HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS

CHRISTOPHE SOULÉ

(NOTES BY MARCO VARISCO)

Lecture one: Two theorems of Armand Borel. Let F be a number field, i.e, a finite field extension of \mathbb{Q}, and let $A=\mathcal{O}_{F}$ be its ring of integers, i.e., the integral closure of \mathbb{Z} in F :

$$
A=\mathcal{O}_{F}=\left\{x \in F \mid x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0, a_{i} \in \mathbb{Z}\right\}
$$

Our goal in these lectures is to understand the algebraic K-theory of A.
First of all, observe that there is no negative K-theory because A is regular.
Proposition 1. $K_{0}(A) \cong \mathbb{Z} \oplus \operatorname{Pic}(A)$.
Here $\operatorname{Pic}(A)$ is the ideal class group of A, i.e., the set of isomorphism classes of invertible A-modules with addition given by the tensor product. Proposition 1 is true more generally for any Dedekind domain A, since every projective module is the sum of ideals, each of which is projective and satisfies $I \oplus J \cong I J \oplus A$, see Mil71.

For $A=\mathcal{O}_{F}$ Dirichlet proved that $\operatorname{Pic}(A)$ is finite.
Proposition 2. $K_{1}(A)=A^{\times}$.
In fact, Bass, Milnor, and Serre BMS67] proved that $S K_{1}(A)=0$, and for any commutative ring A one has $K_{1}(A)=A^{\times} \times S K_{1}(A)$.

For $A=\mathcal{O}_{F}$ Dirichlet proved that

$$
\operatorname{dim}_{\mathbb{Q}}\left(A^{\times} \otimes \mathbb{Q}\right)=r_{1}+r_{2}-1=d_{1}
$$

where

$$
\begin{aligned}
& r_{1}=\#\{\text { real places of } F\}=\#\{\sigma: F \hookrightarrow \mathbb{R}\} \\
& r_{2}=\#\{\text { complex places of } F\}=\frac{1}{2} \#\{\sigma: F \hookrightarrow \mathbb{C}, \sigma \neq \bar{\sigma}\}
\end{aligned}
$$

(the resulting decomposition of $F \otimes_{\mathbb{Q}} \mathbb{R}$ then shows that $[F: \mathbb{Q}]=r_{1}+2 r_{2}$), and for any $n \geq 1$ we put

$$
d_{n}= \begin{cases}r_{1}+r_{2}-1 & \text { if } n=1 \\ r_{1}+r_{2} & \text { if } n \text { is odd and } \geq 3 \\ r_{2} & \text { if } n \text { is even }\end{cases}
$$

More precisely, Dirichlet proved that A^{\times}is the product of the finite cyclic group $\mu(F)$ of roots of unity in F and a free abelian group of rank $r_{1}+r_{2}-1=d_{1}$.

Date: January 23, 2008.
2000 Mathematics Subject Classification. 19D50, 19F27.

Theorem 3 (Quillen Qui73). For all $m \geq 0, K_{m}(A)$ is finitely generated.
Theorem 4 (Borel Bor74). For all $m>0$,

- if m is even then $K_{m}(A)$ is finite,
- if $m=2 n-1$ then $\operatorname{dim}_{\mathbb{Q}}\left(K_{m}(A) \otimes \mathbb{Q}\right)=d_{n}$.

These results generalize the aforementioned theorems by Dirichlet.
Example 5. If $F=\mathbb{Q}, A=\mathbb{Z}$ then $r_{1}=1$ and $r_{2}=0$, and hence for $m>0$

$$
K_{m}(\mathbb{Z})= \begin{cases}\mathbb{Z} \oplus \text { finite } & m=5,9,13, \ldots \\ \text { finite } & \text { otherwise }\end{cases}
$$

We will not discuss the proof of Quillen's theorem 3 here.
As we will see below, Borel's theorem 4 follows from the following theorem.
Theorem 6 (Borel). Let $G=S L_{N}(\mathbb{R})^{r_{1}} \times S L_{N}(\mathbb{C})^{r_{2}} \supset \Gamma=S L_{N}(A)$.
Assume $q+1 \leq(N-1) / 4$. Then the corestriction map $H_{\mathrm{cont}}^{q}(G) \rightarrow H^{q}(\Gamma ; \mathbb{R})$ is an isomorphism.
Here $H_{\text {cont }}^{q}(G)$ is the continuous cohomology of G with real coefficients. It can be defined as the cohomology of the complex

$$
\cdots \longrightarrow C_{\mathrm{cont}}^{q}(G)^{G} \xrightarrow{\partial} C_{\mathrm{cont}}^{q+1}(G)^{G} \longrightarrow \cdots,
$$

where $C_{\text {cont }}^{q}(G)$ is the real vector space of continuous maps from G^{q+1} to \mathbb{R} and ∂ is given by the formula

$$
\partial_{\varphi}\left(g_{0}, \ldots, g_{q+1}\right)=\sum_{i=0}^{q+1}(-1)^{i} \varphi\left(g_{0}, \ldots, \widehat{g_{i}}, \ldots, g_{q+1}\right)
$$

Theorem 6 is actually a special case of the following more general result.
Theorem 7 (Borel Bor74). Let \underline{G} be a semi-simple algebraic group over \mathbb{Q} such that $G=\underline{G}(\mathbb{R})$ is connected and let $\Gamma<\underline{G}(\mathbb{Q})$ be an arithmetic group.

Assume $q+1 \leq \operatorname{rank}_{\mathbb{Q}}(G) / 4$. Then the corestriction map $H_{\mathrm{cont}}^{q}(G) \rightarrow H^{q}(\Gamma ; \mathbb{R})$ is an isomorphism.

Proof that theorem 6 implies theorem 4. Step 1: We first compute $H_{\text {cont }}^{*}(G)$ as follows. Consider the maximal compact subgroup K of G, and the symmetric space $X=K \backslash G$.

Example 8. If $G=G L_{N}(\mathbb{R})$ then $K=O(N)$ and X is the set of positive definite real quadratic forms. In fact, given $[g] \in X$ we can define $\varphi(x)=\|g(x)\|^{2}$ for $x \in \mathbb{R}^{N}$.

If $G=S L_{N}(\mathbb{R})$ then $K=S O(N)$ and X is the set of positive definite real quadratic forms modulo the action of $\mathbb{R}_{>0}^{\times}$.

