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Abstract

In this paper, we prove that the large scale properties of a number of two-
dimensional lattice models are rotationally invariant. More precisely, we prove that
the random-cluster model on the square lattice with cluster-weight 1 ≤ q ≤ 4 ex-
hibits rotational invariance at large scales. This covers the case of Bernoulli percola-
tion on the square lattice as an important example. We deduce from this result that
the correlations of the Potts models with q ∈ {2, 3, 4} colors and of the six-vertex
height function with ∆ ∈ [−1,−1/2] are rotationally invariant at large scales.
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1 Introduction

1.1 Motivation

Physical systems undergoing a continuous phase transition have been the focus of much
attention in the past seventy years, both on the physical and the mathematical sides.
Since Onsager’s revolutionary solution of the 2D Ising model, mathematicians and physi-
cists tried to understand the delicate features of the critical phase of these systems. In
the sixties, the arrival of the renormalization group (RG) formalism (see [29] for a histor-
ical exposition) led to a generic (non-rigorous) deep understanding of continuous phase
transitions. The RG formalism suggests that “coarse-graining” renormalization transfor-
mations correspond to appropriately changing the scale and the parameters of the model
under study. The large scale limit of the critical regime then arises as the fixed point of
the renormalization transformations.

A striking consequence of the RG formalism is that the assumption that the critical
fixed point is unique leads to the prediction that the scaling limit at the critical point
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must satisfy translation, rotation and scale invariance, which allows one to deduce some
information about correlations. In [51], Polyakov outlined a set of arguments pointing
towards a much stronger invariance of statistical physics models at criticality: since the
scaling limit field theory is a local field, it should be invariant under any map which is lo-
cally a composition of translation, rotation and homothety, which leads to postulate full
conformal invariance. In [8, 7], Belavin, Polyakov and Zamolodchikov went even further
by considering massless field theories that enjoy full conformal invariance from the very
start, a fact which allowed them to derive explicit expressions for their correlation func-
tions, hence giving birth to conformal field theories. Once conformal invariance is proved,
a whole world of new techniques becomes available thanks to Conformal Field Theory
and the Schramm-Loewner Evolution [47], and it is therefore a problem of fundamental
importance to prove conformal invariance of the scaling limits of lattice models.

Proving conformal invariance is quite difficult for most lattice models. The examples
of models for which such a statement has been obtained can be counted on the fingers of
one’s hand: site Bernoulli percolation on the triangular lattice [58, 11, 10] (respectively
for Cardy’s formula, SLE(6) convergence, and CLE(6) convergence), Ising and FK-Ising
models [59, 13, 39, 12, 14, 9] (respectively for the fermionic observables in FK-Ising, in
Ising, the energy and the spin fields, SLE convergence, and CLE convergence), uniform
spanning trees [55], dimers [42], level lines of the discrete GFF [56].

In all the mentioned cases, the proof relied under one form or another, on discrete
holomorphic observables satisfying some discrete version of conformally covariant bound-
ary value problems. Mathematicians were therefore able to prove conformal invariance
directly, bypassing the road suggested by physicists consisting in first proving scaling and
rotation invariance (translation invariance is obvious), and then deducing from it confor-
mal invariance. Unfortunately, today’s mathematicians’ strategy is very dependent on
discrete properties of the system, which explains why we are currently limited to very
few instances of proofs of conformal invariance.

In this paper, we perform one step towards the strategy inspired by Field Theory and
prove rotational invariance of the large-scale properties of a number of planar models at
their critical point. Our strategy is quite general and applies to a number of integrable
planar systems. Namely, we treat the case of the random-cluster model (also called
Fortuin-Kasteleyn percolation), the Potts models, as well as the six-vertex model. We
believe that the reasoning has also applications for the Askhin-Teller model and certain
loop models. The proof will proceed by focusing on the random-cluster model and then
extending its rotational invariance to other planar lattice models using known mapping
between the models.

1.2 Definition of the random-cluster model and distance between per-
colation configurations

As mentioned in the previous section, the model of central interest in this paper is the
random-cluster model, introduced by Fortuin and Kasteleyn around 1970 [30, 31], which
we now define. For background, we direct the reader to the monograph [35] and to the
lecture notes [19] for an exposition of the most recent results.
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Consider the square lattice (Z2,E), that is the graph with vertex-set Z2 = {(n,m) :
n,m ∈ Z} and edges between nearest neighbours. In a slight abuse of notation, we write
Z2 for the graph itself. Consider a finite subgraph G of the square lattice with vertex-set
V and edge-set E. For instance, think of G = Λn as being the subgraph of Z2 spanned
by the vertex-set {−n, . . . , n}2 (we will use the notation Λn throughout the paper). A
percolation configuration ω on G is an element of {0, 1}E . An edge e is open (in ω) if
ωe = 1, otherwise it is closed. A configuration ω can be seen as a subgraph of G with
vertex-set V and edge-set {e ∈ E : ωe = 1}. When speaking of connections in ω, we view
ω as a graph. A cluster is a connected component of ω.

Definition 1.1. The random-cluster measure on G with edge-weight p ∈ [0, 1], cluster-
weight q > 0, and free boundary conditions is given by

φ0
G,p,q[ω] :=

p|ω|(1− p)|E|−|ω|qk(ω)

Z0
RCM(G, p, q)

, (1)

where |ω| :=
∑
e∈E ωe is the number of open edges, k(ω) is the number of connected

components of the graph, and Z0
RCM(G, p, q) is a normalising constant called the partition

function chosen in such a way that φ0
G,p,q is a probability measure.

