LECTURES ON ALGEBRAIC VARIETIES OVER \mathbb{F}_1

CHRISTOPHE SOULÉ

NOTES BY DAVID PENNEYS

Contents

1. Introduction	0
2. Preliminaries	1
2.1. An analogy	1
2.2. The field \mathbb{F}_1	2
3. Affine varieties over \mathbb{F}_1	3
3.1. Schemes as functors	3
3.2. A definition	3
3.3. Examples	4
4. Varieties over \mathbb{F}_1	5
4.1. Definition	5
4.2. Examples	5
5. Zeta Functions	6
6. Toric Varieties over \mathbb{F}_1	7
6.1. Toric varieties	7
6.2. The affine case	7
6.3. The general case	9
7. Euclidean Lattices	9
References	10

1. INTRODUCTION

These notes are issued from a series of lectures given at the Seventh Annual Spring Institute on Noncommutative Geometry and Operator algebras, 2009, in Vanderbildt University. They present a summary of the author's article [8], with a few modifications. These are made in order to take into account corrections and improvements due to A.Connes and C.Consani [1, 2]. The notion of affine gadget over \mathbb{F}_1 introduced below (Def. 3.2) lies somewhere in between the notion of "truc" in [8],3.1., Def.1 (see however i) in loc. cit.) and A.Connes and C.Consani's notion of "gadget over \mathbb{F}_1 " [1]. We also added a discussion of the article of R.Steinberg [9] on the analogy between symmetric groups and general linear groups over finite fields.

I thank P.Cartier, A.Connes, C.Consani, J. Lopez Pena and O.Lorscheid for helpful discussions.

2. Preliminaries

2.1. An analogy. There is an analogy between the symmetric group Σ_n on n letters and the general linear group $GL(n, \mathbb{F}_q)$, where $q = p^k$ for a prime p. One of the first to write about this analogy was R.Steinberg in 1951 [9]. He used it to get a result in representation theory. This goes as follows.

For all $r \in \mathbb{N}$, define

$$[r] = q^{r-1} + q^{r-2} + \dots + q + 1 = \frac{q^r - 1}{q - 1}$$
 and
 $\{r\} = \prod_{i=1}^r [i].$

Let $n \ge 1$ and $G = GL(n, \mathbb{F}_q)$. Let $\nu = (\nu_1, \ldots, \nu_n)$ be a partition of n, i.e.

$$n = \sum_{i=1}^{n} \nu_i \text{ where } 0 \le \nu_1 \le \nu_2 \le \dots \le \nu_n.$$

Write every element of G as an n by n matrix of blocks of size $\nu_i \times \nu_j$, $1 \le i, j \le n$. Consider the (parabolic) subgroup of upper triangular such matrices

$$G(\nu) = \left\{ g = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subset G.$$

One checks that

$$#G/G(\nu) = \frac{\{n\}}{\prod_{i=1}^{n} \{\nu_i\}}.$$

Let

$$C(\nu) = \operatorname{Ind}_{G(\nu)}^{G} \mathbf{1} = \mathbb{C}[G/G(\nu)]$$

be the induced representation of the trivial representation of $G(\nu)$.

Theorem 2.1. Let ν be a partition of n and $\lambda_i = \nu_i + i - 1$ for all $i \ge 1$. The virtual representation

$$\Gamma(\nu) = \sum_{\kappa} \operatorname{sgn}(\kappa_1, \dots, \kappa_n) C(\lambda_1 - \kappa_1, \dots, \lambda_n - \kappa_n)$$

is an irreducible representation of G (i.e. its character is the character of an irreducible representation), when $\kappa = (\kappa_1, \ldots, \kappa_n)$ runs over all n! permutations of $0, 1, \ldots, n-1$, with the convention that if $\lambda_i - \kappa_i < 0$ for some *i*, then $C(\lambda_1 - \kappa_1, \ldots, \lambda_n - \kappa_n) = 0$. Moreover, if $\Gamma(\mu) = \Gamma(\nu)$, then $\mu = \nu$.

To prove this result we consider the symmetric group $H = \Sigma_n$ and its subgroup

$$H(\nu) = \Sigma_{\nu_1} \times \cdots \times \Sigma_{\nu_n}.$$

Then

$$\#H/H(\nu) = \frac{n!}{\prod_{i=1}^{n} \nu_i!}.$$

Set

$$D(\nu) = \operatorname{Ind}_{H(\nu)}^{H} \mathbf{1} = \mathbb{C}[H/H(\nu)]$$

and consider the virtual representation

$$\Delta(\nu) = \sum_{\kappa} \operatorname{sgn}(\kappa_1, \dots, \kappa_n) D(\lambda_1 - \kappa_1, \dots, \lambda_n - \kappa_n).$$

Theorem 2.2 (Frobenius, 1898). $\Delta(\nu)$ is an irreducible representation. Moreover, $\Delta(\mu) = \Delta(\nu)$ implies $\mu = \nu$.