The manifold X is contractible. Therefore the de Rham complex

$$
0 \rightarrow \mathbb{R} \rightarrow \Omega^{0}(X) \rightarrow \Omega^{1}(X) \rightarrow \Omega^{2}(X) \rightarrow \ldots
$$

is exact. This yields a "strong" resolution of \mathbb{R} by "relatively" injective G-modules (this means that the resolution is "good" from the point of view of continuous cohomology, see Gui80). Hence

$$
H_{\mathrm{cont}}^{q}(G)=H^{q}\left(\Omega^{*}(X)^{G}\right)
$$

Let \mathfrak{g} and \mathfrak{k} be the Lie algebras of G and K respectively. By restriction of differential forms at the origin we have

$$
\Omega^{q}(X)^{G}=\operatorname{hom}_{\mathfrak{k}}\left(\Lambda^{q}(\mathfrak{g} / \mathfrak{k}), \mathbb{R}\right)
$$

Consider the Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ and $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \supset i \mathfrak{p}$. Then the so-called unitarian trick yields that $\mathfrak{k} \oplus i \mathfrak{p}=\operatorname{Lie}\left(G_{u}\right)$, where G_{u} is a compact connected Lie group containing K. Then
$\Omega^{q}(X)^{G}=\operatorname{hom}_{\mathfrak{k}}\left(\Lambda^{q}(\mathfrak{g} / \mathfrak{k}), \mathbb{R}\right)=\operatorname{hom}_{\mathfrak{k}}\left(\Lambda^{q}(\mathfrak{p}), \mathbb{R}\right) \cong \operatorname{hom}_{\mathfrak{k}}\left(\Lambda^{q}(i \mathfrak{p}), \mathbb{R}\right)=\Omega^{q}\left(K \backslash G_{u}\right)^{G_{u}}$.
Since G_{u} is compact and connected, integration on G_{u} shows that the inclusion

$$
\Omega^{q}\left(K \backslash G_{u}\right)^{G_{u}} \subseteq \Omega^{q}\left(K \backslash G_{u}\right)
$$

is a homology equivalence Gui80, rem. 7.1 and lemma E.2]. Therefore
$H_{\text {cont }}^{q}(G)=H^{q}\left(\Omega^{*}(X)^{G}\right)=H^{q}\left(\Omega^{*}\left(K \backslash G_{u}\right)^{G_{u}}\right)=H^{q}\left(\Omega^{*}\left(K \backslash G_{u}\right)\right)=H^{q}\left(K \backslash G_{u} ; \mathbb{R}\right)$.
Example 9. If $G=S L_{N}(\mathbb{R}), K=S O(N)$ then

$$
\mathfrak{g}=\{M \mid \operatorname{tr} M=0\}, \quad \mathfrak{k}=\left\{M \mid M^{t}=-M\right\}, \quad \mathfrak{p}=\left\{M \mid M^{t}=M\right\}
$$

and therefore

$$
\mathfrak{k} \oplus i \mathfrak{p}=\left\{M \in \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \mid \bar{M}^{t}=-M\right\} \cong \mathfrak{s u}(N)
$$

Hence $G_{u}=S U(N)$. Then we get

$$
H_{\mathrm{cont}}^{q}\left(S L_{N}(\mathbb{R})\right) \cong H^{*}(S O(N) \backslash S U(N) ; \mathbb{R})
$$

The right-hand side is known (by previous work of Borel) and gives

$$
H_{\text {cont }}^{*}\left(S L_{N}(\mathbb{R})\right) \cong \Lambda^{*}\left(e_{5}, e_{9}, e_{13}, \ldots, e_{4 k+1}\right)
$$

with $e_{q} \in H^{q}(S O(N) \backslash S U(N) ; \mathbb{Z}), k=\left[\frac{N-1}{2}\right]$.
If $G=S L_{N}(\mathbb{C})$ then $K=S U(N)$ and $G_{u}=S U(N) \times S U(N)$. We get

$$
H_{\text {cont }}^{*}\left(S L_{N}(\mathbb{C})\right) \cong H^{*}(S U(N) ; \mathbb{R}) \cong \Lambda^{*}\left(\varepsilon_{3}, \varepsilon_{5}, \varepsilon_{7}, \ldots, \varepsilon_{2 N-1}\right)
$$

with $\varepsilon_{q} \in H^{q}(S U(N) ; \mathbb{Z})$.
For $G=S L_{N}(\mathbb{R})^{r_{1}} \times S L_{N}(\mathbb{C})^{r_{2}}$ this yields

$$
H_{\mathrm{cont}}^{*}(G) \cong \Lambda^{*}\left(e_{i}\right)^{\otimes r_{1}} \otimes \Lambda^{*}\left(\varepsilon_{j}\right)^{\otimes r_{2}}
$$

Step 2: There is a homotopy equivalence

$$
B S L(A)^{+} \times B\left(A^{\times}\right) \xrightarrow{\simeq} B G L(A)^{+}
$$

and hence for $m \geq 2$

$$
K_{m}(A) \cong \pi_{m} B S L(A)^{+}
$$

For any CW-complex X consider the Hurewicz map

$$
h_{m}: \pi_{m}(X) \otimes \mathbb{R} \rightarrow\left(I H^{m}(X ; \mathbb{R})\right)^{\vee}
$$

where $E^{\vee}=\operatorname{hom}_{\mathbb{R}}(E, \mathbb{R})$ and $I H^{m}(X ; \mathbb{R})=H^{m}(X ; \mathbb{R}) /\{$ cup products $\}$.
Lemma 10. If X is an H-space such that $\operatorname{dim}_{\mathbb{R}} H^{m}(X ; \mathbb{R})<\infty$ for all m, then h_{m} is an isomorphism.

Proof. To prove this lemma, we define

$$
P H_{m}(X ; \mathbb{R})=\left\{x \in H_{m}(X ; \mathbb{R}) \mid \Delta_{*}(x)=x \otimes 1+1 \otimes x\right\}
$$

where

$$
\Delta_{*}: H_{m}(X ; \mathbb{R}) \rightarrow H_{m}(X \times X ; \mathbb{R}) \cong \bigoplus_{s+t=m} H_{s}(M ; \mathbb{R}) \otimes H_{t}(M ; \mathbb{R})
$$

is induced by the diagonal map.
Then if X is an H-space there is an isomorphism

$$
\pi_{m}(X) \otimes \mathbb{R} \stackrel{\cong}{\rightrightarrows} P H_{m}(X ; \mathbb{R})
$$

MM65, Appendix], and under the finiteness assumption above $\left(I H^{m}(X ; \mathbb{R})\right)^{\vee} \cong$ $P H_{m}(X ; \mathbb{R})$.

