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Abstract

We consider a dynamical system, described by a system of ordinary differential equations, and the associated interaction graphs, which

are defined using the matrix of signs of the Jacobian matrix. After stating a few conjectures about the role of circuits in these graphs, we

prove two new results relating them to the dynamic behaviour of the system: a sufficient condition for qualitative unstability, and a

necessary condition for the existence of several stationary states. These results are illustrated by examples of regulatory modules in two

variables, such as those occurring in biological networks.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study the qualitative properties of a
dynamical system, described by a system of ordinary
differential equations. For that purpose, we consider the
interaction graphs attached to the system. These are
defined using the signs of the entries of the Jacobian
matrix. Several conjectures have been stated and/or proven
in the past which relate circuits in these graphs to the
behaviour of the corresponding dynamical system. We add
here two new results. One is about the stability of a
stationary state and the other is a new criterion for the
existence of several stationary states.

Our interest in these results comes from biology: multi-
stationarity in cellular networks can be viewed as a rationale
for decision making and differentiation. This is explained in
the next section, where we discuss how our problem
originated from biological considerations. Then, after
introducing some definitions, we formulate four conjectures
relating circuits to the qualitative behaviour of a dynamical
system. We discuss an example illustrating these conjectures
and we summarize what is known about them.

The third section contains the statement of our main
results. Theorem 1 gives a sufficient condition for a
stationary point to be (strongly) unstable, and Theorem 2
gives a necessary condition for the existence of several
nondegenerate stationary points. These theorems are
proved in the Appendix. The case of two variables is
discussed in detail.
In the fourth section we show with examples that the

hypotheses of Theorem 2 cannot be weakened. Finally, we
discuss in Section 5 how our results can be applied to a
positive feedback system similar to those encountered in
developmental Biology.

2. Some conjectures in nonlinear dynamics

2.1. Biological background

Epigenetic differences are those differences that are
transmissible from cell to cell generation in the absence of
any genetic difference. It has become clear for some time
(Briggs and King, 1952; Wilmut et al., 1997) that with few
exceptions all the cells of an organism contain all the genes
of that organism. Thus, cell differentiation is essentially an
epigenetic process.
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In a short but historical note, Delbrück (1949) men-
tioned (in other words) that epigenetic differences, includ-
ing those involved in cell differentiation, can be understood
in terms of a more general process, namely multistationa-
rity. Multistationarity takes place when a system displays
multiple steady states.

This urged us to identify the formal requirements of
multistationarity and other nontrivial behaviour. We soon
realized that the common point between all the biological
systems that display multistationarity (e.g. Novick and
Weiner, 1957; Cohn and Horibata, 1959; Monod and
Jacob, 1961; Eisen et al., 1967; Kauffman, 1973) is the
presence of a positive circuit in their underlying logic. In
fact all these examples imply a switch from a ‘‘rest’’ state to
an alternative latent state and thus point to the existence of
a cellular memory based on a positive circuit. It was
subsequently concluded (Thomas, 1981) that the presence
of a positive circuit is not simply a convenient way to
realize multistationarity, but is in fact a necessary condi-
tion for its occurrence. This conjecture was submitted to
formal proofs in Plahte et al. (1995), Snoussi (1998), Gouzé
(1998), Cinquin and Demongeot (2002) and Soulé (2003).

Of special relevance for the mechanisms of cell differ-
entiation is the fact that a gene whose expression is under
direct or indirect positive control of its own product can be
switched on lastingly by a transient signal. This explains
that during cell differentiation a gene can be switched on by
the product of another gene and remains on after the
disappearance of this product. On the other hand, in order
to account for various cell types in terms of multiple steady
states, one has to account for many steady states. As
discussed in Kaufman and Thomas (1987) and Thomas
and Richelle (1988), many regulatory interactions (and
their composition) are sigmoid (or stepwise) in shape and a
positive circuit thus usually results in no more than three
steady states, two of which can be stable. However, m

positive circuits can generate up to 3m steady states, 2m of
which can be stable. Thus, eight genes under positive auto-
control might suffice to generate 28 ¼ 256 cell types. More
generally, many steady states (and thus many potential cell
types) can be generated by several positive circuits.

As briefly mentioned above, positive circuits are involved
in cellular memory. For more recent examples, see, e.g.
Acar et al. (2005) and Sha et al. (2003). Moreover, one can
reason that whenever a set of neurons are connected into a
positive circuit, this set will usually persist in a rest state,
but any signal that can move it away from this state will
lead it to the alternative complementary state of the circuit
(Demongeot et al., 2000; Tonnelier et al., 1999). In other
words, such a simple network can evocate a latent state
that is kept as a memory. In the immune system as well,
differentiation and memory can be understood in terms of
positive circuits between the various types of cells involved
(see Kaufman et al., 1985; Kaufman and Thomas, 1987;
Segel, 1998; Yates et al., 2004).

