LECTURES ON ALGEBRAIC VARIETIES OVER \mathbb{F}_{1}

CHRISTOPHE SOULÉ

NOTES BY DAVID PENNEYS

Contents

1. Introduction 0
2. Preliminaries 1
2.1. An analogy 1
2.2. The field \mathbb{F}_{1} 2
3. Affine varieties over \mathbb{F}_{1} 3
3.1. Schemes as functors 3
3.2. A definition 3
3.3. Examples 4
4. Varieties over \mathbb{F}_{1} 5
4.1. Definition 5
4.2. Examples 5
5. Zeta Functions 6
6. Toric Varieties over \mathbb{F}_{1} 7
6.1. Toric varieties 7
6.2. The affine case 7
6.3. The general case 9
7. Euclidean Lattices 9
References 10

1. Introduction

These notes are issued from a series of lectures given at the Seventh Annual Spring Institute on Noncommutative Geometry and Operator algebras, 2009, in Vanderbildt University. They present a summary of the author's article [8, with a few modifications. These are made in order to take into account corrections and improvements due to A.Connes and C.Consani [1, 2]. The notion of affine gadget over \mathbb{F}_{1} introduced below (Def. 3.2) lies somewhere in between the notion of "truc" in [8],3.1., Def. 1 (see however i) in loc. cit.) and A.Connes and C.Consani's notion of "gadget over \mathbb{F}_{1} " 1 . We also added a discussion of the article of R.Steinberg [9] on the analogy between symmetric groups and general linear groups over finite fields.

I thank P.Cartier, A.Connes, C.Consani, J. Lopez Pena and O.Lorscheid for helpful discussions.

2. Preliminaries

2.1. An analogy. There is an analogy between the symmetric group Σ_{n} on n letters and the general linear group $G L\left(n, \mathbb{F}_{q}\right)$, where $q=p^{k}$ for a prime p. One of the first to write about this analogy was R.Steinberg in 1951 [9]. He used it to get a result in representation theory. This goes as follows.

For all $r \in \mathbb{N}$, define

$$
\begin{aligned}
{[r] } & =q^{r-1}+q^{r-2}+\cdots+q+1=\frac{q^{r}-1}{q-1} \text { and } \\
\{r\} & =\prod_{i=1}^{r}[i] .
\end{aligned}
$$

Let $n \geq 1$ and $G=G L\left(n, \mathbb{F}_{q}\right)$. Let $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ be a partition of n, i.e.

$$
n=\sum_{i=1}^{n} \nu_{i} \text { where } 0 \leq \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{n}
$$

Write every element of G as an n by n matrix of blocks of size $\nu_{i} \times \nu_{j}, 1 \leq$ $i, j \leq n$. Consider the (parabolic) subgroup of upper triangular such matrices

$$
G(\nu)=\left\{g=\left(\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)\right\} \subset G .
$$

One checks that

$$
\# G / G(\nu)=\frac{\{n\}}{\prod_{i=1}^{n}\left\{\nu_{i}\right\}}
$$

Let

$$
C(\nu)=\operatorname{Ind}_{G(\nu)}^{G} \mathbf{1}=\mathbb{C}[G / G(\nu)]
$$

be the induced representation of the trivial representation of $G(\nu)$.
Theorem 2.1. Let ν be a partition of n and $\lambda_{i}=\nu_{i}+i-1$ for all $i \geq 1$. The virtual representation

$$
\Gamma(\nu)=\sum_{\kappa} \operatorname{sgn}\left(\kappa_{1}, \ldots, \kappa_{n}\right) C\left(\lambda_{1}-\kappa_{1}, \ldots, \lambda_{n}-\kappa_{n}\right)
$$

is an irreducible representation of G (i.e. its character is the character of an irreducible representation), when $\kappa=\left(\kappa_{1}, \ldots, \kappa_{n}\right)$ runs over all n ! permutations of $0,1, \ldots, n-1$, with the convention that if $\lambda_{i}-\kappa_{i}<0$ for some i, then $C\left(\lambda_{1}-\kappa_{1}, \ldots, \lambda_{n}-\kappa_{n}\right)=0$. Moreover, if $\Gamma(\mu)=\Gamma(\nu)$, then $\mu=\nu$.

To prove this result we consider the symmetric group $H=\Sigma_{n}$ and its subgroup

$$
H(\nu)=\Sigma_{\nu_{1}} \times \cdots \times \Sigma_{\nu_{n}} .
$$

Then

$$
\# H / H(\nu)=\frac{n!}{\prod_{i=1}^{n} \nu_{i}!}
$$

Set

$$
D(\nu)=\operatorname{Ind}_{H(\nu)}^{H} \mathbf{1}=\mathbb{C}[H / H(\nu)]
$$

and consider the virtual representation

$$
\Delta(\nu)=\sum_{\kappa} \operatorname{sgn}\left(\kappa_{1}, \ldots, \kappa_{n}\right) D\left(\lambda_{1}-\kappa_{1}, \ldots, \lambda_{n}-\kappa_{n}\right)
$$

Theorem 2.2 (Frobenius, 1898). $\Delta(\nu)$ is an irreducible representation. Moreover, $\Delta(\mu)=\Delta(\nu)$ implies $\mu=\nu$.

