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Abstract

In this article, we prove that the height function associated with the square-ice model (i.e. the
six-vertex model with a = b = c = 1 on the square lattice), or, equivalently, of the uniform
random homomorphisms from Z2 to Z, has logarithmic variance. This establishes a strong form
of roughness of this height function.

1 Introduction

1.1 Main results

Two-dimensional models for random surfaces are one of the main subjects of interest of modern
statistical physics. These models often undergo a phase transition between a localized phase where
the random surface does not fluctuate (or equivalently, the variance of the height function at a
point remains bounded), and a delocalized phase where it does, in the sense that the variance goes
to infinity as the domain grows. In the latter, the model is usually predicted to have a Gaussian
behaviour and to converge in the sense of distributions in the scaling limit to the Gaussian Free
Field (GFF).

There are many models of random surfaces but only a few for which it is known whether the
model is in its localized or delocalized phase. Even in cases where the random surface was proved
to be delocalized, the convergence to GFF is far from understood. The situation is particularly
catastrophic in models where the surface is modelled as a function h from the vertices of a graph G
to the integers such that |hv−hu| = 1. We call such functions homomorphisms or height functions.
Indeed, except for the celebrated work of Fröhlich and Spencer [18] that establishes this fact for the
high-temperature integer-valued GFF and for Solid-On-Solid models, all known examples belong
to the class of height functions of the six-vertex model, that we now briefly define. The six-vertex
model was initially proposed by Pauling in 1935 in order to study the thermodynamic properties
of ice. Fix an integer n and consider the torus Tn := (Z/nZ)2 and its dual graph T∗n. Let ω be an
arrow configuration on the edges of T∗n assigning one of two orientations to each edge of the graph.
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Figure 1: The 6 possibilities for vertices in the six-vertex model. Each possibility comes
with a weight a, b or c.

The six-vertex model is given by restricting ω to configurations that have an equal number of arrows
entering and exiting each vertex of T∗n – a relation we call the ice rule. The rule leaves six possible
configurations at each such vertex, depicted in Figure 1. Assign the weight a to configurations 1
and 2, b to 3 and 4, and c to 5 and 6. The six-vertex model with weights a, b, c consists in picking
such a configuration at random with probability proportional to an1+n2bn3+n4cn5+n6 , where ni is
the number of vertices with configuration i in ω, if ω satisfies the ice-rule, and zero otherwise.

Thanks to the ice-rule, six-vertex configurations are naturally associated with a height function
h on Tn defined by the property that the increment between the endpoints u and v of the edge e
is +1 if the associated arrow of the dual edge e∗ is crossed from left to right when going from u
to v. The height function is technically defined on Z2, which is the cover of Tn, as a lift of the
gradient, which provides a natural definition for hu − hv for any u, v ∈ Tn. On the subset of arrow
configurations with as many up arrows as down arrows on each line, and as many left arrows as
right arrows on each row, we obtain a well defined height function on Tn. Note that h is defined up
to constant, and we will therefore often consider equivalence classes of h for the relation ∼, where
h ∼ h′ if and only if h − h′ is constant. Also note that the height function partitions the lattice
Z2 into vertices which always take odd values and vertices which always take even values. We call
them respectively odd vertices and even vertices. Throughout the article, we fix the convention
that {(i, j) ∈ Z2 : (i + j) mod 2 = 0} is the set of even vertices, and that homomorphisms take
even values on even vertices.

When a = b = 1 and c is arbitrary, the probability of h is proportional to the number of
diagonally connected vertices u and v for which hu = hv. In particular, when c = 1, which
corresponds to the famous square-ice model, the distribution of h is the uniform measure.

The six-vertex model became the archetypical example of an integrable model after Lieb’s
solution of the model in 1967 in its anti-ferroelectric and ferroelectric phases [23, 24, 25] using the
Bethe ansatz (see [13] and references therein for a review). Since its exact solution, the model
has been intensively studied, yet most of the results had fallen short of addressing the question
of localization/delocalization of the associated height function. The situation changed in the last
two decades. The model at its free fermion point (i.e. when c =

√
2) was directly related to

the dimer model, and the height function was proved to converge to GFF (see [9] and reference
therein). For c ≥

√
3, the model is related to the critical random-cluster models with q ≥ 1, where

a discontinuous/continuous phase transition was proved in [12] and [11] for q > 4 and 1 ≤ q ≤ 4,
respectively (see also [7]). This immediately implies that the associated height function of the
six-vertex model is localized for c > 2 and delocalized for c = 2. Finally, [30] and later [10] proved
that the square-ice height function is delocalized.

In this paper, we wish to study the behaviour of the height function in the height function in
the delocalized phase. We start by the following result. Let φTn be the uniform distribution for
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height function on the torus.

Theorem 1.1. There exist c, C ∈ (0,∞) such that for every n ≥ 1 and every u, v ∈ Tn,

c log ‖u− v‖1 ≤ φTn [(hu − hv)2] ≤ C log ‖u− v‖1,

where ‖ · ‖1 is the L1 distance in Tn.

In order to state the main result of this paper, we need some more notation. A path (×-path) is
a sequence of vertices v0, . . . , vn in Z2 such that for every 0 ≤ i < n, vi and vi+1 are at a Euclidean
distance 1 (resp.

√
2) of each other. When vn = v0, we call the path a circuit. We will often

use the notation [vivj ] (resp. (vivj)) for the subpart of the path made of the vertices vi, . . . , vj
(resp. vi+1, . . . , vj−1). A finite subset D of Z2 whose boundary ∂D (the boundary is the set of
vertices in D with at least one neighbour outside D) is a ×-circuit of even (resp. odd) vertices is
called an even (resp. odd) domain. A quad (D, a, b, c, d) is given by a domain with four marked
points in ∂D appearing in counter-clockwise order.

For a quad (D, a, b, c, d), the event Ch∈I(D, a, b, c, d) is the event that there exists a path of
vertices in D with height in I that connects [ab] to [cd]. We use the shortcut h = m, h ≥ m and
|h| > 0 when I = {m}, I = [m,∞) and I = Z \ {0}. We extend this definition to ×-paths by

introducing the notation C×h∈I(D). WhenD is a rectangle R, we introduceH#
#(R) := C#

#(R, a, b, c, d)

and V#
# (R) = C#

#(R, b, c, d, a), where a, b, c, d are the four corners of R indexed in counter-clockwise
order starting from the top-left one, corresponding to the existence of horizontal and vertical
crossings of the rectangle. Also, we write Λn,m := [−n, n]× [−m,m] for two integers n,m.

Let φ0
D be the uniform distribution on height functions defined on an even domain D which are

equal to 0 on ∂D 1. We consider two possible behaviours:

B1 There exists c > 0 such that for every n, k and every even domain D ⊃ [−n, n]2,

φ0
D[|h0| > k] ≤ exp(−nc).

B2 For every ε,R, ρ, k > 0, there exists c = c(ε,R, ρ, k) > 0 such that for every n and every even
domain D ⊂ ΛRn such that the distance between Λρn,n and ∂D is at least εn,

c ≤ φ0
D[Hh≥k(Λρn,n)] ≤ 1− c, (1.1)

c ≤ φ0
D[H×h=k(Λρn,n)] ≤ 1− c. (1.2)

The first case corresponds to a strongly localized behaviour, while the second one corresponds
to a delocalized one. For instance, we will see that B2 implies Theorem 1.1 very easily. In fact,
it also implies that φ0

D[h2
0] is growing logarithmically in the distance to ∂D. Let us mention that

it also easily implies tightness of the family of uniformly chosen height functions when taking the
scaling limit of the model, a fact which may be useful to prove convergence to GFF.

We now state what we consider to be the main contribution of this paper.

Theorem 1.2. For the height function of square-ice, either B1 or B2 occurs.

1This model corresponds to the height function of square-ice when the arrow configurations are defined on the set
E∗ of edges of (Z2)∗ bordering the faces of (Z2)∗ centred on vertices in D, and one applies the generalized ice-rule
stating that every vertex has the same number of incoming and outgoing arrows.
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We insist on stating this result as a dichotomy between two possible behaviours since we believe
that this result can be extended to more general random height functions (see Question 1.5 below).
Nevertheless, the result of Sheffield [30] (see also [10]) excludes B1, so that we get the following
immediate corollary.

Corollary 1.3. For the height function of square-ice, B2 occurs.

At a high level, our strategy to prove Theorem 1.2 follows [11], with some inspiration from [16].
It is based on a renormalization argument (which is made more complicated by the height-function
structure, see the discussion in Section 4.2) and a Russo-Seymour-Welsh (RSW) theory for height
functions. The RSW theory is a study of probabilities of crossing events in planar percolation
models. This theory was initially created for the study of Bernoulli percolation [28, 29, 6]. It has
blossomed in the past decade and now applies to a wide variety of percolation models [8, 3, 31, 15,
11, 14, 20]. In this paper, we provide the first adaptation of the theory to the study of random
height functions.

Theorem 1.4. For every ρ, there exists c = c(ρ) > 0 such that for every even domain D containing
Λρn,n,

φ0
D

[H×h≥2(Λρn,n)] ≥ cφ0
D[V×h≥2(Λρn,n)]ρ/c, (1.3)

where D is an even domain containing all the translates of D by (k, 0) with |k| ≤ 4ρn.

The previous theorem is called a RSW theorem in the sense that it bounds the probability of
crossing rectangles in the ‘hard’ direction in terms of the probability of crossing rectangles in the
‘easy’ direction. With a little more work, one may replace the right-hand side by a quantity that
tends to 1 when the probability of a vertical crossing tends to 1. We will also see that the theorem
adapts trivially to other geometry, such as the strip.

1.2 Related results and open questions

The uniform measure on homomorphisms was also introduced independently of the six-vertex model
by Benjamini, Häggström and Mossel in [1] (see also [2] for a prior work focusing on the tree) and
further investigated in [4, 22, 26, 19, 5, 17, 27] on arbitrary graphs (for which there is no a priori
connection to square-ice). As mentioned above [30, 10], the model is delocalized on Z2. In fact,
the model undergoes a roughening phase transition; in [27], it was proved that, for every k ≥ 2 and
sufficiently large d, the height function on Tn × (Z/kZ)d is localized.

