AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

FRANCIS BROWN

Don Zagier asked me whether the Broadhurst-Kreimer conjecture could be reformulated as a short exact sequence of spaces of polynomials in commutative variables. The purpose of this note is to describe just such a sequence.

1. Depth-graded double shuffle Hopf algebra

Recall the double shuffle equations from [5], Définition 1.3. Let $\Phi \in \mathbb{Q}\langle\langle e_0, e_1 \rangle\rangle$ be a non-commutative formal power series with coefficients in \mathbb{Q} . Let

$$\Delta_{\mathrm{III}} : \mathbb{Q}\langle\langle e_0, e_1 \rangle\rangle \longrightarrow \mathbb{Q}\langle\langle e_0, e_1 \rangle\rangle \widehat{\otimes}_{\mathbb{Q}} \mathbb{Q}\langle\langle e_0, e_1 \rangle\rangle$$

denote the continuous comultiplication for which e_0, e_1 are primitive, such that Δ_{III} is a homomorphism for the concatenation product. The coefficients of the element Φ satisfy the shuffle equations if $\Delta_{III} \Phi = \Phi \otimes \Phi$. Now let $Y = \{y_1, y_2, \ldots, \}$ denote an alphabet in infinitely many elements y_i of degree i and let

$$\Delta_*: \mathbb{Q}\langle\langle Y \rangle\rangle \longrightarrow \mathbb{Q}\langle\langle Y \rangle\rangle\widehat{\otimes}_{\mathbb{Q}}\mathbb{Q}\langle\langle Y \rangle\rangle$$

denote the continuous comultiplication such that $\Delta_*(y_n) = \sum_{i+j=n} y_i \otimes y_j$, and such that Δ_* is a homomorphism for the concatenation product. The coefficients of an element $\Psi \in \mathbb{Q}\langle\langle Y \rangle\rangle$ satisfy the stuffle equations if $\Delta_* \Psi = \Psi \otimes \Psi$. Racinet's group of solutions to the double shuffle equations consists of elements $\Phi \in \mathbb{Q}\langle\langle e_0, e_1 \rangle\rangle$ such that

(1.1)
$$\Delta_{\mathrm{III}} \Phi = \Phi \otimes \Phi$$
$$\Delta_* \Phi_* = \Phi_* \otimes \Phi_*$$
$$\Phi(e_0) = \Phi(e_1) = 0 \quad , \quad \Phi(1) = 1$$

where $\Phi(w)$ is the coefficient of a word $w \in \{e_0, e_1\}^{\times}$ in Φ , and $\Phi_* \in \mathbb{Q}\langle\langle Y \rangle\rangle$ is obtained from Φ by a regularization procedure, which we shall not require here. We can view a solution to (1.1) either as an element $\Phi \in \mathbb{Q}\langle\langle e_0, e_1 \rangle\rangle$ or as an element $\Phi_* \in \mathbb{Q}\langle\langle Y \rangle\rangle$ since they determine each other uniquely.

1.1. **Depth-graded version.** Recall that the *depth filtration* is the decreasing filtration on $\mathbb{Q}\langle\langle e_0, e_1 \rangle\rangle$ (and respectively $\mathbb{Q}\langle\langle Y \rangle\rangle$) with respect to the \mathfrak{D} -degree, where e_0 has \mathfrak{D} -degree 0, and e_1 has \mathfrak{D} -degree 1 (respectively y_n has \mathfrak{D} -degree 1). By passing to the associated weight and depth bigraded Hopf algebras, Δ_{III} becomes the coproduct

(1.2)
$$\Delta_{\mathrm{III}} : \mathbb{Q}\langle e_0, e_1 \rangle \longrightarrow \mathbb{Q}\langle e_0, e_1 \rangle \otimes_{\mathbb{Q}} \mathbb{Q}\langle e_0, e_1 \rangle$$

with respect to which e_0, e_1 are primitive (no change here), and Δ_* becomes

(1.3)
$$\Delta^{Y}_{\mathrm{III}} : \mathbb{Q}\langle Y \rangle \longrightarrow \mathbb{Q}\langle Y \rangle \otimes_{\mathbb{Q}} \mathbb{Q}\langle Y \rangle$$

for which y_n is primitive for all $n \ge 1$. Now define a map

(1.4)
$$\begin{aligned} \alpha : \mathbb{Q}\langle e_0, e_1 \rangle &\longrightarrow \mathbb{Q}\langle Y \rangle \\ \alpha(e_1 e_0^{n_1} \dots e_1 e_0^{n_r}) &= y_{n_1+1} \dots y_{n_r+1} \end{aligned}$$

Date: 20th May 2013.

