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The motivation for the subfield:

week endin
PRL 96, 231601 (2006) PHYSICAL REVIEW LETTERS 16 JUNE 2006

Gravitational Correction to Running of Gauge Couplings

Sean P. Robinson® and Frank Wilczek '

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
(Received 30 March 2006; published 15 June 2006)

We calculate the contribution of graviton exchange to the running of gauge couplings at lowest
nontrivial order in perturbation theory. Including this contribution in a theory that features coupling
constant unification does not upset this unification, but rather shifts the unification scale. When
extrapolated formally, the gravitational correction renders all gauge couplings asymptotically free.
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FIG. 1. A typical Feynman diagram for a gravitational process

contributing to the renormalization of a gauge coupling at one
loop. Curly lines represent gluons. Double lines represent grav-
itons. The three-gluon vertex M is proportional to g. while the
gluon-graviton vertex @ is proportional to E/Mp.



A hint of asymptotic freedom for all couplings
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FIG. 2. When gravity is ignored, the three gange couplings of a
mode] theory evolve as the inverse loganthm of E at one-loop
order (dashed curves). [mioal values at 100 Ge¥ were set so that
the curves exactly intersect at approximately 10°% GeV. When
gravity 15 included at one loop (sohd curves), the couplings
remain unified near 10" GeV, but evolve rapidly towards
weaker coupling at high E.

when the energy approaches the Planck scale, and soon
after that one loses the right to neglect higher-order gravi-
ton exchanges. Though neglect of additional cormections is
not justified beyond E << My, it is entertaining to consider
some consequences of extrapolating Eq. (2) as it stands to
these energies, taking into account ag << 0. The integral on
the right-hand side converges as E — oo, and so Eqg. (20)
arises as an asymptotic relation. Thuos, the effective cou-
pling vanishes rapidly bevond the Planck scale. rendering
the gauge sector approximately free at these energies. In



A Rough History:

Prehistory: Fradkin, Vilkovisky, Tseytlin, Diennes, Kiritsis, Kounnas...

f < e . .
Start of “modern era Claims that couplings do run:
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Then the press picks it up:
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Gravity shows its helpful side

Theoretical study shows that the force can ease
quantum calculations.

Gecff Brumfiel

Gravity is unruly. It can
throw theorists'
equations into chaos,
and has proved a
stumbling block to the
creation of a single
"theory of everything'.
But an analysis now
shows that gravity may
at least makes some
fundamental calculations
more manageable.

David Toms, a
theoretical physidst at
Newcastle University, K HIAL LV SR PHOTO
UK, has found that T
gravity seems to calm

the electromagnetic

force at high energiss. The finding could make some
calculations easier, and is a rare case in which gravity seems
to work in harmony with quantum mechanics, the theory of
small particles. His paperis published today in Nstured.

Gravity is usually an chstacle to a
theory of everything
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theoretical physicist
at the University of
Massachusetts
Amherst. Donoghue is concemned that when the method is
applied to other interactions, involving different particles, it
might yield a different answer. "The effects are not universal,"
he says. That would be a big problem for theorists, who want
their methods to apply to everything equally.

Mucosallmrmunology

Toms concedes that he "can't say for certain” whether his
method will be universal. He now plans to take a second look
at what happens to the strength of gravity at high energies,
using the new approach. If gravity weakens like the other
forces, theorists really might be closer to a theory of
everything. Toms says that the calculations will be harder to
do. But, he adds, "I think I know how to do it". =



mntmn gravity corrects QED {p ht
X gravity Q

Quantum gravity corrects QED
Nov 3, 2010 10 comments

This week's issue of Nature includes a paper that's remarkable for two reasons: it is about
guantum gravity — a topic usually not covered in the journal — and it is written by just one
person. Now, after a little digging, physicsworld com can answer all of the important
guestions about this paper.

So, whose citation index ranking is about to
go into the stratosphere?

The paper was written by David Toms, a Canadian
mathematical physicist and lecturer at Newcastle University in
the UK.

What has Toms done?

He has shown that interactions between quantum gravity and
quantum electrodynamics (QED) cause electric charge to
vanish at very high energies (above about 1012 GeV). He told
physicsworld com that his technique can be generalized to apply to the two other "gauge
couplings”, which define the strong and weak forces.