Negative circuits also play a fundamental role in biology.
That homeostasis (already recognized by Claude Bernard

as elasticity) operates, with or without oscillations, like a
thermostat or a Watt regulator, has been understood for
many years, and many authors (e.g. Szekely, 1965) have
suggested an implication of what we now call negative

circuits in these processes. A further step consisted of
conjecturing that negative circuits are not only involved in
homeostasis and periodicity, but are in fact a necessary
condition of this type of behaviour (Thomas, 1981).
Although all biological processes are complex and

involve many variables, essential qualitative features of
these processes can usually be understood in terms of a
small number of crucial variables. This view is strongly
supported by the observation that extremely complex
behaviour can arise from simple combinations of positive
and negative circuits. In particular, we will deal with small
modules (or ‘‘regulons’’) whose consideration can be of
interest in various domains. For example, it has become
clear recently that such complex behaviours as determinis-
tic chaos can take place in the presence of one positive and
one negative circuit, and even in the presence of a single
circuit, provided this circuit can be positive or negative
depending on the values of relevant variables (Thomas,
1999).

2.2. Definitions

As explained in the previous section, the biological
examples led us to propose several mathematical con-
jectures relating the behaviour of a dynamical system to the
topology of its interaction graph. To state them precisely,
we first need to introduce some terminology.
Given a positive integer n, we consider a differentiable

map F : Rn ! Rn, i.e. a collection F ¼ ðf 1; . . . ; f nÞ of n

differentiable maps f iðx1; . . . ;xnÞ, 1pipn (see 3.1 below).
We are interested in the dynamical system

dx

dt
¼ F ðxÞ, (1)

where x ¼ ðx1ðtÞ; . . . ;xnðtÞÞ is a trajectory in the n-dimen-
sional Euclidean space.
The interaction graph GðxÞ of F at the point x 2 Rn is the

finite oriented graph with f1; . . . ; ng as set of vertices and
such that there is a positive (resp. negative) arrow from j to
i if and only if the partial derivative ðqf i=qxjÞðxÞ is positive
(resp. negative). Each edge in GðxÞ is thus both oriented
and endowed with a sign. The variable x is viewed as the
phase space location of the graph GðxÞ.
A circuit in the graph GðxÞ is a sequence of distinct

vertices i1; i2; . . . ; ik such that there is an edge from ia to
iaþ1, 1papk � 1, and from ik to i1.
The sign of a circuit is the product of the signs of its

edges.
A circuit is thus determined by a set of nonzero

coefficients in the Jacobian matrix JðxÞ ¼ ððqf i=qxjÞðxÞÞ

whose rows and columns are in cyclic permutation. Its sign
is the sign of the product of these coefficients.
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Several circuits are called disjoint when they do not share
any vertex.

A nucleus is a union of one or more disjoint circuits
which involves all the vertices of GðxÞ (this was called an
‘‘Hamiltonian hooping’’ in Soulé, 2003).

The sign of a nucleus is ð�1Þpþ1, where p is the number of
positive circuits in the nucleus (this last definition is due to
Eisenfeld and DeLisi, 1985).

A nucleus (or a circuit) is called variable when at least
one of its edges display more than one sign according to the
location in phase space.

A nucleus (or a circuit) is called ambiguous when its sign
varies with the location in phase space.

2.3. The conjectures

Here are four conjectures that can be made about the
behaviour of a dynamical system as above:

Conjecture 1 (Thomas). The presence of a positive circuit

(somewhere in phase space) is a necessary condition for

multistationarity.

Conjecture 2 (Kaufman). Multistationarity requires either

the presence of a variable nucleus or else the presence of two

nuclei of opposite signs.

Conjecture 3 (Thomas). The presence of a negative circuit

of length at least two (somewhere in phase space) is a

necessary condition for stable periodicity.

Conjecture 4 (Thomas). A chaotic dynamics requires both a

positive and a negative circuit.

Remarks. In Conjectures 1 and 2 above, multistationarity
means that there exist aab in Rn such that F ðaÞ ¼ F ðbÞ ¼ 0
when det JðaÞa0 and det JðbÞa0 (nondegenerate station-
ary points). Conjectures 1 and 3 have been formulated by
Thomas (1981) and Conjecture 2 by Kaufman (Thomas
and Kaufman, 2001) in slightly different forms.

In Conjecture 4 (Thomas, 1999), the idea is that a
positive circuit is required to allow for multistationarity—
at least in a subsystem, and a negative circuit (of length at
least two) is required to allow for permanent periodicity.
Notice that this double requirement can be achieved by a
single circuit if it is ambiguous.

