HIGHER K-THEORY OF ALGEBRAIC INTEGERS
AND THE COHOMOLOGY OF ARITHMETIC GROUPS

CHRISTOPHE SOULE
(NOTES BY MARCO VARISCO)

Lecture one: Two theorems of Armand Borel. Let F' be a number field, i.e,
a finite field extension of QQ, and let A = O be its ring of integers, i.e., the integral
closure of Z in F"

A=0p = {x€F|x"+a1x"71—|—...—|—an:O, a; EZ}.

Our goal in these lectures is to understand the algebraic K-theory of A.
First of all, observe that there is no negative K-theory because A is regular.

Proposition 1. Ky(A) 2 Z @ Pic(A).

Here Pic(A) is the ideal class group of A, i.e., the set of isomorphism classes
of invertible A-modules with addition given by the tensor product. Proposition
is true more generally for any Dedekind domain A, since every projective module
is the sum of ideals, each of which is projective and satisfies I & J = IJ @ A,
see [Mil71].

For A = O Dirichlet proved that Pic(A) is finite.

Proposition 2. K;(A4) = A*.

In fact, Bass, Milnor, and Serre [BMS67] proved that SK;(A) =0, and for any
commutative ring A one has K;(A4) = A* x SK;(A).
For A = O Dirichlet proved that
dimg(A* ®@Q)=r1+rp—1=4d;
where
r1 = #{real places of F'} = #{o: F — R},

ro = #{ complex places of F'} = %#{a: F—C, 0#7},
(the resulting decomposition of F' ®g R then shows that [F : Q] = ry + 2r9), and
for any n > 1 we put
r+ro—1 ifn=1,
dpn=14911+72 if n is odd and > 3,
9 if n is even.
More precisely, Dirichlet proved that A* is the product of the finite cyclic group

w(F) of roots of unity in F' and a free abelian group of rank r; + 7o — 1 = dy.
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Theorem 3 (Quillen [Qui73]). For all m >0, K,,,(A) is finitely generated.

Theorem 4 (Borel [Bor74)). For all m > 0,
e if m is even then K,,(A) is finite,
o ifm=2n—1 then dimg(K,,(4) ® Q) = d,.

These results generalize the aforementioned theorems by Dirichlet.

Example 5. If ' =Q, A =7 then r; =1 and ro = 0, and hence for m > 0

Kon(Z) = {Z@ﬁnite m=59,13,...,

finite otherwise.

We will not discuss the proof of Quillen’s theorem [3] here.
As we will see below, Borel’s theorem {4 follows from the following theorem.

Theorem 6 (Borel). Let G = SLy(R)™ x SLy(C)™2 D T'=SLn(A).
Assume g+ 1 < (N —1)/4. Then the corestriction map HL . (G) — HI(T;R)
is an isomorphism.

Here HZ . (G) is the continuous cohomology of G with real coefficients. It can be

defined as the cohomology of the complex
= Ol (G) 2 CILG) — o

cont

where CZ . (G) is the real vector space of continuous maps from G4+ to R and

0 is given by the formula
g+1 4
890(907 e 7gq+1) = Z(_l)Z SO(gO, e ag\ia s 7gq+1)-
i=0
Theorem [0] is actually a special case of the following more general result.

Theorem 7 (Borel [Bor74]). Let G be a semi-simple algebraic group over Q such
that G = G(R) is connected and let T' < G(Q) be an arithmetic group.

Assume q+ 1 < rankg(G)/4. Then the corestriction map HY (G) — HI(T;R)
is an isomorphism.

Proof that theorem[¢] implies theorem [l Step 1: We first compute H, (G) as fol-

lows. Consider the maximal compact subgroup K of G, and the symmetric space
X = K\G.

Ezample 8. If G = GLN(R) then K = O(N) and X is the set of positive definite
real quadratic forms. In fact, given [g] € X we can define ¢(z) = ||g(x)|? for
r € RN,

If G = SLy(R) then K = SO(N) and X is the set of positive definite real
quadratic forms modulo the action of R;O.

The manifold X is contractible. Therefore the de Rham complex
0—R—Q%X)— QX)) = Q*(X) — ...
is exact. This yields a “strong” resolution of R by “relatively” injective G-modules
(this means that the resolution is “good” from the point of view of continuous
cohomology, see |Gui80|). Hence
Hq

cont

(G) = HY(Q"(X)).
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Let g and € be the Lie algebras of G and K respectively. By restriction of differential
forms at the origin we have

Q4(X)% = home(A9(g/€),R).

