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Lecture one: Two theorems of Armand Borel. Let F be a number field, i.e,
a finite field extension of Q, and let A = OF be its ring of integers, i.e., the integral
closure of Z in F :

A = OF =
{
x ∈ F | xn + a1x

n−1 + . . .+ an = 0, ai ∈ Z
}
.

Our goal in these lectures is to understand the algebraic K-theory of A.
First of all, observe that there is no negative K-theory because A is regular.

Proposition 1. K0(A) ∼= Z⊕ Pic(A).

Here Pic(A) is the ideal class group of A, i.e., the set of isomorphism classes
of invertible A-modules with addition given by the tensor product. Proposition 1
is true more generally for any Dedekind domain A, since every projective module
is the sum of ideals, each of which is projective and satisfies I ⊕ J ∼= IJ ⊕ A,
see [Mil71].

For A = OF Dirichlet proved that Pic(A) is finite.

Proposition 2. K1(A) = A×.

In fact, Bass, Milnor, and Serre [BMS67] proved that SK1(A) = 0, and for any
commutative ring A one has K1(A) = A× × SK1(A).

For A = OF Dirichlet proved that

dimQ(A× ⊗Q) = r1 + r2 − 1 = d1

where
r1 = #{ real places of F } = #{σ : F ↪→ R },

r2 = #{ complex places of F } =
1
2

#{σ : F ↪→ C, σ 6= σ },

(the resulting decomposition of F ⊗Q R then shows that [F : Q] = r1 + 2r2), and
for any n ≥ 1 we put

dn =


r1 + r2 − 1 if n = 1,
r1 + r2 if n is odd and ≥ 3,
r2 if n is even.

More precisely, Dirichlet proved that A× is the product of the finite cyclic group
µ(F ) of roots of unity in F and a free abelian group of rank r1 + r2 − 1 = d1.
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Theorem 3 (Quillen [Qui73]). For all m ≥ 0, Km(A) is finitely generated.

Theorem 4 (Borel [Bor74]). For all m > 0,
• if m is even then Km(A) is finite,
• if m = 2n− 1 then dimQ(Km(A)⊗Q) = dn.

These results generalize the aforementioned theorems by Dirichlet.

Example 5. If F = Q, A = Z then r1 = 1 and r2 = 0, and hence for m > 0

Km(Z) =

{
Z⊕ finite m = 5, 9, 13, . . . ,
finite otherwise.

We will not discuss the proof of Quillen’s theorem 3 here.
As we will see below, Borel’s theorem 4 follows from the following theorem.

Theorem 6 (Borel). Let G = SLN (R)r1 × SLN (C)r2 ⊃ Γ = SLN (A).
Assume q + 1 ≤ (N − 1)/4. Then the corestriction map Hq

cont(G) → Hq(Γ; R)
is an isomorphism.

Here Hq
cont(G) is the continuous cohomology of G with real coefficients. It can be

defined as the cohomology of the complex

· · · −→ Cqcont(G)G ∂−→ Cq+1
cont(G)G −→ · · · ,

where Cqcont(G) is the real vector space of continuous maps from Gq+1 to R and
∂ is given by the formula

∂ϕ(g0, . . . , gq+1) =
q+1∑
i=0

(−1)i ϕ(g0, . . . , ĝi, . . . , gq+1).

Theorem 6 is actually a special case of the following more general result.

Theorem 7 (Borel [Bor74]). Let G be a semi-simple algebraic group over Q such
that G = G(R) is connected and let Γ < G(Q) be an arithmetic group.

Assume q + 1 ≤ rankQ(G)/4. Then the corestriction map Hq
cont(G)→ Hq(Γ; R)

is an isomorphism.

Proof that theorem 6 implies theorem 4. Step 1: We first compute H∗cont(G) as fol-
lows. Consider the maximal compact subgroup K of G, and the symmetric space
X = K\G.

Example 8. If G = GLN (R) then K = O(N) and X is the set of positive definite
real quadratic forms. In fact, given [g] ∈ X we can define ϕ(x) = ‖g(x)‖2 for
x ∈ RN .

If G = SLN (R) then K = SO(N) and X is the set of positive definite real
quadratic forms modulo the action of R×>0.