Now $B S L(A)^{+}$is an H-space satisfying the assumption of the previous lemma, because of (the proof of) Quillen's theorem 3, and therefore for $m \geq 2$ we get

$$
\begin{aligned}
K_{m}(A) \otimes \mathbb{R} \cong\left(I H^{m}\left(B S L(A)^{+} ; \mathbb{R}\right)\right)^{\vee} & =\left(I H^{m}(B S L(A) ; \mathbb{R})\right)^{\vee} \\
& =\left(I H^{m}(S L(A) ; \mathbb{R})\right)^{\vee}
\end{aligned}
$$

Theorem 6 implies that for $N \gg m$

$$
H^{m}\left(S L_{N}(A) ; \mathbb{R}\right) \cong H_{\mathrm{cont}}^{m}(G) \cong \Lambda^{*}\left(e_{i}\right)^{\otimes r_{1}} \otimes \Lambda^{*}\left(\varepsilon_{j}\right)^{\otimes r_{2}}
$$

and therefore

$$
H^{m}\left(S L_{N+1}(A) ; \mathbb{R}\right) \cong H^{m}\left(S L_{N}(A) ; \mathbb{R}\right)
$$

This yields

$$
\begin{aligned}
\left(I H^{m}(S L(A) ; \mathbb{R})\right)^{\vee} \stackrel{N \gg m}{\cong} I H_{\mathrm{cont}}^{m}(G)^{\vee} & \cong I\left(\Lambda^{*}\left(e_{i}\right)^{\otimes r_{1}} \otimes \Lambda^{*}\left(\varepsilon_{j}\right)^{\otimes r_{2}}\right)^{m} \\
& = \begin{cases}\mathbb{R}^{d_{n}} & \text { if } m=2 n-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

completing the proof that Borel's theorem 4 follows from theorem 6
Example 11. If $F=\mathbb{Q}$ then $r_{2}=0, r_{1}=1$ and

$$
I\left(\Lambda^{*}\left(e_{5}, e_{9}, e_{13}, \ldots\right)\right)^{m}= \begin{cases}\mathbb{R} & \text { if } m=5,9,13, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Sketch of proof of theorem 6. For simplicity we only consider

$$
G=S L_{N}(\mathbb{R}) \supset \Gamma=S L_{N}(\mathbb{Z})
$$

Recall that $H_{\text {cont }}^{q}(G)=H^{q}\left(\Omega^{*}(X)^{G}\right)$ where X is the symmetric space $K \backslash G$.
Lemma 12 (Cartan). The differential $d: \Omega^{*}(X)^{G} \rightarrow \Omega^{*+1}(X)^{G}$ vanishes.
Proof of lemma 12. Let $\theta: G \rightarrow G$ be the Cartan involution $\theta(g)=\left(g^{-1}\right)^{t}$. It induces a map $\theta: X \rightarrow X$ and therefore a chain map $\theta^{*}: \Omega^{*}(X)^{G} \rightarrow \Omega^{*}(X)^{G}$.

Look at $\theta^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g}, \theta^{\prime}(M)=-M^{t}$. Recall that $\Omega^{q}(X)^{G}=\operatorname{hom}_{\mathfrak{k}}\left(\Lambda^{q} \mathfrak{p}, \mathbb{R}\right)$ and $\mathfrak{p}=\left\{M \mid M^{t}=M\right\}$. If $x \in \Lambda^{q} \mathfrak{p}$ then $\theta^{\prime}(x)=(-1)^{q} x$. Hence if $\alpha \in \Omega^{q}(X)^{G}$ we compute

$$
(-1)^{q}(d \alpha)=d \theta^{*}(\alpha)=\theta^{*} d(\alpha)=(-1)^{q+1}(d \alpha)
$$

and therefore $d \alpha=0$.
Now assume first that $\Gamma=\left\{\gamma \in S L_{N}(\mathbb{Z}) \mid \gamma \equiv 1(\bmod 3)\right\}$.

Fact 13. Γ is torsionfree.
This fact implies that Γ is acting freely on $X=K \backslash G$, as we can see as follows. Let $\gamma \in \Gamma$ and $[g] \in K \backslash G$. If $[g] \gamma=[g]$, we get $g \gamma=k g$, i.e., $\gamma=g^{-1} k g \in g^{-1} K g \cap \Gamma$. But $g^{-1} K g \cap \Gamma$ is finite, being the intersection of a compact with a discrete group. Therefore γ has finite order, but, since Γ is torsionfree, this shows that $\gamma=1$.

Since X is contractible, X / Γ is therefore a $K(\Gamma, 1)$-space. Then

$$
H^{q}(\Gamma ; \mathbb{R})=H^{q}(X / \Gamma ; \mathbb{R})=H^{q}\left(\Omega^{*}(X / \Gamma)\right)=H^{q}\left(\Omega^{*}(X)^{\Gamma}\right)
$$

and we have to study

$$
\Omega^{q}(X)^{G}=H^{q}\left(\Omega^{*}(X)^{G}\right) \rightarrow H^{q}\left(\Omega^{*}(X)^{\Gamma}\right)
$$

Fix a smooth G-invariant metric h on $T X$, and define

- the volume form $\mu=\sqrt{\operatorname{det}\left(h^{i, j}\right)} d x_{1} \cdots d x_{n} \in \Omega^{n}(X)$, where $n=\operatorname{dim}(X)$,
- the star operator \star : $\Omega^{q}(X) \rightarrow \Omega^{n-q}(X)$ by $\omega \wedge \star \omega=h(\omega, \omega) \mu$,
- the Laplace operator $\Delta=d d^{*}+d^{*} d$, where

$$
d^{*}=(-1)^{n(q+1)-1} \star d \star: \Omega^{q}(X) \rightarrow \Omega^{q-1}(X)
$$

