AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

FRANCIS BROWN

Don Zagier asked me whether the Broadhurst-Kreimer conjecture could be reformulated as a short exact sequence of spaces of polynomials in commutative variables. The purpose of this note is to describe just such a sequence.

1. Depth-Graded double shuffle Hopf algebra

Recall the double shuffle equations from [5], Définition 1.3. Let $\Phi \in \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ be a non-commutative formal power series with coefficients in \mathbb{Q}. Let

$$
\Delta_{\mathrm{II}}: \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle \longrightarrow \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle \widehat{\otimes}_{\mathbb{Q}} \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle
$$

denote the continuous comultiplication for which e_{0}, e_{1} are primitive, such that Δ_{WI} is a homomorphism for the concatenation product. The coefficients of the element Φ satisfy the shuffle equations if $\Delta_{\text {ШI }} \Phi=\Phi \otimes \Phi$. Now let $Y=\left\{y_{1}, y_{2}, \ldots,\right\}$ denote an alphabet in infinitely many elements y_{i} of degree i and let

$$
\Delta_{*}: \mathbb{Q}\langle\langle Y\rangle\rangle \longrightarrow \mathbb{Q}\langle\langle Y\rangle\rangle \widehat{\otimes}_{\mathbb{Q}} \mathbb{Q}\langle\langle Y\rangle\rangle
$$

denote the continuous comultiplication such that $\Delta_{*}\left(y_{n}\right)=\sum_{i+j=n} y_{i} \otimes y_{j}$, and such that Δ_{*} is a homomorphism for the concatenation product. The coefficients of an element $\Psi \in \mathbb{Q}\langle\langle Y\rangle\rangle$ satisfy the stuffle equations if $\Delta_{*} \Psi=\Psi \otimes \Psi$. Racinet's group of solutions to the double shuffle equations consists of elements $\Phi \in \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ such that

$$
\begin{align*}
\Delta_{\amalg} \Phi & =\Phi \otimes \Phi \tag{1.1}\\
\Delta_{*} \Phi_{*} & =\Phi_{*} \otimes \Phi_{*} \\
\Phi\left(e_{0}\right)=\Phi\left(e_{1}\right)=0 & , \Phi(1)=1
\end{align*}
$$

where $\Phi(w)$ is the coefficient of a word $w \in\left\{e_{0}, e_{1}\right\}^{\times}$in Φ, and $\Phi_{*} \in \mathbb{Q}\langle\langle Y\rangle\rangle$ is obtained from Φ by a regularization procedure, which we shall not require here. We can view a solution to (1.1) either as an element $\Phi \in \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ or as an element $\Phi_{*} \in \mathbb{Q}\langle\langle Y\rangle\rangle$ since they determine each other uniquely.
1.1. Depth-graded version. Recall that the depth filtration is the decreasing filtration on $\mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ (and respectively $\mathbb{Q}\langle\langle Y\rangle\rangle$) with respect to the \mathfrak{D}-degree, where e_{0} has \mathfrak{D}-degree 0 , and e_{1} has \mathfrak{D}-degree 1 (respectively y_{n} has \mathfrak{D}-degree 1). By passing to the associated weight and depth bigraded Hopf algebras, $\Delta_{\text {II }}$ becomes the coproduct

$$
\begin{equation*}
\Delta_{\mathrm{I}}: \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \longrightarrow \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \otimes_{\mathbb{Q}} \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \tag{1.2}
\end{equation*}
$$

with respect to which e_{0}, e_{1} are primitive (no change here), and Δ_{*} becomes

$$
\begin{equation*}
\Delta_{\mathrm{II}}^{Y}: \mathbb{Q}\langle Y\rangle \longrightarrow \mathbb{Q}\langle Y\rangle \otimes_{\mathbb{Q}} \mathbb{Q}\langle Y\rangle \tag{1.3}
\end{equation*}
$$

for which y_{n} is primitive for all $n \geq 1$. Now define a map

$$
\begin{align*}
\alpha: \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle & \longrightarrow \mathbb{Q}\langle Y\rangle \tag{1.4}\\
\alpha\left(e_{1} e_{0}^{n_{1}} \ldots e_{1} e_{0}^{n_{r}}\right) & =y_{n_{1}+1} \ldots y_{n_{r}+1}
\end{align*}
$$

Date: 20th May 2013.
and such that α sends all words beginning in e_{0} to zero. A section of this map is given by the map $\beta: \mathbb{Q}\langle Y\rangle \rightarrow \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$ which sends y_{n} to $e_{1} e_{0}^{n-1}$ and is a homomorphism for the concatenation products.