The manifold X is contractible. Therefore the de Rham complex

0→ R→ Ω0(X)→ Ω1(X)→ Ω2(X)→ . . .

is exact. This yields a “strong” resolution of R by “relatively” injective G-modules
(this means that the resolution is “good” from the point of view of continuous
cohomology, see [Gui80]). Hence

Hq
cont(G) = Hq(Ω∗(X)G).
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Let g and k be the Lie algebras of G and K respectively. By restriction of differential
forms at the origin we have

Ωq(X)G = homk(Λq(g/k),R).

Consider the Cartan decomposition g = k⊕ p and g⊗R C ⊃ ip. Then the so-called
unitarian trick yields that k⊕ ip = Lie(Gu), where Gu is a compact connected Lie
group containing K. Then

Ωq(X)G = homk(Λq(g/k),R) = homk(Λq(p),R) ∼= homk(Λq(ip),R) = Ωq(K\Gu)Gu .

Since Gu is compact and connected, integration on Gu shows that the inclusion

Ωq(K\Gu)Gu ⊆ Ωq(K\Gu)

is a homology equivalence [Gui80, rem. 7.1 and lemma E.2]. Therefore

Hq
cont(G) = Hq(Ω∗(X)G) = Hq(Ω∗(K\Gu)Gu) = Hq(Ω∗(K\Gu)) = Hq(K\Gu; R).

Example 9. If G = SLN (R), K = SO(N) then

g = {M | trM = 0 } , k =
{
M |M t = −M

}
, p =

{
M |M t = M

}
and therefore

k⊕ ip =
{
M ∈ g⊗R C

∣∣∣ M t
= −M

}
∼= su(N).

Hence Gu = SU(N). Then we get

Hq
cont(SLN (R)) ∼= H∗(SO(N)\SU(N); R).

The right-hand side is known (by previous work of Borel) and gives

H∗cont(SLN (R)) ∼= Λ∗(e5, e9, e13, . . . , e4k+1)

with eq ∈ Hq(SO(N)\SU(N); Z), k = [N−1
2 ].

If G = SLN (C) then K = SU(N) and Gu = SU(N)× SU(N). We get

H∗cont(SLN (C)) ∼= H∗(SU(N); R) ∼= Λ∗(ε3, ε5, ε7, . . . , ε2N−1)

with εq ∈ Hq(SU(N); Z).

For G = SLN (R)r1 × SLN (C)r2 this yields

H∗cont(G) ∼= Λ∗(ei)⊗r1 ⊗ Λ∗(εj)⊗r2 .

Step 2: There is a homotopy equivalence

BSL(A)+ ×B(A×) '−→ BGL(A)+

and hence for m ≥ 2
Km(A) ∼= πmBSL(A)+.

For any CW-complex X consider the Hurewicz map

hm : πm(X)⊗ R→ (IHm(X; R))∨

where E∨ = homR(E,R) and IHm(X; R) = Hm(X; R)/{cup products}.

Lemma 10. If X is an H-space such that dimR H
m(X; R) < ∞ for all m, then

hm is an isomorphism.
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Proof. To prove this lemma, we define

PHm(X; R) = {x ∈ Hm(X; R) | ∆∗(x) = x⊗ 1 + 1⊗ x }
where

∆∗ : Hm(X; R)→ Hm(X ×X; R) ∼=
⊕

s+t=m

Hs(M ; R)⊗Ht(M ; R)

is induced by the diagonal map.
Then if X is an H-space there is an isomorphism

πm(X)⊗ R
∼=→ PHm(X; R)

[MM65, Appendix], and under the finiteness assumption above (IHm(X; R))∨ ∼=
PHm(X; R). �

Now BSL(A)+ is an H-space satisfying the assumption of the previous lemma,
because of (the proof of) Quillen’s theorem 3, and therefore for m ≥ 2 we get

Km(A)⊗ R ∼= (IHm(BSL(A)+; R))∨ = (IHm(BSL(A); R))∨

= (IHm(SL(A); R))∨.

Theorem 6 implies that for N � m

Hm(SLN (A); R) ∼= Hm
cont(G) ∼= Λ∗(ei)⊗r1 ⊗ Λ∗(εj)⊗r2

and therefore
Hm(SLN+1(A); R) ∼= Hm(SLN (A); R).