The proof of 2.1 follows from this theorem and the following lemma:
Lemma 2.3. Let $x \mapsto \psi(\nu, x)$ be the character of $C(\nu)$ and $x \mapsto \varphi(\nu, x)$ the character of $D(\nu)$. Then, for all μ, ν, we have

$$
\frac{1}{\# G} \sum_{x \in G} \psi(\nu, x) \psi(\mu, x)=\frac{1}{\# H} \sum_{x \in H} \varphi(\nu, x) \varphi(\mu, x)
$$

Proof. The left hand side (resp. the right hand side) of this equality is the number of double cosets of G (resp. H) modulo $G(\mu)$ and $G(\nu)$ (resp. $H(\mu)$ and $H(\nu)$). We have an inclusion $H \subset G$ such that $H(\mu)=G(\mu) \cap H$, and the Bruhat decomposition implies that the map

$$
H(\mu) \backslash H / H(\nu) \rightarrow G(\mu) \backslash G / G(\nu)
$$

is a bijection.
Let $\chi(\nu, x)$ be the character of $C(\nu)$. From the lemma and Frobenius' theorem we deduce that

$$
\frac{1}{\# G} \sum_{x \in G} \chi(\nu, x) \overline{\chi(\mu, x)}=\delta_{\mu, \nu}
$$

and, to get 2.1, it remains to check that $\chi(\nu, 1)>0$.
2.2. The field \mathbb{F}_{1}. In [10] Tits noticed that the analogy above extends to an analogy between the group $G\left(\mathbb{F}_{q}\right)$ of points in \mathbb{F}_{q} of a Chevalley group scheme G and its Weyl group W. He had the idea that there should exist a "field of characteristic one" \mathbb{F}_{1} such that

$$
W=G\left(\mathbb{F}_{1}\right) .
$$

He showed furthermore that, when q goes to 1 , the finite geometry attached to $G\left(\mathbb{F}_{q}\right)$ becomes the finite geometry of the Coxeter group W.

Thirty five years later, Smirnov [7], and then Kapranov and Manin, wrote about \mathbb{F}_{1}, viewed as the missing ground field over which number rings are defined. Since then several people studied \mathbb{F}_{1} and tried to define algebraic geometry over it. Today, there are at least seven different definitions of such a geometry, and a few studies comparing them.

3. Affine varieties over \mathbb{F}_{1}

3.1. Schemes as functors. We shall propose a definition for varieties over \mathbb{F}_{1} based on three remarks. The first one is that schemes can be defined as covariant functors from rings to sets (satisfying some extra properties, see [3]).

The second remark is that extension of scalars can be defined in terms of functors. Namely, let k be a field, and let Ω be a k-algebra. If X is a variety over k, we denote by $X_{\Omega}=X \otimes_{k} \Omega\left(=X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(\Omega)\right)$ its extension of scalars from k to Ω. Let \underline{X} be the functor from k-algebras to sets defined by X and \underline{X}_{Ω} the functor from Ω-algebras to sets defined by X_{Ω}. Let β be the functor ${ }_{k} \mathrm{Alg} \rightarrow{ }_{\Omega} \mathrm{Alg}$ given by $R \mapsto R \otimes_{k} \Omega$.

Proposition 3.1.
(1) There is a natural transformation $i: \underline{X} \rightarrow \underline{X}_{\Omega} \circ \beta$ of functors ${ }_{k} \mathrm{Alg} \rightarrow$ Set. For any k-algebra R the map $\underline{X}(R) \rightarrow \underline{X}_{\Omega}\left(R_{\Omega}\right)$ is injective.
(2) For any scheme S over Ω and any natural transformation $\varphi: \underline{X} \rightarrow \underline{S} \circ \beta$, there exists a unique algebraic morphism $\varphi_{\Omega}: X_{\Omega} \rightarrow S$ such that $\varphi=\varphi_{\Omega} \circ i$. In other words the following diagram is commutative:

We deduce from this proposition that, if X is a variety over \mathbb{F}_{1},
(1) X should determine a covariant functor X from \mathbb{F}_{1}-algebras to Set;
(2) X should define a variety $X \otimes_{\mathbb{F}_{1}} \mathbb{Z}$ over \mathbb{Z} by some universal property similar to the one in the proposition above (with $k=\mathbb{F}_{1}$ and $\Omega=\mathbb{Z}$).
3.2. A definition. A third remark is that we know what should play the role of finite extensions of \mathbb{F}_{1}. According to both Kapranov-Smirnov [4] and Kurokawa-Ochiai-Watanabe [5], the category of finite extensions of \mathbb{F}_{1} is Ab_{f}, the category of finite abelian groups. If $D \in \mathrm{Ab}_{f}$, we define the extension of scalars of D from \mathbb{F}_{1} to \mathbb{Z} as the group-algebra $D \otimes_{\mathbb{F}_{1}} \mathbb{Z}=\mathbb{Z}[D]$. For example, $\mathbb{F}_{1^{n}}=\mathbb{Z} / n$, and

$$
\mathbb{F}_{1^{n}} \otimes_{\mathbb{F}_{1}} \mathbb{Z}=\mathbb{Z}[T] /\left(T^{n}-1\right)
$$