David Toms
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Forces to Reckon With

Does gravity muck up electromagnetism?

By George Musser | Jamuary 30, 2011 O

See Inside

Share Email Print

A magazine news story on the unification of physies usually begins by saying that
Einstein’s general theory of relativity and quantum theory are irreconcilable. The one
handles the force of gravity, the other takes care of electromagnetic and nuclear
forces, but neither covers all, so physicists are left with a big jagged crack running
down the middle of their theoretical world. It’s a nice story line, except it’s not true.
“Everyone says quantum mechanics and gravity don't get along—they're
incompatible,” says John F. Donoghue of the University of Massachusetts at Amherst.
“And you still hear that, but it's wrong.”

Last November, David J. Toms of Newcastle University in England argued that even if
gravity does not bring all the forees into line, it at least qualitatively reconciles
electromagnetism with the nuclear forees. Neglecting gravity, electromagnetism in-
tensifies as you go down 1in size, whereas the nuclear forces weaken. But gravity
emasculates electromagnetism, causing it to behave like the nueclear forces on the
very smallest scales.

Wilezek calls Toms's paper “impressive.” Around the same time, however, Donoghus
and his graduate students Mohamed M. Anber and Mohamed El-Houssieny cast
doubt on the whole approach. Although gravity surely interferes with the other forces
in some way or other, they question whether the effect is so straightforward as a
tweak to the force strength. The rocococity of gravity should infect the other forces.



What is going on?

1) Dim-reg vs cutoff regularization — why the difference?

2) Running with (Energy)?
- dimensional coupling constant

3) Why don’t other effective field theories use running couplings?

4) Application in a physical process
- does the running coupling work?



Quick review — running couplings

1) Physical processes - useful

2) Renormalization of the charge - universal

3) Wilsonian (only later, if time and interest suggest)



1) Physical processes — “useful”
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Renormalization of the charge:

5 eg oo |
e” = 15 11(0) ~ ep[1 — TI(0)]

Residual effect gives running coupling:

EQ
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Beta function:
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B(e) = ¢*

Integrating the beta function:
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Note for later applications:

Space-like vs time-like processes:

Y ¢ >0

Imaginary part gives unitarity via physical intermediate states;

In(—s) = In(|s|) — imb(s) yields Imt](s) = |t] ()|

Running coupling is the same for both space-like and time-like reactions

( o 3w
) = @i




2) Renormalization of the charge — “universal”

Dimensional regularization:

o] 2 {2 ‘ =
. en 14 2 . 5
(¢ = T3, (—fﬁ) [E tIn(dm) —y+3+ O(E)}
o _|[2 + In (4m) + > In 0 + O(e)
= — J— 4 :‘I";' — Yy - o = ] E
1272 | € 3 12

One can read off the logarithms just knowing the divergences

Explains the universality of the running coupling constant
- tied uniquely to the renormalization of the charge

Cutoff regularization:
[1(¢%) = —iln(— 2 /A?%)
q ) = o7 M q /4

The cutoff dependence must trace the q> dependence



General Relativity as an Effective Field Theory

Effective Field Theory
- general and practical technique
- separates known low energy physics from high energy phyiscs
- | will present only EFT with dimensionful coupling (like gravity)

What to watch for:
- presence of new operators in Lagraingian of higher order in energy expansion
- loops generate higher powers of the energy
- what gets renormalized (hint: the higher order operators)

Important fact used in power counting:

R~ dgdg+ ... ~ E*



Key Steps
1) High energy effects are local (when viewed at low E)
Example = W exchange

% => local 4 Fermi interaction
Even loops
=> |ocal mass counterterm
&
Low energy particle propagate long distances:
Photon: 1 1

% ~—— Not local V. ~ —~

—Eoen | r

>Q< Even in loops — cuts, imag. parts....
Result: High energy effects in local Lagrangian

= g,L, +9g,L, +g,L; + ..