Consider the Cartan decomposition g =€ ® p and g ®g C D ip. Then the so-called
unitarian trick yields that ¢ @ ip = Lie(G,,), where G,, is a compact connected Lie
group containing K. Then

Q9(X)% = hom(A?(g/€),R) = home(A9(p), R) = home(A9(ip), R) = QI(K\G,)".
Since G, is compact and connected, integration on G, shows that the inclusion
QI(K\G,) € QI(K\G.)
is a homology equivalence |[Gui80, rem. 7.1 and lemma E.2]. Therefore
2,1 (G) = HU(Q(X)€) = HUQ (K\G,)%) = HI(Q (K\Gy)) = HI(K\G.;R).
Ezample 9. If G = SLy(R), K = SO(N) then
g={M|trM =0}, te={M|M' =-M}, p={M|M =M}
and therefore
E@ip = {Meg@R(C ‘ M = —M} > su(N).

Hence G, = SU(N). Then we get

HE (SLy(R)) = H*(SO(N)\SU(N); ).
The right-hand side is known (by previous work of Borel) and gives

H; (SLy(R)) = A*(e5, e9,€13,- -, €45+1)

with e, € HI(SO(N)\SU(N); Z), k = [22].
If G =SLy(C) then K = SU(N) and G,, = SU(N) x SU(N). We get

H: .(SLn(C)) = H*(SU(N);R) = A*(e3,¢€5,€7,...,€aN-1)
with ¢, € H1(SU(N); Z).
For G = SLy(R)™ x SLy(C)™ this yields
HZoni (G) 2 A ()27 @ A (25) 77
Step 2: There is a homotopy equivalence
BSL(A)T x B(A*) = BGL(A)*
and hence for m > 2
K (A) 27, BSL(A)T.
For any CW-complex X consider the Hurewicz map
B T (X) @ R — (TH™(X;R))Y
where £V = homg(F,R) and TH™(X;R) = H™(X;R)/{cup products}.

Lemma 10. If X is an H-space such that dimg H™(X;R) < oo for all m, then
hm is an isomorphism.
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Proof. To prove this lemma, we define
PH, (X;R)={ze€ H,(X;R) | Ax(z) =2z 1+1®@a}
where
Av: Hp(X;R) = Hp(X x X;R) = € H(M;R) @ Hi(M;R)

s+t=m
is induced by the diagonal map.
Then if X is an H-space there is an isomorphism

Tm(X)®R S PH,,(X;R)

[MMG65, Appendix], and under the finiteness assumption above (IH™(X;R))Y =
PH,,(X;R). |

Now BSL(A)* is an H-space satisfying the assumption of the previous lemma,
because of (the proof of) Quillen’s theorem (3} and therefore for m > 2 we get

K (A) @R = (TH™(BSL(A)";R))Y = (IH™(BSL(A);R))¥
— (IH™(SL(A);R))".
Theorem [0] implies that for N > m
H™(SLn(A);R) 22 Hipoo(G) = A" (€)™ @ A ()"

and therefore

This yields

2
114

(TH™(SL(A)R)) =" TH,(G)Y 2 I(N ()" @ A*(2)®™)"

{Rd" if m=2n—1,

0 otherwise,
completing the proof that Borel’s theorem [4] follows from theorem [6} O
Ezample 11. If FF = Q then r =0, r; = 1 and

{R if m=5,9,13,...,

I(A(es, €9, €13, )" = 0 otherwise

Sketch of proof of theorem[6 For simplicity we only consider

G=SLN(R) D T'=SLN(Z).
Recall that HZ ,(G) = HY(Q*(X)%) where X is the symmetric space K\G.

Lemma 12 (Cartan). The differential d: Q*(X)¢ — Q*T1(X)% vanishes.

Proof of lemma[I3 Let : G — G be the Cartan involution 6(g) = (¢~ 1). It
induces a map 6: X — X and therefore a chain map *: Q*(X)¢ — Q*(X)“.
Look at §': g — g, /(M) = —M". Recall that Q9(X)¥ = homg(A9p,R) and
p={M|M =M} Ifx € Al then ¢'(z) = (—1)%z. Hence if a € QI(X)Y we
compute
(=1)"(dar) = db* (@) = 0"d(r) = (—=1)*"(da)
and therefore da = 0. O

Now assume first that ' = {y € SLy(Z) | y =1 (mod 3) }.
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Fact 13. T is torsionfree.