The proof of 2.1 follows from this theorem and the following lemma:

Lemma 2.3. Let $x \mapsto \psi(\nu, x)$ be the character of $C(\nu)$ and $x \mapsto \varphi(\nu, x)$ the character of $D(\nu)$. Then, for all μ, ν , we have

$$\frac{1}{\#G}\sum_{x\in G}\psi(\nu,x)\psi(\mu,x) = \frac{1}{\#H}\sum_{x\in H}\varphi(\nu,x)\varphi(\mu,x)$$

Proof. The left hand side (resp. the right hand side) of this equality is the number of double cosets of G (resp. H) modulo $G(\mu)$ and $G(\nu)$ (resp. $H(\mu)$ and $H(\nu)$). We have an inclusion $H \subset G$ such that $H(\mu) = G(\mu) \cap H$, and the Bruhat decomposition implies that the map

$$H(\mu) \setminus H/H(\nu) \to G(\mu) \setminus G/G(\nu)$$

is a bijection.

Let $\chi(\nu, x)$ be the character of $C(\nu)$. From the lemma and Frobenius' theorem we deduce that

$$\frac{1}{\#G}\sum_{x\in G}\chi(\nu,x)\overline{\chi(\mu,x)} = \delta_{\mu,\nu}$$

and, to get 2.1, it remains to check that $\chi(\nu, 1) > 0$.

2.2. The field \mathbb{F}_1 . In [10] Tits noticed that the analogy above extends to an analogy between the group $G(\mathbb{F}_q)$ of points in \mathbb{F}_q of a Chevalley group scheme G and its Weyl group W. He had the idea that there should exist a "field of characteristic one" \mathbb{F}_1 such that

$$W = G(\mathbb{F}_1) \,.$$

He showed furthermore that, when q goes to 1, the finite geometry attached to $G(\mathbb{F}_q)$ becomes the finite geometry of the Coxeter group W.

Thirty five years later, Smirnov [7], and then Kapranov and Manin, wrote about \mathbb{F}_1 , viewed as the missing ground field over which number rings are defined. Since then several people studied \mathbb{F}_1 and tried to define algebraic geometry over it. Today, there are at least seven different definitions of such a geometry, and a few studies comparing them.

3. Affine varieties over \mathbb{F}_1

3.1. Schemes as functors. We shall propose a definition for varieties over \mathbb{F}_1 based on three remarks. The first one is that schemes can be defined as covariant functors from rings to sets (satisfying some extra properties, see [3]).

The second remark is that extension of scalars can be defined in terms of functors. Namely, let k be a field, and let Ω be a k-algebra. If X is a variety over k, we denote by $X_{\Omega} = X \otimes_k \Omega$ (= $X \times_{\text{Spec}(k)} \text{Spec}(\Omega)$) its extension of scalars from k to Ω . Let \underline{X} be the functor from k-algebras to sets defined by X and \underline{X}_{Ω} the functor from Ω -algebras to sets defined by X_{Ω} . Let β be the functor $_k \text{Alg} \to {}_{\Omega} \text{Alg}$ given by $R \mapsto R \otimes_k \Omega$.

Proposition 3.1.

(1) There is a natural transformation $i: \underline{X} \to \underline{X}_{\Omega} \circ \beta$ of functors $_k Alg \to Set$. For any k-algebra R the map $\underline{X}(R) \to \underline{X}_{\Omega}(R_{\Omega})$ is injective.

(2) For any scheme S over Ω and any natural transformation $\varphi \colon \underline{X} \to \underline{S} \circ \beta$, there exists a unique algebraic morphism $\varphi_{\Omega} \colon X_{\Omega} \to S$ such that $\varphi = \varphi_{\Omega} \circ i$. In other words the following diagram is commutative:

We deduce from this proposition that, if X is a variety over \mathbb{F}_1 ,

- (1) X should determine a covariant functor \underline{X} from \mathbb{F}_1 -algebras to Set;
- (2) X should define a variety $X \otimes_{\mathbb{F}_1} \mathbb{Z}$ over \mathbb{Z} by some universal property similar to the one in the proposition above (with $k = \mathbb{F}_1$ and $\Omega = \mathbb{Z}$).