Cartan's lemma 12 above shows that $\Omega^{*}(X)^{G} \subset \operatorname{ker} \Delta$.
Main idea: Do Hodge theory on X / Γ.
Main difficulty: X / Γ is not compact, it has only finite volume.
First step:

$$
H^{q}\left(\Omega^{*}(X)^{\Gamma}\right)=H^{q}\left(\Omega^{*}(X)_{\log }^{\Gamma}\right)
$$

where $\Omega^{*}(X)_{\text {log }}^{\Gamma}$ is the complex of differential forms ω such that both ω and $d \omega$ have "logarithmic growth at infinity". For instance, when $G=S L_{2}(\mathbb{R})$, in which case X is the Poincaré upper half-plane

$$
X=G / K=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

a form ω is said to have logarithmic growth at infinity when its restriction to a Siegel set

$$
\mathfrak{G}=\{z \in X| | \operatorname{Re}(z) \mid \leq b, \operatorname{Im}(z)>t\}
$$

can be written

$$
\omega_{\mid \mathfrak{G}}=\sum_{I, J} a_{I, J}(z)(d x)^{I}\left(\frac{d y}{y}\right)^{J}
$$

with

$$
\left|a_{I, J}(z)\right| \leq C|\log (y)|^{k}
$$

for some integer k.
The proof of this step relies upon a Poincaré lemma with logarithmic growth.
Next, assume $\omega \in \Omega^{q}(X)_{\log }^{\Gamma}$ and q is small. Then ω is L^{2}, i.e.,

$$
\|\omega\|_{L^{2}}^{2}=\int_{X / \Gamma} h(\omega, \omega) \mu<\infty .
$$

In other words, $\Omega^{*}(X)_{\log }^{\Gamma} \subset \Omega^{*}(X)_{L^{2}}^{\Gamma}$ for q small.
Now we can do L^{2}-Hodge theory:
(a) If ω is L^{2} and $d \omega=0$ then $\omega=h+d \eta$ with h harmonic and L^{2}.
(b) If h is harmonic and L^{2}, and $h=d \eta$ where η is L^{2}, then $h=0$.
(E.g., in order to prove (b) compute

$$
(h, h)_{L^{2}}=(h, d \eta)_{L^{2}}=\left(d^{*} h, \eta\right)_{L^{2}}=0
$$

and therefore $h=0$.)
The next step is to show that $\Omega^{*}(X)^{G} \subset \Omega^{*}(X)_{L^{2}}^{\Gamma}$.
And then the crucial step, due essentially to Garland and Matsushima, is to prove that if q is small and $h \in \Omega^{q}(X)_{L^{2}}^{\Gamma}$ with $\Delta(h)=0$, then $h \in \Omega^{q}(X)^{G}$.

Putting all together we get

$$
H^{q}\left(\Omega^{*}(X)^{\Gamma}\right) \cong \operatorname{ker}(\Delta) \cap \Omega^{q}(X)_{L^{2}}^{\Gamma} \cong \Omega^{q}(X)^{G}
$$

Finally, for $\Gamma_{0}=S L_{N}(\mathbb{Z})$ we have

$$
H^{q}\left(\Gamma_{0} ; \mathbb{R}\right) \cong H^{q}(\Gamma ; \mathbb{R})^{\Gamma_{0} / \Gamma}
$$

which is then equal to $\Omega^{q}(X)^{G}$ since the action of Γ_{0} is trivial.

Lecture two: Regulators. Let F be a number field and A its ring of integers. Let $\mathfrak{a} \subset A$ be a non-zero ideal. The norm of \mathfrak{a} is $N \mathfrak{a}=\#(A / \mathfrak{a})<\infty$.
Definition 14. $\zeta_{F}(s)=\sum_{\mathfrak{a} \neq 0} \frac{1}{(N \mathfrak{a})^{s}}$.
Example 15. If $F=\mathbb{Q}$ then

$$
\zeta_{\mathbb{Q}}(s)=\sum_{n \geq 1} \frac{1}{n^{s}}
$$

is the classical zeta function ζ.
Fact 16. - $\zeta_{F}(s)$ is absolutely convergent where $\Re(s)>1$;

- $\zeta_{F}(s)$ has a meromorphic continuation to \mathbb{C};
- $\zeta_{F}(s)$ has a pole of order 1 at $s=1$;
- Let $\xi(s)=A^{s} \Gamma(s / 2)^{r_{1}} \Gamma(s)^{r_{2}} \zeta_{F}(s)$, where $\Gamma(s)$ is the classical gamma function, $A=2^{-r_{2}} \sqrt{|D|} \pi^{r_{1}+2 r_{2}}$, and D is the discriminant of F. Then ξ satisfies the functional equation $\xi(1-s)=\xi(s)$.
Corollary 17. If $n \geq 1$ then $\zeta_{F}(s)$ has a zero of order d_{n} at $s=1-n$.
Proof. The gamma function $\Gamma(s)$ has poles of order 1 at $s=0,-1,-2,-3, \ldots$, hence $\Gamma(s / 2)^{r_{1}} \Gamma(s)^{r_{2}}$ has a pole of order r_{2} (respectively $r_{1}+r_{2}$) at $s=1-n$ when $n \geq 0$ is even (respectively, odd). Note that $\zeta_{F}(n) \neq 0$ hence $\xi(n) \neq 0$ when $n>1$.

Now let $s \rightarrow n$ and consider $A^{1-s} \Gamma((1-s) / 2)^{r_{1}} \Gamma(1-s)^{r_{2}} \zeta_{F}(1-s)=\xi(s)$, by the functional equation. Therefore $\zeta_{F}(s)$ has a zero of order d_{n} at $s=1-n$.

Definition 18. $\zeta_{F}^{*}(1-n)=\lim _{s \rightarrow 1-n} \frac{\zeta_{F}(s)}{(s+n-1)^{d_{n}}} \in \mathbb{R}^{\times}$.
Theorem 19 (Dirichlet's class number formula).

$$
\zeta_{F}^{*}(0)=-\frac{h R}{w}
$$

where

$$
\begin{aligned}
& h=\# \operatorname{Pic}(A) \\
&=\# K_{0}(A)_{\mathrm{tors}} \\
& w=\# \mu(F)=\# K_{1}(A)_{\mathrm{tors}}
\end{aligned}
$$

and R is the regulator defined below.