This fact implies that I" is acting freely on X = K\G, as we can see as follows.
Lety € T'and [g] € K\G. If [g]y = [g], we get gy = kg,i.e., v =g kg € g~ KgNI.
But ¢ 'K gnNT is finite, being the intersection of a compact with a discrete group.
Therefore v has finite order, but, since I' is torsionfree, this shows that v = 1.

Since X is contractible, X/T" is therefore a K (I",1)-space. Then

H(ISR) = HI(X/T3R) = HO(Q"(X/T)) = HI(Q(X)T)
and we have to study
QX)) = HIQ (X)) — HY(Q*(X)").
Fix a smooth G-invariant metric h on TX, and define

e the volume form p = \/det(h®7) dxy - - - dzy, € (X)), where n = dim(X),
e the star operator x: Q4(X) — Q" 9(X) by w A xw = h(w,w)u,

e the Laplace operator A = dd* + d*d, where

d* = (=)D gy Q9(X) — Q1(X).

Cartan’s lemma above shows that Q*(X)% C ker A.

Main idea: Do Hodge theory on X/T'.

Main difficulty: X/T is not compact, it has only finite volume.
First step:

HUQ (X)) = HY(Q (X)lgq)

where (X )fog is the complex of differential forms w such that both w and dw have
“logarithmic growth at infinity”. For instance, when G = SLs(R), in which case

X is the Poincaré upper half-plane
X=G/K={zeC|Im(z) >0},
a form w is said to have logarithmic growth at infinity when its restriction to a
Siegel set
&={z€X | |Re(z)| <b, Im(z) >t}

can be written
dy 7
wie = ZQI7J(Z)(dx)I ()
I,J Yy

with
lar,.s(2)| < C|log(y)|*
for some integer k.

The proof of this step relies upon a Poincaré lemma with logarithmic growth.

Next, assume w € Q4(X)j,, and ¢ is small. Then w is L?, i.e.,

ot = | Bl <o

In other words, Q*(X){,, C Q*(X)}. for ¢ small.

log
Now we can do L2-Hodge theory:
(a) If wis L? and dw = 0 then w = h + dn with h harmonic and L?.
(b) If h is harmonic and L?, and h = dn where 7 is L?, then h = 0.
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(E.g., in order to prove (b) compute
(h7 h)L2 = (h7 d77)L2 = (d*hﬂ?)L? =0

and therefore h = 0.)

The next step is to show that Q*(X)¢ C Q*(X)F..

And then the crucial step, due essentially to Garland and Matsushima, is to
prove that if ¢ is small and h € Q4(X)Y, with A(h) =0, then h € Q4(X)°.

Putting all together we get

HYQ* (X)) = ker(A) N Q(X)L, = Q1(X)C.
Finally, for 'y = SLy(Z) we have
HY(To;R) = HI(T;R)F/T

which is then equal to Q%(X)% since the action of Ty is trivial. O

Lecture two: Regulators. Let F' be a number field and A its ring of integers.
Let a C A be a non-zero ideal. The norm of a is Na = #(A4/a) < co.

1
Definition 14. (p(s) = Z —_—
= (Na)

Ezample 15. If F = Q then

is the classical zeta function (.

Fact 16. o (r(s) is absolutely convergent where R(s) > 1;
e (r(s) has a meromorphic continuation to C;
e (r(s) has a pole of order 1 at s =1;
o Let&(s) = A°T(s/2)"T(s)"2(r(s), where I'(s) is the classical gamma func-
tion, A = 27"2\/|D|x"1*2"2and D is the discriminant of F. Then ¢ sat-
isfies the functional equation (1 — s) = £(s).

Corollary 17. If n > 1 then (r(s) has a zero of order d, at s =1—n.