This yields

(IHm(SL(A); R))∨
N�m∼= IHm

cont(G)∨ ∼= I(Λ∗(ei)⊗r1 ⊗ Λ∗(εj)⊗r2)m

=

{
Rdn if m = 2n− 1,
0 otherwise,

completing the proof that Borel’s theorem 4 follows from theorem 6. �

Example 11. If F = Q then r2 = 0, r1 = 1 and

I(Λ∗(e5, e9, e13, . . .))m =

{
R if m = 5, 9, 13, . . .,
0 otherwise.

Sketch of proof of theorem 6. For simplicity we only consider

G = SLN (R) ⊃ Γ = SLN (Z).

Recall that Hq
cont(G) = Hq(Ω∗(X)G) where X is the symmetric space K\G.

Lemma 12 (Cartan). The differential d : Ω∗(X)G → Ω∗+1(X)G vanishes.

Proof of lemma 12. Let θ : G → G be the Cartan involution θ(g) = (g−1)t. It
induces a map θ : X → X and therefore a chain map θ∗ : Ω∗(X)G → Ω∗(X)G.

Look at θ′ : g → g, θ′(M) = −M t. Recall that Ωq(X)G = homk(Λqp,R) and
p = {M |M t = M }. If x ∈ Λqp then θ′(x) = (−1)qx. Hence if α ∈ Ωq(X)G we
compute

(−1)q(dα) = dθ∗(α) = θ∗d(α) = (−1)q+1(dα)
and therefore dα = 0. �

Now assume first that Γ = { γ ∈ SLN (Z) | γ ≡ 1 (mod 3) }.
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Fact 13. Γ is torsionfree.

This fact implies that Γ is acting freely on X = K\G, as we can see as follows.
Let γ ∈ Γ and [g] ∈ K\G. If [g]γ = [g], we get gγ = kg, i.e., γ = g−1kg ∈ g−1Kg∩Γ.
But g−1Kg ∩ Γ is finite, being the intersection of a compact with a discrete group.
Therefore γ has finite order, but, since Γ is torsionfree, this shows that γ = 1.

Since X is contractible, X/Γ is therefore a K(Γ, 1)-space. Then

Hq(Γ; R) = Hq(X/Γ; R) = Hq(Ω∗(X/Γ)) = Hq(Ω∗(X)Γ)

and we have to study

Ωq(X)G = Hq(Ω∗(X)G)→ Hq(Ω∗(X)Γ).

Fix a smooth G-invariant metric h on TX, and define

• the volume form µ =
√
det(hi,j) dx1 · · · dxn ∈ Ωn(X), where n = dim(X),

• the star operator ? : Ωq(X)→ Ωn−q(X) by ω ∧ ?ω = h(ω, ω)µ,
• the Laplace operator ∆ = dd∗ + d∗d, where

d∗ = (−1)n(q+1)−1 ? d? : Ωq(X)→ Ωq−1(X).

Cartan’s lemma 12 above shows that Ω∗(X)G ⊂ ker ∆.
Main idea: Do Hodge theory on X/Γ.
Main difficulty: X/Γ is not compact, it has only finite volume.
First step:

Hq(Ω∗(X)Γ) = Hq(Ω∗(X)Γ
log)

where Ω∗(X)Γ
log is the complex of differential forms ω such that both ω and dω have

“logarithmic growth at infinity”. For instance, when G = SL2(R), in which case
X is the Poincaré upper half-plane

X = G/K = { z ∈ C | Im(z) > 0 } ,

a form ω is said to have logarithmic growth at infinity when its restriction to a
Siegel set

G =
{
z ∈ X

∣∣ |Re(z)| ≤ b, Im(z) > t
}

can be written

ω|G =
∑
I,J

aI,J(z)(dx)I
(
dy

y

)J
with

|aI,J(z)| ≤ C| log(y)|k

for some integer k.
The proof of this step relies upon a Poincaré lemma with logarithmic growth.

Next, assume ω ∈ Ωq(X)Γ
log and q is small. Then ω is L2, i.e.,

‖ω‖2L2 =
∫
X/Γ

h(ω, ω)µ <∞.