Even if you don’t know the true effect, you know that it is local
-use most general local Lagrangian



2) Energy Expansion

Order lagrangians by powers of (low scale/high scale)N

Only a finite number needed to a given accuracy

Then:
Quantization: use lowest order Lagrangian

Renormalization: / *x
-U.V. divergences are local
- can be absorbed into couplings of local Lagrangian

Remaining effects are predictions



General Procedure

1) Identify Lagrangian
-- most general (given symmetries)
-- order by energy expansion

2) Calculate and renormalize
-- start with lowest order
-- renormalize parameters

3) Phenomenology
-- measure parameters
-- residual relations are predictions

Note: Two differences from textbook renormalizable field theory:
1) no restriction to renormalizable terms only
2) energy expansion



Parameters

2
2

L

Sgrav = / drar~\/—g {j\ + =R+ R*+ o, R*™ + .. }

1) A = cosmological constant

2! Mp =1.22x 10" GeV
A=(1.2+0.4) x 1071230} F X e

-this is observable only on cosmological scales
-neglect for rest of talk
-interesting aspects

2) Newton’s constant

a

R = 3210

3) Curvature —squared terms c,, ¢,
- studied by Stelle _
- modify gravity at very small scales c1, 02 < 10™
-essentially unconstrained by experiment



Quantizing general relativity

Feynman quantized gravity in the 1960’s

LECTURES ON GRAVITATION

Quanta = gravitons (massless, spin 2)
Rules for Feynman diagrams given
Subtle features:

h,, has 4x4 components — only 2 are physical DOF
-need to remove effects of unphysical ones

Gauge Invariance (general coordinate invariance)
- calculations done in some gauge
-need to maintain symmetry

In the end, the techniques used are very similar to other gauge theories



Quantization
‘Easy” to quantize gravity:
-Covariant quantization Feynman deWitt
-gauge fixing
-ghosts fields
-Background field method  ‘t Hooft Veltman

-retains symmetries of GR
-path integral

G = Gu + K0y
Background field: i N A w

L ) 2N
g = g = kW RN

Expand around this background:

_ 4 |1l |2l
r;uu /({ _( |:

[:EJJ‘J _ h;w {g'[”]lfl) . QFI)'LW}
: K

1 o1 o 3 .
g = 5%1,_[,,;,_\ P — ihg,_\h'“ + hoh™ 5 = Mg’

A 1 )
+H (lhz _ 5}1}1;/}3/”/> + (th\lh,f,\ — hhw;) H;W

- - - - E,{m i‘f”’[:f _ ﬁ.T,[ii/
Linear term vanishes by Einstein Eq. TR =T



Performing quantum calculations

Quantization was straightforward, but what do you do next?
- calculations are not as simple

Next step: Renormalization

-divergences arise at high energies

- not of the form of the basic lagrangian

- key role of dimensionful coupling constant
q>

M3

.-'"M — .-'"w 0 + b

Solution:
- renormalize divergences into parameters of
the most general lagrangian (c,,c,...)

Power counting theorem:

-each graviton loop=2 more powers in energy expansion
-1 loop = Order (0g)*

-2 loop = Order (0g)°



Renormalization

One loop calculation: ‘t Hooft and Veltman

Zlo, J| =TrinD

Divergences are local:

- 1 11 ., 7
Aﬁl‘il"’ = —— {—Hz _Bz.‘uH’m;} € =4 — {'_!
0 872 ¢ | 120 + 20 M

Renormalize parameters in general action:

(_‘[ r) cr 1

S | o o
0607 2e€

() (

(: = (Co }+ ————
2 2T 16072

Note: Two loop calculation known in pure gravity

209 w 1

AE[Z) _ . _
2880(1672)2 €

—— a3 D7 A 2T
_gﬁ ~+a I po 12 a3

Order of six derivatves

dim. reg.
preserves
symmetry

Pure gravity
“one loop finite’
since R ,=0

Goroff and Sagnotti



Corrections to Newtonian Potential

Here discuss scattering
potential of two heavy
masses.