FRANCIS BROWN

and such that α sends all words beginning in e_0 to zero. A section of this map is given by the map $\beta : \mathbb{Q}\langle Y \rangle \to \mathbb{Q}\langle e_0, e_1 \rangle$ which sends y_n to $e_1 e_0^{n-1}$ and is a homomorphism for the concatenation products.

Definition 1.1. An element $\Psi \in \mathbb{Q}\langle Y \rangle$ is a solution to the *depth-graded double shuffle* equations if it equalizes the two coproducts (1.2) and (1.3) and is even in depth one:

(1.5)
$$\Delta_{\mathrm{III}} \beta(\Psi) = (\beta \otimes \beta) (\Delta_{\mathrm{III}}^{Y} \Psi)$$
$$\Psi(y_n) = 0 \text{ if } n \text{ is even or } n \text{ is } 1$$

The reason for the second condition in (1.5) is explained in [1]: the double shuffle equations, restricted to depth one, are vacuous. Nonetheless the full equations (in particular in depth ≤ 2) imply evenness in depth one, so this condition must be added back artificially to the depth-graded versions of the equations.

Definition 1.2. Let $D \subset \mathbb{Q}\langle Y \rangle$ denote the largest bigraded subspace of the vector space of solutions to (1.5) which is a coalgebra for Δ_{Π}^{Y} .

For simplicity, we shall denote the coproduct by

 $\Delta: \widetilde{D} \longrightarrow \widetilde{D} \otimes_{\mathbb{Q}} \widetilde{D} \ .$

Recall that the *linearized double shuffle equations* [1] are defined by the bigraded vector space is of elements $\Phi \in \mathbb{Q}\langle e_0, e_1 \rangle$ which satisfy the equations:

(1.6)
$$\Delta_{\mathrm{III}} \Phi = 1 \otimes \Phi + \Phi \otimes 1$$
$$\Delta_{\mathrm{III}}^{Y} \alpha(\Phi) = 1 \otimes \alpha(\Phi) + \alpha(\Phi) \otimes 1$$
$$\Phi(e_{0}^{i}e_{1}) = 0 \text{ if } i \text{ is odd}$$

and satisfy $\Phi(e_0) = 0$ and $\Phi(e_1) = 0$. Note that, compared to [1] §7, we have added the condition that $\Phi(e_1)$ vanish to exclude the trivial solution to these equations.

Lemma 1.3. The primitive elements in \widetilde{D} are exactly given by \mathfrak{ls} .

Proof. Suppose that $\Psi \in \widetilde{D} \subset \mathbb{Q}\langle Y \rangle$ is primitive for $\Delta_{\mathrm{III}}^{Y}$ and therefore by (1.5), $\beta(\Psi)$ is primitive for Δ_{III} . Since every word in $\{e_0, e_1\}^{\times}$ can be uniquely written as a linear combination of shuffles of e_0^n with words beginning in e_1 , we can uniquely extend $\beta(\Psi)$ to an element $\Phi \in \mathbb{Q}\langle e_0, e_1 \rangle$ which is primitive for Δ_{III} and satisfies $\Phi(e_0) = 0$ and $\alpha(\Phi) = \Psi$. The element Φ satisfies the linearized double shuffle equations (1.6). \Box

1.2. The Ihara action. The action on the pro-unipotent fundamental groupoid of $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ by automorphisms gives rise to a continuous \mathbb{Q} -linear map

$$\circ: {}_{0}\Pi_{1}(\mathbb{Q}) \widehat{\otimes} {}_{0}\Pi_{1}(\mathbb{Q}) \longrightarrow {}_{0}\Pi_{1}(\mathbb{Q}) ,$$

known as the *Ihara action*, where ${}_{0}\Pi_{1}(\mathbb{Q}) \subset \mathbb{Q}\langle\langle e_{0}, e_{1}\rangle\rangle$ consists of invertible power series Φ which are group-like for Δ_{III} . Concretely, \circ is defined on power series by

$$F(e_0, e_1), G(e_0, e_1) \mapsto G(e_0, F(e_0, e_1)e_1F(e_0, e_1)^{-1})F(e_0, e_1)$$

One of the main results of Racinet's thesis [5] is the following.