Definition 1.1. An element $\Psi \in \mathbb{Q}\langle Y\rangle$ is a solution to the depth-graded double shuffle equations if it equalizes the two coproducts (1.2) and (1.3) and is even in depth one:

$$
\begin{align*}
\Delta_{\mathrm{W}} \beta(\Psi) & =(\beta \otimes \beta)\left(\Delta_{\mathrm{\amalg}}^{Y} \Psi\right) \tag{1.5}\\
\Psi\left(y_{n}\right) & =0 \text { if } n \text { is even or } n \text { is } 1
\end{align*}
$$

The reason for the second condition in (1.5) is explained in [1]: the double shuffle equations, restricted to depth one, are vacuous. Nonetheless the full equations (in particular in depth ≤ 2) imply evenness in depth one, so this condition must be added back artificially to the depth-graded versions of the equations.
Definition 1.2. Let $\widetilde{D} \subset \mathbb{Q}\langle Y\rangle$ denote the largest bigraded subspace of the vector space of solutions to (1.5) which is a coalgebra for $\Delta_{\text {II }}^{Y}$.

For simplicity, we shall denote the coproduct by

$$
\Delta: \widetilde{D} \longrightarrow \widetilde{D} \otimes_{\mathbb{Q}} \widetilde{D}
$$

Recall that the linearized double shuffle equations [1] are defined by the bigraded vector space $\mathfrak{l s}$ of elements $\Phi \in \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$ which satisfy the equations:

$$
\begin{align*}
\Delta_{\mathrm{II}} \Phi & =1 \otimes \Phi+\Phi \otimes 1 \tag{1.6}\\
\Delta_{\mathrm{II}}^{Y} \alpha(\Phi) & =1 \otimes \alpha(\Phi)+\alpha(\Phi) \otimes 1 \\
\Phi\left(e_{0}^{i} e_{1}\right) & =0 \text { if } i \text { is odd }
\end{align*}
$$

and satisfy $\Phi\left(e_{0}\right)=0$ and $\Phi\left(e_{1}\right)=0$. Note that, compared to [1] §7, we have added the condition that $\Phi\left(e_{1}\right)$ vanish to exclude the trivial solution to these equations.
Lemma 1.3. The primitive elements in \widetilde{D} are exactly given by $\mathfrak{l s}$.
Proof. Suppose that $\Psi \in \widetilde{D} \subset \mathbb{Q}\langle Y\rangle$ is primitive for $\Delta_{\text {III }}^{Y}$ and therefore by (1.5), $\beta(\Psi)$ is primitive for $\Delta_{\text {II }}$. Since every word in $\left\{e_{0}, e_{1}\right\}^{\times}$can be uniquely written as a linear combination of shuffles of e_{0}^{n} with words beginning in e_{1}, we can uniquely extend $\beta(\Psi)$ to an element $\Phi \in \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$ which is primitive for $\Delta_{\text {ШI }}$ and satisfies $\Phi\left(e_{0}\right)=0$ and $\alpha(\Phi)=\Psi$. The element Φ satisfies the linearized double shuffle equations (1.6).
1.2. The Ihara action. The action on the pro-unipotent fundamental groupoid of $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ by automorphisms gives rise to a continuous \mathbb{Q}-linear map

$$
\circ:{ }_{0} \Pi_{1}(\mathbb{Q}) \widehat{\otimes}_{0} \Pi_{1}(\mathbb{Q}) \longrightarrow{ }_{0} \Pi_{1}(\mathbb{Q}),
$$

known as the Ihara action, where ${ }_{0} \Pi_{1}(\mathbb{Q}) \subset \mathbb{Q}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle$ consists of invertible power series Φ which are group-like for Δ_{II}. Concretely, \circ is defined on power series by

$$
F\left(e_{0}, e_{1}\right), G\left(e_{0}, e_{1}\right) \mapsto G\left(e_{0}, F\left(e_{0}, e_{1}\right) e_{1} F\left(e_{0}, e_{1}\right)^{-1}\right) F\left(e_{0}, e_{1}\right)
$$

One of the main results of Racinet's thesis [5] is the following.
Theorem 1.4. (Racinet) The solutions to the double shuffle equations (1.1) are preserved by the Ihara action.

In [2], we defined a variant of the Ihara action, called the linearized Ihara action.