Related studies consider the behaviour of the class of integer-valued 1-Lipschitz functions. When
the base graph is the triangular lattice, delocalization and logarithmic variance has been established
through a correpondence with the loop O(2) model with edge weight x = 1 [20]. Another delo-
calization result is obtained in [14] for the height function of the loop O(2) model with weight
1/
√

2.
It is natural to ask to which extend the techniques developed in this paper help understanding

the height function of the six-vertex model for different values of c. We believe that one of the main
contributions of the paper lies in the use of the FKG inequality for |h| to implement comparison
between boundary conditions and obtain the RSW theory and the renormalization for crossing
probabilities. This FKG for h and |h| are valid for every six-vertex model with a = b = 1 and c ≥ 1.
We therefore believe that an argument similar to the present paper could lead to an equivalent of
Theorem 1.2 in the regime a = b = 1 and c ≥ 1. This would be particularly interesting since some
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range of c ≥ 1 corresponds to the random-cluster model with q ∈ (0, 1) which is known not to
satisfy the FKG inequality as a percolation model. Unfortunately, the present techniques do not
extend in a trivial fashion due to the lack of spatial Markov property when c > 1. More precisely,
take the example of an even domain. For c = 1, the value of h on ∂V is sufficient to decorrelate
the outside from the inside, while this is no longer the case for c > 1 (one needs to know what are
the values in diagonals as well). For this reason, we leave the following interesting problem open.

Question 1.5. Prove Theorem 1.2 for the height function of the six-vertex model with a = b = 1
and c ≥ 1.

Of course, we do not address the important open question of proving GFF fluctuations.

Question 1.6. Prove that the square-ice height function in an even domain Ωδ ⊂ δZ2 approxi-
mating a simply connected open set Ω converges weakly to the GFF on Ω with Dirichlet boundary
condition 0 on ∂Ω.

Organisation of the paper Section 2 contains some preliminaries (FKG and duality properties).
Section 3 deals with the proof of Theorem 1.4 while Section 4 presents the proof of the other
theorems.
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of the manuscript.

2 Preliminaries

In this section, we gather some simple facts about homomorphisms. More precisely, the first
part proves the FKG inequality while the second discusses certain connectivity issues that will be
important in the following sections.

In order to properly state these properties, we introduce a general notion of boundary condition.
For B ⊂ D with D a domain and κ a function from B into the subsets of Z, define Hom(D,B, κ)
to be the set of homomorphisms h on D such that hv ∈ κv for every v ∈ B. We call (B, κ) a
boundary condition and say that the boundary condition is admissible if Hom(D,B, κ) 6= ∅ is finite.
For admissible boundary condition (B, κ), we set φB,κD for the uniform measure on Hom(D,B, κ).
When B = ∂D, we drop it from the notation.

2.1 Monotonicity properties of uniform homomorphisms

We call a function F : ZD 7→ R increasing if for any h, h′ ∈ ZD satisfying hv ≥ h′v for all v ∈ D,
F (h) ≥ F (h′).

Proposition 2.1 (monotonicity for h). Consider D ⊂ Z2 and two admissible boundary conditions
(B, κ) and (B, κ′) satisfying that for every v ∈ B, κv = [av, bv] and κ′v = [a′v, b

′
v] with av ≤ a′v and

bv ≤ b′v (the previous integers may be equal to ±∞), then
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(CBC) For every increasing function F , φB,κ
′

D [F (h)] ≥ φB,κD [F (h)];

(FKG) For any two increasing functions F,G, φB,κD [F (h)G(h)] ≥ φB,κD [F (h)]φB,κD [G(h)].

The first property is call the comparison between boundary conditions, and the second the
Fortuin-Kasteleyn-Ginibre (FKG) inequality.

Proof. These results follow from Holley’s criterion, see [1, Lemma 2.2], since our definition of height
function specifies even height on the even sublattice and therefore implies irreducibility (a fact which
is required for Holley’s criterion). Note that the conditions on the boundary conditions are designed
so that Holley’s criterion holds for boundary vertices.

We also crucially use monotonic properties for |h| instead of h. In order to properly state the
conditions for such an inequality, we introduce some new notation. We say that the boundary
condition κ is |h|-adapted if there exists a partition Bpos(κ) tBsym(κ) of B such that
• for any v ∈ Bpos(κ), κv ⊂ Z+ := {0, 1, 2, . . . };
• for any w ∈ Bsym(κ), κw = −κw.

Proposition 2.2 (monotonicity for |h|). Consider D ⊂ Z2 and two admissible |h|-adapted boundary
conditions (B, κ) and (B, κ′) satisfying Bpos(κ) ⊂ Bpos(κ

′) and for every v ∈ B, [av, bv] := κv ∩Z+

and [a′v, b
′
v] := κ′v ∩ Z+ satisfy av ≤ a′v and bv ≤ b′v,

(CBC) For every increasing function F , φB,κ
′

D [F (|h|)] ≥ φB,κD [F (|h|)];

(FKG) For any two increasing functions F,G, φB,κD [F (|h|)G(|h|)] ≥ φB,κD [F (|h|)]φB,κD [G(|h|)].

Proof. Fix a vertex v. Using [1, Lemmata 2.2 and 2.3] and references therein, it is sufficient to
prove that for two homomorphisms ξ ≤ η in Hom(D \ {v}, B, κ) and every k,

φB,κD

[
|hv| ≥ k

∣∣|h|D\{v}| = ξ
]
≤ φB,κ

′

D

[
|hv| ≥ k

∣∣|h|D\{v}| = η
]
.

To show this, it is enough to consider the case ξu = ηu = 1 for every neighbour u of v. Indeed, oth-
erwise either |hv| is determined for the measure on the right and the domination is straightforward
to check, or ξu = ηu ≥ 2 for every neighbour u of v. In the latter case, all neighbours of u must
have the same value of h (and not just |h|), and thus it reduces to checking the Holley’s criterion
for h.

We now move to the case ξu = ηu = 1 for every neighbour u of v. Define k(ξ) and k(η) to
be the number of clusters (in Z2) of |h| ≥ 1 containing at least one neighbour of v and that are
respectively not intersecting Bpos(ξ) and Bpos(η). The height function h has constant sign on each
cluster of |h| ≥ 1, and this sign can be any of the two signs with equal probability unless it contains
a vertex of Bpos(κ), in which case it must be plus. From this fact, it is easy to deduce that

φB,κD

[
|hv| = 0

∣∣|h|D\{v}| = ξ
]

=
2k(ξ)

2 + 2k(ξ)
.

and the same is true if we replace ξ by η. Since k(ξ) is decreasing in |h| and since Bpos(κ) ⊂ Bpos(κ
′),

the proof is complete.
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Remark 2.3. The non-trivial case of the proof above is reminiscent of the proof of FKG for the
FK-Ising model and the condition Bpos(κ) ⊂ Bpos(κ

′) is equivalent to “wiring” more subsets of the
boundary. In fact, the proof can be generalized to a case in which the boundary condition specifies
an arbitrary ’wiring’ – i.e. forcing an arbitrary partition of the boundary to take on the same sign
without choosing the particular sign.

2.2 Connectivity properties of lattice paths

Our analysis will deal with paths of vertices in the square lattice and will crucially rely on the
property that if a certain path does not connect two arcs of a quad, then there must exist a
blocking path connecting the two other arcs. The study will be complicated here by the fact that
these blocking paths will not necessarily be of the same kind as the original paths. We therefore
gather a few technical statements to which we will refer in the next sections.
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Figure 2: Duality in a square. A top to bottom h ≥ 2 ×-path blocks a left to right h ≤ 1
path (the cluster of h ≤ 1 containing the left boundary is shaded). This is a square with
symmetric boundary condition (depicted in red) so that the top and bottom boundaries
have value 4 and the left and right boundaries have value 0, appropriately modified at the
corners. By this duality and symmetry, in a uniform homomorphism, a top to bottom h ≥ 2
×-path occurs with probability at least 1/2.

It will be convenient for proofs to introduce a notion of connectivity which is dual to the ×-
paths. We will say that a path is a ∗-path if successive vertices are at graph distance exactly 2 of
each other on Z2. We introduce the events C∗h∈I(D) with the notion of ∗-path. The proof of the
following lemma is straightforward and left as an exercise (see Figure 2 for an illustration).

Lemma 2.4. For a quad (D, a, b, c, d) and m ∈ Z, we have the following properties

• C×h>m(D, a, b, c, d)c = Ch≤m(D, b, c, d, a) = C∗h<m(D, b, c, d, a) ⊃ C×h<m(D, b, c, d, a).

• if (∂D, κ) is an admissible boundary condition which satisfies κv ⊂ [k,∞] for each v ∈ [ab] ∪
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[cd] and κv ⊂ [−∞, k] for each v ∈ [bc] ∪ [ad], then for any m ≥ k, on Hom(D, ∂D, κ),

Ch≥m(D, a, b, c, d) = Ch∈{m,m+1}(D, a, b, c, d) = C∗h=m+1(D, a, b, c, d), (2.1)

C×h≥m(D, a, b, c, d) = C×h=m(D, a, b, c, d); (2.2)

• If m is further assumed to be strictly positive,

C|h|≥m(D, a, b, c, d) = Ch≥m(D, a, b, c, d) ∪ Ch≤−m(D, a, b, c, d).

Remark 2.5. The last item tells us that the existence of a h ≥ m crossing is nearly measurable
with respect to the absolute value for any m ≥ 1. Indeed, |h| determines the connected structure of
h, up to the sign of each cluster. Now, if Hom(D,B, κ) is chosen in a manner that determines the
sign of a crossing from [ab] to [cd], the event becomes truly measurable with respect to |h|. Note
that this property does not generalize to every type of connections: while ×-crossings of h ≥ 2
can be decided by h, the same is not true for ×-crossings of h ≥ 1 since ×-neighbours may have
different signs.