Theorem 1.4. (*Racinet*) The solutions to the double shuffle equations (1.1) are preserved by the Ihara action.

In [2], we defined a variant of the Ihara action, called the *linearized Ihara action*.

 $\mathbf{2}$

Definition 1.5. The linearized Ihara action is the \mathbb{Q} -bilinear map

$$\underline{\circ}: \mathbb{Q}\langle e_0, e_1 \rangle \otimes_{\mathbb{Q}} \mathbb{Q}\langle e_0, e_1 \rangle \to \mathbb{Q}\langle e_0, e_1 \rangle$$

defined inductively as follows. For words a, w in e_0, e_1 , and for any integer $n \ge 0$, let

(1.7)
$$a \underline{\circ} (e_0^n e_1 w) = e_0^n a e_1 w + e_0^n e_1 a^* w + e_0^n e_1 (a \underline{\circ} w)$$

where $a \underline{\circ} e_0^n = e_0^n a$, and for any $a_i \in \{e_0, e_1\}^{\times}$, $(a_1 \dots a_n)^* = (-1)^n a_n \dots a_1$.

The action $\underline{\circ}$ is not associative but satisfies

(1.8)
$$f_1 \underline{\circ} (f_2 \underline{\circ} g) - f_2 \underline{\circ} (f_1 \underline{\circ} g) = (f_1 \underline{\circ} f_2) \underline{\circ} g - (f_2 \underline{\circ} f_1) \underline{\circ} g$$

for all $f_1, f_2, g \in \mathbb{Q}\langle e_0, e_1 \rangle$. A variant of Racinet's theorem is the following:

Corollary 1.6. The linearized Ihara action defines a map

$$(1.9) \qquad \underline{\circ} : \mathfrak{ls} \otimes_{\mathbb{O}} \widetilde{D} \longrightarrow \widetilde{D}$$

1.3. A variant of the Milnor-Moore theorem. Suppose that we have a coalgebra A over \mathbb{Q} , with coproduct

$$\Delta: A \longrightarrow A \otimes_{\mathbb{Q}} A$$

which is graded, connected, and cocommutative. Let \mathfrak{a} denote the set of primitive elements of A. Suppose now that we have a \mathbb{Q} -bilinear map

$$(1.10) \qquad \qquad \mathfrak{a} \circ A \longrightarrow A$$

which is graded, and such that $\Delta(f \circ g) = \Delta(f) \circ \Delta(g)$ for all $f \in \mathfrak{a}, g \in A$. Denote the antisymmetrization $\wedge^2 \mathfrak{a} \to \mathfrak{a}$ by $\{f, g\} = f \circ g - g \circ f$. Suppose furthermore that \circ satisfies the pre-Lie identity:

$$f_1 \circ (f_2 \circ g) - f_2 \circ (f_1 \circ g) = \{f_1, f_2\} \circ g$$

for all $f_1, f_2 \in \mathfrak{a}, g \in A$. Then in particular, \mathfrak{a} is a Lie algebra with respect to $\{,\}$ and the map (1.10) defines a map $\mathcal{U}\mathfrak{a} \to A$, where $\mathcal{U}\mathfrak{a}$ is the universal enveloping algebra of \mathfrak{a} .

Proposition 1.7. With these assumptions, $\mathcal{U}\mathfrak{a} \cong A$.

Proof. For any connected graded Hopf algebra H, let $\Delta^{(2)} = \Delta(x) - x \otimes 1 - 1 \otimes x$ denote the reduced coproduct, and define $\Delta^{(r)} : H \to H^{\otimes r}$ to be the iterated reduced coproduct for $r \geq 2$, and the identity for r = 1. For every $x \in H$ there is a smallest r such that $\Delta^{(r)}(x) = 0$. This defines an increasing (coradical) filtration R on H. In our situation, A is cocommutative and so we obtain a map

$$\Delta^{(r-1)} : \operatorname{gr}_r^R A \longrightarrow \operatorname{Sym}^{r-1} \mathfrak{a}$$
.

By iterating (1.10) and symmetrizing, we obtain a map $m : \text{Sym}^{r-1}\mathfrak{a} \to R_r A$, which is an inverse to $\Delta^{(r-1)}$ by the compatibility between Δ and \circ . Thus

$$\operatorname{gr}_r^R A \cong \operatorname{Sym}^{r-1} \mathfrak{a}$$
.