Definition 1.5. The linearized Ihara action is the \mathbb{Q}-bilinear map

$$
\text { ㅇ: : } \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \otimes_{\mathbb{Q}} \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle \rightarrow \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle
$$

defined inductively as follows. For words a, w in e_{0}, e_{1}, and for any integer $n \geq 0$, let

$$
\begin{equation*}
a \text { ㅇ }\left(e_{0}^{n} e_{1} w\right)=e_{0}^{n} a e_{1} w+e_{0}^{n} e_{1} a^{*} w+e_{0}^{n} e_{1}(a \varrho w) \tag{1.7}
\end{equation*}
$$

where $a \underline{\circ} e_{0}^{n}=e_{0}^{n} a$, and for any $a_{i} \in\left\{e_{0}, e_{1}\right\}^{\times},\left(a_{1} \ldots a_{n}\right)^{*}=(-1)^{n} a_{n} \ldots a_{1}$.
The action ㅇ is not associative but satisfies
for all $f_{1}, f_{2}, g \in \mathbb{Q}\left\langle e_{0}, e_{1}\right\rangle$. A variant of Racinet's theorem is the following:
Corollary 1.6. The linearized Ihara action defines a map

$$
\begin{equation*}
\circ: \mathfrak{l s} \otimes_{\mathbb{Q}} \widetilde{D} \longrightarrow \widetilde{D} \tag{1.9}
\end{equation*}
$$

1.3. A variant of the Milnor-Moore theorem. Suppose that we have a coalgebra A over \mathbb{Q}, with coproduct

$$
\Delta: A \longrightarrow A \otimes_{\mathbb{Q}} A
$$

which is graded, connected, and cocommutative. Let \mathfrak{a} denote the set of primitive elements of A. Suppose now that we have a \mathbb{Q}-bilinear map

$$
\begin{equation*}
\mathfrak{a} \circ A \longrightarrow A \tag{1.10}
\end{equation*}
$$

which is graded, and such that $\Delta(f \circ g)=\Delta(f) \circ \Delta(g)$ for all $f \in \mathfrak{a}, g \in A$. Denote the antisymmetrization $\wedge^{2} \mathfrak{a} \rightarrow \mathfrak{a}$ by $\{f, g\}=f \circ g-g \circ f$. Suppose furthermore that - satisfies the pre-Lie identity:

$$
f_{1} \circ\left(f_{2} \circ g\right)-f_{2} \circ\left(f_{1} \circ g\right)=\left\{f_{1}, f_{2}\right\} \circ g
$$

for all $f_{1}, f_{2} \in \mathfrak{a}, g \in A$. Then in particular, \mathfrak{a} is a Lie algebra with respect to $\{$,$\} and$ the map (1.10) defines a map $\mathcal{U} \mathfrak{a} \rightarrow A$, where $\mathcal{U} \mathfrak{a}$ is the universal enveloping algebra of \mathfrak{a}.

Proposition 1.7. With these assumptions, $\mathcal{U} \mathfrak{a} \cong A$.
Proof. For any connected graded Hopf algebra H, let $\Delta^{(2)}=\Delta(x)-x \otimes 1-1 \otimes x$ denote the reduced coproduct, and define $\Delta^{(r)}: H \rightarrow H^{\otimes r}$ to be the iterated reduced coproduct for $r \geq 2$, and the identity for $r=1$. For every $x \in H$ there is a smallest r such that $\Delta^{(r)}(x)=0$. This defines an increasing (coradical) filtration R on H. In our situation, A is cocommutative and so we obtain a map

$$
\Delta^{(r-1)}: \operatorname{gr}_{r}^{R} A \longrightarrow \operatorname{Sym}^{r-1} \mathfrak{a}
$$

By iterating (1.10) and symmetrizing, we obtain a map $m: \operatorname{Sym}^{r-1} \mathfrak{a} \rightarrow R_{r} A$, which is an inverse to $\Delta^{(r-1)}$ by the compatibility between Δ and \circ. Thus

$$
\operatorname{gr}_{r}^{R} A \cong \operatorname{Sym}^{r-1} \mathfrak{a}
$$

But $\operatorname{Sym}^{r-1} \mathfrak{a}$ is isomorphic to $\operatorname{gr}_{r}^{R} \mathcal{U a}$ by the Poincaré-Birkhoff-Witt theorem. Therefore $\mathcal{U a} \rightarrow A$ is an isomorphism (of coalgebras).

By applying the previous proposition to \widetilde{D}, we deduce from lemma 1.3 that the coalgebra \widetilde{D} is isomorphic to the universal enveloping algebra of $\mathfrak{l s}$:

$$
\begin{equation*}
\mathcal{U} l \mathfrak{s} \cong \widetilde{D} \tag{1.11}
\end{equation*}
$$