In other words, Ω∗(X)Γ
log ⊂ Ω∗(X)Γ

L2 for q small.
Now we can do L2-Hodge theory:

(a) If ω is L2 and dω = 0 then ω = h+ dη with h harmonic and L2.
(b) If h is harmonic and L2, and h = dη where η is L2, then h = 0.
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(E.g., in order to prove (b) compute

(h, h)L2 = (h, dη)L2 = (d∗h, η)L2 = 0

and therefore h = 0.)
The next step is to show that Ω∗(X)G ⊂ Ω∗(X)Γ

L2 .
And then the crucial step, due essentially to Garland and Matsushima, is to

prove that if q is small and h ∈ Ωq(X)Γ
L2 with ∆(h) = 0, then h ∈ Ωq(X)G.

Putting all together we get

Hq(Ω∗(X)Γ) ∼= ker(∆) ∩ Ωq(X)Γ
L2
∼= Ωq(X)G.

Finally, for Γ0 = SLN (Z) we have

Hq(Γ0; R) ∼= Hq(Γ; R)Γ0/Γ

which is then equal to Ωq(X)G since the action of Γ0 is trivial. �

Lecture two: Regulators. Let F be a number field and A its ring of integers.
Let a ⊂ A be a non-zero ideal. The norm of a is Na = #(A/a) <∞.

Definition 14. ζF (s) =
∑
a 6=0

1
(Na)s

.

Example 15. If F = Q then

ζQ(s) =
∑
n≥1

1
ns

is the classical zeta function ζ.

Fact 16. • ζF (s) is absolutely convergent where <(s) > 1;
• ζF (s) has a meromorphic continuation to C;
• ζF (s) has a pole of order 1 at s = 1;
• Let ξ(s) = AsΓ(s/2)r1Γ(s)r2ζF (s), where Γ(s) is the classical gamma func-

tion, A = 2−r2
√
|D|πr1+2r2 , and D is the discriminant of F . Then ξ sat-

isfies the functional equation ξ(1− s) = ξ(s).

Corollary 17. If n ≥ 1 then ζF (s) has a zero of order dn at s = 1− n.

Proof. The gamma function Γ(s) has poles of order 1 at s = 0,−1,−2,−3, . . .,
hence Γ(s/2)r1Γ(s)r2 has a pole of order r2 (respectively r1 + r2) at s = 1−n when
n ≥ 0 is even (respectively, odd). Note that ζF (n) 6= 0 hence ξ(n) 6= 0 when n > 1.

Now let s → n and consider A1−sΓ((1 − s)/2)r1Γ(1 − s)r2ζF (1 − s) = ξ(s), by
the functional equation. Therefore ζF (s) has a zero of order dn at s = 1− n. �

Definition 18. ζ∗F (1− n) = lim
s→1−n

ζF (s)
(s+ n− 1)dn

∈ R×.

Theorem 19 (Dirichlet’s class number formula).

ζ∗F (0) = −hR
w

where

h = # Pic(A)= #K0(A)tors

w = #µ(F ) = #K1(A)tors

and R is the regulator defined below.
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Definition 20 (of the regulator). If u ∈ A× and v is an archimedean place of F ,
put

‖u‖v =

{
|σ(u)| if v = σ : F ↪→ R,
|σ(u)|2 if v = {σ, σ}, σ : F ↪→ C.

There is the so-called product formula:
∏
v ‖u‖v = 1, where v ranges over all

archimedean places. This yields a map

ρ : A× → Rd1 = Rr1+r2−1 = ker(Σ: Rr1+r2 → R) , u 7→ (log ‖u‖v)v .

Fact 21 (Dirichlet). im(ρ) is a lattice.

Now endow Rd1 with the restriction of the Lebesgue measure on Rr1+r2 , and
define

R = vol
(

Rd1
ρ(A×)

)
.

We now want to see how Dirichlet’s class number formula 19 generalizes to higher
K-theory.

Recall that H∗cont(SLN (R)) ∼= Λ∗(e5, e9, e13, . . .). Given σ : F ↪→ R, then for
m = 4k + 1 we get

σ∗(em) ∈ Hm(SLN (A); R)
N�0∼= Hm(SL(A); R)

and hence a map
Km(A)→ Hm(SL(A); R)∨ → R

given by the composition of the Hurewicz homomorphism and the map sending
ϕ ∈ Hm(SL(A); R)∨ to 2πϕ(σ∗(em)). Similarly for σ : F ↪→ C and m = 3, 5, 7, . . ..