But $\operatorname{Sym}^{r-1}\mathfrak{a}$ is isomorphic to $\operatorname{gr}_r^R \mathcal{U}\mathfrak{a}$ by the Poincaré-Birkhoff-Witt theorem. Therefore $\mathcal{U}\mathfrak{a} \to A$ is an isomorphism (of coalgebras).

By applying the previous proposition to D, we deduce from lemma 1.3 that the coalgebra \widetilde{D} is isomorphic to the universal enveloping algebra of \mathfrak{ls} :

$$(1.11) \mathcal{U}\mathfrak{ls}\cong D$$

FRANCIS BROWN

2. Equations for polynomials in commuting variables

In [1], §3-5, it is explained how to translate Hopf algebraic properties of series Φ as described above, into functional equations for power series in commuting variables. The basic remark is that there is an isomorphism of graded vector spaces

$$\begin{array}{rcl} \operatorname{gr}_{\mathfrak{D}}^{r}\mathbb{Q}\langle Y\rangle & \longrightarrow & \mathbb{Q}[x_{1},\ldots,x_{r}]\\ y_{i_{1}}\ldots y_{i_{r}} & \mapsto & x_{1}^{i_{1}}\ldots x_{r}^{i_{r}} \end{array}$$

where the weight of a polynomial in $\mathbb{Q}[x_1, \ldots, x_r]$ is defined to be the degree plus the number of variables. The (p, q)-th shuffle equations are defined to be the (p, q)th component of $\Delta_{\mathrm{III}} \Psi$. If the depth p + q-component of Ψ is the element f, it is written

 $f^{\sharp}(x_1 \dots x_p \amalg x_{p+1} \dots x_{p+q})$

where, using the notation from [4], we define

$$g^{\sharp}(x_1,\ldots,x_n) = g(x_1,x_1+x_2,\ldots,x_1+\ldots+x_n)$$

and \mathbf{m} is the shuffle product acting formally on the arguments of the function f; thus $f(x_i u \mathbf{m} x_j v) = f(x_i, u \mathbf{m} x_j v) + f(x_j, x_i u \mathbf{m} v)$. Likewise, the (p, q)-th stuffle equation is defined to be the (p, q)th component of $\Delta_{\mathbf{III}}^Y \Psi$. It is written

$$f(x_1 \dots x_p \coprod x_{p+1} \dots x_{p+q})$$

Corresponding to the (i, j)th component of β , let us define a map $\beta_{i,j}$:

(2.1) $\beta_{i,j}f(x_1,\ldots,x_{i+j}) = f(x_1,x_1+x_2,\ldots,x_1+\ldots+x_i,x_{i+1},x_{i+1}+x_{i+2},\ldots,x_i+\ldots+x_{i+j})$

Lemma 2.1. The defining equations for \widetilde{D}_n , where $n \geq 2$ correspond to:

(2.2)
$$f^{\sharp}(x_1 \dots x_p \amalg x_{p+1} \dots x_{p+q}) = \beta_{p,q} f(x_1 \dots x_p \amalg x_{p+1} \dots x_{p+q})$$
$$f(x_1 \dots x_p \amalg x_{p+1} \dots x_{p+q}) \in \widetilde{D}_p \otimes_{\mathbb{Q}} \widetilde{D}_q$$

for all $1 \leq p \leq q$ where p + q = n. In the second line of these equations we identify $\mathbb{Q}[x_1, \ldots, x_p] \otimes_{\mathbb{Q}} \mathbb{Q}[x_1, \ldots, x_q]$ with $\mathbb{Q}[x_1, \ldots, x_{p+q}]$.

For comparison, the defining equations for \mathfrak{ls}_n , where $n \geq 2$ correspond to

(2.3)
$$f^{\sharp}(x_1 \dots x_p \amalg x_{p+1} \dots x_{p+q}) = 0$$
 for all $1 \le p \le q$, $p+q=n$
 $f(x_1 \dots x_p \amalg x_{p+1} \dots x_{p+q}) = 0$ for all $1 \le p \le q$, $p+q=n$

The defining equations for \tilde{D}_n and \mathfrak{ls}_n in depth n = 1 are simply f(0) = 0, $f(x_1)$ even, by the second lines of equations (1.5) and (1.6), giving

(2.4)
$$\widetilde{D}_1 = \mathfrak{ls}_1 \cong x_1^2 \mathbb{Q}[x_1^2]$$

Of course, $\widetilde{D}_0 = \mathbb{Q}$, by definition.