2.4. Proven results

Conjecture 1 was proved by Soulé, 2003 (see Plahte et al.,
1995; Snoussi, 1998; Gouzé, 1998; Cinquin and Demon-
geot, 2002, for previous partial results).1

We shall prove below Conjecture 2 under some mild
condition on F (Theorem 2), and we shall disprove it for a
very special choice of F (see Section 4.2).
Conjecture 3 was proven by Snoussi (1998) and Gouzé

(1998) under additional assumptions, including the fact
that the graph GðxÞ does not depend on x. We prove in
Theorem 1 that the presence of a negative circuit in GðxÞ is
a necessary condition for a steady state x to be stable (see
also Plahte et al., 1995). Note finally that the presence of an
attractor implies that there exists a state x such that GðxÞ

contains a negative circuit of length one (see Appendix A.1)
The paper Toni et al. (1999), discusses Conjecture 4.

2.5. An example

Let us illustrate the conjectures with the extremely simple
system:

dx

dt
¼ �x3 � y,

dy

dt
¼ �x� y,

which comprises three circuits: a loop on x, a loop on y and
a circuit between x and y. The nonlinearity x3 was chosen
because its derivative is positive everywhere, and conse-
quently none of the circuits can be ambiguous. For each
choice of signs it is easy to determine the number, location
and nature of the steady state(s) and to check the
consistency of these results with the conjectures. For each
case the steady states and trajectories are shown in Fig. 1.
Let us first consider system (A):

dx=dt ¼ �x3 þ y,

dy=dt ¼ �x� y,

for which the Jacobian matrix has signs: �

�

þ

�

� �
. All three

circuits are negative. In the absence of any positive circuit,
the system has only one steady state, as implied by the
proof of Conjecture 1. This unique steady state is stable—a
stable focus (Fig. 1A), as implied by the well-known
criterion of qualitative stability (Eisenfeld and DeLisi,
1985, Section 3.1).

In systems (B) and (C) with matrices of signs þ

þ

þ

þ

� �
and

þ

�

�

þ

� �
, respectively, all the circuits are positive. Not

surprisingly, these systems display multistationarity; there
are three steady states, consistent with Conjecture 1. Since
both circuits of length one are positive, they have no
attractor and in particular no stable steady state. The
conventional methods indeed show that the external steady
states are unstable nodes and the internal one is a saddle
point (Fig. 1B and C). As a matter of fact, this result can be
obtained without any calculation, by considering that in
system (B), for each of x50, x ¼ 0 and xb0, there is a
nucleus whose representative product is dominant in
absolute value. These ‘‘leading’’ nuclei are, respectively:
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1In Craciun and Feinberg, (2006a,b) and Craciun et al. (2006), chemical

reaction networks satisfying the law of mass action are studied. A

necessary condition is given for such a network to lead to multiple positive

steady states. This condition is expressed in terms of a bipartite ‘‘species-

reaction graph’’, which is different from the interaction graphs considered

in this paper, and it is unrelated to the conditions given above.
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þ

þ

� �
,
þ

þ
� �

and þ

þ

� �
, and the corresponding steady

states are, respectively, an unstable node, a saddle point,
and an unstable node again.

Let us now reexamine these systems in terms of
Conjecture 2. In system (A) all three circuits are negative
and both nuclei are negative. The fact that the steady state
is unique is consistent not only with Conjecture 1 (there is
no positive circuit), but also with Conjecture 2 (the two
nuclei have the same sign). In contrast, systems (B) and (C)
comprise no negative circuit but they have two nuclei of
opposite signs: the union of two positive circuits, which is a
negative nucleus, and a positive 2-circuit. These systems
have multiple steady states, consistent with both Con-
jectures 1 and 2. If, starting from system (B) where all the
elements of the Jacobian matrix are positive, one changes
the sign of one element of the Jacobian matrix, the two

nuclei have now the same sign, and the system has a single
steady state, in agreement with Conjecture 2. If instead one
changes the signs of two elements of the Jacobian matrix,
the two nuclei have opposite signs and multistationarity is
kept.
Note that when all four elements of the Jacobian matrix

are negative: �
�

�

�

� �
(system (D)), the 2-circuit is positive. In

this system, there are thus both positive and negative
circuits, and there are both positive and negative nuclei.
Not surprisingly, this system has multiple steady states,
two of which are stable (Fig. 1D).