Definition 20 (of the regulator). If $u \in A^{\times}$and v is an archimedean place of F, put

$$
\|u\|_{v}= \begin{cases}|\sigma(u)| & \text { if } v=\sigma: F \hookrightarrow \mathbb{R} \\ |\sigma(u)|^{2} & \text { if } v=\{\sigma, \bar{\sigma}\}, \sigma: F \hookrightarrow \mathbb{C}\end{cases}
$$

There is the so-called product formula: $\prod_{v}\|u\|_{v}=1$, where v ranges over all archimedean places. This yields a map

$$
\rho: A^{\times} \rightarrow \mathbb{R}^{d_{1}}=\mathbb{R}^{r_{1}+r_{2}-1}=\operatorname{ker}\left(\Sigma: \mathbb{R}^{r_{1}+r_{2}} \rightarrow \mathbb{R}\right), \quad u \mapsto\left(\log \|u\|_{v}\right)_{v}
$$

Fact 21 (Dirichlet). $\operatorname{im}(\rho)$ is a lattice.
Now endow $\mathbb{R}^{d_{1}}$ with the restriction of the Lebesgue measure on $\mathbb{R}^{r_{1}+r_{2}}$, and define

$$
R=\operatorname{vol}\left(\frac{\mathbb{R}^{d_{1}}}{\rho\left(A^{\times}\right)}\right)
$$

We now want to see how Dirichlet's class number formula 19 generalizes to higher K-theory.

Recall that $H_{\text {cont }}^{*}\left(S L_{N}(\mathbb{R})\right) \cong \Lambda^{*}\left(e_{5}, e_{9}, e_{13}, \ldots\right)$. Given $\sigma: F \hookrightarrow \mathbb{R}$, then for $m=4 k+1$ we get

$$
\sigma^{*}\left(e_{m}\right) \in H^{m}\left(S L_{N}(A) ; \mathbb{R}\right) \stackrel{N \gg 0}{\cong} H^{m}(S L(A) ; \mathbb{R})
$$

and hence a map

$$
K_{m}(A) \rightarrow H^{m}(S L(A) ; \mathbb{R})^{\vee} \rightarrow \mathbb{R}
$$

given by the composition of the Hurewicz homomorphism and the map sending $\varphi \in H^{m}(S L(A) ; \mathbb{R})^{\vee}$ to $2 \pi \varphi\left(\sigma^{*}\left(e_{m}\right)\right)$. Similarly for $\sigma: F \hookrightarrow \mathbb{C}$ and $m=3,5,7, \ldots$

In this way we get for $n>1$ a map

$$
\rho_{n}: K_{2 n-1}(A) \rightarrow \mathbb{R}^{d_{n}}
$$

called the higher (Borel) regulator map.
The proof of theorem 4 actually shows that $\operatorname{im}\left(\rho_{n}\right)$ is a lattice. Define

$$
R_{n}=\operatorname{vol}\left(\frac{\mathbb{R}^{d_{n}}}{\rho_{n}\left(K_{2 n-1}(A)\right)}\right) .
$$

Theorem 22 (Siegel; Borel Bor77). For any $n>1$ there is a $q_{n} \in \mathbb{Q}^{\times}$such that

$$
\zeta_{F}^{*}(1-n)=q_{n} R_{n} .
$$

Example 23. Assume $r_{2}=0$ and $n>1$ is even. Then $d_{n}=0$, and theorem 22 (in this case due to Siegel) gives

$$
\zeta_{F}(1-n) \in \mathbb{Q}^{\times}
$$

For instance, if $F=\mathbb{Q}$ and $n>1$ is even then

$$
\zeta(1-n)=-\frac{b_{n}}{n}
$$

where b_{n} are the Bernoulli numbers defined by

$$
\frac{t e^{t}}{e^{t}-1}=\sum_{n=0}^{\infty} b_{n} \frac{t^{n}}{n!}
$$

E.g.,

$$
\zeta(1-n)=\left\{\begin{array}{l}
-1 / 2 \\
1 / 12 \\
0 \\
1 / 120 \\
0 \\
\cdots \\
691 / 32760
\end{array} \quad \text { if } \quad 1-n=\left\{\begin{array}{l}
0 \\
-1 \\
-2 \\
-3 \\
-4 \\
\cdots \\
-11
\end{array}\right.\right.
$$

Lecture three: Étale cohomology. Let E be a finite extension of the number field F and let B be the ring of integers of E. Let p be a prime.

Definition 24. E is said to be unramified outside p when, for any prime ideal $\mathfrak{p} \subset A$ such that $\mathfrak{p} \nmid p A$, one has in B that $\mathfrak{p} B=q_{1} \cdots q_{t}$ with q_{1}, \ldots, q_{t} distinct prime ideals.

Example 25. For any integer $k \geq 1$ then $F\left(\mu_{p^{k}}\right) \mid F$ is unramified outside p, where $\mu_{p^{k}}$ are the p^{k}-th roots of unity.

Define

$$
\Phi=\bigcup_{\substack{E \mid F \\ \text { unramified } \\ \text { outside } \mathrm{p}}} E
$$

and notice that $\mu_{p^{k}} \subset \Phi^{\times}$for all $k \geq 1$. Define a character

$$
\epsilon: \operatorname{Gal}(\Phi \mid F) \rightarrow \mathbb{Z}_{p}^{\times}
$$

by the equation $g(\xi)=\xi^{\epsilon(g)}$ for any $g \in \operatorname{Gal}(\Phi \mid F)$ and for any $\xi \in \mu_{p^{k}}$.
The abelian group \mathbb{Z}_{p} carries then for any n a new $\operatorname{Gal}(\Phi \mid F)$-module structure, denoted $\mathbb{Z}_{p}(n)$ and defined as

$$
g \cdot \alpha=\epsilon(g)^{n} \alpha
$$

for $g \in \operatorname{Gal}(\Phi \mid F)$ and $\alpha \in \mathbb{Z}_{p}(n)$.
Define étale cohomology as

$$
H_{\mathrm{et}}^{q}\left(\operatorname{Spec} A\left[\frac{1}{p}\right] ; \mathbb{Z}_{p}(n)\right)=H_{\mathrm{cont}}^{q}\left(\operatorname{Gal}(\Phi \mid F) ; \mathbb{Z}_{p}(n)\right)
$$

and abbreviate these groups to $H^{q}\left(A ; \mathbb{Z}_{p}(n)\right)$.
The following theorem is in quotation marks because it depends on the proof of the so-called Bloch-Kato conjecture, announced by Voevodsky and Rost but not yet fully written-up (cf. Wei05). Notice however that the corresponding surjectivity statements were proved by Soulé Sou79 and Dwyer-Friedlander DF85.
"Theorem" 26. If p is odd and $n \geq 2$ there are canonical isomorphisms

$$
\begin{aligned}
& K_{2 n-1}(A) \otimes \mathbb{Z}_{p} \stackrel{\cong}{\rightrightarrows} H^{1}\left(A ; \mathbb{Z}_{p}(n)\right), \\
& K_{2 n-2}(A) \otimes \mathbb{Z}_{p} \stackrel{\cong}{\rightrightarrows} H^{2}\left(A ; \mathbb{Z}_{p}(n)\right) .
\end{aligned}
$$