2.1. Linearized Ihara action for polynomials. In [2] and [1] we wrote down the following explicit formula for the linearized Ihara action:

$$\underline{\circ}: \mathbb{Q}[x_1, \dots, x_r] \otimes_{\mathbb{Q}} \mathbb{Q}[x_1, \dots, x_s] \longrightarrow \mathbb{Q}[x_1, \dots, x_{r+s}]$$

which is given explicitly by

$$f \underline{\circ} g(x_1, \dots, x_{r+s}) = \sum_{i=0}^s f(x_{i+1} - x_i, \dots, x_{i+r} - x_i)g(x_1, \dots, x_i, x_{i+r+1}, \dots, x_{r+s})$$
$$- (-1)^{\deg f + r} \sum_{i=1}^s f(x_{i+r-1} - x_{i+r}, \dots, x_i - x_{i+r})g(x_1, \dots, x_{i-1}, x_{i+r}, \dots, x_{r+s})$$

Specializing to the case when r = 1, the previous formula reduces to

$$\mathbb{Q}[x_1^2] \otimes_{\mathbb{Q}} \mathbb{Q}[x_1, \dots, x_{s-1}] \longrightarrow \mathbb{Q}[x_1, \dots, x_s] \\
x_1^{2n} \underline{\circ} g(x_1, \dots, x_{s-1}) = \sum_{i=1}^s \left((x_i - x_{i-1})^{2n} - (x_i - x_{i+1})^{2n} \right) g(x_1, \dots, \widehat{x_i}, \dots, x_s)$$

where $x_0 = 0$ and $x_{s+1} = x_s$ (i.e., the term $(x_s - x_{s+1})^{2n}$ is discarded).

2.2. Examples in depths 2 and 3.

2.2.1. Depth 2. The space \widetilde{D}_2 is defined by the equations

(2.5)
$$f^{\sharp}(x_1 \bmod x_2) = f(x_1 \bmod x_2)$$
$$f(x_1 \bmod x_2) \in \widetilde{D}_1 \otimes_{\mathbb{Q}} \widetilde{D}_1$$

Concretely, this is the pair of equations

(2.6)
$$f(x_1, x_1 + x_2) + f(x_2, x_1 + x_2) = f(x_1, x_2) + f(x_2, x_1)$$
$$f(x_1, x_2) + f(x_2, x_1) \in x_1^2 x_2^2 \mathbb{Q}[x_1^2, x_2^2]$$

Compare the space \mathfrak{ls}_2 of linearized double shuffle equations in depth 2, given by

(2.7)
$$f(x_1, x_1 + x_2) + f(x_2, x_1 + x_2) = 0$$
$$f(x_1, x_2) + f(x_2, x_1) = 0$$

The map $\mathfrak{ls}_1 \otimes \mathfrak{ls}_1 \longrightarrow \widetilde{D}_2$ is given by

(2.8)
$$x_1^{2m} \underline{\circ} x_1^{2n} = x_1^{2m} x_2^{2n} + (x_2 - x_1)^{2m} x_1^{2n} - (x_2 - x_1)^{2m} x_2^{2n}$$

2.2.2. Depth 3. The space \widetilde{D}_3 is defined by the equations

(2.9)
$$f^{\sharp}(x_1 \amalg x_2 x_3) = \beta_{1,2} f(x_1 \amalg x_2 x_3)$$
$$f(x_1 \amalg x_2 x_3) \in \widetilde{D}_1 \otimes_{\mathbb{Q}} \widetilde{D}_2$$

Concretely, this is the pair of equations

$$(2.10) \quad f(x_1, x_{12}, x_{123}) + f(x_2, x_{12}, x_{123}) + f(x_2, x_{23}, x_{123}) \\ = f(x_1, x_2, x_{23}) + f(x_2, x_1, x_{23}) + f(x_2, x_{23}, x_1)$$

$$f(x_1, x_2, x_3) + f(x_2, x_1, x_3) + f(x_2, x_3, x_1) \in x_1^2 \mathbb{Q}[x_1^2] \otimes_{\mathbb{Q}} D_2$$

where we write x_{ab} for $x_a + x_b$, and x_{abc} for $x_a + x_b + x_c$.