Of particular interest is system (E) with signs �

�

þ

þ

� �
. In

this case, there is one positive and two negative circuits, and
the two nuclei have opposite signs. There are three steady
states, consistent with Conjectures 1 and 2. Like in systems
(B) and (C), all three steady states are unstable (Fig. 1E).
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Fig. 1. Phase portraits for the different sign patterns of the example in Section 2.5. Stable steady states are indicated by filled squares, unstable ones by

open squares.
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However, in contrast with systems (B) and (C), in which
there are no attractors, the following system (F):

dx=dt ¼ �x3 þ y,

dy=dt ¼ �xþ 0:6y,

which has the same sign pattern as (E), happens to be such
that the intermediate unstable steady state is surrounded by a
limit cycle (Fig. 1F), consistent with Conjecture 3 and with
the presence of a negative circuit of length one.

One additional purpose of this section is to draw the
attention on a possible confusion between the number of
steady states (multistationarity) and the number of
attractors. In the absence of any negative circuit one can
well have multistationarity, but, as follows from the
discussion in Section 2.4, there should not be any attractor.

3. Statement of the main results

3.1. More definitions

As in Section 2.2, we consider a map

F : O ¼ Rn ! Rn,

which is differentiable, i.e. such that, for each i; j 2
f1; . . . ; ng and any a 2 O, the ith component f i of F has a
partial derivative ðqf i=qxjÞðaÞ at the point a and

f iðxÞ ¼ f iðaÞ þ
Xn

j¼1

qf i

qxj

ðaÞðxj � ajÞ þ oðkx� akÞ,

where kx� ak is the norm of x� a and o is the Landau
o-symbol.

For any a 2 O, the Jacobian of F at a is the n by n real
matrix

JðaÞ ¼ JðF ÞðaÞ ¼
qf i

qxj

ðaÞ

� �
.

For any a 2 O we let

GðaÞ ¼ GðJðaÞÞ

be the interaction graph of F at the point a. In other words,
there is a positive (resp. negative) edge e with oðeÞ ¼ j and
tðeÞ ¼ i in GðaÞ if and only if ðqf i=qxjÞðaÞ is positive (resp.
negative).

Given any permutation s 2 Sn and a point a 2 O such
that

Qn
i¼1ðqf i=qxsðiÞÞðaÞ does not vanish, we can define as

follows a nucleus CðsÞ in GðaÞ. There is a unique
decomposition

f1; . . . ; ng ¼ I1 q I2 q . . .q Ik

of f1; . . . ; ng into a disjoint union of nonempty subsets such
that the restriction sa of s to Ia is a cyclic permutation for
all a ¼ 1; . . . ; k. Let CðsaÞ be the circuit of G with edges
ði;saðiÞÞ, i 2 Ia . We denote by CðsÞ the nucleus of G which
is the disjoint union of the circuits CðsaÞ, a ¼ 1; . . . ; k.

We say that G has a variable nucleus if there exists two
points aab in Rn and a permutation s 2 Sn such that both

GðaÞ and GðbÞ contain a nucleus CðsÞ, but there exists an
edge in CðsÞ with opposite signs in GðaÞ and GðbÞ. In other
words,

Qn
i¼1ðqf i=qxsðiÞÞðaÞ and

Qn
i¼1ðqf i=qxsðiÞÞðbÞ are non-

zero, and there exists i 2 f1; . . . ; ng such that ðqf i=qxsðiÞÞðaÞ

and ðqf i=qxsðiÞÞðbÞ have opposite signs.

3.2. The statements

Given F as above, we let F be the finite set of functions
from Rn to R of the form �

Q
i2I ðqf i=qxtðiÞÞ, where I �

f1; . . . ; ng is any subset and t : I ! f1; . . . ; ng is any
injective map. We shall consider the following condition:

(C) Given two functions f and g in F such that f is not
identically zero and g is strictly positive somewhere in
Rn, there exists x 2 Rn such that f ðxÞa0 and gðxÞ40.

Condition (C) is very often fulfilled. This is the case for
instance when all the components f i of F are polynomials
or quotients of polynomials or, more generally, when they
are real analytic. Indeed, in that case, the zero-locus of f

has codimension one, therefore its complement meets the
open set where g is positive.
To get an example of two functions f and g in one

variable which satisfy the hypothesis of (C) and not the
conclusion, let f ðxÞ ¼ x2 when xo0, f ðxÞ ¼ 0 when xX0,
gðxÞ ¼ 0 when xp0, and gðxÞ ¼ x2 when x40. Both f and
g are differentiable on the real line and positive somewhere,
but there does not exist any x 2 R such that f ðxÞa0 and
gðxÞ40. See Section 4.2 below for a similar construction.
A point a 2 Rn is a nondegenerate zero of F (i.e. a

stationary point) when F ðaÞ ¼ 0 and det JðaÞa0. Such a
point is called strongly unstable when the matrix JðaÞ has a
positive eigenvalue.
Our main results are the following :

Theorem 1. Assume that a is a nondegenerate zero of F and

that the graph GðaÞ contains only positive circuits. Then a is

strongly unstable.