We now make the following
Definition 3.2. An affine gadget over \mathbb{F}_{1} is a triple $X=\left(\underline{X}, a_{X}, e_{X}\right)$ consisting of
(1) a covariant functor $\underline{X}: \mathrm{Ab}_{f} \rightarrow$ Set,
(2) a \mathbb{C}-algebra a_{X}, and
(3) a natural transformation $e_{X}: \underline{X} \Rightarrow \operatorname{Hom}\left(a_{X}, \mathbb{C}[-]\right)$.

In other words, if $D \in \mathrm{Ab}_{f}$ and $P \in \underline{X}(D)$, we get a morphism of complex algebras $a_{X} \rightarrow \mathbb{C}[D]$, that we write $e_{X}(P)(f)=f(P) \in \mathbb{C}[D]$, the evaluation of $f \in A_{X}$ at the point P.

Example 3.3. Assume V is an affine algebraic variety over \mathbb{Z}. Then we can define an affine gadget $X=\mathcal{G}(V)$ as follows:
(1) $\underline{X}(D)=V(\mathbb{Z}[D])$,
(2) $a_{X}=\Gamma\left(V_{\mathbb{C}}, \mathcal{O}\right)$, and
(3) given $P \in V(\mathbb{Z}[D]) \subset V(\mathbb{C}[D])$ and $f \in a_{X}$, then $f(P) \in \mathbb{C}[D]$ is the usual evaluation of the function f at P.

Definition 3.4. A morphism of affine gadgets $\phi: X \rightarrow Y$ consists of
(1) a natural transformation $\phi: \underline{X} \rightarrow \underline{Y}$, and
(2) a morphism of algebras $\phi^{\bar{*}}: \overline{a_{Y}} \rightarrow a_{X}$,
which are compatible with evaluations, i.e. if $P \in \underline{X}(D)$ and $f \in a_{Y}$, then $f(\underline{\phi}(P))=\left(\phi^{*}(f)\right)(P)$.
Definition 3.5. An immersion is a morphism $\left(\underline{\phi}, \phi^{*}\right)$ such that both $\underline{\phi}$ and ϕ^{*} are injective.

We can now define affine varieties over \mathbb{F}_{1} as a special type of affine gadgets:
Definition 3.6. An affine variety over \mathbb{F}_{1} is an affine gadget $X=\left(\underline{X}, a_{X}, e_{X}\right)$ over \mathbb{F}_{1} such that
(1) for any $D \in \mathrm{Ab}_{f}$, the set $\underline{X}(D)$ is finite;
(2) there exists an affine variety $X_{\mathbb{Z}}=X \otimes_{\mathbb{F}_{1}} \mathbb{Z}$ over \mathbb{Z} and an immersion of affine gadgets $i: X \rightarrow \mathcal{G}\left(X_{\mathbb{Z}}\right)$ [in particular, the points in the variety over \mathbb{F}_{1} are points in $\left.X_{\mathbb{Z}}\right]$ satisfying the following universal property: for every affine variety V over \mathbb{Z} and every morphism of affine gadgets $\varphi: X \rightarrow \mathcal{G}(V)$, there exists a unique algebraic morphism $\varphi_{\mathbb{Z}}: X_{\mathbb{Z}} \rightarrow V$ such that $\varphi=\mathcal{G}\left(\varphi_{\mathbb{Z}}\right) \circ i$, i.e. the diagram

commutes.

3.3. Examples.

Example 3.7. Any finite abelian group D defines an affine variety over \mathbb{F}_{1}, denoted $\operatorname{Spec}(D)$: the functor $\operatorname{Spec}(D)$ is the functor represented by D, the algebra is $\mathbb{C}[D]$, and the evaluation is the obvious one.
Example 3.8. We define the multiplicative group $X=\mathbb{G}_{m} / \mathbb{F}_{1}$ as the triple $\left(\underline{X}, a_{X}, e_{X}\right)$ where
(1) $\underline{X}(D)=D$,
(2) a_{X} is the algebra of continuous complex functions on the circle S^{1}, and
(3) if $P \in \underline{X}(D)$ and $f \in a_{X}$, for every character $\chi: D \rightarrow \mathbb{C}^{\times}, f(P) \in \mathbb{C}[D]$ is such that $\chi(f(P))=f(\chi(P))$.