Compare the space \mathfrak{ls}_3 of linearized double shuffle equations in depth 2, given by

$$(2.11) f(x_1, x_{12}, x_{123}) + f(x_2, x_{12}, x_{123}) + f(x_2, x_{23}, x_{123}) = 0$$

$$f(x_1, x_2, x_3) + f(x_2, x_1, x_3) + f(x_2, x_3, x_1) = 0$$

The map $\mathfrak{ls}_1 \otimes_{\mathbb{Q}} \widetilde{D}_2 \longrightarrow \widetilde{D}_3$ is given by

(2.12)
$$x_1^{2m} \underline{\circ} f(x_1, x_2) = x_1^{2m} f(x_2, x_3) + (x_2 - x_1)^{2m} (f(x_1, x_3) - f(x_2, x_3)) + (x_3 - x_2)^{2m} (f(x_1, x_2) - f(x_1, x_3))$$

FRANCIS BROWN

3. Relations and exceptional cuspidal elements

3.1. Period polynomials.

Definition 3.1. Let $n \ge 1$ and let $W_{2n}^e \subset \mathbb{Q}[X, Y]$ denote the vector space of homogeneous polynomials P(X, Y) of degree 2n - 2 satisfying

(3.1)
$$P(X,Y) + P(Y,X) = 0$$
, $P(\pm X,\pm Y) = P(X,Y)$
(3.2) $P(X,Y) + P(X-Y,X) + P(-Y,X-Y) = 0$.

The space W_{2n}^e contains the polynomial $p_{2n} = X^{2n-2} - Y^{2n-2}$, and is a direct sum

$$W_{2n}^e \cong W_{2n}^{e,0} \oplus \mathbb{Q} \, p_{2n}$$

where $W_{2n}^{e,0}$ is the subspace of polynomials which vanish at (X, Y) = (1, 0). We write $W^{e,0} = \bigoplus_n W_{2n}^{e,0}$. By the Eichler-Shimura theorem and classical results on the space of modular forms, one knows that

(3.3)
$$\sum_{n\geq 1} \dim W_{2n}^{e,0} s^{2n} = \frac{s^{12}}{(1-s^4)(1-s^6)} \; .$$

3.2. Relations in depth 2. The Ihara bracket gives a map

$$(3.4) \qquad \{.,.\}: \mathfrak{ls}_1 \wedge \mathfrak{ls}_1 \longrightarrow \mathfrak{ls}_2$$

It follows immediately from formula (2.8) for $\underline{\circ}$ and the definition of $W^{e,0}$ that

(3.5)
$$W^{e,0} = \ker(\mathfrak{ls}_1 \wedge \mathfrak{ls}_1 \longrightarrow \mathfrak{ls}_2)$$

It is easy to show that the following sequence is exact

$$(3.6) 0 \longrightarrow W^{e,0} \longrightarrow \mathfrak{ls}_1 \wedge \mathfrak{ls}_1 \xrightarrow{\{,\}} \mathfrak{ls}_2 \longrightarrow 0$$

and hence by lemma 1.3, the following sequence is also exact:

$$0 \longrightarrow W^{e,0} \longrightarrow \mathfrak{ls}_1 \otimes_{\mathbb{Q}} \mathfrak{ls}_1 \xrightarrow{\circ} \widetilde{D}^2 \longrightarrow 0 .$$

3.3. Exceptional elements in depth 4. Let $f \in W_{2n+2}^{e,0}$ be an even period polynomial of degree 2n which vanishes at y = 0. It follows from (3.1) and (3.2) that it vanishes along x = 0 and x - y = 0. Therefore we can write

$$f = xy(x - y)f_0$$

where $f_0 \in \mathbb{Q}[x, y]$ is symmetric of homogeneous degree 2n - 3. Let us also write $f_1 = (x - y)f_0$. We have $f_1(-x, y) = f_1(x, -y) = -f_1(x, y)$.