3 Russo-Seymour-Welsh theory

In this section, we prove Theorem 1.4. In Section 3.1, we start by presenting the proof subject to
two propositions that we prove in Sections 3.2 and 3.3.

3.1 Proof of Theorem 1.4

We prove the result for the rectangle Λρn,3n. We introduce the rectangles

R−n = [−3ρn, 3ρn]× [−3n,−n],

R0
n = [−3ρn, 3ρn]× [−n, n],

R+
n = [−3ρn, 3ρn]× [n, 3n].

For ε < 1/11 and k, we set the notations (we keep the dependence on n hidden in the notations)

Ik := J(2k − 1)εn, (2k + 1)εnK× {−3n},
Jk := J(2k − 1)εn, (2k + 1)εnK× {−n},
Kk := J(2k − 1)εn, (2k + 1)εnK× {n},
Lk := J(2k − 1)εn, (2k + 1)εnK× {3n}.

Let us start by a simple observation that will motivate our reasoning below. Set Ai to be the event
that Ii and Ii+2 are connected by a ×-path of |h| ≥ 2 staying between heights −3n and 3n. The
±-symmetry and the FKG inequality for |h| implies that

2φ0
D

[H×h≥2(Λρn,3n)] ≥ φ0
D

[H×|h|≥2(Λρn,3n)] ≥
dρ/εe∏

i=−dρ/εe−1

φ0
D

[Ai]. (3.1)

Furthermore, for every i0 and i, the FKG inequality for |h| implies that

φ0
D

[Ai0 ] ≥ φ0
D

[Ai0 |h|∂D̃i0−i = 0] = φ0
D̃i0−i [Ai0 ] = φ0

D̃
[Ai], (3.2)
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where D̃ is the union of the translations of D by (4kεn, 0) with −1 ≤ k ≤ 2 and D̃i is the translate
by (2εi, 0) of D̃. The reason for introducing D̃ will become clear after (3.4). Therefore, our goal is
to bound maxi φ

0
D̃

[Ai] from below in terms of φ0
D[V×|h|≥2(Λρn,3n)].

In order to do that, let Eijk` be the event that there is a vertical ×-crossing of |h| ≥ 2 in Λρn,3n
that starts from Ii and ends at L`, and which contains a sub-path crossing going from Jj to Kk

in R0
n. For α, β, γ ∈ {−, 0,+}, introduce the event Eαβγijk` that Eijk` occurs and in the ×-cluster of

|h| ≥ 2 in Λρn,3n starting from Ii, one can find

• a vertical ×-crossing of R−n starting from Ii and staying in [(2i − 11)εn, (2i + 11)εn] × Z
(resp. intersecting {(2i− 11)εn} × Z or {(2i+ 11)εn} × Z) if α = 0 (resp. α = + or α = −);
• a vertical ×-crossing of R0

n starting from Jj and staying in [(2j − 11)εn, (2j + 11)εn] × Z
(resp. intersecting {(2j − 11)εn} × Z or {(2j + 11)εn} × Z) if β = 0 (resp. β = + or β = −);
• a vertical ×-crossing of R+

n starting from Kk and staying in [(2k − 11)εn, (2k + 11)εn] × Z
(resp. intersecting {(2k − 11)εn} × Z or {(2k + 11)εn} × Z) if γ = 0 (resp. γ = + or γ = −).

The square-root trick2 implies that there exist i, j, k, ` and α, β, γ such that

φ0
D[Eαβγijk` ] ≥ 1−

(
1− φ0

D[V×|h|≥2(Λρn,3n)]
)1/C

, (3.3)

where C = C(ε, ρ) ≥ 27d2ρ/εe. From now on, we fix i, j, k, `, α, β, γ such that (3.3) holds, and

set E := Eαβγijk` . We also introduce the translate Ek of E by (2kεn, 0). The FKG inequality for |h|
implies that, as in (3.1),

φ0
D̃

[E−2 ∩ E ∩ E2 ∩ E4] ≥ φ0
D[E ]4. (3.4)

We remark that the domain D̃ was introduced precisely to make this inequality manifest. If either
φ0
D̃

[Ai−2] or φ0
D̃

[Ai+2] is larger than 1
3φ

0
D[E ]4, we are done thanks to (3.3). Otherwise, we have that

φ0
D̃

[E−2 ∩ E ∩ E2 ∩ E4 ∩ (Ai−2)c ∩ (Ai+2)c] ≥ 1
3φ

0
D[E ]4.

The rest of the proof will be devoted to the proof of the following inequality:

φ0
D̃

[Ai|E−2 ∩ E ∩ E2 ∩ E4 ∩ (Ai−2)c ∩ (Ai+2)c] ≥ 1
32 .

Once this inequality is established, we can conclude the argument, since it can be combined with
the earlier inequality and (3.3) to provide a lower bound on maxi φ

0
D̃

[Ai]
In order to prove this statement, we first state two propositions that will be proved in Sections 3.2

and 3.3 respectively. An even-quad is a quad for which D is an even domain.

Proposition 3.1. For every n ≥ 1 and every even-quad (D, a, b, c, d) with [ab] and [dc] from top to
bottom in Z× [−n, n] and [bc] and [da] are the even paths from b to c and d to a in Z×{−n−1,−n}
and Z× {n, n+ 1} respectively,

φκD[Ch≥1(D, a, b, c, d)] ≥ 1
2 ,

2We prefer the use of the square-root trick to the use of the union bound since we will refer to this argument
later with events having a probability close to 1. We recall that the square-root trick yields that for increasing events
A, . . . ,As and a measure P satisfying the FKG inequality,

max
i≤s

P[Ai] ≥ 1− (1− P[A1 ∪ · · · ∪ As])1/s.

9



where κ is equal to 2 on [ab] ∪ [cd] and 0 on (bc) ∪ (da), if D is in one of the following three
configurations:

• [ab] ∪ [cd] is contained in Λn/2,n,
• [ab] intersects the vertical line containing c,
• [cd] intersects the vertical line containing b.

A quad (D, a, b, c, d) is called mixed if [ab] and [cd] are even ×-paths, and (bc) and (da) are
odd ×-paths. Note that in this case D is not quite a domain according to the definition of the
introduction, we will therefore refer to it as a mixed-domain.

Proposition 3.2. For every n ≥ 1 and every mixed-quad (D, a, b, c, d) with [ab] and [dc] from top
to bottom in Z × [−n, n] and (bc) and (da) remaining outside of the domain bounded between [ab]
and [cd] inside Z× [−n, n],

φκD[C×h≥2(D, a, b, c, d)] ≥ 1
2 ,

where κ is equal to 2 on [ab] ∪ [cd] and 1 on (bc) ∪ (da), if D is in one of the following three
configurations:

• [ab] ∪ [cd] is contained in Λn/2,n,

• [ab] intersects the vertical line containing c− (1
2 , 0),

• [cd] intersects the vertical line containing b+ (1
2 , 0).

With these two propositions at hand, we can conclude the proof. The argument is divided
in three steps: first, we transform our problem into the existence of a ×-crossing of h ≥ 2 in a
domain with boundary condition 0/2/0/2. Then, we prove the existence of two crossings of h ≥ 1
in this domain using the first proposition twice. Finally, we use the second proposition to create a
×-crossing of h ≥ 2.

Condition on |h| on every vertex which is not strictly between the left-most vertical ×-crossing
[ab] (between Z×{−3n} and Z×{3n}) of |h| ≥ 2 intersecting Ii as well as the right-most crossing
[cd] between Z×{−3n} and Z×{3n} intersecting Ii+2 . For future reference, we denote by Ω0 the
domain enclosed between these two paths and the two even ×-paths [bc] and [da] between b and c
and d and a in Z× {−3n,−3n− 1} and Z× {3n, 3n+ 1} respectively. The |h|-adapted boundary
condition (B, ξ) induced on Ω0 by this conditioning fixes |h| on ∂Ω0∪Ωc

0, with |h| = 2 on [ab]∪ [cd].
Let (B, ξ0) be the |h|-adapted boundary condition equal to |h| = 2 on [ab] ∪ [cd] and 0 on the rest
of ∂Ω0 ∪ Ωc

0. The comparison between boundary conditions for |h| shows that,

φB,ξ
D̃

[Ai] ≥ φB,ξ0
D̃

[Ai] ≥ 1
4φ

κ0
Ω0

[C×|h|≥2(Ω0, a, b, c, d)], (3.5)

where κ0 is the boundary condition on Ω0 equal to 2 on [ab] ∪ [cd] and 0 on (bc) ∪ (da). To obtain
the last inequality, we used that whatever the |h|-adapted boundary condition, the probability that
the |h| ≥ 1-clusters of [ab] and [cd] have a + sign is at least 1/4. Indeed, simply observe that one
may discover the rest of the |h| configuration, and find that either the two clusters are distinct in
which case the independently assigned sign are + with probability 1/4, or they are connected in
which case it is 1/2.

Overall, we see that, in order to conclude the proof, it is sufficient to show that, for any
realization of Ω0,

φκ0Ω0
[C×h≥2(Ω0, a, b, c, d)] ≥ 1

8 . (3.6)

10
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Figure 3: The surgery in the definition of Ω− (shaded grey). The black paths are even
×-paths with value 2 and the red paths are even ×-paths with value 0.