In this way we get for n > 1 a map

ρn : K2n−1(A)→ Rdn

called the higher (Borel) regulator map.
The proof of theorem 4 actually shows that im(ρn) is a lattice. Define

Rn = vol
(

Rdn

ρn(K2n−1(A))

)
.

Theorem 22 (Siegel; Borel [Bor77]). For any n > 1 there is a qn ∈ Q× such that

ζ∗F (1− n) = qnRn.

Example 23. Assume r2 = 0 and n > 1 is even. Then dn = 0, and theorem 22 (in
this case due to Siegel) gives

ζF (1− n) ∈ Q×.

For instance, if F = Q and n > 1 is even then

ζ(1− n) = −bn
n

where bn are the Bernoulli numbers defined by

tet

et − 1
=
∞∑
n=0

bn
tn

n!
.
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E.g.,

ζ(1− n) =



−1/2
1/12
0
1/120
0
. . .

691/32760

if 1− n =



0
−1
−2
−3
−4
. . .

−11

.

Lecture three: Étale cohomology. Let E be a finite extension of the number
field F and let B be the ring of integers of E. Let p be a prime.

Definition 24. E is said to be unramified outside p when, for any prime ideal
p ⊂ A such that p - pA, one has in B that pB = q1 · · · qt with q1, . . . , qt distinct
prime ideals.

Example 25. For any integer k ≥ 1 then F (µpk)|F is unramified outside p, where
µpk are the pk-th roots of unity.

Define
Φ =

⋃
E|F

unramified
outside p

E

and notice that µpk ⊂ Φ× for all k ≥ 1. Define a character

ε : Gal(Φ|F )→ Z×p

by the equation g(ξ) = ξε(g) for any g ∈ Gal(Φ|F ) and for any ξ ∈ µpk .
The abelian group Zp carries then for any n a new Gal(Φ|F )-module structure,

denoted Zp(n) and defined as
g · α = ε(g)nα

for g ∈ Gal(Φ|F ) and α ∈ Zp(n).
Define étale cohomology as

Hq
ét

(
SpecA

[
1
p

]
; Zp(n)

)
= Hq

cont(Gal(Φ|F ); Zp(n))

and abbreviate these groups to Hq(A; Zp(n)).
The following theorem is in quotation marks because it depends on the proof of

the so-called Bloch-Kato conjecture, announced by Voevodsky and Rost but not yet
fully written-up (cf. [Wei05]). Notice however that the corresponding surjectivity
statements were proved by Soulé [Sou79] and Dwyer-Friedlander [DF85].

“Theorem” 26. If p is odd and n ≥ 2 there are canonical isomorphisms

K2n−1(A)⊗ Zp
∼=−→ H1(A; Zp(n)),

K2n−2(A)⊗ Zp
∼=−→ H2(A; Zp(n)).
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The natural maps in the theorem above were first constructed by Dwyer and
Friedlander [DF85] using étale K-theory K ét

m(A; Zp), which can be thought of as
topological K-theory of the étale homotopy type of SpecA[ 1

p ]. (There is also a
more modern description using motivic cohomology instead of étale cohomology.)
There is a natural map

Km(A)→ K ét
m(A; Zp)

and there is also a spectral sequence converging to K ét
2n−q(A; Zp) with

Eq,−2n
2 = Hq(A; Zp(n)).

But, assuming that p is odd, Hq(A; Zp(n)) = 0 if n > 0 and q 6= 1 or 2. So the
spectral sequence degenerates, i.e., E2 = E∞ and in any diagonal there is only one
non-zero E2-term, therefore

K ét
2n−1(A; Zp) = H1(A; Zp(n)),

K ét
2n−2(A; Zp) = H2(A; Zp(n)).

Corollary 27. The group H2(A; Zp(n)) is always finite, and it vanishes for almost
all primes p; moreover dimQp H

1(A; Zp(n))⊗Qp = dn.

This corollary is not in quotation marks because the surjectivity statements in
theorem 26, combined with theorem 4, are enough for it.

Theorem 28 (Wiles [Wil90]). If r2 = 0 (i.e., if F is totally real) and n is even
then

|ζF (1− n)| = 2?