3.2. A definition. A third remark is that we know what should play the role of finite extensions of \mathbb{F}_1 . According to both Kapranov-Smirnov [4] and Kurokawa-Ochiai-Watanabe [5], the category of finite extensions of \mathbb{F}_1 is Ab_f , the category of finite abelian groups. If $D \in Ab_f$, we define the extension of scalars of D from \mathbb{F}_1 to \mathbb{Z} as the group-algebra $D \otimes_{\mathbb{F}_1} \mathbb{Z} = \mathbb{Z}[D]$. For example, $\mathbb{F}_{1^n} = \mathbb{Z}/n$, and

$$\mathbb{F}_{1^n} \otimes_{\mathbb{F}_1} \mathbb{Z} = \mathbb{Z}[T]/(T^n - 1) \,.$$

We now make the following

Definition 3.2. An affine gadget over \mathbb{F}_1 is a triple $X = (\underline{X}, \mathcal{A}_X, e_X)$ consisting of

(1) a covariant functor $\underline{X} : \mathsf{Ab}_f \to \mathsf{Set}$,

- (2) a \mathbb{C} -algebra \mathcal{A}_X , and
- (3) a natural transformation $e_X \colon \underline{X} \Rightarrow \operatorname{Hom}(\mathcal{A}_X, \mathbb{C}[-]).$

In other words, if $D \in \mathsf{Ab}_f$ and $P \in \underline{X}(D)$, we get a morphism of complex algebras $\mathcal{A}_X \to \mathbb{C}[D]$, that we write $e_X(P)(f) = f(P) \in \mathbb{C}[D]$, the evaluation of $f \in \mathcal{A}_X$ at the point P.

Example 3.3. Assume V is an affine algebraic variety over \mathbb{Z} . Then we can define an affine gadget $X = \mathcal{G}(V)$ as follows:

4 CHRISTOPHE SOULÉ NOTES BY DAVID PENNEYS

- (1) $\underline{X}(D) = V(\mathbb{Z}[D]),$
- (2) $\mathcal{A}_X = \Gamma(V_{\mathbb{C}}, \mathcal{O})$, and

(3) given $P \in V(\mathbb{Z}[D]) \subset V(\mathbb{C}[D])$ and $f \in \mathcal{A}_X$, then $f(P) \in \mathbb{C}[D]$ is the usual evaluation of the function f at P.

Definition 3.4. A morphism of affine gadgets $\phi: X \to Y$ consists of

(1) a natural transformation $\underline{\phi} \colon \underline{X} \to \underline{Y}$, and

(2) a morphism of algebras $\phi^{\overline{*}} \colon \mathcal{A}_Y \to \mathcal{A}_X$,

which are compatible with evaluations, i.e. if $P \in \underline{X}(D)$ and $f \in \mathcal{A}_Y$, then $f(\phi(P)) = (\phi^*(f))(P)$.

Definition 3.5. An *immersion* is a morphism (ϕ, ϕ^*) such that both ϕ and ϕ^* are injective.

We can now define affine varieties over \mathbb{F}_1 as a special type of affine gadgets:

Definition 3.6. An affine variety over \mathbb{F}_1 is an affine gadget $X = (\underline{X}, \mathcal{A}_X, e_X)$ over \mathbb{F}_1 such that

(1) for any $D \in \mathsf{Ab}_f$, the set $\underline{X}(D)$ is finite;

(2) there exists an affine variety $X_{\mathbb{Z}} = X \otimes_{\mathbb{F}_1} \mathbb{Z}$ over \mathbb{Z} and an immersion of affine gadgets $i: X \to \mathcal{G}(X_{\mathbb{Z}})$ [in particular, the points in the variety over \mathbb{F}_1 are points in $X_{\mathbb{Z}}$] satisfying the following universal property: for every affine variety V over \mathbb{Z} and every morphism of affine gadgets $\varphi: X \to \mathcal{G}(V)$, there exists a unique algebraic morphism $\varphi_{\mathbb{Z}}: X_{\mathbb{Z}} \to V$ such that $\varphi = \mathcal{G}(\varphi_{\mathbb{Z}}) \circ i$, i.e. the diagram

commutes.

3.3. Examples.

Example 3.7. Any finite abelian group D defines an affine variety over \mathbb{F}_1 , denoted Spec(D): the functor $\underline{\text{Spec}}(D)$ is the functor represented by D, the algebra is $\mathbb{C}[D]$, and the evaluation is the obvious one.

Example 3.8. We define the multiplicative group $X = \mathbb{G}_m/\mathbb{F}_1$ as the triple $(\underline{X}, \mathcal{A}_X, e_X)$ where

$$(1) \ \underline{X}(D) = D,$$

(2) \mathcal{A}_X is the algebra of continuous complex functions on the circle S^1 , and

(3) if $P \in \underline{X}(D)$ and $f \in \mathbf{a}_X$, for every character $\chi \colon D \to \mathbb{C}^{\times}$, $f(P) \in \mathbb{C}[D]$ is such that $\chi(f(P)) = f(\chi(P))$.

Proposition 3.9. $\mathbb{G}_m/\mathbb{F}_1$ is an affine variety over \mathbb{F}_1 such that $\mathbb{G}_m \otimes_{\mathbb{F}_1} \mathbb{Z} =$ Spec $(\mathbb{Z}[T, T^{-1}])$.