2. Equations for polynomials in commuting variables

In [1], $\S 3-5$, it is explained how to translate Hopf algebraic properties of series Φ as described above, into functional equations for power series in commuting variables. The basic remark is that there is an isomorphism of graded vector spaces

$$
\left.\begin{array}{rl}
\operatorname{gr}_{\mathfrak{O}}^{r} \mathbb{Q}\langle Y\rangle & \longrightarrow \\
y_{i_{1}} \ldots y_{i_{r}} & \mapsto
\end{array} x_{1}^{i_{1}} \ldots x_{1}, \ldots, x_{r}\right] .
$$

where the weight of a polynomial in $\mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ is defined to be the degree plus the number of variables. The (p, q)-th shuffle equations are defined to be the $(p, q)^{\text {th }}$ component of $\Delta_{\text {II }} \Psi$. If the depth $p+q$-component of Ψ is the element f, it is written

$$
f^{\sharp}\left(x_{1} \ldots x_{p} \amalg x_{p+1} \ldots x_{p+q}\right)
$$

where, using the notation from [4], we define

$$
g^{\sharp}\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, x_{1}+x_{2}, \ldots, x_{1}+\ldots+x_{n}\right),
$$

and m is the shuffle product acting formally on the arguments of the function f; thus $f\left(x_{i} u \amalg x_{j} v\right)=f\left(x_{i}, u ш x_{j} v\right)+f\left(x_{j}, x_{i} u \amalg v\right)$. Likewise, the (p, q)-th stuffle equation is defined to be the $(p, q)^{\text {th }}$ component of $\Delta_{\mathrm{II}}^{Y} \Psi$. It is written

$$
f\left(x_{1} \ldots x_{p} \amalg x_{p+1} \ldots x_{p+q}\right)
$$

Corresponding to the $(i, j)^{\text {th }}$ component of β, let us define a map $\beta_{i, j}$:

$$
\begin{align*}
& \beta_{i, j} f\left(x_{1}, \ldots, x_{i+j}\right)= \tag{2.1}\\
& \quad f\left(x_{1}, x_{1}+x_{2}, \ldots, x_{1}+\ldots+x_{i}, x_{i+1}, x_{i+1}+x_{i+2}, \ldots, x_{i}+\ldots+x_{i+j}\right)
\end{align*}
$$

Lemma 2.1. The defining equations for \widetilde{D}_{n}, where $n \geq 2$ correspond to:

$$
\begin{align*}
f^{\sharp}\left(x_{1} \ldots x_{p} \amalg x_{p+1} \ldots x_{p+q}\right) & =\beta_{p, q} f\left(x_{1} \ldots x_{p} \amalg x_{p+1} \ldots x_{p+q}\right) \tag{2.2}\\
f\left(x_{1} \ldots x_{p} \amalg x_{p+1} \ldots x_{p+q}\right) & \in \widetilde{D}_{p} \otimes_{\mathbb{Q}} \widetilde{D}_{q}
\end{align*}
$$

for all $1 \leq p \leq q$ where $p+q=n$. In the second line of these equations we identify $\mathbb{Q}\left[x_{1}, \ldots x_{p}\right] \otimes \mathbb{Q} \mathbb{Q}\left[x_{1}, \ldots, x_{q}\right]$ with $\mathbb{Q}\left[x_{1}, \ldots, x_{p+q}\right]$.

For comparison, the defining equations for \mathfrak{s}_{n}, where $n \geq 2$ correspond to

$$
\begin{align*}
f^{\sharp}\left(x_{1} \ldots x_{p} \amalg x_{p+1} \ldots x_{p+q}\right) & =0 & \text { for all } 1 \leq p \leq q & \quad, \quad p+q=n \tag{2.3}\\
f\left(x_{1} \ldots x_{p} \amalg x_{p+1} \ldots x_{p+q}\right) & =0 & \text { for all } 1 \leq p \leq q & \quad, \quad p+q=n
\end{align*}
$$

The defining equations for \widetilde{D}_{n} and \mathfrak{s}_{n} in depth $n=1$ are simply $f(0)=0, f\left(x_{1}\right)$ even, by the second lines of equations (1.5) and (1.6), giving

$$
\begin{equation*}
\widetilde{D}_{1}=\mathfrak{l s}_{1} \cong x_{1}^{2} \mathbb{Q}\left[x_{1}^{2}\right] \tag{2.4}
\end{equation*}
$$

Of course, $\widetilde{D}_{0}=\mathbb{Q}$, by definition.
2.1. Linearized Ihara action for polynomials. In [2] and [1] we wrote down the following explicit formula for the linearized Ihara action:

$$
\circ: \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right] \otimes_{\mathbb{Q}} \mathbb{Q}\left[x_{1}, \ldots, x_{s}\right] \longrightarrow \mathbb{Q}\left[x_{1}, \ldots, x_{r+s}\right]
$$

which is given explicitly by

$$
\begin{aligned}
& f \circ g\left(x_{1}, \ldots, x_{r+s}\right)=\sum_{i=0}^{s} f\left(x_{i+1}-x_{i}, \ldots, x_{i+r}-x_{i}\right) g\left(x_{1}, \ldots, x_{i}, x_{i+r+1}, \ldots, x_{r+s}\right) \\
& \quad-(-1)^{\operatorname{deg} f+r} \sum_{i=1}^{s} f\left(x_{i+r-1}-x_{i+r}, \ldots, x_{i}-x_{i+r}\right) g\left(x_{1}, \ldots, x_{i-1}, x_{i+r}, \ldots, x_{r+s}\right)
\end{aligned}
$$