For q ≥ 1, the family of measures φ0
G,p,q converges weakly as G tends to the whole

square lattice to an infinite-volume measure φ0
p,q on {0, 1}E. The random-cluster model

undergoes a phase transition [5, 26] at a critical parameter

pc = pc(q) =

√
q

1 +
√
q

in the sense that the φ0
p,q-probability that there exists an infinite cluster is 0 if p < pc(q),

and is 1 if p > pc(q).
It was also proved in [20, 27] that the phase transition is continuous (i.e. that the

probability that 0 is connected to infinity is tending to 0 as p↘ pc) if and only if q ≤ 4
(see also [52] for a short proof of discontinuity of the phase transition when q > 4). In
the whole paper we restrict our attention to the range q ∈ [1, 4]. For this reason,

fix q ∈ [1, 4] and p = pc(q) and drop them from notation.

We will be interested in measuring how close the large scale properties of two random
percolation configurations really are. In order to do that, we introduce a rescaling of
the lattice and define the random-cluster model on subgraphs of δZ2 with δ > 0. To
highlight on which lattice we are working, we will consistently use the subscript δ to
refer to a percolation configuration on a subgraph of the lattice δZ2, and write ωδ for
such a configuration. When Ω is a simply connected domain of R2, write Ωδ for the
intersection of Ω with δZ2.

In [11], Camia and Newman introduced a convenient way of measuring the geometry
of large clusters in a percolation configuration in the plane. Let C = C(Ω) be the collection
of sets F = F0 t F1 of two locally finite families F0 and F1 of non-self-crossing loops in
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some simply connected domain Ω that do not intersect each other (even between loops
in F0 and F1). Define the metric on C,

dCN(F ,F ′) ≤ ε ⇐⇒
( ∀i ∈ {0, 1}, ∀γ ∈ Fi with γ ⊂ B(0, 1/ε), ∃γ′ ∈ F ′i , d(γ, γ′) ≤ ε

and similarly when exchanging F ′ and F
)
,

where, for two loops γ1 and γ2, we set

d(γ1, γ2) := inf sup
t∈S1
|γ1(t)− γ2(t)|,

with the infimum running over all continuous one-to-one parametrizations of the loops
γ1 and γ2 by S1.

Another way of encoding the geometry of large clusters was proposed by Schramm
and Smirnov in [57]. In order to define it formally, let a quad Q be the image of an
homeomorphism from [0, 1]2 to C, and let a, b, c, d be the images of the corners of [0, 1]2.
A crossing of Q is a continuous path in Q going from (ab) to (cd). Let Q be the set of
quads, endowed with the distance between quads given by

dQ(Q,Q′) := d(∂Q, ∂Q′) + |a− a′|+ |b− b′|+ |c− c′|+ |d− d′|.

Call S ⊂ Q hereditary if whenever Q ∈ S, every quad Q′ that is such that any crossing
of Q contains a crossing of Q′ must also belong to S. Let H = H(Ω) be the set of closed
hereditary subsets of Q. Endow H with the smallest topology generated by the sets of
the type {Q ∈ S}Q∈Q and {S ∩ U = ∅}U open set in Q. The set H with this topology is
metrizable, and we denote the metric (whose definition is implicit) by dSS(·, ·).

A configuration ω can be identified with the (automatically hereditary) set S ∈ H
containing all the quads that are crossed by an open path in ω (seen as a continuous
path in the plane). Similarly, ω can be seen as an element of C by considering the loop
representation of the model obtained as follows (see Section 3.2 for details): to each ω
is associated a dual configuration ω∗ on the dual graph, as well as a loop configuration ω
on the medial graph, corresponding basically to the boundaries between the primal and
dual clusters. Then, we say that a loop is in F1 if it is the exterior boundary of a primal
cluster, and in F0 if it is the exterior boundary of a dual cluster. Whether ω is seen as an
element of H or C will depend on the context (it will always be clear which identification
is used, if any).

1.3 Main results for the random-cluster model

Below, we state results in simply connected domains Ω with a C1-smooth boundary,
meaning that ∂Ω can be parametrized by a C1-function whose differential does not
vanish at any point1. By taking the limit as Ω tends to R2 of the results below, we also
obtain the statement for the unique infinite-volume measure2.

1Such a condition may be relaxed to cover any Jordan domain, yet we postpone such considerations
to a later article to focus on the most interesting aspects of the problem at hand (which are already
encompassed in the present framework).

2In fact, the proof will consist in first obtaining an infinite-volume version and then deducing from it
the finite volume one.
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We will identify the rotation by the angle α with the multiplication by eiα. Below,
X ∼ µ means a random variable X with law µ.

The main theorem of our paper is the following.

Theorem 1.2 (Rotation invariance of critical random-cluster model). Fix q ∈ [1, 4] and
a simply connected domain Ω with a C1-smooth boundary. For every ε > 0, there exists
δ0 = δ0(q, ε,Ω) > 0 such that for every α ∈ (ε, π − ε) and δ ≤ δ0, there exists a coupling
P between ωδ ∼ φ0

Ωδ
and ω′δ ∼ φ0

(e−iαΩ)δ
such that

P[dSS(ωδ, e
iαω′δ) > ε] < ε,

P[dCN(ωδ, e
iαω′δ) > ε] < ε.

This theorem has a number of applications for the random-cluster model. First,
the definition of the Schramm-Smirnov topology implies, in particular, that crossing
probabilities are invariant under rotation in the following sense. For a quad Q, let
{ω ∈ C(Q)} be the event that Q is crossed in the percolation configuration ω.

Corollary 1.3 (Rotation invariance of crossing probabilities). Fix q ∈ [1, 4] and a simply
connected domain Ω with a C1-smooth boundary. For every ε > 0 small enough, there
exists δ0 = δ0(q, ε,Ω) > 0 such that for every quad Q with ε-neighborhood contained in
Ω, every α ∈ (ε, π − ε), and every δ < δ0,

|φ0
(eiαΩ)δ

[C(eiαQ)]− φ0
Ωδ

[C(Q)] | ≤ ε.

Furthermore, the condition that Ω contains the ε-neighborhood of Q can be replaced 3 by
Ω ⊃ Q when 1 ≤ q < 4.