The natural maps in the theorem above were first constructed by Dwyer and Friedlander DF85 using étale K-theory $K_{m}^{\text {ét }}\left(A ; \mathbb{Z}_{p}\right)$, which can be thought of as topological K-theory of the étale homotopy type of $\operatorname{Spec} A\left[\frac{1}{p}\right]$. (There is also a more modern description using motivic cohomology instead of étale cohomology.) There is a natural map

$$
K_{m}(A) \rightarrow K_{m}^{\text {ét }}\left(A ; \mathbb{Z}_{p}\right)
$$

and there is also a spectral sequence converging to $K_{2 n-q}^{\text {ét }}\left(A ; \mathbb{Z}_{p}\right)$ with

$$
E_{2}^{q,-2 n}=H^{q}\left(A ; \mathbb{Z}_{p}(n)\right)
$$

But, assuming that p is odd, $H^{q}\left(A ; \mathbb{Z}_{p}(n)\right)=0$ if $n>0$ and $q \neq 1$ or 2 . So the spectral sequence degenerates, i.e., $E_{2}=E_{\infty}$ and in any diagonal there is only one non-zero E_{2}-term, therefore

$$
\begin{aligned}
& K_{2 n-1}^{\text {ét }}\left(A ; \mathbb{Z}_{p}\right)=H^{1}\left(A ; \mathbb{Z}_{p}(n)\right) \\
& K_{2 n-2}^{\text {ét }}\left(A ; \mathbb{Z}_{p}\right)=H^{2}\left(A ; \mathbb{Z}_{p}(n)\right)
\end{aligned}
$$

Corollary 27. The group $H^{2}\left(A ; \mathbb{Z}_{p}(n)\right)$ is always finite, and it vanishes for almost all primes $p ;$ moreover $\operatorname{dim}_{\mathbb{Q}_{p}} H^{1}\left(A ; \mathbb{Z}_{p}(n)\right) \otimes \mathbb{Q}_{p}=d_{n}$.

This corollary is not in quotation marks because the surjectivity statements in theorem 26, combined with theorem 4, are enough for it.

Theorem 28 (Wiles Wil90). If $r_{2}=0$ (i.e., if F is totally real) and n is even then

$$
\left|\zeta_{F}(1-n)\right|=2^{?} \frac{\prod_{p>2} \# H^{2}\left(A ; \mathbb{Z}_{p}(n)\right)}{\prod_{p>2} \# H^{1}\left(A ; \mathbb{Z}_{p}(n)\right)}
$$

"Corollary" 29. If $r_{2}=0$ and n is even then

$$
\left|\zeta_{F}(1-n)\right|=2^{?} \frac{\# K_{2 n-2}(A)}{\# K_{2 n-1}(A)}
$$

"Example" 30. If $F=\mathbb{Q}$ and n is even then

$$
|\zeta(1-n)|=2 \frac{\# K_{2 n-2}(\mathbb{Z})}{\# K_{2 n-1}(\mathbb{Z})}
$$

Combining "theorem" 26 with work of Fleckinger, Kolster, and Nguyen Quang Do KNQDF96 we get:
"Theorem" 31. If F is abelian and $n \geq 1$ then

$$
\left|\zeta_{F}^{*}(1-n)\right|=2^{?} \frac{\# K_{2 n-2}(A)}{\# K_{2 n-1}(A)_{\mathrm{tors}}} R_{n}
$$

Conjecture 32 (Vandiver). For an odd prime p define

$$
C=\operatorname{Pic}\left(\mathbb{Q}\left(\mu_{p}\right)\right) \otimes \mathbb{Z} / p \mathbb{Z}, \quad C^{+}=\{x \in C \mid \bar{x}=x\}
$$

Then $C^{+}=0$.
Recall that p is called regular if $C=0$ (and that Kummer proved Fermat for regular primes-Vandiver hoped that $C^{+}=0$ would also imply Fermat).

Using computers one can show that Vandiver's conjecture is true if $p<10^{7}$.
"Theorem" 33 (Kur92). The Vandiver conjecture is true for all primes if and only if $K_{4 k}(\mathbb{Z})=0$ for all $k \geq 1$.

Example 34. $K_{4}(\mathbb{Z})=0$ by a theorem of Rognes Rog00, but $K_{8}(\mathbb{Z})$ is still unknown.

Proof. For $i \in \mathbb{Z}$ denote

$$
C^{(i)}=\left\{x \in C \mid g(x)=\epsilon(g)^{i} x \quad \forall g \in \operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p}\right) \mid \mathbb{Q}\right) \stackrel{\epsilon}{\cong}(\mathbb{Z} / p \mathbb{Z})^{\times}\right\}
$$

Then $C^{+}=\bigoplus_{i \text { even }} C^{(i)}$. The last needed ingredient is the computation

$$
H^{2}\left(\mathbb{Z} ; \mathbb{Z}_{p}(n)\right) \otimes \mathbb{Z} / p \mathbb{Z} \cong C^{(p-n)}
$$

which combined with "theorem" 26 finishes the proof.
Example 35. Obviously $C^{(p-1)}=0$; there is a surjection $K_{4}(\mathbb{Z}) \rightarrow C^{(p-3)}$, and therefore, as noticed by Kurihara Kur92, $C^{(p-3)}=0$.