Proof. The gamma function I'(s) has poles of order 1 at s = 0,—1,-2,-3,...,
hence T'(s/2)™T'(s)™ has a pole of order r5 (respectively r1 +r2) at s = 1 —n when
n > 0 is even (respectively, odd). Note that (g(n) # 0 hence £(n) # 0 when n > 1.
Now let s — n and consider A'=T'((1 — 5)/2)"'T'(1 — 5)"2(r(1 — s) = &£(s), by
the functional equation. Therefore (r(s) has a zero of order d,, at s=1—n. O
Definition 18. C;(l — n) = si}{rin (Sﬁg(S)l)dn S RX.
Theorem 19 (Dirichlet’s class number formula).
. hR
Cr(0) = ——

w
where

h = # Pic(A)= #Ko(A)tors
w = #M(F) = #Kl (A)tors
and R is the requlator defined below.
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Definition 20 (of the regulator). If u € A* and v is an archimedean place of F,

lo(u)] fv=0:F —R,
if v={0,5},0: F— C.

Jull = {U(u)

put
There is the so-called product formula: [[, |ull, = 1, where v ranges over all

2
archimedean places. This yields a map
u— (log [lull»)v -

p: A = RH =R = ker(X: R T2 S R)
Fact 21 (Dirichlet). im(p) is a lattice.
Now endow R% with the restriction of the Lebesgue measure on R™ 72 and
define
R®:
R = vol ( ~ ) .
p(AX)
We now want to see how Dirichlet’s class number formula[I9]generalizes to higher

..). Given o: F — R, then for

K-theory.
Recall that HY (SLy(R)) = A*(es,eg, €13,

m = 4k 4+ 1 we get

YV

N3>0
H™(SL(A);R)

o~

o (em) € H"(SLy(A);R)

and hence a map
Kn(A) — H™(SL(A);R)Y - R
given by the composition of the Hurewicz homomorphism and the map sending

p € H™(SL(A);R)Y to 2mp(c*(€y,)). Similarly for o: F' < C and m = 3,5,7,.. ..

In this way we get for n > 1 a map
Pnt K2n71<A) - Rdn

called the higher (Borel) regulator map.
The proof of theorem |4| actually shows that im(p,,) is a lattice. Define
Rdn )
R, =vol | ————~
" (pn(Bén1b4D
Theorem 22 (Siegel; Borel [Bor77]). For any n > 1 there is a g, € Q™ such that

(p(1—n) = gnRn.
Example 23. Assume ro = 0 and n > 1 is even. Then d,, = 0, and theorem (in

this case due to Siegel) gives
CF(l — ’I’L) S QX .

For instance, if F' = Q and n > 1 is even then
by,
l—n)=-—2"

(1-m) =2

where b,, are the Bernoulli numbers defined by
o0 t”

t t
€ :E:%H'

t
e 1
n=0
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E.g.,
-1/2 0
1/12 -1
0 -2
¢(1—n)=141/120 if 1-n=<-3
0 —4
691/32760 —11

Lecture three: Etale cohomology. Let F be a finite extension of the number
field F' and let B be the ring of integers of E. Let p be a prime.

Definition 24. FE is said to be unramified outside p when, for any prime ideal
p C A such that p t pA, one has in B that pB = ¢y -+ - ¢ with q1,...,q distinct
prime ideals.

Ezample 25. For any integer k > 1 then F'(j,»)|F is unramified outside p, where
Hpr are the pF-th roots of unity.

Define

d = U E
E|F

unramified
outside p

and notice that p,» C ®* for all £k > 1. Define a character
e: Gal(®|F) — Z,

by the equation g(&) = &9 for any g € Gal(®|F) and for any & € T
The abelian group Z,, carries then for any n a new Gal(®|F)-module structure,
denoted Z,(n) and defined as
g-a=c¢(g)"a
for g € Gal(®|F) and o € Zp(n).
Define étale cohomology as

HE (SpecA[%] ; Zp(n)) = Hyni(Gal(®|F); Zp(n))
and abbreviate these groups to HY(A;Z,(n)).

The following theorem is in quotation marks because it depends on the proof of
the so-called Bloch-Kato conjecture, announced by Voevodsky and Rost but not yet
fully written-up (cf. [Wei05]). Notice however that the corresponding surjectivity
statements were proved by Soulé [Sou79] and Dwyer-Friedlander [DF85].

“Theorem” 26. If p is odd and n > 2 there are canonical isomorphisms
Hl(A7 Zp(n))a

Kon1(A)®
® H?(A;Z,(n)).