We turn to “pointwise correlations”. For points x1, . . . , xn and a partition P of
{x1, . . . , xn}, let E(P, x1, . . . , xn) be the event that xi and xj are connected if and only
if they belong to the same element of P. The following corollary will be useful when
studying spin-spin correlations in the Potts model.

Corollary 1.4 (Rotation invariance of connectivity correlations). Fix q ∈ [1, 4] and a
simply connected domain Ω with a C1-smooth boundary. For every ε > 0 and n, there
exists δ0 = δ0(q, n, ε,Ω) > 0 such that for every α ∈ (ε, π − ε) and δ ≤ δ0, every
x1, . . . , xn ∈ Ωδ at a distance at least ε of each other and of the boundary of Ω, and every
partition P of {x1, . . . , xn},

|φ0
(eiαΩ)δ

[E(P, eiαx1, . . . , e
iαxn)]− φ0

Ωδ
[E(P, x1, . . . , xn)]| ≤ ε φ0

Ωδ
[E(P, x1, . . . , xn)],

where we use, in a slight abuse of notation, eiαxi to denote a vertex x of (eiαΩ)δ within
a distance δ of the image of xi under the rotation by the angle α.

3We also believe the result to be true for q = 4, but in this case both quantities may tend to zero
(under certain conditions) as δ tends to 0.
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Remark 1.5. We may also study the edge-density variables εΩe := ωe − φ0
Ω[ωe] and prove

some rotation invariance for these variables. Obtaining this result requires some standard
coupling argument that we postpone to a forthcoming paper in which we will prove
additional properties of the near-critical regime of the model related to these edge-density
variables.

1.4 Applications to other models

In this section, we explain some applications to other models. The list is not exhaustive,
and we believe that the previous result has further implications for a wide class of 2D
models at criticality.

Potts model The Potts model is one of the most classical models of ferromagnetism.
When q ∈ {2, 3, 4}, the model undergoes a continuous phase transition, as predicted by
Baxter (see e.g. the book [3]) and proved in [27]. The model is defined as follows. Let
Tq be the simplex in Rq−1 containing (1, 0, . . . , 0) such that for any a, b ∈ Tq,

a · b :=

{
1 if a = b,
− 1
q−1 otherwise

(above and below · denotes the scalar product). Attribute a spin variable σx ∈ Tq to
each vertex x ∈ V . A spin configuration σ = (σx : x ∈ V ) ∈ TVq is given by the collection
of all the spins. Introduce the Hamiltonian of σ defined by

HG(σ) := −
∑
xy∈E

σx · σy.

The Gibbs measure on G at inverse temperature β ≥ 0 is defined by the formula, for
every f : TVq → R,

µG,β,q[f ] :=
1

ZPotts(G, β, q)

∑
σ∈TVq

f(σ) exp[−βHG(σ)]. (2)

Similarly to the random-cluster model, the Potts model exhibits a phase transition at
inverse temperature βc(q) := q−1

q log(1+
√
q), which separates a phase where correlations

decay exponentially fast from a phase where they do not decay. We will always fix q and
β = βc and therefore drop them from the subscript in the measure.

The following corollary stating the rotational invariance of the spin field is an im-
mediate application (via the Edwards-Sokal coupling) of the corresponding one for the
random-cluster model.

Corollary 1.6 (Rotation invariance of spin-spin correlations). Fix q ∈ {2, 3, 4} and a
simply connected domain Ω with a C1-smooth boundary. For every ε > 0 and n, there
exists δ0 = δ0(q, ε, n,Ω) > 0 such that for every α ∈ (ε, π − ε) and δ ≤ δ0, every
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τ1, . . . , τn ∈ Tq, and every x1, . . . , xn ∈ Ωδ at a distance at least ε of each other and of
the boundary of Ω,

|µΩδ [σxi = τi, 1 ≤ i ≤ n]− µ(eiαΩ)δ [σeiαxi = τi, 1 ≤ i ≤ n]| ≤ ε µΩδ [σxi = τi, 1 ≤ i ≤ n],

where we use, in the slight abuse of notation, eiαxi to denote a vertex x of (eiαΩ)δ within
a distance δ of the image of xi under the rotation by the angle α.

Remark 1.7. One may also deduce the rotation invariance of energy n-point correlations
(i.e. the correlations of the random variables εΩe := σx · σy − µΩ[σx · σy] for e = xy an
edge of G). Again, the proof of this result is postponed to a forthcoming paper.

These results are of course known for the Ising model (i.e. the q = 2 Potts model).
In fact, in this case the existence of the scaling limit and its conformal invariance are
known, see [12] for the spin field, and [39] for the energy field.

Six-vertex height function The six-vertex model on the torus is the archetypi-
cal example of an integrable model. It is defined as follows. For N > 0 even, let
TN,M := (VN,M , EN,M ) be the toroidal square grid graph with N × M vertices. An
arrow configuration ~ω on TN,M is the choice of an orientation for every edge of EN,M .
We say that ~ω satisfies the ice rule, or equivalently that it is a six-vertex configura-
tion, if every vertex of VN,M has two incoming and two outgoing incident edges in ~ω.
These edges can be arranged in six different ways around each vertex as depicted in
Figure 1, hence the name of the model. Define the weight of a configuration ~ω to be
W6V(~ω) := an1+n2bn3+n4cn5+n6 , where ni is the number of vertices of V (TN,M ) having
type i in ~ω. One may define an infinite-volume limit as M and then N tend to infinity,
of the measures on TN,M attributing probability proportional to W6V(~ω), which we call
P6V
Z2 , see [23] for details. The measure can also be seen as a measure on gradients of

height functions, where we associate to ~ω a height function h on the dual graph (Z2)∗

increasing by 1 when crossing an arrow oriented from right to left.

Figure 1: The 6 possibilities, or “types”, of vertices in the six-vertex model.