Specializing to the case when $r=1$, the previous formula reduces to

$$
\begin{aligned}
\mathbb{Q}\left[x_{1}^{2}\right] \otimes \mathbb{Q} \mathbb{Q}\left[x_{1}, \ldots, x_{s-1}\right] & \longrightarrow \mathbb{Q}\left[x_{1}, \ldots, x_{s}\right] \\
x_{1}^{2 n} \circ g\left(x_{1}, \ldots, x_{s-1}\right) & =\sum_{i=1}^{s}\left(\left(x_{i}-x_{i-1}\right)^{2 n}-\left(x_{i}-x_{i+1}\right)^{2 n}\right) g\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{s}\right)
\end{aligned}
$$

where $x_{0}=0$ and $x_{s+1}=x_{s}$ (i.e., the term $\left(x_{s}-x_{s+1}\right)^{2 n}$ is discarded).

2.2. Examples in depths 2 and 3.

2.2.1. Depth 2. The space \widetilde{D}_{2} is defined by the equations

$$
\begin{align*}
f^{\sharp}\left(x_{1} \amalg x_{2}\right) & =f\left(x_{1} \amalg x_{2}\right) \tag{2.5}\\
f\left(x_{1} \amalg x_{2}\right) & \in \widetilde{D}_{1} \otimes_{\mathbb{Q}} \widetilde{D}_{1}
\end{align*}
$$

Concretely, this is the pair of equations

$$
\begin{align*}
f\left(x_{1}, x_{1}+x_{2}\right)+f\left(x_{2}, x_{1}+x_{2}\right) & =f\left(x_{1}, x_{2}\right)+f\left(x_{2}, x_{1}\right) \tag{2.6}\\
f\left(x_{1}, x_{2}\right)+f\left(x_{2}, x_{1}\right) & \in x_{1}^{2} x_{2}^{2} \mathbb{Q}\left[x_{1}^{2}, x_{2}^{2}\right]
\end{align*}
$$

Compare the space $\mathfrak{L s}_{2}$ of linearized double shuffle equations in depth 2 , given by

$$
\begin{align*}
f\left(x_{1}, x_{1}+x_{2}\right)+f\left(x_{2}, x_{1}+x_{2}\right) & =0 \tag{2.7}\\
f\left(x_{1}, x_{2}\right)+f\left(x_{2}, x_{1}\right) & =0
\end{align*}
$$

The map $\mathfrak{s}_{1} \otimes \mathfrak{L s}_{1} \longrightarrow \widetilde{D}_{2}$ is given by

$$
\begin{equation*}
x_{1}^{2 m} \bigcirc x_{1}^{2 n}=x_{1}^{2 m} x_{2}^{2 n}+\left(x_{2}-x_{1}\right)^{2 m} x_{1}^{2 n}-\left(x_{2}-x_{1}\right)^{2 m} x_{2}^{2 n} \tag{2.8}
\end{equation*}
$$

2.2.2. Depth 3. The space \widetilde{D}_{3} is defined by the equations

$$
\begin{align*}
f^{\sharp}\left(x_{1} \amalg x_{2} x_{3}\right) & =\beta_{1,2} f\left(x_{1} \amalg x_{2} x_{3}\right) \tag{2.9}\\
f\left(x_{1} \amalg x_{2} x_{3}\right) & \in \widetilde{D}_{1} \otimes_{\mathbb{Q}} \widetilde{D}_{2}
\end{align*}
$$

Concretely, this is the pair of equations

$$
\begin{align*}
& f\left(x_{1}, x_{12}, x_{123}\right)+f\left(x_{2}, x_{12}, x_{123}\right)+f\left(x_{2}, x_{23}, x_{123}\right) \tag{2.10}\\
& \quad=f\left(x_{1}, x_{2}, x_{23}\right)+f\left(x_{2}, x_{1}, x_{23}\right)+f\left(x_{2}, x_{23}, x_{1}\right) \\
& f\left(x_{1}, x_{2}, x_{3}\right)+f\left(x_{2}, x_{1}, x_{3}\right)+f\left(x_{2}, x_{3}, x_{1}\right) \in x_{1}^{2} \mathbb{Q}\left[x_{1}^{2}\right] \otimes_{\mathbb{Q}} \widetilde{D}_{2}
\end{align*}
$$

where we write $x_{a b}$ for $x_{a}+x_{b}$, and $x_{a b c}$ for $x_{a}+x_{b}+x_{c}$.
Compare the space \mathfrak{s}_{3} of linearized double shuffle equations in depth 2 , given by

$$
\begin{align*}
f\left(x_{1}, x_{12}, x_{123}\right)+f\left(x_{2}, x_{12}, x_{123}\right)+f\left(x_{2}, x_{23}, x_{123}\right) & =0 \tag{2.11}\\
f\left(x_{1}, x_{2}, x_{3}\right)+f\left(x_{2}, x_{1}, x_{3}\right)+f\left(x_{2}, x_{3}, x_{1}\right) & =0
\end{align*}
$$

