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General setting

Assume S C B two different connected, open, domains and uy, up
smooth solutions of an equation P(u) =0 in B.

@ Non uniqueness: u; = up in S but v # vz in B.

@ Well posedness: wuy,up "close” in S = wuy, up "close” in B.

@ Unique continuation: vy =w in S = uy =u, in B.
However, u; may be "close” to up in S, but completely
different in B.

B = B(0,2),S = B(0,1/2) C R?, u, = (x+ iy)" are solutions to
Au =0, small in S but large in B.
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Theorem(Calderon-Hérmander)

Given P and S = {h < 0}, dh # 0, there exists a condition on h,
called pseudo-convexity (with respect to P) which, if satisfied
at p € 3S, =-unique continuation at p.

g-pseudo-convexity
Defining function h is pseudo-convex at p for,

P =g**D,Dy + B*D, + C

If  X*XPD,Dgh(p) <0, VX € To(M), g(X,X)=X(h)=0,

Alinhac-Baouendi example

If h=|x?—1in R¥2 S={h<0} and p € S, there exists
non-vanishing smooth V¢, vanishing in S and verifying
O¢ + V¢ = 0 in a neighborhood of p.
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Theorem[lonescu-KI(2008)]

Let E= {(t,x) € R : |x| > |t| + 1}, ¢ € C? solution of

Op=Ap+ 30 ,B -89 A B eCOR™).
Plog =0

Then, ¢ =0 on E.

Proof[Carleman estimates]

For any ¢ € Cg°(E), A > 0 sufficiently large

A€ol +[le™ - Dgll 2 < ATV e Ol 2,

with = log ((|x| — 1/2)? — t?)
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Problem

Given a smooth pseudo-riemannian (M, g), an open subset O C M
and a smooth Killing vector-field Z in O. Under what assumptions
does Z extend (uniquely) as a Killing vector-field in M?

Nomizu’s theorem

If g is real analytic M and O are connected and, M is simply
connected = Extension holds true.

Remark

The metric is not assumed to satisfy any specific equation. No
assumptions are needed about the boundary of O C M and the
result is global with only minimal assumptions on the topology
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Kerr spacetimes

Kerr K(a,m), 0<a<m

2 2
7dt> + %(dr)z + p2(d0)?,

A=r2+232—2mr;
p? = r? + a®(cos 6)?;
Y2 = (r? + a%)%2 — 2°(sin H)?A.

KC(a, m) are algebraically special: 18 of the 20 components of the
Riemann curvature tensor vanish in a suitable frame (Type D).



Key properties of the Kerr spaces
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Solutions of the Einstein vacuum equations.
P1 Killing vector field T = 0;, timelike at “infinity" ,

P2 Geometric properties: asymptotic flatness, smooth
bifurcate sphere, global hyperbolicity,

P3 Non-degenerate if 0 < a < m,
P4 Killing vector-field Z = 0, with closed orbits,
P5 Real-analytic.

Definition: A vacuum space-time verifying P1 — —P3 is called
a regular, non-degenerate, stationary vacuum.
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Main Conjecture “Black holes have no hair”

Conjecture

If (M*, g, T) is regular, non-degenerate, stationary vacuum = its
domain of outer communication is isometric to the domain of
outer communication of a Kerr spacetime K(a,m), 0 < a < m.

o (Carter 1971): axially symmetric black holes have only 2
degrees of freedom.

@ (Robinson 1975): Conjecture holds in the case of axially
symmetric black holes.

o (Hawking 1973): Conjecture holds in the case of
real-analytic spacetimes.
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Hawking’s rigidity theorem

The event horizon of a real analytic, stationary, regular, vacuum
spacetime is a Killing horizon, i.e. the space-time admits another
Killing field normal to the event horizon

@ Follows from the tangency of T to the horizon that there
must exist an infinitesimal Killing field normal to the horizon.

@ (Nomizu’ s Theorem) M real analytic, pseudo-riemannian,
simply connected, O C M, connected, open. Then any Killing
v-field in O extends to a Killing field in M.
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@ (lonescu-KI(2008) ) Conjecture holds provided that a scalar
identity is assumed to be satisfied on the bifurcation sphere.

@ ( Alexakis-lonescu-KI(2009) ) Conjecture holds provided that
the spacetime is assumed to be “close” to a Kerr spacetime.

@ Both theorems have been extended by Willie Wong and Yu
Pin to the case of Einstein-Maxwell equations (Kerr-Newman)
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Local Extension

@ (Alexakis—lonescu—KI(2009) Hawking's rigidity theorem is
true, locally, in a neighborhood of a non-degenerate
bifurcate horizon

o (lonescu—KI(2011) Extension of Killing vector-fields fails near
points away from the bifurcate sphere of the horizon.

o (Friedrich-Racz-Wald) Construct the Hawking vector-field K
in the domain of dependence of N UN. Have [L,K] = cL

@ Extend the vector-field K to a full neighborhood of S by
solving a transport equation [L, K] = cL.