K2n72(A)

[ [

Ly
Loy
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The natural maps in the theorem above were first constructed by Dwyer and
Friedlander |[DF85] using étale K-theory K¢'(A;Z,), which can be thought of as
topological K-theory of the étale homotopy type of Spec A[%]. (There is also a

more modern description using motivic cohomology instead of étale cohomology.)
There is a natural map )
Kn(A) — K (A;Zy)
and there is also a spectral sequence converging to K¢ (A3 Zy) with
E$" = HY(A;Z,(n)).

But, assuming that p is odd, H9(A;Z,(n)) = 0if n > 0 and ¢ # 1 or 2. So the
spectral sequence degenerates, i.e., o = E., and in any diagonal there is only one
non-zero Fs-term, therefore

KS:I—:[( ) P) Hl( (TL)),
Ky o(A3Zy) = H?(A; Zy(n)).

Corollary 27. The group H? (A Zp(n)) is always finite, and it vanishes for almost
all primes p; moreover dimg, H (A Z,(n)) @ Qp =d,.

This corollary is not in quotation marks because the surjectivity statements in
theorem [26] combined with theorem [4 are enough for it.

Theorem 28 (Wiles [Wil90]). If ro = 0 (i.e., if F is totally real) and n is even
then
H?(A;Z,(n
o1 = 2 Tl A Z )
Lo #H (A Zy(n))

“Corollary” 29. Ifro =0 and n is even then

#Kon—2(A)
1-— =gt =n=2
“Brample” 30. If F' = Q and n is even then
#Kon—2(Z)
1—n)|=2—1T"—-+.
o€ ) #Kon—1(Z)

Combining “theorem” with work of Fleckinger, Kolster, and Nguyen Quang
Do [KNQDF96] we get:

“Theorem” 31. If F is abelian and n > 1 then
#K2n—2(A)
»(1—n)| = 2?—Rn.
|CF( )| #KQ’I’L*l(A)tOI‘S
Conjecture 32 (Vandiver). For an odd prime p define
C =Pic(Q(up)) ®Z/pZ , CT={zeC|z=2}.
Then Ct = 0.

Recall that p is called regular if C' = 0 (and that Kummer proved Fermat for
regular primes— Vandiver hoped that C* = 0 would also imply Fermat).
Using computers one can show that Vandiver’s conjecture is true if p < 107.

“Theorem” 33 ([Kur92|). The Vandiver conjecture is true for all primes if and
only if Ky, (Z) =0 for all k > 1.
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Ezample 34. K4(Z) = 0 by a theorem of Rognes |[Rog00], but Kg(Z) is still un-
known.

Proof. For i € Z denote
e ={zec | g@)=elg)z Vg€ GalQ)|Q) = (Z/p2)* },
Then C* = @ C®. The last needed ingredient is the computation
H?(Z;Z(n)) ® Z/pZ = C~),
which combined with ”theorem” [26] finishes the proof. Il

i even

Ezample 35. Obviously C?~1 = 0; there is a surjection K4(Z) — C®=3) and
therefore, as noticed by Kurihara [Kur92], C?=3) = 0.

Assuming the Bloch-Kato and Vandiver conjectures we get the following com-
putation of K,(Z) (cf. [Wei05]; note that the 2-torsion is known [RWO00]): setting

1
wy, = denominator of 5((1 —n),

1
¢p = numerator  of 5((1 —n),

b= 14 2]

then for all m > 1 we have

Z67/2 ifm=1

Z/2cq,, ifm=2

Z)2wsy,, ifm=3
Kn(z)={° Tm=4 ned 8).
Y/ ifm=5

Z/coy,, ifm=6

Zjwa, ifm=T

0 ifm=238

Lecture four: Perfect forms. Let N > 2 and let ¢(x) = Zl<i’j<N a;;x;xy be a
positive definite real quadratic form in N-variables, i.e., a;; = Eji € R, o(x) > 0,
with equality if and only if x = 0.

Define M(¢) = { x € ZV — 0| ¢(x) is minimal }. This is a finite set.

Definition 36. We say that ¢ is perfect when M (¢$) determines ¢ up to scalar
multiplication.