The map $\mathfrak{s}_{1} \otimes_{\mathbb{Q}} \widetilde{D}_{2} \longrightarrow \widetilde{D}_{3}$ is given by

$$
\begin{align*}
& x_{1}^{2 m} \circ f\left(x_{1}, x_{2}\right)=x_{1}^{2 m} f\left(x_{2}, x_{3}\right)+ \tag{2.12}\\
& \quad\left(x_{2}-x_{1}\right)^{2 m}\left(f\left(x_{1}, x_{3}\right)-f\left(x_{2}, x_{3}\right)\right)+\left(x_{3}-x_{2}\right)^{2 m}\left(f\left(x_{1}, x_{2}\right)-f\left(x_{1}, x_{3}\right)\right)
\end{align*}
$$

3. Relations and exceptional cuspidal elements

3.1. Period polynomials.

Definition 3.1. Let $n \geq 1$ and let $W_{2 n}^{e} \subset \mathbb{Q}[X, Y]$ denote the vector space of homogeneous polynomials $P(X, Y)$ of degree $2 n-2$ satisfying

$$
\begin{gather*}
P(X, Y)+P(Y, X)=0 \quad, \quad P(\pm X, \pm Y)=P(X, Y) \tag{3.1}\\
P(X, Y)+P(X-Y, X)+P(-Y, X-Y)=0 \tag{3.2}
\end{gather*}
$$

The space $W_{2 n}^{e}$ contains the polynomial $p_{2 n}=X^{2 n-2}-Y^{2 n-2}$, and is a direct sum

$$
W_{2 n}^{e} \cong W_{2 n}^{e, 0} \oplus \mathbb{Q} p_{2 n}
$$

where $W_{2 n}^{e, 0}$ is the subspace of polynomials which vanish at $(X, Y)=(1,0)$. We write $W^{e, 0}=\bigoplus_{n} W_{2 n}^{e, 0}$. By the Eichler-Shimura theorem and classical results on the space of modular forms, one knows that

$$
\begin{equation*}
\sum_{n \geq 1} \operatorname{dim} W_{2 n}^{e, 0} s^{2 n}=\frac{s^{12}}{\left(1-s^{4}\right)\left(1-s^{6}\right)} \tag{3.3}
\end{equation*}
$$

3.2. Relations in depth 2. The Ihara bracket gives a map

$$
\begin{equation*}
\{., .\}: \mathfrak{s}_{1} \wedge \mathfrak{s}_{1} \longrightarrow \mathfrak{L s}_{2} . \tag{3.4}
\end{equation*}
$$

It follows immediately from formula (2.8) for \propto and the definition of $W^{e, 0}$ that

$$
\begin{equation*}
W^{e, 0}=\operatorname{ker}\left(\mathfrak{s s}_{1} \wedge \mathfrak{l s}_{1} \longrightarrow \mathfrak{s}_{2}\right) \tag{3.5}
\end{equation*}
$$

It is easy to show that the following sequence is exact

$$
\begin{equation*}
0 \longrightarrow W^{e, 0} \longrightarrow \mathfrak{s}_{1} \wedge \mathfrak{l s}_{1} \xrightarrow{\{,\}} \mathfrak{s}_{2} \longrightarrow 0 . \tag{3.6}
\end{equation*}
$$

and hence by lemma 1.3 , the following sequence is also exact:

$$
0 \longrightarrow W^{e, 0} \longrightarrow \mathfrak{L s}_{1} \otimes_{\mathbb{Q}} \mathfrak{s}_{1} \xrightarrow{\circ} \widetilde{D}^{2} \longrightarrow 0
$$

3.3. Exceptional elements in depth 4. Let $f \in W_{2 n+2}^{e, 0}$ be an even period polynomial of degree $2 n$ which vanishes at $y=0$. It follows from (3.1) and (3.2) that it vanishes along $x=0$ and $x-y=0$. Therefore we can write

$$
f=x y(x-y) f_{0}
$$

where $f_{0} \in \mathbb{Q}[x, y]$ is symmetric of homogeneous degree $2 n-3$. Let us also write $f_{1}=(x-y) f_{0}$. We have $f_{1}(-x, y)=f_{1}(x,-y)=-f_{1}(x, y)$.