Theorem 2. Assume that F has two nondegenerate zeroes

and that condition (C) is satisfied. Then:

(a) either there is a 2 O ¼ Rn such that GðaÞ has two nuclei

with opposite signs;
(b) or G has a variable nucleus.

Theorems 1 and 2 are proved in Appendix A.2 and A.3,
respectively.

Remarks. (i) Let O ¼
Qn

i¼1�ai; bi½ be a product of open real
intervals, with aiX�1 and bipþ1, and let F : O! Rn

be a differentiable function. Theorem 2 remains valid in that
situation (with a 2 O in case (a)), see below Appendix A.4.
(ii) Assume GðaÞ ¼ G does not depend on a 2 O. Then

condition (C) is satisfied and (b) cannot happen, therefore
Theorem 2 states that if F has two nondegenerate zeroes
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then G has two nuclei with opposite signs. See also Soulé
(2003, Theorem 4).

3.3. The case n ¼ 2:

Let us specialize further to the case where n ¼ 2,
assuming that GðaÞ ¼ G does not depend on a 2 O, and
that G has four arrows. Up to symmetry, there are 10
possible such graphs, which are listed in Table 1 below. In
this table we indicate what is known about multistationar-
ity and qualitative stability for the different types of
graphs. For instance, a graph of type one contains both a
positive and a negative nucleus, therefore it may have

several stationary states. These are unstable because the
trace of the Jacobian matrix is positive (or by the criterion
of Eisenfeld and DeLisi, 1985, Theorem 3.5 which gives, in
any dimension, a sufficient condition for qualitative
unstability). Both nuclei in the graph of type two are
positive, therefore, by Theorem 2, there can be at most one
stationary state, which will be unstable by Eisenfeld and
DeLisi (1985, Theorem 3.5), i.e. because the determinant of
the Jacobian matrix is negative. The nuclei in the graph of
type three have opposite signs, hence it may have several
stationary states. Nothing can be said a priori on the
stability of these states. The case of type four is similar to
type two. Both nuclei of the graph of type five are negative,

ARTICLE IN PRESS

Table 1

Regulons with two variables

Type Interaction graph Number of steady states Stability

1 Possibly41 Unstable

2 p1 Unstable

3 Possibly41 Unknown a priori

4 p1 Unstable

5 p1 Stable

6 Possibly41 Unknown a priori

7 Possibly41 Unknown a priori

8 Possibly41 Unstable

9 p1 Unstable

10 Possibly41 Unknown a priori

M. Kaufman et al. / Journal of Theoretical Biology 248 (2007) 675–685680
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therefore, by Theorem 2 (or by Conjecture 1), this module
contains at most one stationary state. This state is stable
because the trace of the Jacobian matrix is negative and its
determinant is positive (or by the criterion for qualitative
stability of May, 1974; Quirk and Ruppert, 1965, Eisenfeld
and DeLisi, 1985, Section 3.1). The other types in Table 1
can be discussed by similar arguments.

4. Additional mathematical comments

In this section we show that stronger versions of
Theorem 2 do not hold.

4.1. The graph G can be variable without being ambiguous

When n ¼ 2, it was shown in Soulé (2003, Theorem 2),
that the statement (b) in Theorem 2 can be replaced by
the stronger assertion that G has an ambiguity: there is
a; b 2 Rn and a positive circuit in GðaÞ which is negative
in GðbÞ.

This is not always the case when nX3. In case (b) of
Theorem 2 the nucleus CðsÞmay keep the same sign in GðaÞ

for all a 2 Rn (although some of its edges will change sign).
For instance, CðsÞ may be negative. Then, by Theorem 1 in
Soulé (2003), there is also a 2 Rn and a positive circuit C in
GðaÞ, different from CðsÞ.

Here is an example. Let x; y; z be the coordinates of R3

and F ¼ ðf 1; f 2; f 3Þ : O! R3 be the map defined by

f 1ðx; y; zÞ ¼ xy2 þ ð2x� 1Þzþ x� 5
4
,

f 2ðx; y; zÞ ¼ �x2y� yþ 2,

f 3ðx; y; zÞ ¼ �x2 þ xþ 2,

where O is the product of open intervals

�1� �oxo2þ �; 2
5
� �oyo1þ �; �14

25
� �ozo� 38

75
þ �,

and �40 is a very small constant. The map F has two
zeroes in O:

F �1; 1;�14
25

� �
¼ F 2; 2

5
;�38

75

� �
¼ 0.