Proposition 3.9. $\mathbb{G}_{m} / \mathbb{F}_{1}$ is an affine variety over \mathbb{F}_{1} such that $\mathbb{G}_{m} \otimes_{\mathbb{F}_{1}} \mathbb{Z}=$ $\operatorname{Spec}\left(\mathbb{Z}\left[T, T^{-1}\right]\right)$.
Example 3.10. The affine line $\mathbb{A}^{1} / \mathbb{F}_{1}$ is defined as the triple $\left(\underline{X}, a_{X}, e_{X}\right)$ by (1) $\underline{X}(D)=D \amalg\{0\}$,
(2) a_{X} is the algebra of continuous functions on the closed unit disk which are holomorphic in the open unit disk, and
(3) if $P \in \underline{X}(D)$ and $f \in a_{X}$, for any character $\chi: D \rightarrow \mathbb{C}^{\times}$, we have $\chi(f(P))=f(\chi(P))$.
Proposition 3.11. $\mathbb{A}^{1} / \mathbb{F}_{1}$ is an affine variety over \mathbb{F}_{1} with extension of scalars $\mathbb{A}^{1} \otimes_{\mathbb{F}_{1}} \mathbb{Z}=\operatorname{Spec}(\mathbb{Z}[T])$.

4. Varieties over \mathbb{F}_{1}

4.1. Definition. To get varieties over \mathbb{F}_{1} (and not only affine ones), we proceed again by analogy with Proposition 3.1. Let Aff $_{\mathbb{F}_{1}}$ be the category of affine varieties over \mathbb{F}_{1} (a full subcategory of the category of affine gadgets).

Definition 4.1. An object over \mathbb{F}_{1} is a triple $X=\left(\underline{\underline{X}}, a_{X}, e_{X}\right)$ consisting of (1) a contravariant functor $\underline{\underline{X}}:$ Aff $_{\mathbb{F}_{1}} \rightarrow$ Set,
(2) a \mathbb{C}-algebra a_{X}, and
(3) a natural transformation $e_{X}: \underline{\underline{X}} \Rightarrow \operatorname{Hom}\left(a_{X}, a_{-}\right)$.

Example 4.2. Assume V is an algebraic variety over \mathbb{Z}. Then we can define an object $X=\mathcal{O} b(V)$ as follows:
(1) $\underline{\underline{X}}(Y)=\operatorname{Hom}_{\mathbb{Z}}\left(Y_{\mathbb{Z}}, V\right)$,
(2) $\overline{\bar{a}}_{X}=\Gamma\left(V_{\mathbb{C}}, \mathcal{O}\right)$, and
(3) given $u \in \operatorname{Hom}_{\mathbb{Z}}\left(Y_{\mathbb{Z}}, V\right)$ and $f \in a_{X}$, then $e_{X}(u)(f)=i^{*} u^{*}(f)$.

Morphisms and immersions of objects are defined as the corresponding notions for affine gadgets. Finally
Definition 4.3. A variety over \mathbb{F}_{1} is an object $X=\left(\underline{X}, a_{X}, e_{X}\right)$ over \mathbb{F}_{1} such that
(1) for any $D \in \mathrm{Ab}_{f}$, the set $\underline{\underline{X}}(\operatorname{Spec}(D))$ is finite;
(2) there exists a variety $X_{\mathbb{Z}}=X \otimes_{\mathbb{F}_{1}} \mathbb{Z}$ over \mathbb{Z} and an immersion of objects $i: X \rightarrow \mathcal{O} b\left(X_{\mathbb{Z}}\right)$ satisfying the following universal property: for every variety V over \mathbb{Z} and every morphism of objects $\varphi: X \rightarrow \mathcal{O} b(V)$, there exists a unique algebraic morphism $\varphi_{\mathbb{Z}}: X_{\mathbb{Z}} \rightarrow V$ such that $\varphi=\mathcal{O} b\left(\varphi_{\mathbb{Z}}\right) \circ i$.
4.2. Examples. Any affine variety X over \mathbb{F}_{1} is also a variety over $\mathbb{F}_{1}: \underline{\underline{X}}$ is the functor represented by X, a_{X} and e_{X} are the obvious ones.

The following proposition (see [8] Proposition 5) allows one to define a variety over \mathbb{F}_{1} by glueing subvarieties.

Proposition 4.4. Let V be a variety over \mathbb{Z} and $V=\bigcup_{i \in I} U_{i}$ a finite open cover of V. Assume there is a finite family of varieties $X_{i}=\left(\underline{\underline{X}}_{i}, a_{i}, e_{i}\right), i \in I$, and $X_{i j}=\left(\underline{\underline{X}}_{i j}, a_{i j}, e_{i j}\right), i \neq j$, and immersions $X_{i j} \rightarrow X_{i}$ and $X_{i} \rightarrow \mathcal{O} b(V)$ of varieties over \mathbb{F}_{1} such that
(1) $X_{i j}=X_{j i}$ and the composites $X_{i j} \rightarrow X_{i} \rightarrow \mathcal{O} b(V)$ and $X_{i j} \rightarrow X_{j} \rightarrow \mathcal{O} b(V)$ coincide;
(2) the maps $\left(X_{i j}\right)_{\mathbb{Z}} \rightarrow\left(X_{i}\right)_{\mathbb{Z}}$ coincide with the inclusions $U_{i} \cap U_{j} \rightarrow U_{i}$, the maps $X_{i} \rightarrow \mathcal{O} b(V)$ induce the inclusions $U_{i} \rightarrow V$.