(fIT)) = @2m)'sW(p— p’)(J\/{(Q))
= —(2m)0(E - E"){f[V(q)]i)

Potential found using from

11 [ dq
B M
2my 2my / (QW):_%f ()

Classical potential has been well studied _
Iwasaki

Gupta-Radford
Hiida-Okamura
Ohta et al

JFD 1994

JFD, Holstein,
Bjerrum-Bohr 2002
Khriplovich and Kirilin
Other references later



What to expect:

General expansion:

G Mmn M+ n : )
V== {1 ol > Ly Gh} + eGP Mm*(r)

r rc? r2c?
. / Quantum \
Cusistomin  Spo S
. parameter
Relation to momentum Space.
dq Jiar 1 1
J (27)3 lql?  4mr
S dPq ] 1
/ a3 © ] T 30,2
J (27 al 27
I_.‘S e . -1
. ﬁ ' In(q”) = 273

ey € C}Y:\[ , . ) ~ ‘ . ‘ Y
Momentum space v (4?) = m [l + a'G(M + m)\/—q*> + VGhq® In(—q¢*) + (:-"qu]

(-2
amplitudes: ! ~
Classical guantum short

/' / / range

Non-analytic analytic




The calculation:

Lowest order:

Vertex corrections:
Vacuum polarization:

(Duff 1974)

Box and crossed box

Others:

W Rl
(1) o~ (mz)
S k1 ks TN
kz\ 43%1
(ma1) mg\n (ma)
li‘ .‘:ks
\ )
ks A A,
(my) | , (m2)
wh 7
i \
A S > 4
ko W k4
(El) : i {Tﬁi)
/( \-\.
koo \ ‘3&1
{7r21) (rm2)
A ®\E2

L

ke b y 4:1“

my) e e (ms)

k14 *k;;
1

1

ko “-i‘ (kq

(my) ! ' (m=2)

7 ks £

(my) i (ma)

> R

Y



Results:

Pull out non-analytic terms:
-for example the vertex corrections:

2/, | -
T=(my1 + ms 5 r
-\["l(u—l— 5(b) ((17) — 2(-;&'”1'1'}7?’2 ( ( ‘l(ﬂ d)) + ; log ¢ d))
H2

ﬂ[.'ﬁ(c':)—l—.'ﬁ(d.j((r) = _?(T ITIl}TIzl(}Dq

Sum diagrams:

Vi) — — Gmymeos [1_|_ (T(m + m2) . 41 G‘T]
T T 107 r=
el X
Gives precession \
of Mercury, etc Quantum
(Iwasaki ; correction

Gupta + Radford)



Where did the divergences go?

Recall: divergences like local Lagrangian ~R?

Also unknown parameters in local Lagrangian ~c,,c,

But this generates only “short distance term”

Note: R? has 4 derivatives R? ~ ¢
Then: Treating R? as perturbation R :
Viz ~ G*Mm — ¢' — ~ const. — G°M md*(x)
(2 q> *

Local lagrangian gives only short range terms — renormalized couplings here

Equivalently could use equations of motion to generate contact operator:

Ry — T generates local operator R —T,,T"



Comments

1) Both classical and guantum emerge from a one loop calculation!
- classical first done by Gupta and Radford (1980)

1) Unmeasurably small correction:
- best perturbation theory known(!)

3) Quantum loop well behaved - no conflict of GR and QM

4) Other calculations
(Duff, JFD; Muzinich and VVokos; Hamber and Liu;
Akhundov, Bellucci, and Sheikh ; Khriplovich and Kirilin)
-other potentials or mistakes

5) Why not done 30 years ago?
- power of effective field theory reasoning



Summary for purpose of this talk:

(N(ﬂt — /”H { \+—H+( Bz—F(zR“?/H,{cr/ }
: G M G(M G
Vir) = — - - [l +a ( }(j_: ) + hJ (E ] + ¢G* Mmé*(r)

1) Loops do not modify the original coupling

G 111
ALY = {—Hz + R R }
T et T

2) Loops involved in renormalization of higher order coupling

1

r'l:r: — ey e —
! ! 96072

= 5 4
1GOm2e

3) Matrix elements expanded in powers of the momentum

G Mm
2

Vv ( (]2 ) —

[l + d'G(M +m) \,*"—(]2 + V' Ghg? In(—q*) + (,"’qu]

q

4) Corrections to lowest order have two features
- higher order operators and power dependence
- loops also generate logarithms at higher order



Running couplings and gravity:

1) Usual RGE in EFT
2) Direct calculation of matrix elements
3) Critique of cut-off renormalization interpretation

4) s the idea of a gravitationally corrected running coupling useful?