In the next corollary, we claim a rotation invariance result for the six-vertex model
in the regime ∆ := a2+b2−c2

2ab ∈ [−1,−1
2 ]. Again, we rescale the lattice by a factor δ and

call the infinite-volume measure thus obtained P6V
δZ2 .

Corollary 1.8 (Rotation invariance of height function correlations). Fix a = b = 1 and
c > 0 such that 1−c2/2 ∈ [−1,−1

2 ]. For every ε > 0 and n, there exists δ0 = δ0(c, ε, n) >
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0 such that for every α ∈ (ε, π − ε), every δ ≤ δ0, and every x1, . . . , x2n ∈ (δZ2)∗ at a
distance between ε and 1/ε of each other,

∣∣∣E6V
δZ2

î n∏
i=1

(hx2i − hx2i−1)
ó
− E6V

δZ2

î n∏
i=1

(heiαx2i − heiαx2i−1
)
ó∣∣∣ ≤ ε,

where we use the slight abuse of notation eiαxi to denote a vertex x of eiα(δZ2)∗ within
a distance δ of the image of xi under the rotation by the angle α.

The previous corollary can be improved to give rotational invariance of smooth aver-
ages of the height function. We omit the details here. A more general result is mentioned
in Remark 7.1.

The six-vertex model height function in the full plane is conjectured to converge
to the Gaussian Free Field (GFF) whenever ∆ ∈ [−1, 1), and one therefore expects the
correlations to be not only rotationally invariant but also conformally invariant. Rotation
invariance is one step in the direction of proving GFF convergence. The convergence to
GFF was obtained for ∆ = 0 (more precisely for the directed model of dimers) in [42].

2 Proof Roadmap

In this section, we outline the proof of Theorem 1.2 and introduce several key concepts
and results. This roadmap is essential for navigating the rest of the paper; the other
parts of the paper may be read separately. Let us mention that all the results in the
introduction are deduced from Theorem 1.2 in fairly straightforward ways in Section 7.

The main idea will be to couple the random-cluster model on the square lattice
with a random-cluster model on a rotated rectangular lattice (meaning a lattice whose
faces are rectangles) which has the line eiα/2R as axis of symmetry, in such a way that
the Camia-Newman and Schramm-Smirnov distances between the two configurations are
small. Then, one may couple the original model with the model on the rectangular
lattice with this additional symmetry, use this symmetry, and then couple the obtained
configuration with the original model, in such a way that the distance between the
starting and final configurations is small with probability very close to one. This will
therefore prove that the symmetry in question is an approximate symmetry of the original
model. Together with the symmetries with respect to horizontal lines, this will imply
the approximate rotational symmetry. In order to implement the scheme, we need a few
additional notions.

2.1 Random-cluster model on isoradial rectangular graphs.

An isoradial graph L is a planar graph embedded in the plane in such a way that (i)
every face is inscribed in a circle of radius 1 and (ii) the center of each circumcircle
is contained in the corresponding face, see Fig. 2. We sometimes call the embedding
isoradial (note that it is a property of the embedding and that the graph can have
several isoradial embeddings). Isoradial graphs were introduced by Duffin in [16] in the
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Figure 2: The black graph is (a finite part of) an isoradial graph. All its faces can be
inscribed into circumcircles of radius one. The centers of the inscribing circles have been
drawn in white; the dual edges are in dotted lines. The diamond graph is drawn in gray
in the right picture.

context of discrete complex analysis, and later appeared in the physics literature in the
work of Baxter [2], where they are called Z-invariant graphs. The term isoradial was
only coined later by Kenyon, who studied discrete complex analysis on these graphs [43].
Since then, isoradial graphs have been studied extensively; we refer to [13, 45, 48] for
literature on the subject.

Given an isoradial graph L (which we call the primal graph), we can construct its dual
graph L∗ as follows: the vertex-set is given by the circumcenters of faces of L, and the
edges connect vertices that correspond to faces of L that share an edge. The diamond
graph associated to L has vertex-set given by the vertices of L and L∗, and edge-set given
by the pairs (x, u) with x ∈ L and each u ∈ L∗ which is the center of a face adjacent to x.
All edges of the diamond graph are of length 1, and the diamond graph is a rhombic
tiling of the plane. See Figure 2 for an illustration.

A track of L is a bi-infinite sequence of adjacent faces (ri)i∈Z of the diamond graph,
with the edges shared by each ri and ri+1 being parallel. The angle formed by any such
edge with the horizontal axis is called the transverse angle of the track.

Isoradial graphs considered in this paper are of a very special type, see Figure 3.
They will all be isoradial embeddings of the square lattice; moreover we assume that
all diamonds have bottom and top edges that are horizontal. A consequence of this
assumption is that the diamond graph can be partition into (horizontal) tracks ti with a
constant transverse angle αi. When the sequence of track angles is ααα = (αi)i∈Z ∈ (0, π)Z,
denote the graph by L(ααα). When αi = α for every i, simply write L(α) and call such
lattices rectangular lattices. Note that L(α) is a rotated version of a rectangular lattice
that has eiα/2R as axis of symmetry. In particular, L(π2 ) is simply a rescaled and rotated
(by an angle of π/4) version of Z2.
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t−1

t0

t1

t2

Figure 3: An example of a graph L(ααα), where αi is equal to π
2 for i ≤ 3, and α above. The

diamond graph is drawn in light black lines, the white points refer to the vertices of the
dual lattice, and the black points and the stronger black lines refer to the primal lattice.
One sees that both the lower and upper parts are portions of a rotated rectangular lattice,
and that below this rectangular lattice is simply the square lattice. The vertices of t−0
are drawn in red, and those of t+0 in blue.