@ Show that the extended Kis Killing by a unique
continuation argument.
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(M, g) Ricci flat, pseudo-riemannian manifold; (O, Z) verify:
@ Al There exists a smooth v-field L geodesic in M
(DL =0),
e A2 Z Killing v-field in O, [L, Z] = L.

If 00 is strongly pseudo-convex = Z extends as a Killing
vector-field to a neighborhood of p.

Pseudo-convexity

O C M is strongly pseudo-convex at p € 9O if it admits defining
function f at p, s.t. for any X # 0 € T,(M), X(f)(p) =0 and
g(X,X) =0, we have

D27 (X, X)(p) < 0.
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Theorem 2.

(0O, Z) as before with 90 smooth, null hypersurface in a
neighborhood of p € 0. Also ¢g = 0 and L null, transversal to
00.

=

There exists U, and a Ricci flat, Lorentz metric, g’ in U, such
that g’ =g in ON U,, but Z does not admit an extension as a
smooth Killing vector-field for g in Up.

Main ldea

Construct a null hypersurface transversal to N and solve a
characteristic Cauchy problem.
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Main ideas of Theorem 1

@ Define

Tap = (‘CKg)aB
Wagu = (LkR)agur — (B * R)aguw-

@ Prove a system of wave/transport equations of the form

OgW = M(W,DW, 7, Dr),
D= M(W,DW,r, Dr),
D, (D7) = M(W,DW,r, D).

@ Use a unique continuation argument to conclude that W,
vanish in a neighborhood of Z.

@ Role of pseudo-convexity
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GLOBAL RESULTS



Unique continuation in Kerr

Theorem (lonescu—KI)

Assume W, A, B, C verify

OW=A-W-+B-DW,;
LW =C-W,
in a Kerr space K(a,m), 0 < a< m.
Unique continuation holds across the level sets of h if the
following T-conditional pseudo-convexity property holds:
T(h) =0;
X*XPD,Dgh <0 if XX, = X(h)=X"T, =0.

The function h = r, in the Boyer-Lindquist coordinates, verifies it.




Conjecture

Analyticity should be proved not assumed !

Results without analyticity

@ (lonescu-KI(2008) ) Conjecture holds provided that a scalar
identity is assumed to be satisfied on the bifurcation sphere.

@ ( Alexakis-lonescu-KI(2009) ) Conjecture holds provided that
the spacetime is assumed to be “close” to a Kerr spacetime.

@ Both theorems have been extended by Willie Wong and Yu Pi
to the case of Einstein-Maxwell equations (Kerr-Newman)




lonescu-KI1(2008)

Want a tensor S, analogous to the Riemann tensor R,

@ It describes locally the Kerr spaces,

@ |t satisfies a suitable geometric equation of the form

OeS =A-S + B-DS.

Mars-Simon tensor

Given a stationary space-time (M* g, T).

_ 1
Sopuw = Rapuw +6(1 — ) (FapFuw — §]-"2 T o)

complex, self-dual Weyl field verifying

D’ Spayr = —6(1 — 0) T TPSg,0n (Fa010) — (2/3)F P ToP )




Mars-Simon tensor

Killing 2—form F,3 =D,Tg, F=F+IiF*
Ernst 1-form o, = 2T*F,,,

Ernst potential D,o0 = oy, o — 1 at asymptotic infinity.

Mars=Simon tensor

_ 1
Sapur = Rapuw +6(1 — o) (FapFu — §J-“2 Topuw)-




Mars-Simon tensor

Killing 2—form  Fo3 = DTy, F =F +iF*
Ernst 1-form o, = 2T*F,,,

Ernst potential D,o0 = oy, o — 1 at asymptotic infinity.

Mars=Simon tensor

_ 1
Saﬁ;w = Raﬁlﬂf + 6(]. = O’) 1(.Fa5fuy — gfz . Iaﬁ,ul/)-

D’Spaun = —6(1 — 0) 1 TS, A (Fa010) — (2/3)F P La” ).

Thus it satisfies a wave equation of the form

Dgsal..4a4 = Sﬁl‘..ﬁ4ACX1‘..a4ﬁlu.54 + D/LSBL..IB4BO[1...CX4’LL61'”B4'




Main results

lonescu-KI(2008)

The domain of outer communication E of a regular stationary
vacuum (M, g, T) is locally isometric to the domain of outer
communication of a Kerr spacetime, provided that the identity

—AmPF? = (1- 0)4

holds on the bifurcation sphere Sp.

Kerr

2m > 4m?

=1-——7, Fo=—f—r——.
? r+ iacosf (r + iacos6)*




Main results

Alexakis—lonescu—KI

The domain of outer communication E of a regular stationary
vacuum (M, g, T) is isometric to the domain of outer
communication of a Kerr spacetime, provided that the smallness

condition
(1 -0)S(T,en e8,€y)] <

holds along a Cauchy hypersurface in E, for some sufficiently small

| m ‘

Main idea

Extend a Killing vector-field across a T-conditional pseudoconvex
hypersurface in an Einstein vacuum, using a unique continuation
argument for a system of wave equations coupled with transport

equations.