Let u and v be the vertices of [ab] and [cd] such that [ub] and [cv] are vertical crossings of the strip
between height −3n and −n and let Ω− be the part of Z2 enclosed by [ub]∪ [bc]∪ [cv] and the even
×-path [vu] between u and v in Z × {−n,−n + 1} with boundary condition κ− equal to 0 on the
bottom and top arcs, and 2 on the rest of the boundary. We find that

φκ0Ω0
[Ch≥1(Ω−, u, b, c, v)] ≥ φκ0Ω0

[Ch≥1(Ω−, u, b, c, v)|h|∂Ω−\∂Ω0
= 0]

= φκ0Ω0
[C∗h=2(Ω−, u, b, c, v)|h|∂Ω−\∂Ω0

= 0]

≥ φκ−Ω−
[C∗h=2(Ω−, u, b, c, v)]

= φ
κ−
Ω−

[Ch≥1(Ω−, u, b, c, v)]. (3.7)

In the first line, we use FKG for |h| (the conditioning is fixing some values to be 0, while the event
is increasing in |h|). The next equality follows from Lemma 2.4, the third line follows from FKG
for |h−2| and the spatial Markov property, as we are taking vertices where h = 2 and setting them
to take the value 0. The fourth line is Lemma 2.4, again.

The crucial observation is that the occurrence of events E−2 \ Ai−2 and E4 \ Ai+2 restricts
the geometry of the quad (Ω−, u, b, c, v). More specifically, when the events occur, the quad with
boundary condition κ− is necessarily in the first configuration of Proposition 3.1 if α = 0, in the
second if α = +, and in the third if α = −. In any case, we deduce that with probability 1/2, there
is a crossing of h ≥ 1 from [ub] to [cv] in Ω−. One can do the same in a domain Ω+ defined in a
similar fashion in the strip Z× [n, 3n], and FKG implies that both crossings occur with probability
at least 1/4.

We now assume that the event C(Ω−, u, b, c, v) and the analogous event for the top domain occur
in Ω0. By Lemma 2.4, this implies that Ω− and Ω+ both contain a ×-crossings of h = 1 from [ub]
to [cv]. Condition on the bottom-most and top-most such ×-crossings of h = 1 and let Ω1 be the
subdomain of Ω0 enclosed between these paths. We denote by κ1 the boundary condition induced
by the conditioning, which is 2 on the even vertices of the boundary and 1 on the odd ones. Let
[a′b′] and [c′d′] be subpaths of [ab] and [cd] that
• are contained in Z× [−n, n],
• are crossing Z× [−n, n] from Jj ∪ Jj+1 ∪ Jj+2 to Kk ∪Kk+1 ∪Kk+2,
• are such that [a′b′] is on the left of [c′d′] and there is no additional crossing of Z× [−n, n] in

[ab] ∪ [cd] in between.
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a′

b′ c′

d′ a′

b′ c′

d′

Figure 4: The black paths are even ×-paths with value 2 and the blue paths are odd ×-
paths with value 1. Left: The domain Ω1. Right: The domain Ω2 in shaded grey obtained
after the surgery.

The existence of such subpaths is easy to obtain. Indeed, take the leftmost and rightmost
crossings satisfying the second item above and consider a curve starting at a point immediately to
the left of the leftmost crossing and ending at a point to the right of the rightmost crossing, staying
inside Z× [−n, n] and avoiding [ab] ∪ [cd] except for the crossings of Z× [−n, n]. This curve must
intersect a crossing coming from [cd] immediately after intersecting a crossing coming from [ab] at
some point and these two crossings can be taken to be [a′b′] and [c′d′].

Let Ω2 be the domain obtained as the union of Ω1, the vertices Ω′1 of Z× [−n, n] between [a′b′]
and [c′d′], as well as all the vertices that are surrounded by Ω1 ∪ Ω′1. In words, Ω2 corresponds to
cutting all the “tongues” of [ab] and [cd] entering Ω′1 by “pushing them away”. Note that, since we
took [a′b′] and [c′d′] to be successive crossings, none of these tongues crosses Ω′1. Further, in the
bottom strip, no part of the boundary with h = 1 is affected by this procedure since we considered
crossings from [ub] to [cv]3. Similarly, no part of the boundary with h = 1 is affected in the top
strip. Let κ2 be the boundary condition equal to 2 on even vertices of ∂Ω2, and 1 on odd ones.

Exactly as for (3.7), FKG for |h− 2| enables us to push away the h = 2 boundary condition to
get that

φκ1Ω1
[H×h≥2(Ω1, a, b, c, d)] = φκ1Ω1

[H×h=2(Ω1, a, b, c, d)]

= φκ2Ω2
[H×h=2(Ω1, a, b, c, d)|h|∂Ω1\∂Ω2

= 2]

≥ φκ2Ω2
[H×h=2(Ω2, a, b, c, d)]

= φκ2Ω2
[H×h≥2(Ω2, a, b, c, d)]

≥ φκ2Ω2
[H×h≥2(Ω2, a

′, b′, c′, d′)]. (3.8)

Let us elaborate a bit. In the first equality, we used the second item of Lemma 2.4, the second
equality is simply using the spatial Markov property, the first inequality is FKG for |h − 2| and
inclusion (a horizontal crossing of Ω2 guarantees a horizontal crossing of Ω1), the last equality is
again the second item of Lemma 2.4 and the final inequality is simply inclusion.

3More precisely, we have that h ≥ 2 on ∂Ω1 \ ∂Ω2. Indeed, on the one hand any boundary vertex with h = 1
is connected to Z × {−3n} by a path staying in Ω0 ∩ (Z × [−3n,−n]), while on the other hand, by definition
∂Ω1 \ ∂Ω2 ⊂ Z× [−n, n] and any vertex in Ω2 \ ∂Ω′1 is disconnected from Z× {−3n} by ∂Ω′1.
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Now, let Ω3 be the mix-domain composed of Ω2 together with the odd vertices outside Z×[−n, n]
that are on the exterior boundary of Ω2 (meaning that they do not belong to the set but are
neighbours of a vertex belonging to the set). If κ3 is the boundary condition on Ω3 equal to 2 on
[a′b′] ∪ [c′d′] and 1 on (b′c′) ∪ (d′a′), we may use the FKG inequality for h to show that

φκ2Ω2
[H×h≥2(Ω2, a

′, b′, c′, d′)] = φκ3Ω3
[H×h≥2(Ω2, a

′, b′, c′, d′)|h|∂Ω2\∂Ω3 = 2]

= φκ3Ω3
[H×h≥2(Ω2, a

′, b′, c′, d′)|h|∂Ω2\∂Ω3 ≥ 2]

≥ φκ3Ω3
[H×h≥2(Ω3, a

′, b′, c′, d′)]. (3.9)

Since E−2 \ Ai−2 and E4 \ Ai+2 occur, we are now facing a quad which is in the first configuration
of Proposition 3.2 if β = 0 (resp. second if β = +, third if β = −). We deduce that

φκ3Ω3
[H×h≥2(Ω3, a

′, b′, c′, d′)] ≥ 1
2 ,

which together with the last displayed equations, concludes the proof.

3.2 Proof of Proposition 3.1

We prove the first two cases of the proposition; the third can be proven analogously to the second.

First case Let Λeven
n be the set of vertices inside (or on) the even circuit in Λn+1\Λn−1 surrounding

the origin. Consider the boundary condition ξ on Λeven
n equal to 2 on left and right (including

vertices on y = x), and 0 on the rest. By the second item of Lemma 2.4, and FKG for |h− 2| (the
reasoning is the same as in (3.7)), we find that

φκD[Ch≥1(D, a, b, c, d)] = φκD[C∗h=2(D, a, b, c, d)] ≥ φξΛeven
n

[H∗h=2(Λeven
n )] = φξΛeven

n
[Hh≥1(Λeven

n )].

(3.10)

Now, using the first item of Lemma 2.4 again, we find that

φξΛeven
n

[Hh≥1(Λeven
n )] = 1− φξΛeven

n
[V×h≤0(Λeven

n )]

≥ 1− φξΛeven
n

[Vh≤1(Λeven
n )],

≥ 1− φξΛeven
n

[Hh≥1(Λeven
n )]. (3.11)

In order to deduce the last inequality, we used the FKG inequality for h and the symmetry
of Λeven

n by π/2 rotation and the fact that the boundary condition ξ′ obtained by rotating and
applying the transformation 2−h is smaller than the boundary condition ξ. Overall, (3.11) implies

that φξΛeven
n

[Hh≥1(Λeven
n )] ≥ 1

2 , which concludes the proof.

Second case Let ` be the vertical line passing by c. Assume that [ab] and [cd] do not intersect —
otherwise, there is nothing to prove. Denote the reflection with respect to the line ` by σ, and note
that σ maps the even lattice to itself. Let a′ be the first intersection of [ab] when going from bottom
to top (i.e. when going from b to a) with ` and let Ω be the quad enclosed by [a′b], σ([a′b]) and the
×-path of even vertices in Z× {−n− 1,−n} between b and σ(b). By definition, (Ω, b, c, σ(b), a′) is
symmetric under σ.
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Figure 5: The black paths are even paths with value 2 and the blue paths are odd paths
with value 1. The symmetric domain Ω is shaded grey.

Finally, let D′ be the domain bounded by [a′b], [bc], [cd′] where d′ the first intersection of [cd]
with σ([a′b]), and σ([a′b]).

Using the inclusion of events and the FKG inequality applied to |h| (note that the event
Hh≥1(D′) = H|h|≥1(D′) is increasing in terms of |h|), we find that, like in (3.7),

φκD[Hh≥1(D, a, b, c, d)] ≥ φκD[Hh≥1(D′, a′, b, c, d′)]

≥ φκD[Hh≥1(D′, a′, b, c, d′)|h|∂D′\∂D = 0]

= φκ
′
D′ [Hh≥1(D′, a′, b, c, d′)],

where κ′ is the boundary condition equal to 2 on [a′b]∪ [cd′], and 0 on (bc)∪ (d′a′). Now, following
a reasoning similar to (3.10) and then (3.11), we find that

φκ
′
D′ [Hh≥1(D′, a′, b, c, d′)] ≥ φξΩ[H∗h=2(Ω, a′, b, c, σ(b))] ≥ 1

2 ,

where ξ is the boundary condition equal to 2 on [a′b] ∪ [cσ(b)] and 0 on (bc) ∪ (σ(b)a′).