Definition 3.2. Let $f \in \mathbb{Q}[x, y]$ be an even period polynomial as above. The following element was defined in [2]:

(3.7)
$$\mathbf{e}_{f} \in \mathbb{Q}[y_{0}, y_{1}, y_{2}, y_{3}, y_{4}]$$
$$\mathbf{e}_{f} = \sum_{\mathbb{Z}/\mathbb{Z}5} f_{1}(y_{4} - y_{3}, y_{2} - y_{1}) + (y_{0} - y_{1})f_{0}(y_{2} - y_{3}, y_{4} - y_{3}) ,$$

where the sum is over cyclic permutations $(y_0, y_1, y_2, y_3, y_4) \mapsto (y_1, y_2, y_3, y_4, y_0)$. Its reduction $\overline{\mathbf{e}}_f \in \mathbb{Q}[x_1, \ldots, x_4]$ is obtained by setting $y_0 = 0, y_i = x_i$, for $i = 1, \ldots, 4$.

Theorem 3.3. [2] The reduced polynomial $\overline{\mathbf{e}}_f$ obtained from (3.7) satisfies the linearized double shuffle relations. In particular, we get an injective linear map

$$\overline{\mathbf{e}}: W^{e,0} \longrightarrow \mathfrak{ls}_4$$

Definition 3.4. Let $\mathcal{E} \subset \mathfrak{ls}_4$ be the image of the map $\overline{\mathbf{e}}$.

TITLE

By the previous theorem, $\mathcal{E} \cong W^{e,0}$. There is an explicit map $\mathcal{E} \to W^{e,0}$ given by $f(x_1, x_2, x_3, x_4) \mapsto x_1 x_2 f(x_1, x_2, 0, 0)$.

4. A THREE-TERM COMPLEX OF VECTOR SPACES

Consider the following complex, where $n \ge 1$:

 $(4.1) \qquad 0 \longrightarrow W^{e,0} \otimes_{\mathbb{Q}} \widetilde{D}^{n-2} \longrightarrow (\mathfrak{ls}_1 \otimes_{\mathbb{Q}} \widetilde{D}^{n-1}) \oplus (\mathcal{E} \otimes_{\mathbb{Q}} \widetilde{D}^{n-4}) \longrightarrow \widetilde{D}^n \longrightarrow 0$ where the first map is the composite (identifying $\mathfrak{ls}_1 \otimes_{\mathbb{Q}} \mathfrak{ls}_1 \cong x_1^2 x_2^2 \mathbb{Q}[x_1, x_2]),$

$$W^{e,0} \otimes_{\mathbb{Q}} \widetilde{D}^{n-2} \quad \subset \quad \mathfrak{ls}_1 \otimes_{\mathbb{Q}} \mathfrak{ls}_1 \otimes_{\mathbb{Q}} \widetilde{D}^{n-2} \quad \xrightarrow{id \otimes \circ} \quad \mathfrak{ls}_1 \otimes_{\mathbb{Q}} \widetilde{D}^{n-1} ,$$

and the maps in the middle are given by the Ihara bracket (recall $\mathfrak{ls}_1 \cong \widetilde{D}^1$)

 $\mathfrak{ls}_1 \otimes_{\mathbb{Q}} \widetilde{D}^{n-1} \xrightarrow{\circ} \widetilde{D}^n \qquad , \qquad \mathcal{E} \otimes_{\mathbb{Q}} \widetilde{D}^{n-4} \xrightarrow{\circ} \widetilde{D}^n$

The sequence (4.1) is a complex, by (3.5) and (1.8).

Conjecture 1. The complex (4.1) is an exact sequence.

If we use the notation

(4.2)
$$\mathbb{O}(s) = \frac{s^3}{1-s^2}$$
, $\mathbb{S}(s) = \frac{s^{12}}{(1-s^4)(1-s^6)}$.

then clearly the exactness of the sequence (4.1) implies that

(4.3)
$$\sum_{N,d\geq 0} (\dim_{\mathbb{Q}} \widetilde{D}_N^d) s^N t^d = \frac{1}{1 - \mathbb{O}(s)t + \mathbb{S}(s)t^2 - \mathbb{S}(s)t^4}$$

where \widetilde{D}_N^d is the part of \widetilde{D}^d of weight N. By the arguments given in [2], this in turn implies the usual Broadhurst-Kreimer conjecture for motivic multiple zeta values (and much more besides).