∏
p>2 #H2(A; Zp(n))∏
p>2 #H1(A; Zp(n))

.

“Corollary” 29. If r2 = 0 and n is even then

|ζF (1− n)| = 2? #K2n−2(A)
#K2n−1(A)

.

“Example” 30. If F = Q and n is even then

|ζ(1− n)| = 2
#K2n−2(Z)
#K2n−1(Z)

.

Combining “theorem” 26 with work of Fleckinger, Kolster, and Nguyen Quang
Do [KNQDF96] we get:

“Theorem” 31. If F is abelian and n ≥ 1 then

|ζ∗F (1− n)| = 2? #K2n−2(A)
#K2n−1(A)tors

Rn.

Conjecture 32 (Vandiver). For an odd prime p define

C = Pic(Q(µp))⊗ Z/pZ , C+ = {x ∈ C | x = x } .
Then C+ = 0.

Recall that p is called regular if C = 0 (and that Kummer proved Fermat for
regular primes—Vandiver hoped that C+ = 0 would also imply Fermat).

Using computers one can show that Vandiver’s conjecture is true if p < 107.

“Theorem” 33 ([Kur92]). The Vandiver conjecture is true for all primes if and
only if K4k(Z) = 0 for all k ≥ 1.
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Example 34. K4(Z) = 0 by a theorem of Rognes [Rog00], but K8(Z) is still un-
known.

Proof. For i ∈ Z denote

C(i) =
{
x ∈ C

∣∣∣ g(x) = ε(g)ix ∀g ∈ Gal(Q(µp)|Q)
ε∼= (Z/pZ)×

}
.

Then C+ =
⊕

i even C
(i). The last needed ingredient is the computation

H2(Z; Zp(n))⊗ Z/pZ ∼= C(p−n),

which combined with ”theorem” 26 finishes the proof. �

Example 35. Obviously C(p−1) = 0; there is a surjection K4(Z) � C(p−3), and
therefore, as noticed by Kurihara [Kur92], C(p−3) = 0.

Assuming the Bloch-Kato and Vandiver conjectures we get the following com-
putation of K∗(Z) (cf. [Wei05]; note that the 2-torsion is known [RW00]): setting

wn = denominator of
1
2
ζ(1− n),

cn = numerator of
1
2
ζ(1− n),

km =
[
1 +

m

4

]
,

then for all m > 1 we have

Km(Z) ∼=



Z⊕ Z/2 if m ≡ 1
Z/2c2km

if m ≡ 2
Z/2w2km

if m ≡ 3
0 if m ≡ 4
Z if m ≡ 5
Z/c2km if m ≡ 6
Z/w2km

if m ≡ 7
0 if m ≡ 8

(mod 8).

Lecture four: Perfect forms. Let N ≥ 2 and let φ(x) =
∑

1≤i,j≤N aijxixj be a
positive definite real quadratic form in N -variables, i.e., aij = aji ∈ R, φ(x) ≥ 0,
with equality if and only if x = 0.

Define M(φ) =
{
x ∈ ZN − 0 | φ(x) is minimal

}
. This is a finite set.

Definition 36. We say that φ is perfect when M(φ) determines φ up to scalar
multiplication.

Example 37. M(x2 + y2) = {(1, 0), (−1, 0), (0, 1), (0,−1)} = M(x2 + 1
2xy + y2),

hence these forms are not perfect. On the other hand x2 + xy + y2 is perfect, and

M(x2 + xy + y2) = {(1, 0), (−1, 0), (0, 1), (0,−1), (1,−1), (−1, 1)}.

The group Γ = SLN (Z) acts on forms by (φγ)(x) = φ(γ(x)).

Theorem 38 (Voronöı [Vor08]). Modulo the action of Γ and scalar multiplication
there are only finitely many perfect forms of a given rank N .
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For small values of N perfect forms have been classified and

#{perfect forms in N -variables} =



1
1
2
3
7
33
10916

if N =



2
3
4
5
6
7
8

(the last two numbers were obtained by computers).
Define

C∗N =

φ(x) =
∑

1≤i,j≤N

aijxixj

∣∣∣∣∣ aij = aji ∈ R , φ(x) ≥ 0 ,

∃ V & QN : ker(φ) = V ⊗ R


and X∗N = C∗N/R

×
>0, together with a projection π : C∗N → X∗N ⊃ XN .