3.3 Proof of Proposition 3.2

Again, we prove the first two cases of the proposition, as the third is analogous to the second.

First case Let Λmix
n be the domain enclosed between the two even ×-paths in {n, n + 1} × Z

and {−n − 1,−n} × Z connecting the vertices (±n,±n) and the two odd ×-paths obtained as
the translations by (0, 1) of the reflections with respect to y = x of the two previous paths. We
denote the corners (±n,±n) of this box by r, s, u, v, starting from the top-left corner and going
counterclockwise.

Let Utop be the domain enclosed by the (odd) ×-path [da] in the quad D and the (odd) ×-path
from a to d in Z× {n, n+ 1}. We define Uright as the translation by (0, 1) of the reflection of Utop

with respect to the line y = x. Similarly, we define Ubottom and Uleft in a straightforward fashion.
We now introduce

Ω = Λmix
n

⊎
Utop

⊎
Uleft

⊎
Ubottom

⊎
Uright,

where
⊎

denotes the disjoint gluing of the graphs along the top and bottom parts of Λmix
n . Note

that Ω is planar but may not be embeddable in an isometric fashion in R2, and that it contains
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Figure 6: Blue paths are odd paths with h = 1 and black paths are even paths with h = 2.
Left: The domain D with the square Λn in shaded grey. Right: The symmetric domain Ω.

a natural copy of the graph D. The graph Ω also satisfies some symmetry for the reflection with
respect to the line y = x shifted by (0, 1). Let ξ be the boundary condition on Ω equal to 2 on
even vertices of ∂Ω (here ∂Ω denotes the set of vertices with at most three neighbours in Ω) and 1
on odd ones.

Using the same reasoning as in (3.7), we find that

φκD[C×h≥2(D, a, b, c, d)] ≥ φξΩ[C×h≥2(Ω, r, s, u, v)]. (3.12)

It remains to observe that by the first item of Lemma 2.4,

φξΩ[C×h≥2(Ω, r, s, u, v)] = 1− φξΩ[Ch≤1(Ω, v, r, s, u)]

≥ 1− φξΩ[C×h≤1(Ω, v, r, s, u)]. (3.13)

By symmetry, this implies that the probability of the former is larger than 1
2 . This concludes the

proof.

Remark 3.3. In Section 3.2, we used symmetries that are mapping the even vertices to even
vertices, and symmetric even-domains with boundary condition that are made of 0s and 2s. In
this section, we used symmetries that are mapping even vertices to odd vertices, and symmetric
mix-quads with boundary condition that are made of 1s and 2s.

Remark 3.4. Unlike the proofs in Section 3.2, we are not allowed to ‘push in’ boundary condition
larger than or equal to 1 on top and bottom, because ×-crossings of h ≥ 1 cannot be transformed
into increasing events in |h|. We therefore need to symmetrize the domain D by pushing boundary
condition 2 away only.

Second case Let `′ be the vertical line passing by c− (1
2 , 0). We start by defining an equivalent

of the symmetric domain introduced in the second case of Proposition 3.1. Assume that [ab] and
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Figure 7: Blue curves denote odd × paths with boundary condition 1 while the black
curves are even × paths boundary condition 2. Top left: The symmetric domain S shaded
in grey. Top right: The portion Utop−right is shaded blue and Ubottom−left is shaded green.
Bottom: The final symmetric domain Ω. Utop−left is shaded orange and Ubottom−right is
shaded red.

[cd] do not intersect otherwise there is nothing to prove. Denote the reflection with respect to the
vertical line `′ passing by c − (1

2 , 0) by σ′ (σ′ maps the even lattice to the odd lattice). Let a′ be
the vertex just before the first intersection of [ab] (when going from bottom to top and when seen
as a continuous path) with `′ and let S be the quad enclosed by [a′b], σ′([a′b]), the odd ×-path of
Z×{−n−1,−n} between the right neighbour of b and the left neighbour of c, and the even ×-path
between c and σ′(b). Finally, let d′ be the last vertex before [cd] exits S for the first time.

Let Utop−right be the union of odd domains whose boundaries are defined as follows. Let s be
the odd path from d′ to a′ using the odd vertices neighbouring from the exterior the even vertices
of [dd′], then the odd path (da), then the odd vertices neighbouring from the exterior the vertices
of [aa′]. Let t be the odd ×-path going along σ([a′b]) from d′ to the neighbour of a′ and observe
that t ∩ D is divided into segments. Now, let [u1v1], . . . , [uivi] be the segments of t that can be
reached from a′ (or equivalently d′) while staying in D ∩ S. For 1 ≤ j ≤ i, consider the domain
Uj enclosed by [ujvj ] and the part of s going from uj to vj . We then define Utop−right to be the
union of the Uj for 1 ≤ j ≤ i and Utop−left = σ′(Utop−right). Similarly, we define Ubottom−left

and Ubottom−right = σ′(Ubottom−left) in a straightforward fashion (in this case the definition is even
simpler: there is only one domain since (bc) does not cross the odd ×-path of Z × {−n − 1,−n}
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between the right neighbour of b and the left neighbour of c).
Introduce

Ω = S
⊎
Utop−left

⊎
Ubottom−left

⊎
Ubottom−right

⊎
Utop−right

(the gluing of the different pieces is made along the segments [ujvj ] defined above for the top pieces,
and the odd ×-path of Z× {−n− 1,−n} between the right neighbour of b and the left neighbour
of c for the bottom parts). Let ξ be the boundary condition on Ω equal to 2 on even vertices of
the boundary and 1 on odd ones.

To complete the proof, we must compare the crossing probabilities in D′ and Ω by pushing
away the boundary condition h = 2, and then applying a symmetry argument. The proof follows
the same procedure as the previous case, and we therefore omit the details for the sake of brevity.

4 Proofs of the theorems

4.1 Two useful crossing probabilities

Proposition 4.1. For every ρ > 0, there exists c = c(ρ) > 0 such that for every n and every even
domain D containing Λρn,n,

φ0
D[Hh≥0(Λρn,n)] ≥ c. (4.1)

Remark 4.2. It is worth mentioning that we do not require ∂D to be far away from Λρn,n. In
fact, the boundary of ∂D may partially coincide with the boundary of Λρn,n without raising any
issues.

Proof. The first item of Lemma 2.4 implies that

p := φ0
D[Hh≥0(Λρn,n)] = 1− φ0

D[V×h<0(Λρn,n)].

As in (3.3), the square-root trick implies that there exist i, j, α such that

φ0
D[E ] ≥ 1− p1/C ,

where E = Eαij is defined as Eαβγijk` , but with h < 0 instead of |h| ≥ 2, and with only Ii, Jj and α
involved (we trust that the reader will easily figure out the precise definition). For the rest of the
proof, call a ×-path γ achieving if it guarantees the occurrence of E . For a subset I of Ii, let E(I)
be the event that there exists an achieving ×-path starting from I.

We now claim that Ii can be splitted in eight intervals I1, . . . , I8 ordered from left to right and
intersecting at their extremities (they may have different sizes) such that φ0

D[E(Ik)] ≥ 1 − p1/(8C)

for each k. Indeed, first split the interval Ii = [ab] in two by choosing the left-most x such that the
probability that φ0

D[E([ax])] ≥ φ0
D[E((xb])]. Then, the square-root trick implies that φ0

D[E([ax])]
and φ0

D[E([xb])] are larger than 1 − p1/(2C). One can iterate this reasoning with each one of the
intervals twice to get the claim.

If Ẽ(I) denotes the image of the event E(I) after flipping all the signs, the flip symmetry and
the union bound give that

φ0
D[E(I1) ∩ Ẽ(I2) ∩ E(I3) ∩ Ẽ(I4) ∩ E(I5) ∩ Ẽ(I6) ∩ E(I7)] ≥ 1− 7p1/(8C).
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Nevertheless, on this event, none of the intervals I2, I4 or I6 are bridged by a ×-path of h < 0. Yet,
proceeding4 as in the proof of Theorem 1.4 starting after (3.4), we can show that the probability
that one of these intervals is bridged by |h + 1| > 0 is larger than 1

96(1 − p1/(8C))4 5. Since the
boundary condition on D is 0, FKG for h implies that the probability that this is achieved by a
h > 0 ×-path is larger than by a h < −2 path, so that φ0

D[F ] ≤ 1− 1
192(1− (1− p)1/(8C))4 where F

is the event in the display above. Together with the last displayed equation, this provides a lower
bound on p, which is what we were looking for.

The second estimate we wish to obtain is the following result. When n is even, consider the
approximation Rgn,m of [−n, n]× [0,m] obtained by taking what is inside
• the even ×-path going from (n, 0) to (−n, 0) following {n, n + 1} × Z, then Z × {m,m + 1}

and finally {−n− 1, n} × Z,
• if g is even (resp. odd), the even (resp. odd) ×-path from (n, 0) to (−n, 0) in Z× {−1, 0}.

A similar domain can easily be defined for n odd by replacing n above by 2bn/2c. Also, let 0/g be
the boundary condition equal to g on the bottom of Rgn,m, 0 on the left, right and top boundary,
except at the bottom-left and bottom-right corners where the boundary condition is interpolating
between 0 and g in the shortest way. Since the superscript will always be obvious from context (for
instance because it is the only one compatible with the boundary conditions), we will write Rn,m
instead of Rgn,m.

Proposition 4.3. For any g ∈ N, H > δ > 0, there exits c = c(H, δ, g) > 0 such that for all n ≥ 1,

φ
0/g
Rn,Hn

[H×h=0(Rn,δn)] ≥ φ0/g
Rn,Hn

[Hh≤0(Rn,δn)] ≥ c.