Its Jacobian matrix is

JðF Þ ¼

y2 þ 2zþ 1 2xy 2x� 1

�2xy �x2 � 1 0

�2xþ 1 0 0

0
B@

1
CA.

Therefore the zeroes of F are nondegenerate. Since � is
small, y2 þ 2zþ 1 is positive in O. When a ¼ ðx; y; zÞ 2 O,
the graph GðaÞ is the following:

2 1 3

where u is the sign of 2xy and v is the sign of 2x� 1. The
only nucleus of GðaÞ is

2 1 3

which is negative. It is variable but G is not ambiguous. As
implied by Conjecture 1 (proved in Soulé, 2003), G

contains a positive circuit, namely

1

.

Note that this circuit is not contained in the previous
nucleus.
By a change of variables as in Appendix A.4, we get a

map R3! R3 with the same iteration graph as F above.

4.2. Conjecture 2 is not true in full generality

Theorem 2 and Conjecture 2 are not valid for an
arbitrary differentiable map F : Rn ! Rn, without assum-
ing (C).
For example, let n ¼ 2 and consider the map F : R2!

R2 defined by the formula

F ðx; yÞ ¼ ðcðxÞ; yjðxÞÞ,

where

cðxÞ ¼
ðx� 1Þ2 � 1 when xX0;

1� ðxþ 1Þ2 when xp0;

(

and

jðxÞ ¼

ðx� 1Þ2 when xX1;

0 when � 1pxp1;

ðxþ 1Þ2 when xp� 1:

8><
>:

This map is differentiable (as can be seen from the
definition in 3.1). Its Jacobian matrix is

JF ¼
c0ðxÞ 0

yj0ðxÞ jðxÞ

 !
.

Note that the function �c0ðxÞ is strictly positive when
�1oxo1 and jðxÞ is not identically zero, but �c0ðxÞjðxÞ
is nowhere positive. Therefore (C) does not hold. The
interaction graph Gðx; yÞ is

1 2

ARTICLE IN PRESS
M. Kaufman et al. / Journal of Theoretical Biology 248 (2007) 675–685 681



Author's personal copy

when xo� 1 or x41,

1 2

when �1oxo1, and

1 2

when x ¼ �1. Therefore neither (a) nor (b) in Theorem 2 is
true. On the other hand, F has two nondegenerate zeroes
(which lie in different domains of definition of F) :

F ð2; 0Þ ¼ F ð�2; 0Þ ¼ 0.

Therefore Conjecture 2 does not hold for F.

5. A regulatory module

When a dynamical system

dx

dt
¼ F ðxÞ

as (1) is used to model a biological network, each
coordinate xiðtÞ, 1pipn, of x is usually positive or zero
and represents the concentration at time t of a given item
(for instance a protein, resp. a cell type) which, in addition
to interacting with itself and other constituents of the
system, undergoes a spontaneous decay, due to degrada-
tion or dilution (via cell growth for proteins, resp. cell
death for cell types). This means that each component f iðxÞ

of F ðxÞ can be written

f iðxÞ ¼ giðxÞ � gixi, (2)

where gi, the degradation rate, is a positive constant. In
most realistic models, there exists x 2 Rn such that

qf i

qxi

ðxÞ ¼
qgi

qxi

ðxÞ � gio0

for all i ¼ 1; . . . ; n. In that case, the interaction graph GðxÞ

contains a negative loop ei at each of its vertices
i ¼ 1; . . . ; n. As explained in Appendix A.3 below, under
condition (C), Theorem 2 is then a direct consequence
of Conjecture 1 (proved in Soulé, 2003). The idea of
the argument is the following: either the diagonal terms in
the Jacobian are everywhere negative, in which case the
presence somewhere of a positive circuit ensures the
existence of two nuclei of opposite signs; or the diagonal
terms change signs, in which case there is a variable
nucleus.

On the other hand, we may consider a product of open
intervals O ¼

Qn
i¼1�ai; bi½ such that each function

ðqgi=qxiÞðxÞ � gi, i ¼ 1; . . . ; n; and every nucleus has a fixed
sign in O. We can then apply Theorem 2 to the restriction
of F to O and get interesting information about the
possibility of several stationary points in O.