For any affine variety Y over \mathbb{F}_{1} define

$$
\underline{\underline{X}}(Y)=\bigcup_{i} \underline{\underline{X}}_{i}(Y)
$$

(union in $\operatorname{Hom}_{\mathbb{Z}}\left(Y_{\mathbb{Z}}, V\right)$) and let

$$
a_{X}=\left\{\left(f_{i}\right) \in \prod_{i} a_{i}\left|f_{i}\right|_{X_{i j}}=\left.f_{j}\right|_{X_{i j}}\right\}
$$

Then the object $X=\left(\underline{\underline{X}}, a_{X}, e_{X}\right)$ (where e_{X} is the obvious evaluation) is a variety over \mathbb{F}_{1} and $X \otimes_{\mathbb{F}_{1}} \mathbb{Z}$ is canonically isomorphic to V.

5. Zeta Functions

Let $X=\left(\underline{\underline{X}}, a_{X}, e_{X}\right)$ be a variety over \mathbb{F}_{1}. We make the following assumption:

ASSUMPTION: There exists a polynomial $N(x) \in \mathbb{Z}[x]$ such that, for all $n \geq 1, \# \underline{\underline{X}}\left(\mathbb{F}_{1^{n}}\right)=N(n+1)$.

Consider the following series:

$$
Z(q, T)=\exp \left(\sum_{r \geq 1} N\left(q^{r}\right) \frac{T^{r}}{r}\right)
$$

Now take $T=q^{-s}$ to get a function of s and q. For every $s \in \mathbb{R}$, the function $Z\left(q, q^{-s}\right)$ is meromorphic and has a pole at $q=1$ of order $\chi=N(1)$. We let q go to 1 to get a zeta function over \mathbb{F}_{1}. We define

$$
\zeta_{X}(s)=\lim _{q \rightarrow 1} Z\left(q, q^{-s}\right)(q-1)^{\chi}
$$

Lemma 5.1. If $N(x)=\sum_{k=0}^{d} a_{k} x^{k}$ then

$$
\zeta_{X}(s)=\prod_{k=1}^{d}(s-k)^{-a_{k}}
$$

Proof. We may assume that $N(x)=x^{k}$. Then we have

$$
Z\left(q, q^{-s}\right)=\exp \left(\sum_{r \geq 1} q^{k r} \frac{q^{-r s}}{r}\right)=\exp \left(-\log \left(1-q^{k-s}\right)\right)=\frac{1}{1-q^{k-s}}
$$

Now we have that

$$
\lim _{q \rightarrow 1} \frac{q-1}{1-q^{k-s}}=\frac{1}{s-k}
$$

For instance, if $X=\mathbb{G}_{m} / \mathbb{F}_{1}$, we get $\# \underline{\underline{X}}\left(\mathbb{F}_{1^{n}}\right)=n=N(n+1)$ with $N(x)=x-1$. Therefore

$$
\zeta_{X}(s)=\frac{s}{s-1}
$$

6. Toric Varieties over \mathbb{F}_{1}

6.1. Toric varieties. Let $d \geq 1, N=\mathbb{Z}^{d}$, and $M=\operatorname{Hom}(N, \mathbb{Z})$. Let $N_{\mathbb{R}}=$ $N \otimes_{\mathbb{Z}} \mathbb{R}$ and $M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$. We then have the duality pairing

$$
\langle\cdot, \cdot\rangle: M_{\mathbb{R}} \times N_{\mathbb{R}} \rightarrow \mathbb{R}
$$

Definition 6.1. A cone is a subset $\sigma \subset N_{\mathbb{R}}$ of the form

$$
\sigma=\sum_{i \in I} \mathbb{R}_{+} n_{i}
$$

where $\left(n_{i}\right)_{i \in I}$ is a finite family in N.
We define the dual and the orthogonal of σ by

$$
\begin{aligned}
\sigma^{*} & =\left\{v \in M_{\mathbb{R}} \mid\langle v, x\rangle \geq 0 \text { for all } x \in \sigma\right\} \text { and } \\
\sigma^{\perp} & =\left\{v \in M_{\mathbb{R}} \mid\langle v, x\rangle=0 \text { for all } x \in \sigma\right\}
\end{aligned}
$$

respectively.
A cone is strict if it does not contain any line.
A face is a subset $\tau \subset \sigma$ such that there is a $v \in \sigma^{*}$ with $\tau=\sigma \cap v^{\perp}$.
Definition 6.2. A fan is a finite collection $\Delta=\{\sigma\}$ of strict cones such that
(1) if $\sigma \in \Delta$, any face of σ is in Δ, and
(2) if $\sigma, \sigma^{\prime} \in \Delta$, then $\sigma \cap \sigma^{\prime}$ is a face of σ and σ^{\prime}.

Definition 6.3. Given Δ, we define a variety $\mathbb{P}(\Delta)$ over \mathbb{Z} as follows: for all $\sigma \in \Delta$, consider the monoid $S_{\sigma}=M \cap \sigma^{*}$. Set

$$
U_{\sigma}=\operatorname{Spec}\left(\mathbb{Z}\left[S_{\sigma}\right]\right)
$$

If $\sigma \subset \tau$, we have $U_{\sigma} \subset U_{\tau}$. The variety $\mathbb{P}(\Delta)$ is obtained by glueing the affine varieties $U_{\sigma}, \sigma \in \Delta$, along the subvarieties $U_{\sigma \cap \tau}$.