Standard EFT practice and Renormalization Group

Closest analogy is chiral perturbation theory: U= eapli——]

- also carries dimensionful coupling and similar energy expansion

L = F*Tr(8,U"UN)+0[Tr(0,U*UN2+£,Tr(0,Ud,UN) Tr(d* U Ut)+.......
- renormalization and general behavior is analogous to GR

1
L =
10272(d — 4)

(Tr(D,UD"U? + 2Tr(D,UD,UY) Tr(D*UD'UY)]
RGE: (Weinberg 1979, Colangelo, Buchler, Bijnens et al, M. Polyakov et al)

- Physics Is independent of scale ¢ in dim. reg
- One loop — 1/ € goes into renormalizaton of &
- comes along with specified In ¢ and In g? dependence
- Even Dbetter at two loops
- two loops (hard) gives g*/e? terms — correlated with g* In? g2 /u?
- cancelled by one loop (easy) calculation using ¢;
-RGE fixes leading (g In g?)" behavior



This has been explored in depth:

- o - I=0 - 1
T'ABLE I: Table of I = 0 LL coefficients for the 4D g-model, w, 7" - (N — 1)
nA\ 1[0 2 4
1 1
p N 1 5
2 7'3 7} 18
: N2 61N 59 13N 13
| el vk —Tar T aw _
! NT  631NZ 4 46279N _ 13300 [173N7 _ 4313N | 5333 [ N® _ 49N , 8
] 2700 194400 104400 | 2160 38880 38880 | 200 5400 " Grm
N1 136 N° 2408T43N " 141TNZ 48136TN" N¥ | O97RTN-
= 6 — 65 T “reom —0320° T 3628800 — 383 T T5e000
5 __B75 Ty 40320 J625800 28 To6 _
_3083TTIN 610889 _T27373N 1071107 _ A968IN 81007
11664000 1665600 1082400 6531840 I7Z16000 | 5443200

For our purposes:

- Lowest order operator does not run

- Higher order operator gets renormalized

- With renormalization comes In u dependence

- Can exploit for leading high power x leading log
-Tracks higher order log dependence (g% In g? )

- Multiple higher order operators — different processes have different effects



Also — process dependence

Wide variety of processes are described by ¢,
- different combinations of s, t, u, ... and ¢, enter into each process
- the single and double logs are also process dependent

Again a reason for not using a universal running coupling in EFT



Now consider gravity corrections to gauge interactions: (anper,

El Houssienny,
JFD)

-we have done this in great detail for Yukawa
- 1 will be schematic for gauge interactions in order to highlight key points

Lowest order operator:

- 1
Ly, = gy A" Lo = _EF 9

Higher order operator
Lo = cotby,h0* A Lho = —kd,F"O'F,
Equations of motion
oA = J¥

Equivalent contact operator:

Lh.o = oy = e, J!



Direct calculation

Vertex (fermions on shell) found to be:

V=1u [eﬂ,“ a(q Ehzqz* ﬂ u
with

: 1 1
a(q?) = ag [E + 51114?1' —

b | -2

— %lﬂ(—quﬁ-ﬁ)}



Physical process:

FIG. 4: Tree diagram for the on-shell scattering processes
involving fermion.The filled circle denotes the set of vertex
renormalization diagrams.

Overall matrix element: .
M = u {ezﬂ“ + e*a(q®) k%™ “} U — Uy,u+ h.c. + catiy*uty,u

2
= u"u U7y, u [ez (fgfﬁ) — eza K> In(— 2/;L-: ))]
q

Describes the two reactions:

Think of the Lamb shift

¢ > 0 forf+f—=f+7f
< 0 forf+f—=f+7f

Renormalization of higher order operator:

r_ TR SO
€y, = €9 — Qg [E+§ln4w—§



Lamb shift analogy:

- Corrections to vertex diagram gives g dependent terms

2
| q- I _
m2)| " q

Leads to a contact interaction:

Vv

Influences S states only

- Not counted as a running coupling



Similar in the modification of photon properties

e

g7

Photon propagator correction:

24
1= ex’q Like Lho. = —k9,F*"OF,

Again looks like contact interaction:

1 1
2 — Wy, U+ couy uty,u

— o ‘ 7
M =uyu — [f::“ + e*er’q?
q



Can this be packaged as a running coupling?