Proof. The first inequality clearly follows by inclusion. For the second, the result for general g
follows from the result for g = 1 by an easy induction. Indeed, assume that we already proved
the existence of c(H, δ, 1) > 0. The FKG for h implies the existence of an horizontal crossing of
h ≤ g − 1 within Rn,δn with positive probability c(H, δ, 1) > 0. Condition on the bottom-most
crossing of h ≤ g − 1. We wish to find a crossing of h ≤ g − 2 above this crossing. Noting that the
event “there exists a crossing of Rn,2δn \Rn,δn of h ≤ g− 2” is increasing in terms of |h− g+ 1|, we
can use FKG for |h− g + 1| to push the boundary conditions to get the translate of the 0/(g − 1)
boundary condition on the translate by (0, δn) of Rn,(H−δ)n, so that the conditional probability of
finding a crossing of h ≤ g − 2 inside Rn,2δn \ Rn,δn (and therefore inside Rn,2δn) is bounded from
below by c(H − δ, δ, 1). Iterating, we see that we can find a crossing of h ≤ 0 inside Rn,gδn with
probability at least c(H, gδ, g) :=

∏
k c(H − kδ, δ, 1) > 0.

We now focus on proving the existence of c(H, δ, 1) > 0. Assume without loss of generality that
Hn is divisible by 4. Let Sn be the infinite strip bounded by the even vertices of Z×{Hn+1, Hn+2}
and the odd vertices of Z × {0,−1} and let 0/1 be the boundary condition equal to 0 on the top

and 1 on the bottom. The existence of the measure φ
0/1
Sn

is a straightforward exercise as the domain

4To see this more easily, use the flip symmetry and the shift by 1 to convert events h < 0 and boundary condition
0 to h ≥ 2 and boundary condition 1. Then, the only changes are that the ± -symmetry used before (3.1) should
be replaced by the comparison between boundary conditions (to say that a h ≥ 2 ×-crossing is more likely than a
h ≤ −2), and that all boundary conditions induced by conditions on |h| are |h|-adapted since Bpos involves only
positive values, so that we can use FKG for |h|. Note that the hard part of the proof of Theorem 1.4, which consists
in the two propositions, remains unchanged.

5Let us mention that this argument does not use Proposition 3.2.
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is essentially one dimensional and the homomorphism model enjoys a version of the finite energy
property. Let R′n := [−n, n]× [1

4Hn,
3
4Hn].

We claim that there exists a constant c = c(H) > 0 such that for all n ≥ 1,

φ
0/1
Sn

[H×h=0(Rn,3Hn/4)] ≥ φ0/1
Sn

[H×h≤0(R′n)] ≥ c. (4.2)

Indeed, the first inequality follows from the inclusion of events (induced by boundary conditions).
For the second, assume that it does not hold with c = 1/2. Then, the first item of Lemma 2.4 and
the symmetry of the measure imply that

φ
0/1
Sn

[V×h≤0(R′n)] ≥ φ0/1
Sn

[Vh≤0(R′n)] = φ
0/1
Sn

[Vh≥1(R′n)] = 1− φ0/1
Sn

[H×h≤0(R′n)] ≥ 1
2 .

The proof of Theorem 1.4 applies mutatis mutandis in this context6 and we obtain (4.2) with a
constant c = c(ρ) > 0.

The FKG inequality for |h| enables us to bring boundary conditions in to find that

φ
0/1
Rn,Hn

[H×h=0(Rn,3Hn/4)] ≥ φ0/1
Sn

[H×h=0(Rn,3Hn/4)] ≥ c. (4.3)

Now, condition on the top-most horizontal ×-crossing of h = 0 in Rn,3Hn/4. Applying spatial
Markov property and FKG of |h|, the probability of seeing a ×-crossing of h = 0 in Rn,(3/4)2Hn is

larger than c(3
4H). We iterate this step to find that for all n ≥ 1,

φ
0/1
Rn,Hn

[H×h=0(Rn,δn/2)] ≥
∏

k≤log4/3(2H/δ)

c((3
4)kH) > 0.

To conclude, it remains to create a h ≤ 0 crossing in Rn,δn. Explore from the bottom to find
the lowest such ×-crossing of h = 0 and call the domain above it D. Conditioned on this lowest
crossing, the boundary condition on D is 0 everywhere. We therefore can apply Proposition 4.1 to
show that the probability of a crossing of h ≤ 0 in Rn,δn \Rn,δn/2 is bounded from below by c′ > 0,
thus proving that

φ
0/1
Rn,Hn

[Hh≤0(Rn,δn)] ≥ c′φ0/1
Rn,Hn

[H×h=0(Rn,δn/2)].

Combined with the previous displayed equation, this concludes the proof.

4.2 The renormalization proposition

As described in the introduction, we wish to follow the renormalisation argument from [11] to
complete the argument. Unfortunately, a new difficulty appears in our setting: one could imagine
that the existence of a long ×-crossing of h ≥ 2 inside a box forces the height function to be much
larger than 2 everywhere inside. In practice, it manifests in the fact that to apply Proposition 4.3,
we need a bound on the boundary values which is not a priori clear.

6To see this more easily, use the symmetry with respect to 1 to convert events h ≤ 0 and 0/1 boundary condition
to h ≥ 2 and 2/1 boundary condition. Then, the only changes are that the ± -symmetry used before (3.1) should
be replaced by the comparison between boundary conditions (to say that a h ≥ 2 ×-crossing is more likely than a
h ≤ −2), that (4.3) is no longer useful since we have invariance under translations, and that all boundary conditions
induced by conditions on |h| are |h|-adapted since 2/1 involves only positive values, so that we can use FKG for |h|.
Note that the hard part of the proof of Theorem 1.4, which consists in the two propositions, remains unchanged.
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To deal with this issue, we distinguish two cases. If the probability of a crossing of h ≥ 2 is
similar to the one of a ×-crossing of 2 ≤ h ≤ g for some g, which is the expected behaviour, we
can apply the original argument of [11] with appropriate modifications. If not, then the cost of a
×-crossing of h ≥ 2 is similar to the cost of a crossing of h ≥ g. In this case we obtain (g − 2)/2
crossings “for free”, an event whose probability can be easily bounded.

Define An to be the event that there exists a ×-loop of h ≥ 2 in the annulus An := Λ2n \Λn and
let an := φ0

Λ5n
[An]. We also let An(x) denote the event An shifted by (x, 0). Finally, we introduce

Λn(x) and An(x) for the box Λn and the annulus An shifted by (x, 0).

Remark 4.4. By Proposition 4.1, we have that an ≤ 1 − c for some constant c > 0 independent
of n.

Proposition 4.5. There exists a constant C > 0 such that for all n ≥ 1,

a10n ≤ Ca2
n. (4.4)

We start with a lemma. Let E×h≥k(n) be the event that there exists a ×-cluster of h ≥ k of
diameter at least n.

Lemma 4.6. There exists ρ > 0 such that the following holds. For any r > 10, there exists
C = C(r) > 0 such that for any k and n,

φ0
Λrn

[E×h≥k(n)] ≤ (Can)k/ρ. (4.5)

A B

C D

E F G H

I

J

K L M N

O

P

Figure 8: The red curve has diameter at least n and hence has to exit the square EKNH.
Without loss of generality let the curve exit the square ABCD for the last time through
AB before it exits EKNH. After this assume it exits the square AFGB through AF or GB,
since otherwise we are done and without loss of generality assume it is AF. Then we can
assume it exits IBGE through IA since otherwise we are also done. After this, the curve
must necessarily include an easy crossing of either IJDB or EJCF before exiting EKNH.

Proof. In any configuration of E×h≥k(n), there must exist k/2 nested ×-loops with increasing heights
2i ≤ k. Let D2i be the interior of the outer-most ×-loops of h = 2i in Λrn and let κi denote the
boundary condition equal to 2i on D2i. On the event described above, the domains D2i exist for
every 2i ≤ k and if the diameter of the largest connected component of these domains is denoted
by d2i, we find that

φ0
Λrn

[E×h≥k(n)] ≤ φ0
Λrn

[
1d2≥nφ

κ2
D2

[1d4≥nφ
κ4
D4

[· · · ]]
]
.
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Using the symmetry in D2i with respect to 2i and the FKG for |h − 2i|, we may bound each
expectation by 2φΛrn [d2 ≥ n] (the factor 2 arises from switching between |h| and h), giving overall

φ0
Λrn

[E×h≥k(n)] ≤ (2φ0
Λrn

[d2 ≥ n])k/2. (4.6)

Consider the set T of translates of rectangles included in Λrn of sizes n × n/2 and n/2 × n by
vertices in n

2Z
2. A topological argument (see Figure 8) easily implies that if d2 ≥ n, there exists

a rectangle in T that is crossed in the ‘easy’ direction, meaning vertically if it has size n× n/2 or
horizontally if it has size n/2 × n. For this reason, in order to bound φ0

Λrn
[d2 ≥ n], it suffices to

consider a rectangle R in T , which we assume without loss of generality has size n × n/2, and to
prove that there exists C0 > 0 such that

φ0
Λrn

[V×h=2(R)] ≤ C0a
1/C0
n . (4.7)

Let A be the event that there exists a ×-circuit of h ≤ 0 surrounding R in the n neighbourhood
of R (if R intersects the boundary, the ×-circuit can use the boundary of Λrn, which has value 0).
We have that

φ0
Λrn

[V×h=2(R)] ≤
φ0

Λrn
[V×h≥2(R)|A]

φ0
Λrn

[A|V×h=2(R)]
≤
φ0

Λ2n
[V×h≥2(Λn,n/2)]

φ0
Λrn

[A|V×h=2(R)]
≤ C1φ

0
Λ2n

[V×h≥2(Λn,n/2)]. (4.8)

Indeed, the first inequality follows from inclusion. The second holds because the ×-loop of h ≤ 0
induced by A can be replaced by a ×-loop of h = 0 by FKG for h and then pushed away using
FKG for |h| (we already presented several arguments like that and omit the details). In the third
inequality, we bounded the probability of the denominator as follows. Condition on |h− 2| in the
even vertices Reven in R. Any realization of this conditioning is a measure of the form φκΛrn\Reven

with κ being |h|-adapted (the intervals are containing one value on ∂Λrn and two symmetric values
in Reven). Since the single-valued vertices all receive value h = 0, we may use the comparison
between boundary conditions with h = 2 on ∂Reven to bound the conditional probability from
below by the φ0

Λrn\Reven-probability in Λrn \ Reven with boundary condition equal to 2 on ∂Reven

and 0 in ∂Λrn. Using Proposition 4.3, we have a positive probability that A occurs, hence the third
inequality.