We assume that Δ is regular, i.e. any $\sigma \in \Delta$ is spanned by a subset of a basis of N. We shall define a variety $X(\Delta)$ over \mathbb{F}_{1} such that $X(\Delta) \otimes_{\mathbb{F}_{1}} \mathbb{Z}=$ $\mathbb{P}(\Delta)$.
6.2. The affine case. First, let us fix $\sigma \in \Delta$. For any $m \in S_{\sigma}$, let $\chi^{m}: U_{\sigma} \rightarrow$ \mathbb{A}^{1} be the function defined by m. When D is a finite abelian group, we define $\underline{X}_{\sigma}(D) \subset U_{\sigma}(\mathbb{Z}[D])$ to be the set of points P such that for any $m \in S_{\sigma}$, $\chi^{m}(P) \in D \amalg\{0\}$.

Let

$$
\begin{aligned}
& C_{\sigma}=\left\{x \in U_{\sigma}(\mathbb{C})| | \chi^{m}(x) \mid \leq 1 \text { for all } m \in S_{\sigma}\right\} \text { and } \\
& \dot{C}_{\sigma}=\left\{x \in C_{\sigma}| | \chi^{m}(x) \mid<1 \text { for all } m \in S_{\sigma} \text { with }\langle m, \sigma\rangle \neq 0\right\} .
\end{aligned}
$$

We define a_{σ} to be the ring of continuous functions $f: C_{\sigma} \rightarrow \mathbb{C}$ such that $\left.f\right|_{\dot{C}_{\sigma}}$ is holomorphic . Finally, if $P \in \underline{X}_{\sigma}(D), f \in a_{\sigma}$ and $\chi: D \rightarrow \mathbb{C}^{\times}$, we define $e_{\sigma}(P)$ by the formula $\chi\left(e_{\sigma}(P)(f)\right)=f(\chi(P))$.

The following is a generalization of Proposition 3.9. and Proposition 3.11.
Proposition 6.4. If σ is regular, then $X_{\sigma}=\left(\underline{X}_{\sigma}, a_{\sigma}, e_{\sigma}\right)$ is an affine variety over \mathbb{F}_{1} such that $X_{\sigma} \otimes_{\mathbb{F}_{1}} \mathbb{Z}=U_{\sigma}$.

Proof. Suppose $\left\{n_{1}, \ldots, n_{d}\right\}$ is a basis for N and that $\sigma=\mathbb{R}_{+} n_{1}+\cdots \mathbb{R}_{+} n_{d-r}$. Let $\left\{m_{1}, \ldots, m_{d}\right\}$ be the dual basis of M. Then

$$
S_{\sigma}=\mathbb{N} m_{1}+\cdots \mathbb{N} m_{d-r}+\mathbb{Z} m_{d-r+1}+\cdots \mathbb{Z} m_{d}=M \cap \sigma^{*}
$$

and as $U_{\sigma}(\mathbb{C})=\mathbb{C}^{d-r} \times\left(\mathbb{C}^{\times}\right)^{r}$, we have

$$
\begin{aligned}
& C_{\sigma}=\left\{x \in U_{\sigma}(\mathbb{C})| | x_{1}\left|, \ldots,\left|x_{d-r}\right| \leq 1 \text { and }\right| x_{d-r+1}\left|=\cdots=\left|x_{r}\right|=1\right\}\right. \text { and } \\
& \dot{C}_{\sigma}=\left\{x \in U_{\sigma}(\mathbb{C})| | x_{1}\left|, \ldots,\left|x_{d-r}\right|<1 \text { and }\right| x_{d-r+1}\left|=\cdots=\left|x_{r}\right|=1\right\} .\right.
\end{aligned}
$$

Furthermore

$$
\underline{X}_{\sigma}(D)=(D \amalg\{0\})^{d-r} \times D^{r} .
$$

Let V be an affine variety over \mathbb{Z}, and let $\varphi: X_{\sigma} \rightarrow \mathcal{G}(V)$ be a morphism of affine gadgets. We must find a $\varphi_{\mathbb{Z}}: U_{\sigma} \rightarrow V$ such that $\varphi=\mathcal{G}\left(\varphi_{\mathbb{Z}}\right) \circ i$. This is the same as a morphism from the algebra of functions on V to the algebra of functions on U_{σ}. Let $f \in \Gamma\left(V, \mathcal{O}_{V}\right)$. Then f induces a function $f_{\mathbb{C}}$ on the complex variety $V_{\mathbb{C}}$, and we may pull back this function to get a function on $X_{\sigma}: g_{\mathbb{C}}=\varphi^{*}\left(f_{\mathbb{C}}\right) \in a_{\sigma}$. We must show that $g_{\mathbb{C}}$ is algebraic over \mathbb{Z}, i.e. that it comes from a $g \in \mathcal{O}\left(U_{\sigma}\right)$. Restrict $g_{\mathbb{C}}$ to $\left(S^{1}\right)^{d}$, and look at the Fourier expansion
$g_{\mathbb{C}}\left(\exp \left(2 \pi i \theta_{1}\right), \ldots, \exp \left(2 \pi i \theta_{d}\right)\right)=\sum_{J \in \mathbb{Z}^{d}} c_{J} \exp (2 \pi i(J \cdot \theta))$ where $J \cdot \theta=\sum_{k=1}^{d} j_{k} \theta_{k}$.
Since g_{C} is holomorphic on C_{σ}, we must have $c_{J}=0$ when $j_{k}<0$ for $1 \leq$ $k \leq d-r$. We want to show that $g_{\mathbb{C}}$ is an integral polynomial in the first $d-r$ coordinates and an integral Laurent polynomial in the r remaining coordinates, i.e.