Propose:

e*(M?) = ¢ {1 + bDf‘izﬂfﬂ

Is the amplitude equal to?
(M2 ]
+ (Cy))

M =7 a'u .u.ﬂl.“u[ —

7 7 > 0 forf+f—=f+f

, 2 e22bykiM?2
7 =7 uy"u uy,u l—1 - t”—} + (c3)) < 0 forf+f—=f+Ff
q- q°
Recall
: g 1
M = 1a {92}-‘“ + eza(qgjﬁzgzq“} u 7 Uy, u + h.c. + couy"utiy,u
_ _ e? r 2 2 2 7,23
= wf'u uyu | — + (CQUL) — e“agk” In(—q Lu“j)
q

You can make the definition work for either process but not for both

- No universal definition



Other forms of non-universality:

Other processes have other divergences and other operators:

D=L > >

Lowest order:
L1, = gy A"
Different higher order operator is relevant

— A oTime A20]
Eh.o. — ’CE;I (8 .‘,u,d (8

Calculation of the vertex corrections:

V=1 ey + b(p?)er?p’y | u
Different value for the correction (verified in Yukawa case)
b(q*) # a(q®)
Different correction to matrix element

, 8 1
M = e, (-ﬂ-':f“’ {l—b((q +p1jz)f£2{q—plﬂ

4+,

Y'u+ h.c. + euy* (¢ + POV Y -u-)



What about calculations with dimensionful cutoff?

- above agrees with EFT logic and dim-reg conclusions
- new papers with cutoff make very different claim

Work with:

1 . . 1 _
‘41” — _‘4# DFI — d.u + ."}"'.;1# L — ?‘I:HVFIMV T ?_liﬂjL‘

€o 0

Quadradic dependence on the cutoff:
- different methods but find effective action

B 1 + cx2A2

}:, — _]: 2 F;L:/F#V 1T b].l][.-."\?)EM/dQF#V
. E.-’G

Toms and others interpret this as a running coupling constant
e?(A) = e*(1 — ex*A?)

de?

,.3[(29) — A— = —cr?e?A?



But this cutoff dependence is unphysical artifact

- wavefuntion/charge renormalization
- disappears from physical processes

€ e 1

Am(1 + ex2A2) 4w 137

The quadratic cutoff dependence disappears in physical processes

e2(1 — ck2A? o 51 4,1 —q°
M =2 - )_|_.51h.521_q — In é + .| T €2

After renormalization, obtain exactly the dim-reg result:

2

e —q
M =— + | h(p) + ax?e* In —— )
q° ( ) [

1) Quadratic cutoff dependence is NOT running of charge
2) Agreement of different schemes



Summary of gauge coupling section:

-We have addressed renormalization of effective field theories
-Organized as a series of operators

- Running coupling is NOT an accurate description of quantum loops
in the EFT regime

- Confusion in the literature is understood as misunderstanding of
results calculated with a dimensionful cutoff

-There is no scheme dependence to physical processes

Could gravity influenced running couplings eventually play a role?
- Maybe after EFT regime



How a running coupling could work with gravity- Ap*:

Ao is special %;;&:f
Direct and crossed channels both occur in S
every amplitude and in every loop 41 2@
Higher order operator vanishes on-shell |
Ly, = —A\19°0,00" 6 renormalized at one loop Maiy ~ Arf%fs +t+u)

-but vanishessince s+t+u=20

- mixing when renormalized at high renormalization scale
eitheronshell =922 + =y = —F?2
or off shell »i = 3 = p3 = pi = —M?