Example 3.10. The affine line $\mathbb{A}^1/\mathbb{F}_1$ is defined as the triple $(\underline{X}, \mathcal{A}_X, e_X)$ by (1) $\underline{X}(D) = D \amalg \{0\},$

(2) \mathcal{A}_X is the algebra of continuous functions on the closed unit disk which are holomorphic in the open unit disk, and

(3) if $P \in \underline{X}(D)$ and $f \in \mathcal{A}_X$, for any character $\chi: D \to \mathbb{C}^{\times}$, we have $\chi(f(P)) = f(\chi(P))$.

Proposition 3.11. $\mathbb{A}^1/\mathbb{F}_1$ is an affine variety over \mathbb{F}_1 with extension of scalars $\mathbb{A}^1 \otimes_{\mathbb{F}_1} \mathbb{Z} = \operatorname{Spec}(\mathbb{Z}[T]).$

4. Varieties over \mathbb{F}_1

4.1. **Definition.** To get varieties over \mathbb{F}_1 (and not only affine ones), we proceed again by analogy with Proposition 3.1. Let $Aff_{\mathbb{F}_1}$ be the category of affine varieties over \mathbb{F}_1 (a full subcategory of the category of affine gadgets).

Definition 4.1. An object over \mathbb{F}_1 is a triple $X = (\underline{X}, \mathcal{A}_X, e_X)$ consisting of (1) a contravariant functor \underline{X} : $\mathsf{Aff}_{\mathbb{F}_1} \to \mathsf{Set}$,

(2) a \mathbb{C} -algebra \mathcal{A}_X , and

(3) a natural transformation $e_X : \underline{X} \Rightarrow \operatorname{Hom}(\mathcal{A}_X, \mathcal{A}_-).$

Example 4.2. Assume V is an algebraic variety over \mathbb{Z} . Then we can define an object $X = \mathcal{O}b(V)$ as follows:

- (1) $\underline{X}(Y) = \operatorname{Hom}_{\mathbb{Z}}(Y_{\mathbb{Z}}, V),$
- (2) $\overline{\mathcal{A}}_X = \Gamma(V_{\mathbb{C}}, \mathcal{O})$, and

(3) given $u \in \operatorname{Hom}_{\mathbb{Z}}(Y_{\mathbb{Z}}, V)$ and $f \in \mathcal{A}_X$, then $e_X(u)(f) = i^*u^*(f)$.

Morphisms and immersions of objects are defined as the corresponding notions for affine gadgets. Finally

Definition 4.3. A variety over \mathbb{F}_1 is an object $X = (\underline{X}, \mathcal{A}_X, e_X)$ over \mathbb{F}_1 such that

(1) for any $D \in \mathsf{Ab}_f$, the set $\underline{X}(\operatorname{Spec}(D))$ is finite;

(2) there exists a variety $X_{\mathbb{Z}} = X \otimes_{\mathbb{F}_1} \mathbb{Z}$ over \mathbb{Z} and an immersion of objects $i: X \to \mathcal{O}b(X_{\mathbb{Z}})$ satisfying the following universal property: for every variety V over \mathbb{Z} and every morphism of objects $\varphi: X \to \mathcal{O}b(V)$, there exists a unique algebraic morphism $\varphi_{\mathbb{Z}}: X_{\mathbb{Z}} \to V$ such that $\varphi = \mathcal{O}b(\varphi_{\mathbb{Z}}) \circ i$.

4.2. **Examples.** Any affine variety X over \mathbb{F}_1 is also a variety over \mathbb{F}_1 : \underline{X} is the functor represented by X, \mathcal{A}_X and e_X are the obvious ones.

The following proposition (see [8] Proposition 5) allows one to define a variety over \mathbb{F}_1 by glueing subvarieties.

Proposition 4.4. Let V be a variety over \mathbb{Z} and $V = \bigcup_{i \in I} U_i$ a finite open cover of V. Assume there is a finite family of varieties $X_i = (\underline{X}_i, \mathbf{a}_i, e_i), i \in I$, and $X_{ij} = (\underline{X}_{ij}, \mathbf{a}_{ij}, e_{ij}), i \neq j$, and immersions $X_{ij} \to X_i$ and $X_i \to \mathcal{O}b(V)$ of varieties over \mathbb{F}_1 such that

(1) $X_{ij} = X_{ji}$ and the composites $X_{ij} \to X_i \to \mathcal{O}b(V)$ and $X_{ij} \to X_j \to \mathcal{O}b(V)$ coincide;

(2) the maps $(X_{ij})_{\mathbb{Z}} \to (X_i)_{\mathbb{Z}}$ coincide with the inclusions $U_i \cap U_j \to U_i$, the maps $X_i \to \mathcal{O}b(V)$ induce the inclusions $U_i \to V$.