2.2 Universality among isoradial rectangular graphs and a first version
of the coupling.

As described in Section 3, isoradial graphs L(ααα) are associated to a canonical set of
edge-weights, therefore producing random-cluster measures φδL(ααα) on δL(ααα). The next
theorem states that the behaviour on different rectangular isoradial graphs is universal.
In a way, this is the cornerstone of the paper.

Theorem 2.1 (Universality of critical random-cluster models on rectangular graphs).
For q ∈ [1, 4] and ε > 0, there exists δ0 = δ0(q, ε) > 0 such that for every δ < δ0 and
α ∈ (ε, π − ε), there exists a coupling Pα,δ,ε between ω ∼ φδL(α) and ω′ ∼ φδL(

π
2 ) such

that

Pα,δ,ε[dCN(ω, ω′) > ε] < ε,

Pα,δ,ε[dSS(ω, ω′) > ε] < ε.

This result states the universality of the scaling limit among rectangular lattices.
It will be shown in Section 7 that it implies Theorem 1.2. Even though we already
mentioned it before, let us recall that the proof will consist in using this theorem to
relate the model on δL(π2 ) to the one on δL(α), then use the reflection with respect to
eiα/2R, and finally use again the theorem to relate back the new graph to the model on
a rotated version of δL(π2 ).
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To describe the coupling of Theorem 2.1, let us first ignore the rescaling by δ and
simply work with δ = 1. The coupling Pα,δ,ε will then simply be the push forward by
the map x 7→ δx of a coupling between configurations in L(α) and L(π2 ).

A naive and simplified version of the coupling can be described fairly easily. We do
it now. The construction is based on exchanging tracks by successive applications of the
star-triangle transformation. Below, let Ti be the track-exchange operator (constructed
in Section 3.5) exchanging the tracks ti and ti−1. This track exchange is seen as a random
map on configurations, and a deterministic one on lattices; it maps L(ααα) to L(ααα′) where
ααα′ is obtained from ααα by exchanging αi and αi−1. It also maps configurations on L(ααα) to
possibly random configurations in L(ααα′) by applying successive star-triangle operations.
One of its most important features is that the push-forward of φL(ααα) by Ti is φL(ααα′). For
readers who are not familiar with these notions, everything is detailed in Section 3.5.

Coupling: version 1

1) Let L(0) be the lattice with angles

αj = αj(α,N) :=

{
α if j ≥ N,
π
2 if j < N.

and sample ω(0)
δ ∼ φL(0) .

2) Recursively for 0 ≤ t < T := 2N × d2N/ sinαe, define

j(t) := N + (2N + 1)bt/(2N)c − t

and

L(t+1) := Tj(t)(L(t)),

ω(t+1) := Tj(t)(ω
(t)).

Since the track-exchange operator Tj(t) preserves the law of the random-cluster
model, we have that

ω(t) ∼ φL(t) for every t.

Also, note that ω(0) and ω(T ) are not quite sampled according to φL(π/2) and φL(α), but
the law of the restriction to the strip R×[−N,N ] is the same on L(0) and L(π2 ) (resp. L(T )

and L(α)) due to classical properties of the track-exchange operator (see Remark 3.12
for a more precise statement).

The problem with this first version of the coupling is that it lacks ergodic properties
that are essential to our proof (or at least it is not straightforward to prove them). We
therefore introduce below a slightly modified version of the coupling where the configu-
ration is resampled at each step, just keeping some relevant information on ω(t). Which
relevant information will be dictated by the following paragraph.

12



2.3 The homotopy topology and the second and third versions of the
coupling.

The track-exchange operator behaves well with respect to certain properties of the collec-
tion of loops in the percolation configuration, among which the inclusion between large
loops/clusters and the homotopy class of large loops in punctured planes. We will there-
fore work with the interpretation of configurations as collection of loops F = (F0,F1),
but with a different distance than the Camia-Newman one.

For η > 0 and a loop γ, let [γ]η be its cyclic homotopy class in R2 \ Bη, where
Bη := ηZ2 ∩ [−1/η, 1/η]2. The homotopy classes will be encoded by reduced words,
see Section 5.1 for a detailed definition (for an explanation of why we chose to work
with homotopy classes rather than the maybe more intuitive inclusion, see Figure 4).
Introduce the distance defined by

dH[F ,F ′] ≤ η ⇐⇒
( ∀i ∈ {0, 1}, ∀γ ∈ Fi surrounding at least 2 but not all points in Bη
∃γ′ ∈ F ′i s.t. [γ]η = [γ′]η, and similarly when exchanging F and F ′

)
.

This distance controls the Camia-Newman and Schramm-Smirnov distances, as stated
in the next theorem.

Theorem 2.2 (Correspondence between different topologies). Fix q ∈ [1, 4]. For every
κ > 0, there exist η = η(q, κ) > 0 and δ0 = δ0(κ, η) > 0 such that for every δ < δ0, and
every α ∈ (0, π), if P denotes a coupling between ωδ ∼ φ0

δL(π/2) and ω′δ ∼ φ0
δL(α),

P[dH[ωδ, ω
′
δ] ≤ η and dSS[ωδ, ω

′
δ] ≥ κ] ≤ κ,

P[dH[ωδ, ω
′
δ] ≤ η and dCN[ωδ, ω

′
δ] ≥ κ] ≤ κ.

It may at first sight look strange that the shape of a large loop is well determined
by its homotopy class. Indeed, one may produce arbitrarily large loops that have triv-
ial homotopy. Yet, recall that percolation clusters are typically fractal, and that it is
therefore unlikely that large parts of their contour do not contribute to the complexity
of their homotopy class. For instance, one may easily see that it is very unlikely that a
large loop is homotopically (almost) trivial.

With this theorem in our hands, we can reformulate Theorem 2.1 into the following
theorem.