Assuming the Bloch-Kato and Vandiver conjectures we get the following computation of $K_{*}(\mathbb{Z})$ (cf. Wei05; note that the 2-torsion is known RW00) : setting

$$
\begin{aligned}
w_{n} & =\text { denominator of } \frac{1}{2} \zeta(1-n) \\
c_{n} & =\text { numerator of } \frac{1}{2} \zeta(1-n) \\
k_{m} & =\left[1+\frac{m}{4}\right]
\end{aligned}
$$

then for all $m>1$ we have

$$
K_{m}(\mathbb{Z}) \cong\left\{\begin{array}{ll}
\mathbb{Z} \oplus \mathbb{Z} / 2 & \text { if } m \equiv 1 \\
\mathbb{Z} / 2 c_{2 k_{m}} & \text { if } m \equiv 2 \\
\mathbb{Z} / 2 w_{2 k_{m}} & \text { if } m \equiv 3 \\
0 & \text { if } m \equiv 4 \\
\mathbb{Z} & \text { if } m \equiv 5 \\
\mathbb{Z} / c_{2 k_{m}} & \text { if } m \equiv 6 \\
\mathbb{Z} / w_{2 k_{m}} & \text { if } m \equiv 7 \\
0 & \text { if } m \equiv 8
\end{array} \quad(\bmod 8)\right.
$$

Lecture four: Perfect forms. Let $N \geq 2$ and let $\phi(x)=\sum_{1 \leq i, j \leq N} a_{i j} x_{i} x_{j}$ be a positive definite real quadratic form in N-variables, i.e., $a_{i j}=a_{j i} \in \mathbb{R}, \phi(x) \geq 0$, with equality if and only if $x=0$.

Define $M(\phi)=\left\{x \in \mathbb{Z}^{N}-0 \mid \phi(x)\right.$ is minimal $\}$. This is a finite set.
Definition 36. We say that ϕ is perfect when $M(\phi)$ determines ϕ up to scalar multiplication.

Example 37. $M\left(x^{2}+y^{2}\right)=\{(1,0),(-1,0),(0,1),(0,-1)\}=M\left(x^{2}+\frac{1}{2} x y+y^{2}\right)$, hence these forms are not perfect. On the other hand $x^{2}+x y+y^{2}$ is perfect, and

$$
M\left(x^{2}+x y+y^{2}\right)=\{(1,0),(-1,0),(0,1),(0,-1),(1,-1),(-1,1)\}
$$

The group $\Gamma=S L_{N}(\mathbb{Z})$ acts on forms by $(\phi \gamma)(x)=\phi(\gamma(x))$.
Theorem 38 (Voronoï Vor08]). Modulo the action of Γ and scalar multiplication there are only finitely many perfect forms of a given rank N.

For small values of N perfect forms have been classified and

$$
\#\{\text { perfect forms in } N \text {-variables }\}=\left\{\begin{array}{l}
1 \\
1 \\
2 \\
3 \\
7 \\
33 \\
10916
\end{array} \quad \text { if } \quad N=\left\{\begin{array}{l}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right.\right.
$$

(the last two numbers were obtained by computers).
Define

$$
C_{N}^{*}=\left\{\begin{array}{l|l}
\phi(x)=\sum_{1 \leq i, j \leq N} a_{i j} x_{i} x_{j} & \left.\left.\begin{array}{l}
a_{i j}=a_{j i} \in \mathbb{R}, \quad \phi(x) \geq 0 \\
\exists V \varsubsetneqq \mathbb{Q}^{N}: \operatorname{ker}(\phi)=V \otimes \mathbb{R}
\end{array}\right\}, ~\right\} \quad, ~ \\
\exists V
\end{array}\right\}
$$

and $X_{N}^{*}=C_{N}^{*} / \mathbb{R}_{>0}^{\times}$, together with a projection $\pi: C_{N}^{*} \rightarrow X_{N}^{*} \supset X_{N}$.
For $v \in \mathbb{Z}^{N}-0$ define $\widehat{v} \in C_{N}^{*}$ by $\widehat{v}(x)=(v \mid x)^{2}$. If ϕ is perfect define

$$
\sigma(\phi)=\pi\left(\left\{\sum_{i} \lambda_{i} \widehat{v_{i}} \mid \forall i \lambda_{i} \geq 0 \text { and } v_{i} \in M(\phi)\right\}\right)
$$

Theorem 39 (Voronoï Vor08). The family of cells $\sigma(\phi)$ for ϕ perfect and their intersections give a Γ-invariant cell decomposition of X_{N}^{*}.

This can be used to compute $H^{*}(\Gamma ; \mathbb{Z})$. Endow X_{N}^{*} with the CW-topology coming from this cell decomposition (warning: this is different from the usual topology on matrices). For $\partial X_{N}^{*}=X_{N}^{*}-X_{N}$, consider the equivariant homology of $\left(X_{N}^{*}, \partial X_{N}^{*} ; \mathbb{Z}\right)$.

There is a first spectral sequences $E_{p q}^{2}=H_{p}\left(\Gamma, H_{q}\left(X_{N}^{*}, \partial X_{N}^{*} ; \mathbb{Z}\right)\right)$ converging to $H_{p+q}^{\Gamma}\left(X_{N}^{*}, \partial X_{N}^{*} ; \mathbb{Z}\right)$.

Proposition 40. The space X_{N}^{*} is contractible and ∂X_{N}^{*} is homotopy equivalent to the spherical Tits building of $S L_{N}(\mathbb{Q})$, i.e., has the homotopy type of a bouquet of infinitely many spheres of dimension $N-2$.

Therefore

$$
H_{q}\left(X_{N}^{*}, \partial X_{N}^{*} ; \mathbb{Z}\right)=\widetilde{H}_{q-1}\left(\partial X_{N}^{*} ; \mathbb{Z}\right)= \begin{cases}S t_{N} & \text { if } q=N-1 \\ 0 & \text { otherwise }\end{cases}
$$

where $S t_{N}$ is the Steinberg module, and so

$$
H_{m}^{\Gamma}\left(X_{N}^{*}, \partial X_{N}^{*} ; \mathbb{Z}\right)=H_{m-N+1}\left(\Gamma ; S t_{N}\right)
$$

There is a second spectral sequence with $E_{p q}^{1}=\bigoplus_{\operatorname{dim}(\sigma)=p} H_{q}\left(\Gamma_{\sigma} ; \mathbb{Z}_{\sigma}\right)$ also converging to $H_{p+q}^{\Gamma}\left(X_{N}^{*}, \partial X_{N}^{*} ; \mathbb{Z}\right)$ (here Z_{σ} is the orientation module of the cell σ).

Lemma 41. If a prime p divides $\# \Gamma_{\sigma}$ then $p \leq N+1$.
Proof. If $\gamma^{p}=1$ then $\gamma^{p-1}+\gamma^{p-2}+\ldots+1=0$, but since the minimal polynomial divides the characteristic polynomial we get that $p-1 \leq N$.