For v ∈ ZN − 0 define v̂ ∈ C∗N by v̂(x) = (v|x)2. If φ is perfect define

σ(φ) = π ({
∑
iλiv̂i | ∀i λi ≥ 0 and vi ∈M(φ) })

Theorem 39 (Voronöı [Vor08]). The family of cells σ(φ) for φ perfect and their
intersections give a Γ-invariant cell decomposition of X∗N .

This can be used to compute H∗(Γ; Z). Endow X∗N with the CW-topology
coming from this cell decomposition (warning: this is different from the usual
topology on matrices). For ∂X∗N = X∗N − XN , consider the equivariant homol-
ogy of (X∗N , ∂X

∗
N ; Z).

There is a first spectral sequences E2
pq = Hp(Γ, Hq(X∗N , ∂X

∗
N ; Z)) converging to

HΓ
p+q(X

∗
N , ∂X

∗
N ; Z).

Proposition 40. The space X∗N is contractible and ∂X∗N is homotopy equivalent
to the spherical Tits building of SLN (Q), i.e., has the homotopy type of a bouquet
of infinitely many spheres of dimension N − 2.

Therefore

Hq(X∗N , ∂X
∗
N ; Z) = H̃q−1(∂X∗N ; Z) =

{
StN if q = N − 1,
0 otherwise,

where StN is the Steinberg module, and so

HΓ
m(X∗N , ∂X

∗
N ; Z) = Hm−N+1(Γ;StN ).

There is a second spectral sequence with E1
pq =

⊕
dim(σ)=pHq(Γσ; Zσ) also con-

verging to HΓ
p+q(X

∗
N , ∂X

∗
N ; Z) (here Zσ is the orientation module of the cell σ).

Lemma 41. If a prime p divides #Γσ then p ≤ N + 1.

Proof. If γp = 1 then γp−1 + γp−2 + . . .+ 1 = 0, but since the minimal polynomial
divides the characteristic polynomial we get that p− 1 ≤ N . �

Denote by SN+1 the Serre subcategory of finite abelian groups A such that if
p|#A then p ≤ N + 1. We will now compute modulo SN+1.

If q > 0 then #Γσ annihilates Hq(Γσ; Zσ), hence E1
pq ≡ 0 (mod SN+1).



12 CHRISTOPHE SOULÉ (NOTES BY MARCO VARISCO)

If Γσ acts non-trivially on Zσ then 2 annihilates H0(Γσ; Zσ).
Let Vn be the free abelian group spanned by all Γ-orbits of cells σ of dimension n

such that σ meets XN and Γσ preserves the orientation of σ, and V = (V∗, d1). We
get

Hn(V ) ≡ Hn−N+1(Γ, StN ) (mod SN+1).
According to Borel-Serre duality and an additional argument of Farrell

Hm(Γ;StN ) ≡ Hd−m(Γ; Z) (mod SN+1)

where d = N(N − 1)/2. One gets:

Theorem 42.

(a) Hm(SL2(Z); Z) ≡ Hm(SL3(Z); Z) ≡

{
Z if m = 0
0 otherwise

(mod S3);

(b) Hm(SL4(Z); Z) ≡

{
Z if n = 0, 3
0 otherwise

(mod S5);

(c) Hm(SL5(Z); Z) ≡

{
Z if n = 0, 5
0 otherwise

(mod S5);

(d) Hm(SL6(Z); Z) ≡


Z if m = 0, 8, 9
Z2 if n = 5
0 otherwise

(mod S7);

(e) Hm(SL7(Z); Q) ∼=

{
Q if m = 0, 5, 11, 14, 15
0 otherwise

.

Here part (b) is due to Lee and Szczarba, and (c)-(d)-(e) to Elbaz-Vincent,
Gangl, and Soulé [EVGS02], involving computer calculations.

This result can be used to compute K4(Z) = 0. The classification of perfect
forms for N = 8 is also known, but the computation of the cohomology of SL8(Z)
seems too complicated for today’s computers.
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[Sou79] Christophe Soulé, K-théorie des anneaux d’entiers de corps de nom-
bres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295.
MR553999 ↑8
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