Definition has no obvious flaws at one loop

ik —5 —t > .
Ay = —— slog ( — | +tlog —) kS
(f) 9 (4?_'_)2 [ (#2) g (#2 % ..\\\ ,’,’
from R
—u b -
+u log (—))] g
He g +5 others
+ A [SEC-'(Sj + tQC-T{t} + -LLEC-'{ta]] ()
2 (47)° ' ~ IR |

Can define renormalized couplingat s =2F? t = u = —FE?

3i\2 E? log(2)k2N .
CiNE) = —in— lgg(_)_MEA

2 (4m)? p? (47)?

Because of s,t,u symmetry, and vanishing next order operator
amplitude does not have the problems of gauge theory amplitudes

. iN(E) s 4
Ay = —IAE) — 2 (4m)’ [log (259) + log (E)




Under consideration: Anber, JFD
Gravity itself and asymptotic safety

Generally — can we define a running G(q?) in perturbative region?

A.S. = Hypothesis of Eudlidean UV fixed point

g = G(kp)kp — g. G(ki) = 73 G(k2) G

Pure gravity may be more like: \¢*

- S, t U symmetry
- next order operator vanishes R?
- polarization variables may spoil perfect symmetry



Lets look at graviton —graviton scattering

Lowest order amplitude:

AT ) = —
4 tu

One loop: Dunbar and Norridge

F e I  — g K (52 -ty u?)
- ' ' / 3072072
|
AlTeor AR
2 =y — .
Al—loop; . \ K [ I-] - E-I[ I-] e giree . \ ‘o \ QN
A (47 4 T 1 oc) AT ) % (st 23]
21l —u) Ini—t; i —s) l —t —u
€ st S tu 5 5 5
[ —u) In(—s) I In(—¢)In{ —s) In{ —%)In(—s)
- S 1 ts
where
—t —u (F 4 2028+ (260 28%0 — 20 200 | 2ut) po ot 9
f(_‘__) = (]11 — W)
5 s 5 1
(f— ) (341 + 160983y + 25668202 + 16090 .-1.111;4;.1 t
- n—
Alg? i

1922¢ + 014383 + 146226202 + 9143t + 19224t
1804 '




Infrared divergences are not issue:

-soft graviton radiation

-made finite in usual way

1/e -> In(1/resolution) (gives scale to loops)
-cross section finite

da I da I do
ac ), acrj . LA —

53 2
s L KEs | —t | — I tu ¥ ( —t —u
_ e ]| _— ]| _— _—
20487222 | G2 5 s 252 s s

JFD +
Torma

(20

t —t U — " a 5 Do T
— (— 1 F— In ) An(27) oy + In— - J

(1) ()
| A Yig )} )
A= 2 i 117 F O3 vy :')

2

S 5 S 5

Correction is positive in physical region:
- increases strength of interaction

; f AGE? [, 2207
G(E) —G[1+ — (111 2+1440)]

s=92F% t=u=—FE"



Gravity matter coupling again has kinematic problem:

GMm
q°

Recall: Vig*) = [l + d' G(M +m)\/—q* + V' Ghg® In(—¢°) + (_-.-”G'(f]

Including all diagrams:
B S |
Glg?) =G|+

207

)

Gq?lng }

Excluding box plus crossed box:

“G(4 } _c [L 347
9 T 607

qu In qzl

Either way
— kinematic problem, plus result seems disconnected from pure gravity
- useful and universal?

A.S. community has not yet addressed addressed matter couplings:
- do matter couplings track that of pure gravity?




Components of log in matter coupling
\

Lowest order: (1) W (2)
S k1 ks N

4 N 4
k2\ ky ko ks
. (m1) Y (ma) - (1) (m2)
Vertex corrections: 1 ,{hﬁg‘k@ 4213 4 : b
kg li* 'iﬂi kg l ll.'u
Vacuum polarization: (m) h@J imyy T43/15 mL)L.:. .:.J(mz)
(Duff 1974) ko4 b ks o B Y
> <« »
ks “enne k fe2 ka
Box and crossed box (fnil) ! \ {m;) +94/3 m1) ﬁ‘-ﬁ (mz)
kl(m‘\kg kl( ‘k’g
2k £
S N A,
: (m1) (ms) +44-56 (m1) | S (m2)
Others: kx ‘@‘ ks ) (ﬁ\\



