows that the kernel of
the Hurewicz map

πm(φ) → Hm(φ)

lies in S2 when m = 6, 7 or 8. On the other hand, π s
5 and π s

6 lie in S2, while π s
7 lies in S5. Using

(12), this implies that the kernel of the map

Km−1(Z) → πm(φ)

lies in S2 (resp S5) when m = 6 or 7 (resp. 8). The commutative diagram

Km−1(Z) //

hm

��

πm(φ)

��
Hm(B Q) // Hm(φ)

concludes the proof.

Theorem 9.2. We have K5(Z) ∼= Z mod S2, K6(Z) lies in S2, and K7(Z) lies in S5.

Proof. • First we compute K5(Z). From Theorem 8.1, (i) and (ii), we know that, modulo S2, the
group H6−N (GL N (Z), St N ) vanishes when N 6 5 and N ≠ 3, and that H3(GL3(Z), St3) ∼=

Z.
The exact sequence (10) for N = 2 reads

H6(B Q1, Z) → H6(B Q2, Z) → H4(GL2(Z), St2)

→ H5(B Q1, Z) → H5(B Q2, Z) → H3(GL2(Z), St2).

Since Hm(B Q1, Z) = 0 when m > 0, H3(GL2(Z), St2) ∼= Ĥ−3(GL2(Z), St2) is finite,
and H4(GL2(Z), St2) lies in S2, we conclude that H6(B Q2, Z) lies in S2 and H5(B Q2, Z) is
finite.
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The exact sequence (10) for N = 3 gives

H6(B Q2, Z) → H6(B Q3, Z) → H3(GL3(Z), St3) → H5(B Q2, Z),

therefore H6(B Q3, Z) ∼= Z modulo S2.
On the other hand, we deduce from (10) with N = 5, 6, 7 and from Theorem 8.1 that,

modulo S2,

H6(B Q, Z) ∼= H6(B Q5, Z) ∼= H6(B Q4, Z),

as H1(GL5(Z), St5) and H1(GL6(Z), St6) are finite.
Now consider the exact sequence (10) for N = 4:

H3(GL4(Z), St4)
α

−→ H6(B Q3, Z) → H6(B Q4, Z) → H2(GL4(Z), St4),

where the last group is in S2 by Theorem 8.1(ii).
If α were not zero modulo S2 then we would conclude that H6(B Q, Z) ∼= H6(B Q4, Z) is

finite. But this is impossible since K5(Z) ⊗Z Q = Q (Borel) and the Hurewicz map

h6 : K5(Z) → H6(B Q, Z)

has finite kernel.
Therefore α = 0 modulo S2, and

H6(B Q, Z) ∼= H6(B Q3, Z) ∼= Z

modulo S2. The Hurewicz map h6 is an isomorphism modulo torsion, and its kernel C6 lies
in S2 (Proposition 9.1). Therefore K5(Z) is the direct sum of Z and a finite 2-group.

• Next, we compute K6(Z).
From Theorem 8.1(ii), we know that H7−N (GL N (Z), St N ) lies in S2 when N ≠ 4, and,

according to Theorem 8.1(i), we have H3(GL4(Z), St4) ∼= Z modulo S2.
From the exact sequence (10) for N = 2, 3, we conclude from (9) that H7(B Q3, Z) lies

in S2. The exact sequence for N = 4 gives, as above,

H7(B Q3, Z) → H7(B Q4, Z) → H3(GL4(Z), St4)
α

−→ H6(B Q3, Z) → H6(B Q4, Z).

Since α = 0 modulo S2, we get H7(B Q4, Z) ∼= H3(GL4(Z), St4) ∼= Z modulo S2. Using
the exact sequence (10) for N = 5 and 6, we conclude that H7(B Q, Z) ∼= Z modulo S2.

Since K6(Z) is finite (Borel) and the kernel C7 of the Hurewicz map

h7 : K6(Z) −→ H7(B Q, Z)

lies in S2, we get that K6(Z) is a finite 2-group.
• Finally, we show that K7(Z) lies in S5. From Lemma 8.5 we deduce that the groups Er

pq for
GL N (Z), N 6 5, r > 1, lie in S5 when q > 0.

Using Theorem 8.1 and Lemma 8.8, we conclude that H8−N (GL N (Z), St N ) lies in S5
when N 6 7. This implies that H8(B Q, Z) is in S5 and, since the kernel C8 of h8 lies in S5
(Proposition 9.1), we conclude that K7(Z) has no p-torsion with p > 5.

Remark 9.3. These three are already known: K5(Z) ∼= Z, K6(Z) = 0 and K7(Z) ∼= Z/240
(see [35]). The group K8(Z) still remains unknown.
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Grenoble, 2010.
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