$$
g_{\mathbb{C}} \in \mathbb{Z}\left[T_{1}, \ldots, T_{d-r}, T_{d-r+1}^{ \pm 1}, \ldots, T_{d}^{ \pm 1}\right] .
$$

Let $n>1$, and consider $D=(\mathbb{Z} / n)^{d}$. Then if

$$
P_{k}=\underbrace{(0, \ldots, 0,1,0, \ldots, 0)}_{k^{\text {th } \text { slot is } 1}},
$$

we get a point $P=\left(P_{1}, \ldots, P_{d}\right) \in D^{d} \subset \underline{X}_{\sigma}(D)$. For $a=\left(a_{k}\right) \in D$, define $\chi_{a}: D \rightarrow \mathbb{C}^{\times}$by

$$
\chi_{a}(b)=\prod_{k=1}^{d} \exp \left(2 \pi i \frac{a_{k} b_{k}}{n}\right) .
$$

Then, as φ commutes with evaluations, we get

$$
\begin{aligned}
\chi_{a}\left(e_{\sigma}(P)\left(g_{\mathrm{C}}\right)\right) & =g_{\mathbb{C}}\left(\chi_{a}(P)\right)=g_{\mathbb{C}}\left(\exp \left(2 \pi i a_{1} / n\right), \ldots,\left(\exp \left(2 \pi i a_{d} / n\right)\right)\right. \\
& =\chi_{a}(f(\underline{\varphi}(P)))=\chi_{a}(Q)
\end{aligned}
$$

where $Q=f(\varphi(P)) \in f(V(\mathbb{Z}[D])) \subset \mathbb{Z}[D]$. The Fourier coefficients of $g_{\mathbb{C}}$ are given by the formula

$$
\begin{aligned}
c_{J} & =\int_{\left(S^{1}\right)^{d}} g_{\mathbb{C}}\left(\exp \left(2 \pi i \theta_{1}\right), \ldots, \exp \left(2 \pi i \theta_{k}\right)\right) \exp (-2 \pi i(J \cdot \theta)) d \theta_{1} \cdots d \theta_{d} \\
& =\lim _{n \rightarrow \infty} n^{-d} \sum_{a} g_{\mathbb{C}}\left(\exp \left(2 \pi i a_{1}\right), \ldots, \exp \left(2 \pi i a_{k}\right)\right) \exp (-2 \pi i(J \cdot a) / n) \\
& =\lim _{n \rightarrow \infty} n^{-d} \sum_{a} \chi_{a}(Q) \exp (-2 \pi i(J \cdot a) / n) .
\end{aligned}
$$

But as $Q \in \mathbb{Z}[D]$ we must have, for every n,

$$
n^{-d} \sum_{a} \chi_{a}(Q) \exp (-2 \pi i(J \cdot a) / n) \in \mathbb{Z}
$$

Therefore $c_{J} \in \mathbb{Z}$, and $c_{J}=0$ for almost all J, as desired.
6.3. The general case. Let Δ be a regular fan. For every affine variety Y over \mathbb{F}_{1} let

$$
\underline{\underline{X}}_{\Delta}(Y)=\bigcup_{\sigma \in \Delta} \operatorname{Hom}\left(Y, X_{\sigma}\right)
$$

Define

$$
C_{\Delta}=\bigcup_{\sigma \in \Delta} C_{\sigma} \subset \mathbb{P}(\Delta)(\mathbb{C})
$$

and let a_{Δ} be the algebra of continuous functions $f: C_{\Delta} \rightarrow \mathbb{C}$ such that, for all $\sigma \in \Delta$, the restriction of f to \dot{C}_{σ} is holomorphic. Finally, if $P \in$ $\operatorname{Hom}\left(Y, X_{\sigma}\right) \subset \underline{\underline{X}}_{\Delta}(Y)$ and $f \in a_{\Delta}$, define $e_{\Delta}(P)(f)=P^{*}(f) \in a_{Y}$.