Theorem 2.3 (Universality of critical random-cluster models on rectangular graphs).
For q ∈ [1, 4] and ε > 0, there exists δ0 = δ0(q, ε) > 0 such that for every δ < δ0 and
α ∈ (ε, π − ε), there exists a coupling Pα,δ,ε between ω ∼ φδL(α) and ω′ ∼ φδL(

π
2 ) such

that
Pα,δ,ε[dH(ω, ω′) > ε] < ε.

The trivial proof below justifies that we henceforth focus on deriving Theorem 2.3.

Proof of Theorem 2.1. Theorems 2.3 and 2.2 combine to give Theorem 2.1.
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The fact that we are only interested in the homotopy classes of loops suggests that we
may allow ourselves to resample the configuration at every step only keeping non-trivial
homotopy classes in mind. This naturally leads to the next coupling (notations are the
same as in the previous section).

Below, introduce the multiset [·]η,i(ω) gathering4 the homotopy classes in R2 \NBη
(here homotopy class is meant in the sense of Remark 5.2) of the loops in Fi(ω) (when
ω is seen as an element of the Camia-Newman space) that surround at least two but not
all points in NBη.

Coupling: second version

1) Sample ω(0) ∼ φL(0) .

2) Recursively for 0 ≤ t < T , given ω(t),

• Sample ω(t+1/2) ∼ φL(t) [ · |([·]η,0, [·]η,1)(ω(t+1/2)) = ([·]η,0, [·]η,1)(ω(t))],

• Sample ω(t+1) := Tj(t)(ω
(t+1/2)).

The construction still guarantees that ω(t) has law φL(t) at each time step. Fur-
thermore, the resampling trick keeps only the homotopy classes of loops in mind, while
guaranteeing sufficient refreshment at each step. The problem with this second coupling
is that we actually mislead the reader into believing that the track-exchange preserves
in a reasonable fashion the homotopy classes of large loops.

What is true is that it preserves the homotopy “between loops”. As a consequence,
it is in fact more convenient to consider the homotopy classes of large loops in ω not
with respect to points in NBη, but rather with respect to certain clusters, which we
will call “marked nails” (see Section 6 for a formal definition). At this point we do not
enter into precise considerations concerning these nails, but simply mention that they
will be mesoscopic clusters of ω which are close to the points in NBη. It will be crucial
to control how the positions of these nails evolve during the process. At this stage, and
in order not to complicate the discussion too much, let us informally consider Hintro(ω)
to be the information of the position of the marked nails, as well as the homotopy classes
in R2 \ {marked nails} of the loops in F(ω) surrounding at least 2 and not all marked
nails (we will see how to make formal sense of these notions in Section 6).

Coupling: third version

1) Sample ω(0)
δ ∼ φL(0) .

2) Recursively for 0 ≤ t < T , given ω(t),

4Formally, it is a function from the set of homotopy classes into non-negative integers.
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Figure 4: On the left, an example of a transformation of the red points that continuously
transforms a blue loop with a certain homotopy class into another blue loop with a
different homotopy class. It is therefore crucial to encode homotopy classes in a coherent
way, which will be done in Section 5.1. Also, on the right, a justification of why we did
not choose to keep track of a simpler property of loops, namely, the inclusion between
loops. In the picture, the two loops created by opening one of the blue dots, or one of the
red dots, have the same inclusion properties with respect to other loops, but have very
different large scale connectivity properties (in particular they are far apart in Camia-
Newman and Schramm-Smirnov distances). They do however have different homotopy
classes with respect to other loops.

• Sample ω(t+1/2) ∼ φL(t) [ · |Hintro(ω(t+1/2)) = Hintro(ω(t))],

• Sample ω(t+1) := Tj(t)(ω
(t+1/2)).

The true coupling will be made completely explicit in Section 6, in particular with a
precise definition of the formal equivalent H(ω) of Hintro(ω). The coupling will be close
(but not quite the same) to this one. There will be small technicalities related to the
definition of marked nails, but all of this will be treated carefully in Section 6, and the
fourth version of the coupling defined there will be the final one.

The true (and interesting) challenge with this third coupling is to manage to relate
the homotopy classes in R2 \{marked nails} to those in R2 \Bη(N). Indeed, the coupling
will perfectly preserve the former, but these homotopy classes relate to homotopy classes
of R2 \ Bη(N) only if the marked nails are not moving too much. The main part of the
proof of Theorem 2.3 will be to show that this is indeed the case.

In order to do that, we will approximately write the global displacement of extrema
for the nails as a sum of independent increments whose laws are dictated by the action
of a track-exchange on Incipient Infinite Clusters with three-arms in half-planes. More
precisely, fix α, β ∈ (0, π). Introduce the (half-plane three-arm) Incipient Infinite Cluster
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(IIC) on L(β) defined informally by the formula

Ψ

[·] = φL(β)[ · |lmax(∞) = 0],

where lmax(∞) is the left-most highest vertex on the infinite cluster (the conditioning is
degenerate, but can be made sense of, see the proper definition in Section 3.4).

Then, consider a series of track exchanges bringing down a track of angle α from +∞
to −∞. We will prove that the average height of the highest vertex on the infinite cluster
after this series of track exchanges is 0. In other words, the “drift” induced by passing
down a track of angle α through an environment of tracks of angle β is zero.

This result will then be combined with the fact that highest points of nails look like
highest points of the infinite cluster in the half-plane three arm IIC to prove that extremal
coordinates of large clusters do not move much throughout the coupling described above.
To complete this, soft arguments will enable us to extend this property to extrema in
the other directions.

To conclude this part, let us mention that the original idea of [36, 37, 38] was to prove
that macroscopic clusters of Bernoulli percolation do not move too fast when applying
the track exchanges to transform one isoradial graph into another5. In this paper, we
refine the argument by studying the drift of large clusters through the track-exchange
coupling and by extending it to general random-cluster models. In order to prove that
this speed is zero, we use the integrability of the six-vertex model on the torus.

2.4 Harvesting integrability on the torus

For a vertex v, let v+ be the vertex on the top left of v. We will see in Section 6 that
proving that the drift is zero in the previous section will be related to the following result.