To illustrate this point, we have chosen a rather simple
two-variable system, with sigmoid interactions, described
by the set of equations

dx

dt
¼

1:95x3

1þ x3
þ

9y3

63 þ y3
� x,

dy

dt
¼

10x3

73 þ x3
þ

1:95y3

1þ y3
� y

and corresponding Jacobian matrix

5:85x2

ð1þ x3Þ
2
� 1

27� 63y2

ð63 þ y3Þ
2

30� 73x2

ð73 þ x3Þ
2

5:85y2

ð1þ y3Þ
2
� 1

0
BBBB@

1
CCCCA.

This ‘‘regulon’’ (see also Snoussi and Thomas, 1993)
comprises two nuclei: a 2-circuit, which is positive every-
where in the positive quadrant, and an ambiguous nucleus
formed by the union of two one-element circuits. The
necessary condition for multistationarity of Theorem 2(b),
i.e. the existence of a variable nucleus, is thus fulfilled in the
whole region defined by xX0 and yX0 and, for our choice
of parameter values, the system has 11 steady states2 five of
which are stable: a steady state where both x and y are
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Fig. 2. Nullclines corresponding to the regulatory module of Section 5.

The intersections of these nullclines provide eleven steady states. Stable

steady states are indicated by black circles, unstable ones by open circles.

The vertical and horizontal lines partition phase space into nine domains

in which the nucleus formed by the diagonal terms of the Jacobian matrix

has a fixed sign. For a1oxob1 (respectively, a2oyob2) autoactivation is

stronger than degradation.

2A system with two isolated positive circuits (with sigmoid interactions)

can have up to nine steady states. Additional interactions usually reduce

the number of steady states, except, however, when these additional

interactions create an additional positive circuit.
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absent; two steady states where either x or y is present; a
steady state where x and y are both present at medium level
and a steady state where x and y are present at high level.
Which of these stable steady states will eventually be
reached depends on the duration of a transient signal that
switches on the positive circuits.

When phase space is partitioned into domains according
to the sign of the ambiguous nucleus, it is seen in Fig. 2 that
the only domain that contains more than one, and in fact
three, steady states3 does fulfil condition (a) of Theorem 2,
i.e. the presence of two nuclei with opposite sign. More
precisely, in the present case phase space is partitioned into
nine domains (Table 2) where the graph is either of type 1,
type 2 or type 3 of Table 1. It can be seen that the condition
of Theorem 2(a) is fulfilled in the domains of types 1 and 3,
but not in the domains of type 2. In the present case, of the
five domains of types 1 or 3, only one contains more than
one steady state. Note that in addition to the information
concerning the number of steady states in each region,
Theorem 1 and the discussion in Section 3.3 provide
information about the stability of these steady states as
given in Table 1.

6. Conclusion

Several authors have noticed that cellular networks often
contain interaction motives of a simple type as, for
instance, the regulatory modules describing the cross-
regulation of genes. It is thus of interest to determine those
qualitative properties of the behaviour of these modules
which remain valid independently of the value of the
parameters. We proved two new results in that direction:
a sufficient condition for unstability and a necessary
condition for multistationarity. The latter result indicates

that, in order to have several steady states, the number of
variables is not the most relevant factor, but rather the
existence of enough circuits in the system, and especially
appropriate combinations of positive and negative circuits,
as shown in the example discussed in Section 5.
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Appendix A

A.1. Attractors and negative loops

Assume the dynamical system (1) has an attractor, i.e. a
compact subset A � Rn, invariant under the flow, which
attracts a fundamental family of open neighbourhoods
Um;mX0. Let divðF ÞðxÞ ¼ trðJðxÞÞ be the divergence of F,
and gradðF ÞðxÞ its gradient. The Stokes formula says that
the integral of divðF ÞðxÞ over an open set Um is equal to the
integral on the boundary qUm of the scalar product of
gradðF ÞðxÞ with the normal unit vector pointing outwards.
Since this scalar product is negative, its integral over qUm is
negative and we conclude that there exists a point x 2 Um

such that divðF ÞðxÞo0. Consequently, the graph GðxÞ

contains a negative circuit of length one.

A.2. Proof of Theorem 1

Following Eisenfeld and DeLisi (1985), let us define the
sign of a disjoint union of circuits in GðaÞ to be ð�1Þpþ1

where p is the number of positive circuits. Eisenfeld and
DeLisi (1985, Theorem 3.5) states that a is strongly
unstable if there exists an integer k such that any disjoint
union of circuits of total length k in GðaÞ is positive.
Now assume that all circuits in GðaÞ are positive. Let k

be the largest integer such that GðaÞ does not contain any
circuit of length less than k. Then any disjoint union
C1

‘
C2

‘
� � �
‘

Cn of circuits in GðaÞ of total length k

consists of a single circuit (n ¼ 1). As a consequence, any
disjoint union of circuits of total length k is positive.
Therefore a is strongly unstable.

A.3. Proof of Theorem 2

We first make the following remark. Let F ¼ ðf iÞ be as in
Theorem 2 and fix i 2 f1; . . . ; ng. We denote by F 0 : Rn !