The following is a consequence of Proposition 4.4 and Proposition 6.4.
Theorem 6.5. The object $X(\Delta)=\left(\underline{\underline{X}}_{\Delta}, a_{\Delta}, e_{\Delta}\right)$ over \mathbb{F}_{1} is a variety over \mathbb{F}_{1} such that

$$
X(\Delta) \otimes_{\mathbb{F}_{1}} \mathbb{Z}=\mathbb{P}(\Delta)
$$

Remark 6.6. There exists $N(x) \in \mathbb{Z}[x]$ such that, for all $n \geq 1, \# X_{\Delta}\left(\mathbb{F}_{1^{n}}\right)=$ $N(n+1)$.

7. Euclidean Lattices

Let Λ be a free \mathbb{Z}-module of finite rank, and $\|\cdot\|$ an Hermitian norm on $\Lambda \otimes_{\mathbb{Z}} \mathbb{C}$. We view $\bar{\Lambda}=(\Lambda,\|\cdot\|)$ as a vector bundle on the complete curve $\operatorname{Spec}(\mathbb{Z}) \amalg\{\infty\}$. The finite pointed set

$$
H^{0}(\operatorname{Spec}(\mathbb{Z}) \amalg\{\infty\}, \bar{\Lambda})=\left\{s \in \Lambda \mid v_{\infty}(s)=-\log \|s\| \geq 0\right\}=\Lambda \cap B
$$

where $B=\left\{v \in \Lambda \otimes_{\mathbb{Z}} \mathbb{C} \mid\|v\| \leq 1\right\}$, is viewed as a finite dimensional vector space over \mathbb{F}_{1}.

We can define an affine variety over \mathbb{F}_{1} as follows. We let

$$
\underline{X}(D)=\left\{P=\sum_{v \in \Lambda \cap B} v \otimes \alpha_{v} \mid \alpha_{v} \in D\right\} \subset \Lambda \otimes_{\mathbb{Z}} \mathbb{Z}[D] .
$$

If $\Lambda_{0} \subset \Lambda$ is the lattice spanned by $\Lambda \cap B$ we consider

$$
C=\left\{v \in \Lambda_{0} \otimes_{\mathbb{Z}} \mathbb{C} \mid\|v\| \leq \operatorname{card}(V \cap B)\right\}
$$

and we define a_{X} as the algebra of continuous functions $f: C \rightarrow \mathbb{C}$ such that $\left.f\right|_{C \subset}$ is holomorphic. Finally, for each $D \in \mathrm{Ab}_{f}, P \in \underline{X}(D), f \in a_{X}$, and $\chi: D \rightarrow \mathbb{C}^{\times}$, we define

$$
\chi(f(P))=f\left(\sum_{v \in \Lambda \cap B} \chi\left(a_{v}\right) v\right) .
$$

Proposition 7.1.

(1) The affine gadget $X=\left(\underline{X}, a_{X}, e_{X}\right)$ is an affine variety over \mathbb{F}_{1} such that $X \otimes_{\mathbb{F}_{1}} \mathbb{Z}=\operatorname{Spec}\left(\operatorname{Symm}_{\mathbb{Z}}\left(\Lambda_{0}^{*}\right)\right)$.
(2) There is a polynomial $N \in \mathbb{Z}[x]$ such that, for all $n \geq 1$, $\# X\left(\mathbb{F}_{1^{n}}\right)=$ $N(2 n+1)$.

This proposition raises the question whether there is a way to attach to $\bar{\Lambda}$ a torified variety in the sense of [6].

References

[1] A.Connes, C.Consani, On the notion of Geometry over \mathbb{F}_{1}. arXiv:0809.2926v2 [math.AG] (2008).
[2] A.Connes, C.Consani, Schemes over \mathbb{F}_{1} and zeta functions. arXiv: 0903.2024v2 [math.AG] (2009).
[3] M. Demazure and P. Gabriel, Introduction to algebraic geometry and algebraic groups. North-Holland Mathematics Studies 39 Amsterdam, New York, Oxford: NorthHolland Publishing Company. XIV, 358 p. (1980).
[4] M. Kapranov and A. Smirnov, Cohomology determinants and reciprocity laws: number field case, preprint.
[5] N. Kurokawa, H. Ochiai, and M. Wakayama, Absolute Derivations and Zeta Functions. Documenta Math. Extra Volume: Kazuya Kato's Fiftieth Birthday (2003) 565-584.
[6] J. Lopez Pena and O.Lorscheid, Torified varieties and their geometries over \mathbb{F}_{1}. arXiv:0903.2173v2 [math.AG] (2009).
[7] A. Smirnov, Hurwitz inequalities for number fields, St. Petersbg. Math. J. 4, No.2, (1993) 357-375; translation from Algebra Anal. 4, No.2, (1992) 186-209.
[8] C. Soulé, Les variétés sur le corps à un élément. Mosc. Math. J. 4, (2004) 217-244.
[9] R. Steinberg, A geometric approach to the representations of the full linear group over a Galois field. Trans. Am. Math. Soc. 71, (1951) 274-282.
[10] J. Tits, Sur les analogues algébriques des groupes semi-simples complexes. Colloque d'algèbre supérieure, Bruxelles, 1956, pp. 261-289. Centre Belge de Recherches Mathématiques, Gauthier-Villars (1957).