CHRISTOPHE SOULÉ NOTES BY DAVID PENNEYS

For any affine variety Y over \mathbb{F}_1 define

$$\underline{\underline{X}}(Y) = \bigcup_{i} \underline{\underline{X}}_{i}(Y)$$

(union in $\operatorname{Hom}_{\mathbb{Z}}(Y_{\mathbb{Z}}, V)$) and let

$$\mathcal{A}_X = \left\{ (f_i) \in \prod_i \mathcal{A}_i \middle| f_i |_{X_{ij}} = f_j |_{X_{ij}} \right\} \,.$$

Then the object $X = (\underline{X}, \mathcal{A}_X, e_X)$ (where e_X is the obvious evaluation) is a variety over \mathbb{F}_1 and $X \otimes_{\mathbb{F}_1} \mathbb{Z}$ is canonically isomorphic to V.

5. Zeta Functions

Let $X = (\underline{X}, \mathcal{A}_X, e_X)$ be a variety over \mathbb{F}_1 . We make the following assumption:

ASSUMPTION: There exists a polynomial $N(x) \in \mathbb{Z}[x]$ such that, for all $n \geq 1, \# \underline{X}(\mathbb{F}_{1^n}) = N(n+1).$

Consider the following series:

$$Z(q,T) = \exp\left(\sum_{r\geq 1} N(q^r) \frac{T^r}{r}\right)$$
.

Now take $T = q^{-s}$ to get a function of s and q. For every $s \in \mathbb{R}$, the function $Z(q, q^{-s})$ is meromorphic and has a pole at q = 1 of order $\chi = N(1)$. We let q go to 1 to get a zeta function over \mathbb{F}_1 . We define

$$\zeta_X(s) = \lim_{q \to 1} Z(q, q^{-s})(q-1)^{\chi}.$$

Lemma 5.1. If $N(x) = \sum_{k=0}^{d} a_k x^k$ then

$$\zeta_X(s) = \prod_{k=1}^d (s-k)^{-a_k}$$

Proof. We may assume that $N(x) = x^k$. Then we have

$$Z(q, q^{-s}) = \exp\left(\sum_{r\geq 1} q^{kr} \frac{q^{-rs}}{r}\right) = \exp(-\log(1-q^{k-s})) = \frac{1}{1-q^{k-s}}.$$

Now we have that

$$\lim_{q \to 1} \frac{q-1}{1-q^{k-s}} = \frac{1}{s-k}.$$

For instance, if $X = \mathbb{G}_m/\mathbb{F}_1$, we get $\#\underline{X}(\mathbb{F}_{1^n}) = n = N(n+1)$ with N(x) = x - 1. Therefore

$$\zeta_X(s) = \frac{s}{s-1}.$$

 $\mathbf{6}$

LECTURES ON ALGEBRAIC VARIETIES OVER \mathbb{F}_1

6. Toric Varieties over \mathbb{F}_1

6.1. Toric varieties. Let $d \geq 1$, $N = \mathbb{Z}^d$, and $M = \text{Hom}(N, \mathbb{Z})$. Let $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$. We then have the duality pairing

$$\langle \cdot, \cdot \rangle \colon M_{\mathbb{R}} \times N_{\mathbb{R}} \to \mathbb{R}$$

Definition 6.1. A *cone* is a subset $\sigma \subset N_{\mathbb{R}}$ of the form

$$\sigma = \sum_{i \in I} \mathbb{R}_+ n_i$$

where $(n_i)_{i \in I}$ is a finite family in N.

We define the *dual* and the *orthogonal* of σ by

$$\sigma^* = \left\{ v \in M_{\mathbb{R}} | \langle v, x \rangle \ge 0 \text{ for all } x \in \sigma \right\} \text{ and}$$
$$\sigma^{\perp} = \left\{ v \in M_{\mathbb{R}} | \langle v, x \rangle = 0 \text{ for all } x \in \sigma \right\}$$

respectively.

A cone is *strict* if it does not contain any line.

A face is a subset $\tau \subset \sigma$ such that there is a $v \in \sigma^*$ with $\tau = \sigma \cap v^{\perp}$.

Definition 6.2. A fan is a finite collection $\Delta = \{\sigma\}$ of strict cones such that (1) if $\sigma \in \Delta$, any face of σ is in Δ , and

(2) if $\sigma, \sigma' \in \Delta$, then $\sigma \cap \sigma'$ is a face of σ and σ' .

Definition 6.3. Given Δ , we define a variety $\mathbb{P}(\Delta)$ over \mathbb{Z} as follows: for all $\sigma \in \Delta$, consider the monoid $S_{\sigma} = M \cap \sigma^*$. Set

$$U_{\sigma} = \operatorname{Spec}(\mathbb{Z}[S_{\sigma}]).$$

If $\sigma \subset \tau$, we have $U_{\sigma} \subset U_{\tau}$. The variety $\mathbb{P}(\Delta)$ is obtained by glueing the affine varieties $U_{\sigma}, \sigma \in \Delta$, along the subvarieties $U_{\sigma \cap \tau}$.