Now, Theorem 1.4 implies that

φ0
Λ5n,2n

[H×h≥2(Λ2n,n/2)] ≥ c0φ
0
Λ2n

[V×h≥2(Λn,n/2)]ρ. (4.9)

Finally, FKG for h implies that

an ≥ φ0
Λ5n,2n

[H×h≥2(Λ2n,n/2)]4. (4.10)

Together with (4.8) and (4.9), (4.10) implies (4.10) and therefore of the claim.

Proof of Proposition 4.5. We start by claiming that there exists c1 > 0 such that for all n ≥ 1,

a10n ≤ c1φ
0
Λ50n

[An(−7n) ∩ An(7n)] (4.11)

since A10n implies that there exists a ×-loop of h = 2 in Λ50n \ Λ10n and hence we can apply
Proposition 4.1.
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3n

4n

7n

5n

Figure 9: The red paths are even ×-loops of h ≥ 2 coming from the event An(−7n) ∩
An(7n). The blue paths are ×-paths of h ≤ 0 coming from the events (4.13)–(4.16)
(i.e. the event C).

Define events Bn(x) similarly to An(x), where we add the restriction that the ×-loops must
satisfy 2 ≤ h ≤ k0 := 2`0 , where k0 > 2ρ with ρ provided by Lemma 4.6. With this choice of k0,
Lemma 4.6 gives that

φ0
Λ50n

[An(±7n) \ Bn(±7n)] ≤ φ0
Λ50n

[E×h≥k0(n)] ≤ C1a
2
n.

In order to conclude the proof, we now need to prove that

φ0
Λ50n

[Bn(−7n) ∩ Bn(7n)] ≤ C2a
2
n. (4.12)

Suppose we are on the event Bn(−7n)∩Bn(7n) and let `± be the two innermost ×-loops with values
in 2 ≤ h ≤ k0 in Λn(±7n).

Consider the event C (see Figure 9) which is the intersection of the following four events

H×h≤0([−50n, 50n]× [2n, 3n]), (4.13)

H×h≤0([−50n, 50n]× [−3n,−2n]), (4.14)

V×h≤0([−10n,−9n]× [−50n, 50n]), (4.15)

V×h≤0([9n, 10n]× [−50n, 50n]). (4.16)

Conditionally on `+ and `− (which involves information on h inside the two loops only), we claim
that φ0

Λ50n
[C] ≥ c3. Let us provide a lower bound on the conditional probability of the first event,

since the bound for the others is similar and that one can use FKG to deduce a bound on φ0
Λ50n

[C].
Since the values of h on the loops `+ and `− are between 2 and k0, the FKG inequality for |h− k0|
enables us to bound the probability of the first event in C from below if we assign (the translate of)
boundary condition 0/k0 on the rectangle [−50n, 50n] × [2n, 50n] as in Proposition 4.3. In other
words, it is enough to prove the lower bound for the same event but in the domain [−50n, 50n] ×
[2n, 50n] with 0/k0 boundary condition, which is exactly what is given by Proposition 4.3.
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Remark 4.7. Note that this step crucially relies on the fact that the values on `+ and `− are
bounded between 2 and k0 since applying FKG for |h−k0| requires all the boundary values to have
the same sign in Proposition 2.2.

Overall, the argument in the previous paragraph gives us the existence of c4 > 0 such that for
all n,

φ0
Λ50n

[C|Bn(−7n) ∩ Bn(7n)] ≥ c4. (4.17)

On C ∩Bn(−7n)∩Bn(7n), let Ω be the connected component of the origin inside the outermost
realisations of the crossings in (4.13), (4.14), (4.15), (4.16) minus the loops `+ and `− (see Figure 9).
As in [11], we want to separate `+ and `− with an h ≤ 0 ×-path. However, since the values on `−
and `+ can be as high as k0, we need several steps to find this path. We do so iteratively, each time
dividing the value of the separating path by a factor of 2. We now provide the details. Let R−, R0

and R+ be the subsets of Ω made of vertices with first coordinates in [−4n,−3n], [−3n, 3n], and
[3n, 4n] respectively. We write V×

h≤2k
(R#) for the existence of a vertical ×-crossing of this quad

between the bottom and top boundaries of ∂Ω. Let

D(k) := C ∩ V×
h≤2k

(R−) ∩ V×
h≤2k

(R+),

and on this event, set Ωk to be the part of Ω between the left-most vertical ×-crossing of h ≤ 2k

of R− and the right-most vertical ×-crossing of R+. We also use the conventions D(`0) = C and
Ω`0 := Ω.

We wish to show iteratively that there exist c`0 , . . . , c1 > 0 such that for every 1 ≤ k < `0,

φ0
Λ50n

[D(k)|C ∩ Bn(−7n) ∩ Bn(7n)] ≥ ck. (4.18)

Fix k ≥ 1 and assume that the previous result was obtained for every k′ > k. The boundary
condition induced on Ωk is such that

V×
h≤2k

(R0) = V×|h−2k+1|≥2k
(R0)

since the sign of the path must be the same as the boundary by the third item of Lemma 2.4.
Therefore, we can put boundary conditions 2k+1 on the left and right sides of R0 using FKG for
|h|. Rewriting this event as |h| ≤ 2k using Lemma 2.4 again, we can push out the zeros on ∂Ω
to the top and bottom boundaries of R0

7. By duality (like in the argument for the first case of
Proposition 3.1), we deduce that

φ0
Λ50n

[V×
h≤2k

(R0)|D(k + 1) ∩ Bn(−7n) ∩ Bn(7n)] ≥ 1
2 ,

which together with the induction hypothesis gives

φ0
Λ50n

[V×
h≤2k

(R0)|C ∩ Bn(−7n) ∩ Bn(7n)] ≥ 1
2c(k + 1).

On this event, let Ω+ be the subregion of Ω on the right of the left-most vertical ×-crossings of
R0 of h ≤ 2k. Conditionally on Ω+, we can make the event V×

h≤2k
(R+) less probable by putting

boundary conditions 2k to the left, top and bottom sides of [−3n, 4n] × [−3n, 3n], and k0 to the
right (which is again made compatible near the corners and the parity chosen appropriately) by
using

7It is easy to check that if n ≥ 2k+1, it is possible to design boundary conditions that interpolate between 2k+1

and 0 in a symmetric fashion in the corners but we voluntarily suppress this issue for the sake of clarity).
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• FKG for |h− k0| (V×
h≤2k

(R+) = V×|h−k0|≥k0−2k
(R+) is increasing in |h− k0| for the boundary

conditions on Ω+) to put h = k0 boundary conditions on the right of Ω′+ := Ω+ ∩ (R0 ∪R+),
• Comparison between boundary conditions for h (V×

h≤2k
(R+) is decreasing in h) to put h = 2k

on the rest of ∂Ω′+,
• FKG for |h − 2k| (V×

h≤2k
(R+) = V×

h=2k
(R+) is decreasing for |h − 2k| for the boundary

conditions) to push the boundary conditions to the top, left, and bottom of the rectangle
[−3n, 4n]× [−3n, 3n].

We can apply Proposition 4.3 to get that

φ0
Λ50n

[V×
h≤2k

(R+)|V×
h≤2k

(R0) ∩ C ∩ Bn(−7n) ∩ Bn(7n)] ≥ c1. (4.19)

Similarly, one can condition on the right of the right-most crossing of V×
h≤2k

(R0) to get

φ0
Λ50n

[V×
h≤2k

(R−)|V×
h≤2k

(R+) ∩ V×
h≤2k

(R0) ∩ C ∩ Bn(−7n) ∩ Bn(7n)] ≥ c1. (4.20)

Forgetting the occurrence of V×
h≤2k

(R0), we deduce (4.18) for c(k) := 1
2c

2
1c(k + 1) > 0.

3n

4n

7n

5n

Figure 10: The event D(k) involves finding the orange ×-paths depicted above taking
value at most 2k. Given D(1), we wish to find a blue ×-path between them taking value
at most 0 using the bridging Proposition 3.1.

Now that we have the existence of c(1) > 0, suppose we are on D(1) ∩ Bn(−7n) ∩ Bn(7n). The
first case of Proposition 3.1 in Ω1 implies that with probability 1/2, one can construct vertical ×-
crossings of h ≤ 0 in R := R−∪R0∪R+. Forgetting about the occurrence of D(1) and conditioning
on the left-most ×-crossing of h ≤ 0 in R, we can again construct a domain Ω+ and this time
deduce the existence of a ×-crossing of h ≤ 0 in [4n, 5n]× [−3n, 3n] via a reasoning similar to the
one leading to (4.19). Then, one conditions on the right-most ×-crossing and deduces a similar

24



claim for [−5n,−4n] × [−3n, 3n]. Overall, if E is the event that A2n(−7n) and A2n(7n) contain
×-circuits of h ≤ 0, the previous reasoning together with (4.18) gives that

φ0
Λ50n

[C ∩ Bn(−7n) ∩ Bn(7n)] ≤ C2φ
0
Λ50n

[E ∩ An(−7n) ∩ An(7n)]. (4.21)

As in [11], conditioned on the outer-most circuits of h ≤ 0 in Λ5n(−7n) and Λ5n(7n), the FKG for
|h| implies that An(−7n) and An(7n) are decoupled events and the probability of An(−7n) and
An(7n) are each bounded by φ0

Λ5n
[An], so that

φ0
Λ50n

[E ∩ Bn(−7n) ∩ Bn(7n)] ≤ Ca2
n.

Combining this inequality with (4.17) and (4.21), we obtain (4.12), a fact which conclude the proof.