Denote by \mathcal{S}_{N+1} the Serre subcategory of finite abelian groups A such that if $p \mid \# A$ then $p \leq N+1$. We will now compute modulo \mathcal{S}_{N+1}.

If $q>0$ then $\# \Gamma_{\sigma}$ annihilates $H_{q}\left(\Gamma_{\sigma} ; \mathbb{Z}_{\sigma}\right)$, hence $E_{p q}^{1} \equiv 0\left(\bmod \mathcal{S}_{N+1}\right)$.

If Γ_{σ} acts non-trivially on \mathbb{Z}_{σ} then 2 annihilates $H_{0}\left(\Gamma_{\sigma} ; \mathbb{Z}_{\sigma}\right)$.
Let V_{n} be the free abelian group spanned by all Γ-orbits of cells σ of dimension n such that σ meets X_{N} and Γ_{σ} preserves the orientation of σ, and $V=\left(V_{*}, d^{1}\right)$. We get

$$
H_{n}(V) \equiv H_{n-N+1}\left(\Gamma, S t_{N}\right) \quad\left(\bmod \mathcal{S}_{N+1}\right)
$$

According to Borel-Serre duality and an additional argument of Farrell

$$
H_{m}\left(\Gamma ; S t_{N}\right) \equiv H^{d-m}(\Gamma ; \mathbb{Z}) \quad\left(\bmod \mathcal{S}_{N+1}\right)
$$

where $d=N(N-1) / 2$. One gets:
Theorem 42.
(a) $H^{m}\left(S L_{2}(\mathbb{Z}) ; \mathbb{Z}\right) \equiv H^{m}\left(S L_{3}(\mathbb{Z}) ; \mathbb{Z}\right) \equiv\left\{\begin{array}{ll}\mathbb{Z} & \text { if } m=0 \\ 0 & \text { otherwise }\end{array} \quad\left(\bmod \mathcal{S}_{3}\right) ;\right.$
(c)

$$
H^{m}\left(S L_{5}(\mathbb{Z}) ; \mathbb{Z}\right) \equiv\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } n=0,5 \\
0 & \text { otherwise }
\end{array} \quad\left(\bmod \mathcal{S}_{5}\right)\right.
$$

$$
H^{m}\left(S L_{4}(\mathbb{Z}) ; \mathbb{Z}\right) \equiv\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } n=0,3 \tag{b}\\
0 & \text { otherwise }
\end{array} \quad\left(\bmod \mathcal{S}_{5}\right)\right.
$$

$$
H^{m}\left(S L_{6}(\mathbb{Z}) ; \mathbb{Z}\right) \equiv\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } m=0,8,9 \tag{d}\\
\mathbb{Z}^{2} & \text { if } n=5 \\
0 & \text { otherwise }
\end{array} \quad\left(\bmod \mathcal{S}_{7}\right)\right.
$$

$$
H^{m}\left(S L_{7}(\mathbb{Z}) ; \mathbb{Q}\right) \cong \begin{cases}\mathbb{Q} & \text { if } m=0,5,11,14,15 \tag{e}\\ 0 & \text { otherwise }\end{cases}
$$

Here part (b) is due to Lee and Szczarba, and (c)-(d)-(e) to Elbaz-Vincent, Gangl, and Soulé EVGS02, involving computer calculations.

This result can be used to compute $K_{4}(\mathbb{Z})=0$. The classification of perfect forms for $N=8$ is also known, but the computation of the cohomology of $S L_{8}(\mathbb{Z})$ seems too complicated for today's computers.

References

[BMS67] Hyman Bass, John Milnor, and Jean-Pierre Serre, Solution of the congruence subgroup problem for $S L_{n}(n \geq 3)$ and $S p_{2 n}(n \geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59-137. MR0244257 $\sqrt[1]{1}$
[Bor74] Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235-272. MR0387496 $\uparrow 2$
[Bor77] Armand Borel, Cohomologie de $S L_{n}$ et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613-636. MR0506168 \7
[DF85] William Dwyer and Eric Friedlander, Algebraic and etale K-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247-280. MR805962 18. 9
[EVGS02] Philippe Elbaz-Vincent, Herbert Gangl, and Christophe Soulé, Quelques calculs de la cohomologie de $G L_{N}(\mathbb{Z})$ et de la K-théorie de \mathbb{Z}, C. R. Math. Acad. Sci. Paris 335 (2002), no. 4, 321-324. MR1931508 12
[Gui80] Alain Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathématiques, vol. 2, CEDIC, Paris, 1980. MR644979 氺, 3
[KNQDF96] Manfred Kolster, Thong Nguyen Quang Do, and Vincent Fleckinger, Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J. 84 (1996), no. 3, 679-717. MR1408541 $\uparrow 9$
[Kur92] Masato Kurihara, Some remarks on conjectures about cyclotomic fields and K-groups of \mathbb{Z}, Compositio Math. 81 (1992), no. 2, 223-236. MR $1145807 \uparrow 9,10$
[Mil71] John Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, vol. 72, Princeton University Press, Princeton, N.J., 1971. MR0349811 11
[MM65] John Milnor and John Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. MR0174052 $\sqrt[4]{4}$
[Qui73] Daniel Quillen, Finite generation of the groups K_{i} of rings of algebraic integers, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., vol. 341, Springer, Berlin, 1973, pp. 179-198. MR0349812 12
[Rog00] John Rognes, $K_{4}(\mathbb{Z})$ is the trivial group, Topology 39 (2000), no. 2, 267-281. MR $1722028 \uparrow 10$
[RW00] John Rognes and Charles Weibel, Two-primary algebraic K-theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000), no. 1, 1-54. Appendix A by Manfred Kolster. MR1697095 $\uparrow 10$
[Sou79] Christophe Soulé, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251-295. MR553999 $\downarrow 8$
[Vor08] Georges Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier Mémoire: Sur quelques propriétés des formes quadratiques positives parfaites, J. für Math. 133 (1908), 97-178. 110 11
[Wei05] Charles Weibel, Algebraic K-theory of rings of integers in local and global fields, Handbook of K-theory, Vol. 1, Springer, Berlin, 2005, pp. 139-190. MR2181823 18, 10
[Wil90] Andrew Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493-540. MR1053488 19

[^0]
[^0]: Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-SurYvette, France

 E-mail address: soule@ihes.fr
 URL: http://www.ihes.fr/~soule/