Definition 3.2. Let $f \in \mathbb{Q}[x, y]$ be an even period polynomial as above. The following element was defined in [2]:

$$
\begin{align*}
& \mathbf{e}_{f} \in \mathbb{Q}\left[y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right] \tag{3.7}\\
& \mathbf{e}_{f}=\sum_{\mathbb{Z} / \mathbb{Z} 5} f_{1}\left(y_{4}-y_{3}, y_{2}-y_{1}\right)+\left(y_{0}-y_{1}\right) f_{0}\left(y_{2}-y_{3}, y_{4}-y_{3}\right),
\end{align*}
$$

where the sum is over cyclic permutations $\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right) \mapsto\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{0}\right)$. Its reduction $\overline{\mathbf{e}}_{f} \in \mathbb{Q}\left[x_{1}, \ldots, x_{4}\right]$ is obtained by setting $y_{0}=0, y_{i}=x_{i}$, for $i=1, \ldots, 4$.

Theorem 3.3. [2] The reduced polynomial \mathbf{e}_{f} obtained from (3.7) satisfies the linearized double shuffle relations. In particular, we get an injective linear map

$$
\overline{\mathbf{e}}: W^{e, 0} \longrightarrow \mathfrak{s}_{4}
$$

Definition 3.4. Let $\mathcal{E} \subset \mathfrak{s}_{4}$ be the image of the map $\overline{\mathbf{e}}$.

By the previous theorem, $\mathcal{E} \cong W^{e, 0}$. There is an explicit map $\mathcal{E} \rightarrow W^{e, 0}$ given by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto x_{1} x_{2} f\left(x_{1}, x_{2}, 0,0\right)$.

4. A three-term complex of vector spaces

Consider the following complex, where $n \geq 1$:

$$
\begin{equation*}
0 \longrightarrow W^{e, 0} \otimes_{\mathbb{Q}} \widetilde{D}^{n-2} \longrightarrow\left(\mathfrak{s}_{1} \otimes_{\mathbb{Q}} \widetilde{D}^{n-1}\right) \oplus\left(\mathcal{E} \otimes_{\mathbb{Q}} \widetilde{D}^{n-4}\right) \longrightarrow \widetilde{D}^{n} \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

where the first map is the composite (identifying $\mathfrak{s}_{1} \otimes_{\mathbb{Q}} \mathfrak{l s}_{1} \cong x_{1}^{2} x_{2}^{2} \mathbb{Q}\left[x_{1}, x_{2}\right]$),

$$
W^{e, 0} \otimes_{\mathbb{Q}} \widetilde{D}^{n-2} \subset \mathfrak{s s}_{1} \otimes_{\mathbb{Q}} \mathfrak{s}_{1} \otimes_{\mathbb{Q}} \widetilde{D}^{n-2} \xrightarrow{i d \otimes_{\circ}} \mathfrak{l s}_{1} \otimes_{\mathbb{Q}} \widetilde{D}^{n-1}
$$

and the maps in the middle are given by the Ihara bracket (recall $\mathfrak{s}_{1} \cong \widetilde{D}^{1}$)

$$
\mathfrak{l s}_{1} \otimes_{\mathbb{Q}} \widetilde{D}^{n-1} \xrightarrow{\circ} \widetilde{D}^{n} \quad, \quad \mathcal{E} \otimes_{\mathbb{Q}} \widetilde{D}^{n-4} \xrightarrow{\circ} \widetilde{D}^{n}
$$

The sequence (4.1) is a complex, by (3.5) and (1.8).
Conjecture 1. The complex (4.1) is an exact sequence.
If we use the notation

$$
\begin{equation*}
\mathbb{O}(s)=\frac{s^{3}}{1-s^{2}} \quad, \quad \mathbb{S}(s)=\frac{s^{12}}{\left(1-s^{4}\right)\left(1-s^{6}\right)} \tag{4.2}
\end{equation*}
$$

then clearly the exactness of the sequence (4.1) implies that

$$
\begin{equation*}
\sum_{N, d \geq 0}\left(\operatorname{dim}_{\mathbb{Q}} \widetilde{D}_{N}^{d}\right) s^{N} t^{d}=\frac{1}{1-\mathbb{O}(s) t+\mathbb{S}(s) t^{2}-\mathbb{S}(s) t^{4}} \tag{4.3}
\end{equation*}
$$

where \widetilde{D}_{N}^{d} is the part of \widetilde{D}^{d} of weight N. By the arguments given in [2], this in turn implies the usual Broadhurst-Kreimer conjecture for motivic multiple zeta values (and much more besides).
4.1. General remark on Lie algebras with split quadratic homology. Let \mathfrak{g} be a graded Lie algebra over a field k whose graded pieces are finite dimensional. Recall that the Chevalley-Eilenberg complex is given by

$$
\longrightarrow \wedge^{2} \mathfrak{g} \otimes_{k} \mathcal{U} \mathfrak{g} \longrightarrow \mathfrak{g} \otimes_{k} \mathcal{U} \mathfrak{g} \longrightarrow \mathcal{U} \mathfrak{g} \longrightarrow k \longrightarrow 0
$$