4.3 Proofs of the theorems

Proof of Theorem 1.2. Assume that there exists m0 such that am0 < (2C)−1 with C being the
constant from the renormalisation equation (Proposition 4.5). Iterating (4.4), there exist c1, C1 > 0
such that for every r ∈ Z+,

a10rm0 ≤ C1 exp(−c12r). (4.22)

Using RSW and FKG (similarly to the proof of Lemma 4.6), there exist C0, ρ0 > 0 such that for
all m ≥ 1,

φ0
Λ5m

[V|h|≥1(Λ2m,m/2)] ≤ C0φ
0
Λ10m

[∃ circuit of |h| ≥ 1 surrounding Λm]ρ0 . (4.23)

Now, consider m′ to be the smallest integer of the form 20rm0 which is larger than 20m. Using the
FKG inequality for |h|, one may combine such circuits in Λ20m to get the existence of C1, ρ1 such
that

φ0
Λ20m

[∃ circuit of |h| ≥ 1 surrounding Λm] ≤ C1φ
0
Λ5m′

[∃ circuit of |h| ≥ 1 surrounding Λ2m′ ]
ρ1 .

Conditioning on the exterior-most ×-circuit of 1 and using FKG for |h− 1| and (4.23), we deduce
that there exist C3, ρ3 > 0 such that

φ0
Λ5m

[V|h|≥1(Λ2m,m/2)] ≤ C3a
ρ3
m′ .

Together with (4.22), we find that there exist C2, c2 > 0 such that for every m,

φ0
Λ5m

[V|h|≥1(Λ2m,m/2)] ≤ C2 exp(−mc2).

Now, the first item of Lemma 2.4 can be trivially adapted to state that there is a crossing of |h| ≥ 1
from ∂Λm to ∂Λ2m if and only if there is no ×-loop of h = 0 in Am surrounding 0, so that the
φ0

Λ5m
-probability of this event is bounded by 4φ0

Λ5m
[V|h|≥1(Λ2m,m/2)] ≤ 4C2 exp(−mc2).

The event that |h(0)| ≥ 2k implies that there is no ×-loop of 0 (in fact no 0 at all) in Ak
surrounding 0. As a consequence, there exists an integer r ≥ 0 such that there is no ×-loop of
h = 0 in A2rk surrounding 0 but there is one in A2r+1k. Conditioning on the exterior-most such
loop and using the FKG inequality (to push the zero in) and the estimate above, we deduce that

φ0
Λn

[|h(0)| ≥ 4k] ≤
∑
r≥0

4C2 exp(−(2rk)c2) ≤ C3 exp(−kc3).
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We now assume that an ≥ (2C)−1 for every n. Note that the first inequality follows trivially
from the second one applied to k+ 2 so we only focus on the second inequality. Fix ε, ρ > 0 and k.

First, observe that using loops in successive annuli, there exists a constant c0 = c0(k) > 0 such
that for all n,

φ0
Λεn

[∃ ×-loop in Aε2−k−1n of h ≥ k] ≥ c0.

Define the annulus A := Λ(ρ+ε)n,n \ Λ(ρ+ε/2)n,n/2. The FKG inequality and the concatenations of
small ×-loops with value h ≥ k give the existence of c1 = c1(k, ε, ρ) > 0 such that

φ0
D[∃ ×-loop in A of h ≥ k] ≥ c1.

Remark 4.4 and Lemma 4.6 enable us to fix k0 sufficiently large that

φ0
D[E×h≥k0(εn)] ≤ 1

2c1.

Altogether, we conclude that

φ0
D[∃ ×-loop in A of h ∈ [k, k0)] ≥ 1

2c1.

Condition on the exterior-most such ×-loop and let Ω be the domain inside. The boundary condi-
tions induced by the conditioning are between k and k0. Now, combining small ×-loops of h ≤ k,
we may construct a crossing of Λρn,n/2 with probability c2 = c2(ε, ρ, k, k0) > 0. If this happens,
we automatically obtain a ×-crossing of R of h = k. We deduce that this occurs with probability
1
2c1c2, which is independent of n as desired.

We now prove logarithmic bounds for the variance of the height function. We first prove them
in a box Λeven

n introduced in Section 3.2 (a similar statement can easily be obtained in a generic
domain).

Proposition 4.8. There exist c, C > 0 such that for every n,

c log n ≤ φ0
Λeven
n

[h2
0] ≤ C log n.

Proof. Let vn = φΛeven
n

[h2
0]. We start with the lower bound. Let Gn be the event that there is a

|h| = 2 ×-loop inside An which by Corollary 1.3 has φ0
Λeven
2n

-probability at least c independent of n.

On Gn, call the vertices lying inside the outermost |h| = 2 ×-loop Ωn. The bound vn ≥ c log n for
some c > 0 follows by iterating the inequality

v2n = φ0
Λeven
2n

[h2
01Gn ] + φ0

Λeven
2n

[h2
01Gcn ]

= φ0
Λeven
n

[
φ0

Ωn
[(h0 + ξ)2]1Gn

]
+ φ0

Λeven
2n

[
φ0

Λeven
2n

[h2
0|h|∂Λeven

n
]1Gcn

]
= φ0

Λeven
n

[
(φ0

Ωn
[h2

0] + 4)1Gn
]

+ φ0
Λeven
2n

[
φ0

Λeven
2n

[h2
0|h|∂Λeven

n
]1Gcn

]
≥ (φ0

Λeven
n

[h2
0] + 4)φ0

Λeven
2n

[Gn] + φΛeven
n

[h2
0]φ0

Λeven
2n

[Gcn]

= vn + 4φ0
Λeven
2n

[Gn] ≥ vn + 4c.

where ξ is a random variable taking values ±2 with equal probability independent of everything
else. The justification of this sequence of inequalities is the following. To see the second equality,
note that on the event Gn we can explore |h| until we discover Ωn. The third one follows from
the spatial Markov property, the independence of h and ξ, and the fact that φ0

Ωn
[h0] = 0. The
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inequality follows from the comparison between boundary conditions and the FKG inequality for
|h|.

Let us now turn to the upper bound. One can implement a proof which is quite similar to
the lower bound here, but we choose a different road which extends trivially to the torus case.
Consider `k to be the outer-most ×-loop of h ≥ 2k surrounding the origin, if it exists. Also, for
each i ≤ log2 n (here we forget the rounding since it does not impact the rest of the proof), let Ni

be the number of indexes k such that the maximal distance between a vertex in `k and the origin
is between 2i and 2i+1. Observe that

φ0
Λn

[h0 ≥ N ] ≤
∑

N1+···+Nlog2 n=N

φ0
Λn

[Ni = Ni,∀i ≤ log2 n]. (4.24)

We claim that for every ε > 0, there exists C0 > 0 such that

φ0
Λn

[Ni = Ni|N1 = N1, . . . ,Ni−1 = Ni−1] ≤ C0ε
Ni . (4.25)

Plugging this estimate into (4.24) and using that
(
a
b

)
≤ (ea/b)b implies that

φ0
Λn

[h0 ≥ N ] ≤ (1 + logn
N )NC

log2 n
0 (eε)N .

Since we may choose ε as small as we wish, this quantity decays exponentially fast in N ≥ C1 log n,
thus concluding the proof. We therefore turn to the proof of (4.25).

Fix r > 0. Let Ωk be the domain enclosed by `k and set ki := N1+· · ·+Ni. Pave the annulus A2i

by balls of size 2i−r centred at x0, . . . , xR. Let Mk be the number of such balls that are intersecting
Ωk. We claim that there exists a constant c0 > 0 such that for every k ∈ (ki−1, ki),

φ0
Λn

[Mk+1 = Mk > 0|`1, . . . , `k] ≤ (1− c0)r a.s.. (4.26)

Indeed, the conditional measure is, up to a sign, equal to φ2k
Ωk

. Now, since Mk > 0 and `k intersects

the annulus, one may choose xk such that the ball of radius 2i−r around it intersects `k. Note that
Mk+1 = Mk > 0 imposes the occurrence, for every 1 ≤ s ≤ r, of the event Es that there exists a
×-crossing of h = 2k + 2 in the annulus As around xk of inner and outer radii 2i−s−1 and 2i−s.
Using the FKG for |h− 2k − 2|, we therefore deduce that

φ0
Λn

[Mk+1 = Mk > 0|`1, . . . , `k] ≤ φ2k
Ωk

[ r⋂
s=1

Es
]
≤

r∏
s=1

φκsAs∩Ωk
[Es], (4.27)

where κs is the boundary conditions equal to h = 2k + 2 on the inner and outer boundaries of
As, and h = 2k on the rest of the boundary. Since the existence of the ×-crossing of h = 2k + 2
from inside to outside is the complement under these boundary conditions of the existence of a
∗-path of 2k from `k to itself, we may use the FKG inequality for |h − 2k| and the shifting of the
height-function down by 2k, to bound the probability of the event Es by the event that there exists
a ∗-circuit of 0 surrounding the origin in an annulus with boundary conditions 2. This probability
is bounded by 1− c0 using Corollary 1.3, and we therefore obtain (4.26).

Now, if one finds Ni loops with radius between 2i and 2i+1, there must be at least Ni − C2

indexes k ∈ (ki−1, ki) for which Mk+1 = Mk > 0, where C2 is a function of r only. We deduce that

φ0
Λn

[Ni = Ni|N1 = N1, . . . ,Ni−1 = Ni−1] ≤ NC2
i e−r(Ni−C2)

which implies (4.25) with ε and a constant C0 = C0(ε) > 0 provided that we select r large
enough.

27



We conclude this article with the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix a representative of the equivalence class of each homomorphism by set-
ting h(x) = 0. Using FKG for |h|, we deduce that

φTn [(h(y)− h(x))2] = φ
{x},0
Tn

[h(y)2] ≥ φ0
Λ|x−y|(y)[h(y)2] ≥ c log |x− y|.

The upper bound can be deduced by an argument similar to the one developed in the last proof
(defining the circuits starting from 0).
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