Ezample 37. M(2? + y?) = {(1,0),(-1,0),(0,1),(0,—1)} = M(z? + 2zy + y?),
hence these forms are not perfect. On the other hand 2% 4+ xy + y? is perfect, and

M(xz +ay+ y2) = {(L 0)7 (*]-a O)? (07 1)3 (07 71)3 (17 71)3 (717 1)}
The group I' = SLy(Z) acts on forms by (¢7)(x) = ¢(y(x)).

Theorem 38 (Voronoi [Vor08]). Modulo the action of I' and scalar multiplication
there are only finitely many perfect forms of a given rank N.
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For small values of N perfect forms have been classified and

1 2
1 3
2 4
#{perfect forms in N-variables} = ¢ 3 it N=4(5
7 6
33 7
10916 8

(the last two numbers were obtained by computers).
Define
aijzajieR, gb(z)zO,
Ch =R o(x)= > ajra,
1<ij<N FV S QY ker(¢) =V OR

and X} = C}/RZ,, together with a projection 7: Cy — X3 D Xn.

For v € ZN — 0 define v € C} by 9(x) = (v|z)2. If ¢ is perfect define
o(¢) =7 ({ D ;A0 | Vi Xy > 0 and v; € M(9) })

Theorem 39 (Voronoi [Vor08|). The family of cells o(¢) for ¢ perfect and their
intersections give a I'-invariant cell decomposition of X3 .

This can be used to compute H*(I';Z). Endow Xy with the CW-topology
coming from this cell decomposition (warning: this is different from the usual
topology on matrices). For 0X% = X — Xy, consider the equivariant homol-
ogy of (X%,0X%:;Z).

There is a first spectral sequences E2 = H,(T', Hy(X 5, 0X};Z)) converging to

Hzl;-i-q(XvaaX?V; Z)'

Proposition 40. The space X3 is contractible and X3 is homotopy equivalent
to the spherical Tits building of SLn(Q), i.e., has the homotopy type of a bouquet
of infinitely many spheres of dimension N — 2.
Therefore
¥ X ~ N Sty ifg=N-1,
Ho(XN,0XN;Z) = Hg 1 (0X {3 Z) = .
0 otherwise,

where Sty is the Steinberg module, and so
HY (X%,0X3:Z) = Hy_ny1(T; Sty).
There is a second spectral sequence with E}, = @i (,)=p Ha(Toi Zo) also con-

verging to HY (X3,0X}%;Z) (here Z, is the orientation module of the cell o).

p+q
Lemma 41. If a prime p divides #I', then p < N + 1.

Proof. If 47 = 1 then A?~' ++?~2 4 . 4+ 1 = 0, but since the minimal polynomial
divides the characteristic polynomial we get that p — 1 < N. 0

Denote by Sy41 the Serre subcategory of finite abelian groups A such that if
p|#A then p < N + 1. We will now compute modulo Sy 1.
If ¢ > 0 then #I', annihilates H,y(T'»;Z,), hence E;q =0 (mod Sy41).
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If T, acts non-trivially on Z, then 2 annihilates Ho(T's;Z,).

Let V), be the free abelian group spanned by all I'-orbits of cells ¢ of dimension n
such that o meets Xy and T, preserves the orientation of o, and V = (V,d'). We
get

Hn(V) EHn_N+1(F,StN) (HlOd SN+1)-
According to Borel-Serre duality and an additional argument of Farrell
H,,(I;Sty) = H"™(;Z)  (mod Sy41)

where d = N(N — 1)/2. One gets:

Theorem 42.
Z i =0
(a) H™(SL(Z); Z) = H™(SL3(Z): Z) = ifm = (mod S3);
0 otherwise
Z ) =
(b) H™(SLi(Z)Z) = ifn=0.3 (mod Ss);
0 otherwise
Z ifn=
(©) H™(SLs(Z): Z) = ifn=0.5 (mod S5);
0 otherwise
Z ifm=0,89
(d) H™(SL¢(Z);Z) =K Z* ifn=>5 (mod S7);
0 otherwise
. Q@ ifm=0511,14,15
(e) H™(SL @y = {2 I
0 otherwise

Here part (b) is due to Lee and Szczarba, and (c)-(d)-(e) to Elbaz-Vincent,
Gangl, and Soulé [EVGSO02], involving computer calculations.

This result can be used to compute K4(Z) = 0. The classification of perfect
forms for N = 8 is also known, but the computation of the cohomology of SLg(Z)
seems too complicated for today’s computers.
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