Fix α, β ∈ (0, π). Consider the graphs Li = Li(α, β) defined by αj = β for j 6= i, and
αi = α. Let

Ψ2
i be the 2-rooted (half-plane three-arm) Incipient Infinite Cluster on Li

defined as the random-cluster model on Li conditioned on having an infinite cluster and
having lmax(∞) equal to 0 or 0+ (see Section 3.4 for a formal definition).

Theorem 2.4. For every q ∈ [1, 4] and α, β ∈ (0, π),

Ψ2
1[lmax(∞) = 0+] =

sinα

sinα+ sinβ
=

Ψ2
0[lmax(∞) = 0]. (3)

To prove this result, we work on the torus. For positive integers N,M with N even,
let Ti(N,M) be the N × 2M torus with 2M horizontal tracks t1−M , . . . , tM with angle
equal to α for ti and β for tj with j 6= i. Let t−j (resp. t+j ) denote the set of vertices on
the bottom (resp. top) of the track tj . Also, let φTi(N,M) be the random-cluster measure
on Ti(N,M).

5In these papers, the notion of speed was not introduced nor proved to exist, but in the language of
this paper, the results of [36, 37, 38] state that the absolute value of the speed is strictly smaller than 1
for Bernoulli percolation.
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Fix z−1, z0, z1, x1, . . . , xk distinct vertices found on t−1−M (= t+M ) in that order. Let
y1, . . . , yk be the vertices of t−M such that xi = y+

i . Define the event (see Figure 5):

E(k) = E(k, z−1, z0, z1, x1, . . . , xk, y1, . . . , yk, N,M)

that

(i) the only edges that are open in tM are the edges linking xi and yi,
(ii) there are k disjoint clusters connecting xi to yi for 1 ≤ i ≤ k in Ti(N,M) \ tM

(note that these clusters are also disjoint in Ti(N,M)),
(iii) z−1 is connected to z1 but not to z0 or to any of the xi among x1, . . . , xk.

Roughly speaking, the event states that there exists k disjoint clusters “winding” vertically
around the torus, along with a separate cluster forming an arch above z0. The role of
this event will be explained after Theorem 2.7.

x4 x5 z−1 z0 z1 x1 x2
x3

x4 x5 z−1 z0 z1 x1
x2

x3

y4 y5 y1
y2

y3

tM

t−1−M

lmax(z0) ∈ t−j

tj

Figure 5: A picture of the event Ej(k). Note that we are on a torus, hence t−1−M = t+M .

If lmax(z0) denotes the left-most highest vertex of the cluster of z0, set, for −M <
j ≤M ,

Ej(k) := E(k) ∩ {lmax(z0) ∈ t−j }. (4)
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The interest of these events comes from the following proposition combining two tools
from exact integrability: the commutation of transfer matrices and the asymptotic be-
haviour of the Perron-Frobenius eigenvalues of the transfer matrix of the six-vertex model.
More precisely, let VN (q, θ) be the transfer matrix of the six-vertex on a torus of width
N , with weights a, b, c given, if ζ ∈ [0, π/2] satisfies √q/2 = cos ζ, by the formulae

a sin ζ
2 = sin(1− θ

π )ζ b sin ζ
2 = sin θζ

π c = 2 cos ζ2 . (5)

Let λ(k)
N (θ) be the Perron-Frobenius eigenvalue of the block of the transfer matrix with

N/2 + k up arrows (and therefore N/2 − k down arrows) per row. To better grasp the
signs in the next statements, note that λ(k)

N (θ) is non-increasing in k.

Proposition 2.5. For every α, β ∈ (0, π) and every N ≥ 2k,

lim
M→∞

φT1(N,M)[E1(k)]

φT1(N,M)[E0(k)]
=

λ(k)(β)

λ(k+3)(β)
× 1− λ(k+3)

N (α)/λ
(k)
N (α)

1− λ(k+3)
N (β)/λ

(k)
N (β)

,

lim
M→∞

φT0(N,M)[E1(k)]

φT0(N,M)[E0(k)]
=
λ(k+3)(α)

λ(k)(α)
× 1− λ(k+3)

N (β)/λ
(k)
N (β)

1− λ(k+3)
N (α)/λ

(k)
N (α)

.

This proposition combines very well with the following probabilistic estimate.

Proposition 2.6. For every α, β ∈ (0, π2 ), there exist C, η > 0 such that for i = 0, 1 and
every k ≤ N/2,∣∣∣ lim

M→∞
φTi(N,M)[E1(k)|E1(k) ∪ E0(k)]−

Ψ2
i [lmax(∞) = 0+]

∣∣∣ ≤ C( λ
(k)
N (β)

λ
(k+3)
N (β)

− 1
)η
.

To interpret this proposition, think of a value of k for which λ
(k)
N (β)/λ

(k+3)
N (β) is

close to 1, which should be the case when N/k is large. By the definition of the events
E0(k) and E1(k), there are k clusters crossing the torus from bottom to top, with an
additional cluster finishing either on t−0 or t−1 (= t+0 ). One expects the different clusters
to be typically distant of roughly N/k. In particular, one may predict that none of the
clusters of the xi or z±1 comes close (meaning much closer than N/k) to the maximum
of the cluster of z0. Proving the separation property will not be straightforward, and
will constitute the heart of the proof of this proposition. Now, the convergence of finite
volume measures with proper conditioning to

Ψ2
i would imply that near the top of the

cluster, the measure φTi [ · |E1(k)∪E0(k)] can be coupled with

Ψ2
i with probability close

to 1 when N/k is very large.
These two propositions will combine with the following statement from [17, Thm. 22]

on the behaviour of the eigenvalues for the six-vertex model’s transfer matrix, to prove
Theorem 2.4.