4.1. General remark on Lie algebras with split quadratic homology. Let \mathfrak{g} be a graded Lie algebra over a field k whose graded pieces are finite dimensional. Recall that the Chevalley-Eilenberg complex is given by

$$\longrightarrow \wedge^2 \mathfrak{g} \otimes_k \mathcal{U} \mathfrak{g} \longrightarrow \mathfrak{g} \otimes_k \mathcal{U} \mathfrak{g} \longrightarrow \mathcal{U} \mathfrak{g} \longrightarrow k \longrightarrow 0$$

and is exact. Now suppose that $\mathfrak{h} \subset \mathfrak{g}$ and $\mathfrak{r} \subset \wedge^2 \mathfrak{h}$, such that the sequence

$$(4.4) 0 \longrightarrow \mathfrak{r} \otimes_k \mathcal{U}\mathfrak{g} \longrightarrow \mathfrak{h} \otimes_k \mathcal{U}\mathfrak{g} \longrightarrow \mathcal{U}\mathfrak{g} \longrightarrow k \longrightarrow 0$$

is exact. Then since this is a resolution of k, we immediately deduce (by tensoring with k, viewed as a $\mathcal{U}\mathfrak{g}$ -module for the augmentation map) that

(4.5)
$$\begin{array}{rcl} H_1(\mathfrak{g};k) &\cong \mathfrak{h} \\ H_2(\mathfrak{g};k) &\cong \mathfrak{r} \\ H_i(\mathfrak{g};k) &= 0 & \text{ for all } i \geq 3 \end{array}$$

Conversely, suppose that (4.5) is true, where $\mathfrak{h} \subset \mathfrak{g}$, and $\mathfrak{r} \subset \ker(\wedge^2 \mathfrak{h} \to \mathfrak{g})$. The first line implies that \mathfrak{g} , and hence $\mathcal{U}\mathfrak{g}$ are generated by \mathfrak{h} . Thus there is a surjective map $\mathfrak{h} \otimes_k \mathcal{U}\mathfrak{g} \to \mathcal{U}\mathfrak{g}_{>0}$, and we have

(4.6)
$$\mathfrak{r} \otimes_k \mathcal{U}\mathfrak{g} \subset \ker(\mathfrak{h} \otimes_k \mathcal{U}\mathfrak{g} \longrightarrow \mathcal{U}\mathfrak{g}_{>0})$$

Standard arguments imply that the Poincaré series of $\mathcal{U}\mathfrak{g}$ is related to the Poincaré series of the homology of \mathfrak{g} via $\chi_{\mathcal{U}\mathfrak{g}}(t) = (1 - \chi_{H_1(\mathfrak{g};k)}(t) + \chi_{H_2(\mathfrak{g};k)}(t))^{-1}$. This implies equality in (4.6) and hence the sequence

$$0 \longrightarrow \mathfrak{r} \otimes_k \mathcal{U}\mathfrak{g} \longrightarrow \mathfrak{h} \otimes_k \mathcal{U}\mathfrak{g} \to \mathcal{U}\mathfrak{g}_{>0} \longrightarrow 0$$

is exact. This is equivalent to the exactness of (4.4).

4.2. Closing remark.

Theorem 4.1. The exactness of sequence (4.1) (conjecture 1) is equivalent to the strong Broadhurst-Kreimer conjecture (conjecture 3 in [2]), which states that

(4.7)
$$\begin{aligned} H_1(\mathfrak{ls};\mathbb{Q}) &\cong \mathfrak{ls}_1 \oplus \mathcal{E} \\ H_2(\mathfrak{ls};\mathbb{Q}) &\cong W^{e,0} \\ H_i(\mathfrak{ls};\mathbb{Q}) &= 0 \quad \text{for all } i \geq 3 \end{aligned}$$

Proof. Apply the previous remarks to $\mathfrak{g} = \mathfrak{l}\mathfrak{s}$, and use the fact (lemma 1.3) that $\mathcal{U}\mathfrak{g} \cong \widetilde{D}$, together with (3.5).

Question: Does there exist a natural splitting $\widetilde{D}^n \longrightarrow \mathcal{E} \otimes_{\mathbb{Q}} \widetilde{D}^{n-4}$ which is zero on the image of $\widetilde{D}^1 \otimes_{\mathbb{Q}} \widetilde{D}^{n-1}$? I.e., can one think of (4.1) as a (split) 4-term sequence?

References

- [1] F. Brown: Anatomy of an associator, preprint (10 April 2013).
- [2] F. Brown: Depth-graded motivic multiple zeta values, http://arxiv.org/abs/1301.3053.
- [3] D. Broadhurst, D. Kreimer : Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B 393 (1997), no. 3-4, 403-412.
- [4] K. Ihara, M. Kaneko, D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math, 142 (2006) 307-338.
- [5] G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 185-231.