We assume that Δ is *regular*, i.e. any $\sigma \in \Delta$ is spanned by a subset of a basis of N. We shall define a variety $X(\Delta)$ over \mathbb{F}_1 such that $X(\Delta) \otimes_{\mathbb{F}_1} \mathbb{Z} = \mathbb{P}(\Delta)$.

6.2. The affine case. First, let us fix $\sigma \in \Delta$. For any $m \in S_{\sigma}$, let $\chi^m : U_{\sigma} \to \mathbb{A}^1$ be the function defined by m. When D is a finite abelian group, we define $\underline{X}_{\sigma}(D) \subset U_{\sigma}(\mathbb{Z}[D])$ to be the set of points P such that for any $m \in S_{\sigma}$, $\chi^m(P) \in D \amalg \{0\}$.

Let

$$C_{\sigma} = \left\{ x \in U_{\sigma}(\mathbb{C}) \big| |\chi^{m}(x)| \le 1 \text{ for all } m \in S_{\sigma} \right\} \text{ and}$$
$$\mathring{C}_{\sigma} = \left\{ x \in C_{\sigma} \big| |\chi^{m}(x)| < 1 \text{ for all } m \in S_{\sigma} \text{ with } \langle m, \sigma \rangle \neq 0 \right\}$$

We define \mathcal{A}_{σ} to be the ring of continuous functions $f: C_{\sigma} \to \mathbb{C}$ such that $f|_{\mathcal{C}_{\sigma}}$ is holomorphic. Finally, if $P \in \underline{X}_{\sigma}(D)$, $f \in \mathcal{A}_{\sigma}$ and $\chi: D \to \mathbb{C}^{\times}$, we define $e_{\sigma}(P)$ by the formula $\chi(e_{\sigma}(P)(f)) = f(\chi(P))$.

The following is a generalization of Proposition 3.9. and Proposition 3.11.

Proposition 6.4. If σ is regular, then $X_{\sigma} = (\underline{X}_{\sigma}, \mathcal{A}_{\sigma}, e_{\sigma})$ is an affine variety over \mathbb{F}_1 such that $X_{\sigma} \otimes_{\mathbb{F}_1} \mathbb{Z} = U_{\sigma}$.

8 CHRISTOPHE SOULÉ NOTES BY DAVID PENNEYS Proof. Suppose $\{n_1, \ldots, n_d\}$ is a basis for N and that $\sigma = \mathbb{R}_+ n_1 + \cdots + \mathbb{R}_+ n_{d-r}$. Let $\{m_1, \ldots, m_d\}$ be the dual basis of M. Then

$$S_{\sigma} = \mathbb{N}m_1 + \cdots \mathbb{N}m_{d-r} + \mathbb{Z}m_{d-r+1} + \cdots \mathbb{Z}m_d = M \cap \sigma^*,$$

and as $U_{\sigma}(\mathbb{C}) = \mathbb{C}^{d-r} \times (\mathbb{C}^{\times})^r$, we have

$$C_{\sigma} = \left\{ x \in U_{\sigma}(\mathbb{C}) | |x_1|, \dots, |x_{d-r}| \le 1 \text{ and } |x_{d-r+1}| = \dots = |x_r| = 1 \right\} \text{ and } \\ \mathring{C}_{\sigma} = \left\{ x \in U_{\sigma}(\mathbb{C}) | |x_1|, \dots, |x_{d-r}| < 1 \text{ and } |x_{d-r+1}| = \dots = |x_r| = 1 \right\}.$$

Furthermore

$$\underline{X}_{\sigma}(D) = (D \amalg \{0\})^{d-r} \times D^r.$$

Let V be an affine variety over \mathbb{Z} , and let $\varphi: X_{\sigma} \to \mathcal{G}(V)$ be a morphism of affine gadgets. We must find a $\varphi_{\mathbb{Z}}: U_{\sigma} \to V$ such that $\varphi = \mathcal{G}(\varphi_{\mathbb{Z}}) \circ i$. This is the same as a morphism from the algebra of functions on V to the algebra of functions on U_{σ} . Let $f \in \Gamma(V, \mathcal{O}_V)$. Then f induces a function $f_{\mathbb{C}}$ on the complex variety $V_{\mathbb{C}}$, and we may pull back this function to get a function on $X_{\sigma}: g_{\mathbb{C}} = \varphi^*(f_{\mathbb{C}}) \in \mathcal{Q}_{\sigma}$. We must show that $g_{\mathbb{C}}$ is algebraic over \mathbb{Z} , i.e. that it comes from a $g \in \mathcal{O}(U_{\sigma})$. Restrict $g_{\mathbb{C}}$ to $(S^1)^d$, and look at the Fourier expansion

$$g_{\mathbb{C}}(\exp(2\pi i\theta_1),\ldots,\exp(2\pi i\theta_d)) = \sum_{J\in\mathbb{Z}^d} c_J \exp(2\pi i(J\cdot\theta))$$
 where $J\cdot\theta = \sum_{k=1}^d j_k\theta_k$.