Rn the map obtained from F by replacing f i by �f i. Clearly
F 0 satisfies the hypotheses of Theorem 2. The graph G0ðaÞ

of F 0 is obtained by changing the sign of every edge with
endpoint i, leaving unchanged the other edges. It follows
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Table 2

Partition of phase space according to the sign of the ambiguous nucleus

In each domain the graph of interactions has a given type, described in

Table 1.

3This partition into domains according to whether or not Kaufman’s

conditions for multistationarity are fulfilled should not be confused with

the partition into domains in terms of the signs of the eigenvalues, as

described in Thomas and Kaufman (2005).
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that G satisfies (a) or (b) if and only if G0 does. So, Theorem 2
is true for F iff it is true for F 0.

Similarly, let s 2 Sn be any permutation and F 0 ¼ ðf sðiÞÞ.
The function F 0 satisfies the hypotheses of Theorem 2. Its
interaction graph G0 was described in Soulé (2003, 1.1 and
4.4). In particular, to any nucleus in G is attached a nucleus
in G0, the sign of which gets multiplied by the signature of s
(Soulé, 2003, Lemma 3). Therefore G0 satisfies (a) or (b) if
and only if G does. This means again that Theorem 2 is true
for F iff it is true for F 0.

Now, if F is as in Theorem 2, the determinant of its
Jacobian matrix does not vanish everywhere. So there is
s 2 Sn and a 2 Rn such that

Yn

i¼1

qf i

qxsðiÞ
ðaÞa0.

If we let f 0j ¼ f s�1ðjÞ for every j 2 f1; . . . ; ng we get

Yn

i¼1

qf 0i
qxi

ðaÞa0.

By changing the signs of some of the functions f 0i, we can
assume that

qf 0i
qxi

ðaÞo0 for every i 2 f1; . . . ; ng.

According to the previous remarks, Theorem 2 holds for
F ¼ ðf iÞ iff it holds for F 0 ¼ ðf 0iÞ (note that the classF is the
same for F and F 0). So we only need to prove Theorem 2
under the assumption that there exists a 2 Rn such that

qf i

qxi

ðaÞo0 for every i 2 f1; . . . ; ng. (3)

Condition (3) means that, for every vertex i, there is a
negative edge from i to itself in GðaÞ. On the other hand, by
Soulé (2003, Theorem 1) (Thomas’ conjecture), there exists
c 2 Rn such that GðcÞ contains a positive circuit. In other
words, there is a subset I � f1; . . . ; ng and a permutation s
of I such that gðcÞ40, where

gðxÞ ¼
Y
i2I

qf i

qxsðiÞ
ðxÞ.

Let

f ðxÞ ¼
Yn

i¼1

qf i

qxi

ðxÞ.

We know that f ðaÞa0 and gðcÞ40. Since both f and g are
in F, condition (C) tells us that we can find d 2 Rn with
f ðdÞa0 and gðdÞ40. In other words, GðdÞ contains a
positive circuit C and, for every vertex i, GðdÞ contains an
edge ei from i to itself (which can be negative or positive).

Assume first that there exists i such that ei is positive.
Then, the signs of ei in GðaÞ and GðdÞ are opposite and the
nucleus

‘n
i¼1ei of G is variable. Therefore, (b) holds true.

Assume, on the contrary, that every edge ei is negative in
GðdÞ. The nucleus

‘n
i¼1ei is then negative. Since the nucleus

C
‘‘n

ieI ei is positive, we conclude that GðdÞ has two

nuclei with opposite signs. Therefore, (a) is satisfied. This
ends the proof of Theorem 2.

A.4. A remark about Theorem 2

Let O ¼
Qn

i¼1�ai; bi½ be a product of open real intervals,
with aiX�1 and bipþ1, and let F : O! Rn be a
differentiable function. Theorem 2 and its proof remain
valid in that situation. In fact Theorem 2 for Rn or for an
arbitrary domain O are equivalent statements.
Indeed, for every i 2 f1; . . . ; ng, we can choose a

differentiable increasing isomorphism:

ui :�ai; bi½! R.

For instance, when ai and bi are finite, after some affine
transformation we can assume that ai ¼ �1 and bi ¼ 1.
The map from � � 1; 1½ to R sending x to x=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

Þ is
such an isomorphism.
Let then hi ¼ f i � u�1i : R! R and H ¼ ðhiÞ : R

n ! Rn.
If yi ¼ uiðxiÞ and bi ¼ uiðaiÞ, Leibnitz’ formula gives

qf i

qxj

ðaÞ ¼
qhi

qyj

ðbÞ � u0jðaÞ,

where the derivative u0jðaÞ is strictly positive. Therefore, the
interaction graph of F at a is the same as the interaction
graph of H at b. Hence, Theorem 2 for F and H are
equivalent.
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