and is exact. Now suppose that $\mathfrak{h} \subset \mathfrak{g}$ and $\mathfrak{r} \subset \wedge^{2} \mathfrak{h}$, such that the sequence

$$
\begin{equation*}
0 \longrightarrow \mathfrak{r} \otimes_{k} \mathcal{U} \mathfrak{g} \longrightarrow \mathfrak{h} \otimes_{k} \mathcal{U} \mathfrak{g} \longrightarrow \mathcal{U} \mathfrak{g} \longrightarrow k \longrightarrow 0 \tag{4.4}
\end{equation*}
$$

is exact. Then since this is a resolution of k, we immediately deduce (by tensoring with k, viewed as a $\mathcal{U} \mathfrak{g}$-module for the augmentation map) that

$$
\begin{align*}
H_{1}(\mathfrak{g} ; k) & \cong \mathfrak{h} \tag{4.5}\\
H_{2}(\mathfrak{g} ; k) & \cong \mathfrak{r} \\
H_{i}(\mathfrak{g} ; k) & =0 \quad \text { for all } i \geq 3
\end{align*}
$$

Conversely, suppose that (4.5) is true, where $\mathfrak{h} \subset \mathfrak{g}$, and $\mathfrak{r} \subset \operatorname{ker}\left(\wedge^{2} \mathfrak{h} \rightarrow \mathfrak{g}\right)$. The first line implies that \mathfrak{g}, and hence $\mathcal{U} \mathfrak{g}$ are generated by \mathfrak{h}. Thus there is a surjective map $\mathfrak{h} \otimes_{k} \mathcal{U} \mathfrak{g} \rightarrow \mathcal{U} \mathfrak{g}_{>0}$, and we have

$$
\begin{equation*}
\mathfrak{r} \otimes_{k} \mathcal{U} \mathfrak{g} \subset \operatorname{ker}\left(\mathfrak{h} \otimes_{k} \mathcal{U} \mathfrak{g} \longrightarrow \mathcal{U} \mathfrak{g}_{>0}\right) \tag{4.6}
\end{equation*}
$$

Standard arguments imply that the Poincaré series of $\mathcal{U} \mathfrak{g}$ is related to the Poincaré series of the homology of \mathfrak{g} via $\chi_{\mathcal{U}_{\mathfrak{g}}}(t)=\left(1-\chi_{H_{1}(\mathfrak{g} ; k)}(t)+\chi_{H_{2}(\mathfrak{g} ; k)}(t)\right)^{-1}$. This implies equality in (4.6) and hence the sequence

$$
0 \longrightarrow \mathfrak{r} \otimes_{k} \mathcal{U} \mathfrak{g} \longrightarrow \mathfrak{h} \otimes_{k} \mathcal{U} \mathfrak{g} \rightarrow \mathcal{U} \mathfrak{g}_{>0} \longrightarrow 0
$$

is exact. This is equivalent to the exactness of (4.4).

4.2. Closing remark.

Theorem 4.1. The exactness of sequence (4.1) (conjecture 1) is equivalent to the strong Broadhurst-Kreimer conjecture (conjecture 3 in [2]), which states that

$$
\begin{align*}
H_{1}(\mathfrak{s s} ; \mathbb{Q}) & \cong \mathfrak{l s}_{1} \oplus \mathcal{E} \tag{4.7}\\
H_{2}\left(\mathfrak{s}^{(} \mathbb{Q}\right) & \cong W^{e, 0} \\
H_{i}\left(\mathfrak{l s}_{\mathbf{s}} ; \mathbb{Q}\right) & =0 \quad \text { for all } i \geq 3
\end{align*}
$$

Proof. Apply the previous remarks to $\mathfrak{g}=\mathfrak{l}$, and use the fact (lemma 1.3) that $\mathcal{U} \mathfrak{g} \cong \widetilde{D}$, together with (3.5).

Question: Does there exist a natural splitting $\widetilde{D}^{n} \longrightarrow \mathcal{E} \otimes_{\mathbb{Q}} \widetilde{D}^{n-4}$ which is zero on the image of $\widetilde{D}^{1} \otimes_{\mathbb{Q}} \widetilde{D}^{n-1}$? I.e., can one think of (4.1) as a (split) 4-term sequence?

References

[1] F. Brown: Anatomy of an associator, preprint (10 April 2013).
[2] F. Brown: Depth-graded motivic multiple zeta values, http://arxiv.org/abs/1301.3053.
[3] D. Broadhurst, D. Kreimer : Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B 393 (1997), no. 3-4, 403-412.
[4] K. Ihara, M. Kaneko, D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math, 142 (2006) 307-338.
[5] G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 185-231.