Since $g_{\mathbb{C}}$ is holomorphic on C_{σ} , we must have $c_J = 0$ when $j_k < 0$ for $1 \le k \le d - r$. We want to show that $g_{\mathbb{C}}$ is an integral polynomial in the first d - r coordinates and an integral Laurent polynomial in the r remaining coordinates, i.e.

$$g_{\mathbb{C}} \in \mathbb{Z}[T_1, \dots, T_{d-r}, T_{d-r+1}^{\pm 1}, \dots, T_d^{\pm 1}].$$

Let n > 1, and consider $D = (\mathbb{Z}/n)^d$. Then if

$$P_k = \underbrace{(0, \dots, 0, 1, 0, \dots, 0)}_{k^{\text{th slot is } 1}},$$

we get a point $P = (P_1, \ldots, P_d) \in D^d \subset \underline{X}_{\sigma}(D)$. For $a = (a_k) \in D$, define $\chi_a \colon D \to \mathbb{C}^{\times}$ by

$$\chi_a(b) = \prod_{k=1}^d \exp\left(2\pi i \frac{a_k b_k}{n}\right).$$

Then, as φ commutes with evaluations, we get

$$\chi_a(e_{\sigma}(P)(g_{\mathbb{C}})) = g_{\mathbb{C}}(\chi_a(P)) = g_{\mathbb{C}}(\exp(2\pi i a_1/n), \dots, (\exp(2\pi i a_d/n)))$$
$$= \chi_a(f(\underline{\varphi}(P))) = \chi_a(Q)$$

where $Q = f(\underline{\varphi}(P)) \in f(V(\mathbb{Z}[D])) \subset \mathbb{Z}[D]$. The Fourier coefficients of $g_{\mathbb{C}}$ are given by the formula

$$c_J = \int_{(S^1)^d} g_{\mathbb{C}}(\exp(2\pi i\theta_1), \dots, \exp(2\pi i\theta_k)) \exp(-2\pi i(J \cdot \theta)) d\theta_1 \cdots d\theta_d$$

=
$$\lim_{n \to \infty} n^{-d} \sum_a g_{\mathbb{C}}(\exp(2\pi i a_1), \dots, \exp(2\pi i a_k)) \exp(-2\pi i(J \cdot a)/n)$$

=
$$\lim_{n \to \infty} n^{-d} \sum_a \chi_a(Q) \exp(-2\pi i(J \cdot a)/n).$$

But as $Q \in \mathbb{Z}[D]$ we must have, for every n,

$$n^{-d}\sum_{a}\chi_{a}(Q)\exp(-2\pi i(J\cdot a)/n)\in\mathbb{Z}.$$

Therefore $c_J \in \mathbb{Z}$, and $c_J = 0$ for almost all J, as desired.

6.3. The general case. Let Δ be a regular fan. For every affine variety Y over \mathbb{F}_1 let

$$\underline{\underline{X}}_{\Delta}(Y) = \bigcup_{\sigma \in \Delta} \operatorname{Hom}(Y, X_{\sigma}).$$

Define

$$C_{\Delta} = \bigcup_{\sigma \in \Delta} C_{\sigma} \subset \mathbb{P}(\Delta)(\mathbb{C}) \,,$$

and let \mathcal{A}_{Δ} be the algebra of continuous functions $f: C_{\Delta} \to \mathbb{C}$ such that, for all $\sigma \in \Delta$, the restriction of f to \mathring{C}_{σ} is holomorphic. Finally, if $P \in$ $\operatorname{Hom}(Y, X_{\sigma}) \subset \underline{X}_{\Delta}(Y)$ and $f \in \mathcal{A}_{\Delta}$, define $e_{\Delta}(P)(f) = P^{*}(f) \in \mathcal{A}_{Y}$.

The following is a consequence of Proposition 4.4 and Proposition 6.4.

Theorem 6.5. The object $X(\Delta) = (\underline{X}_{\Delta}, \mathcal{A}_{\Delta}, e_{\Delta})$ over \mathbb{F}_1 is a variety over \mathbb{F}_1 such that

$$X(\Delta) \otimes_{\mathbb{F}_1} \mathbb{Z} = \mathbb{P}(\Delta)$$
.

Remark 6.6. There exists $N(x) \in \mathbb{Z}[x]$ such that, for all $n \ge 1$, $\#X_{\Delta}(\mathbb{F}_{1^n}) = N(n+1)$.

7. EUCLIDEAN LATTICES

Let Λ be a free \mathbb{Z} -module of finite rank, and $\|\cdot\|$ an Hermitian norm on $\Lambda \otimes_{\mathbb{Z}} \mathbb{C}$. We view $\overline{\Lambda} = (\Lambda, \|\cdot\|)$ as a vector bundle on the complete curve $\operatorname{Spec}(\mathbb{Z}) \amalg \{\infty\}$. The finite pointed set

$$H^{0}(\operatorname{Spec}(\mathbb{Z})\amalg\{\infty\},\overline{\Lambda}) = \left\{s \in \Lambda \middle| v_{\infty}(s) = -\log \|s\| \ge 0\right\} = \Lambda \cap B,$$

where $B = \{v \in \Lambda \otimes_{\mathbb{Z}} \mathbb{C} | ||v|| \leq 1\}$, is viewed as a finite dimensional vector space over \mathbb{F}_1 .

We can define an affine variety over \mathbb{F}_1 as follows. We let

$$\underline{X}(D) = \left\{ P = \sum_{v \in \Lambda \cap B} v \otimes \alpha_v \middle| \alpha_v \in D \right\} \subset \Lambda \otimes_{\mathbb{Z}} \mathbb{Z}[D].$$

CHRISTOPHE SOULÉ NOTES BY DAVID PENNEYS

If $\Lambda_0 \subset \Lambda$ is the lattice spanned by $\Lambda \cap B$ we consider

 $C = \left\{ v \in \Lambda_0 \otimes_{\mathbb{Z}} \mathbb{C} \big| \|v\| \le \operatorname{card}(V \cap B) \right\} \,,$

and we define \mathcal{A}_X as the algebra of continuous functions $f: C \to \mathbb{C}$ such that $f|_{\mathring{C}}$ is holomorphic. Finally, for each $D \in \mathsf{Ab}_f$, $P \in \underline{X}(D)$, $f \in \mathcal{A}_X$, and $\chi: D \to \mathbb{C}^{\times}$, we define

$$\chi(f(P)) = f\left(\sum_{v \in \Lambda \cap B} \chi(a_v)v\right)$$
.

Proposition 7.1.

(1) The affine gadget $X = (\underline{X}, \mathcal{Q}_X, e_X)$ is an affine variety over \mathbb{F}_1 such that $X \otimes_{\mathbb{F}_1} \mathbb{Z} = \operatorname{Spec}(\operatorname{Symm}_{\mathbb{Z}}(\Lambda_0^*)).$

(2) There is a polynomial $N \in \mathbb{Z}[x]$ such that, for all $n \geq 1$, $\#X(\mathbb{F}_{1^n}) = N(2n+1)$.

This proposition raises the question whether there is a way to attach to Λ a torified variety in the sense of [6].

References

- [1] A.CONNES, C.CONSANI, On the notion of Geometry over \mathbb{F}_1 . arXiv:0809.2926v2 [math.AG] (2008).
- [2] A.CONNES, C.CONSANI, Schemes over \mathbb{F}_1 and zeta functions. arXiv: 0903.2024v2 [math.AG] (2009).
- [3] M. DEMAZURE AND P. GABRIEL, Introduction to algebraic geometry and algebraic groups. North-Holland Mathematics Studies 39 Amsterdam, New York, Oxford: North-Holland Publishing Company. XIV, 358 p. (1980).
- [4] M. KAPRANOV AND A. SMIRNOV, Cohomology determinants and reciprocity laws: number field case, preprint.
- [5] N. KUROKAWA, H. OCHIAI, AND M. WAKAYAMA, Absolute Derivations and Zeta Functions. Documenta Math. Extra Volume: Kazuya Kato's Fiftieth Birthday (2003) 565–584.
- [6] J. LOPEZ PENA AND O.LORSCHEID, Torified varieties and their geometries over \mathbb{F}_1 . arXiv:0903.2173v2 [math.AG] (2009).
- [7] A. SMIRNOV, Hurwitz inequalities for number fields, St. Petersbg. Math. J. 4, No.2, (1993) 357-375; translation from Algebra Anal. 4, No.2, (1992) 186-209.
- [8] C. SOULÉ, Les variétés sur le corps à un élément. Mosc. Math. J. 4, (2004) 217-244.
- [9] R. STEINBERG, A geometric approach to the representations of the full linear group over a Galois field. Trans. Am. Math. Soc. **71**, (1951) 274-282.
- [10] J. TITS, Sur les analogues algébriques des groupes semi-simples complexes. Colloque d'algèbre supérieure, Bruxelles, 1956, pp. 261-289. Centre Belge de Recherches Mathématiques, Gauthier-Villars (1957).

10