Theorem 2.7. For every θ 6= π/2 and ∆ ∈ (−1, 0), there exists C = C(∆) < ∞ such
that, for every N, k large enough,

1
N log λ

(k)
N (θ) = F (a, b, c)− C(∆) sin θ(1 + o(1))( kN )2 +O( 1

kN ), (6)

where o(1) is a quantity tending to zero as k/N tends to 0.
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The reason for working with the eventsEj(k) rather than the simpler event {lmax(z0) ∈
t−j } is now apparent: the asymptotic in (6) is most meaningful when N = o(k3), so that
the O( 1

kN ) becomes insignificant compared to the middle term. The arch formed by the
cluster of z±1 is not strictly necessary, but will simplify the proof of Proposition 2.6.

A finer asymptotic for 1
N log λ

(1)
N (θ) would allow one to circumvent the introduction

of E(k), and would eliminate all difficulties from the proof of Proposition 2.6. Unfortu-
nately, at the time of wiring, no such asymptotic is available.

Organization In Section 3, we recall some background on the random-cluster model
on isoradial graphs and prove several technical facts that will be used later in the paper.
In Section 4, we show Theorem 2.4 via Propositions 2.5 and 2.6. Section 5 proves
Theorem 2.2. In Section 6, we explain how Theorem 2.3 is derived. Finally, in Section 7,
we show Theorem 1.2 as well as its direct applications.

3 Preliminaries

3.1 Definition of the random-cluster model

For a graph G = (V,E) included in an isoradial graph G = (V,E) with vertex-set V and
edge-set E, boundary conditions ξ on G are given by a partition of the set ∂G of vertices
in V incident to a vertex in V \ V . We say that two vertices of G are wired together if
they belong to the same element of the partition ξ. Recall that a cluster is a connected
component of ω.

In the paper, we will always work with the random-cluster model on an isoradial
graph with specific weights, called isoradial weights, associated with this graph, given by

pe :=



√
q sin(r(π − θe))

sin(rθe) +
√
q sin(r(π − θe))

if q < 4,

2π − 2θe
2π − θe

if q = 4,
√
q sinh(r(π − θe))

sinh(rθe) +
√
q sinh(r(π − θe))

if q > 4,

(7)

(the last case is not relevant to this paper, see below) where r := 1
π cos−1

(√
q

2

)
for q ≤ 4

and the same formula with cosh instead of cos for q > 4, and θe ∈ (0, π) is the angle
subtended by e (see Figure 6).

Definition 3.1. The random-cluster measure with isoradial edge-weights and cluster-
weight q > 0 on a finite graph G with boundary conditions ξ is given by

φξG,q[ω] :=
qk(ωξ)

ZξRCM(G, q)

∏
e∈E

pωee (1− pe)1−ωe , (8)

where k(ωξ) is the number of connected components of the graph ωξ which is obtained
from ω by identifying wired vertices together, and ZξRCM(G, q) is a normalising constant
called the partition function chosen in such a way that φξG,q is a probability measure.
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e θe

Figure 6: The edge e and its subtended angle θe; bold edges are those of G, thin ones
are those of the diamond graph.

Two specific families of boundary conditions will be of special interest to us. On
the one hand, the free boundary conditions, denoted 0, correspond to no wirings be-
tween boundary vertices. On the other hand, the wired boundary conditions, denoted 1,
correspond to all boundary vertices being wired together.

We will also consider the random-cluster model on infinite isoradial graphs G with
free boundary conditions obtained by taking the limit of the measures with free boundary
conditions on larger and larger finite graphs G tending to G. Set φG,q for the measure in
infinite volume, which, as shows in [18] is unique for 1 ≤ q ≤ 4.

The choice of the isoradial parameters is such that the model is critical. This result
was obtained in the case of the square lattice in [5] and for isoradial graphs in [18] (see
also the anterior paper [6] for the case q > 4).

As we will always fix isoradial weights and q ∈ [1, 4], we remove their dependency
from the notation.

3.2 Elementary properties of the random-cluster model

We will use the following standard properties of the random-cluster model. They can be
found in [35], and we only recall them briefly below.

Monotonic properties. Fix G as above. An event A is called increasing if for any ω ≤ ω′
(for the partial ordering on {0, 1}E given by ω ≤ ω′ if ωe ≤ ω′e for every e ∈ E), ω ∈ A
implies that ω′ ∈ A. Fix q ≥ 1 and some boundary conditions ξ′ ≥ ξ, where ξ′ ≥ ξ means
that any wired vertices in ξ are also wired in ξ′. Then, for every increasing events A and
B,

φξG[A ∩B] ≥ φξG[A]φξG[B], (FKG)

φξ
′

G[A] ≥ φξG[A]. (CBC)

The inequalities above will respectively be referred to as the FKG inequality and the
comparison between boundary conditions.

Spatial Markov property. For any configuration ω′ ∈ {0, 1}E and any F ⊂ E,

φξG[·|F |ωe = ω′e, ∀e /∈ F ] = φξ
′

H [·], (SMP)
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whereH denotes the graph induced by the edge-set F , and ξ′ are the boundary conditions
on H defined as follows: x and y on ∂H are wired if they are connected in (ω′|E\F )ξ.

A direct consequence of the spatial Markov property is the finite-energy property guar-
anteeing that conditioned on the states of all the other edges in a graph, the probability
that an edge is open is between p/(p+ q(1− p)) and p.

Dual model. Define (see Figure 7) the dual graph G∗ = (V ∗, E∗) of G as follows: place
dual sites at the centers of the faces of G (the external face, when considering a graph
in the plane, must be counted as a face of the graph), and for every edge e ∈ E, place
a dual edge between the two dual sites corresponding to faces bordering e. When the
graph is isoradial, we make the following choice for the position of dual vertices in V ∗:
the vertex v∗ corresponding to a face of G is placed at the center of the corresponding
circumcircle. The dual of an isoradial graph is by construction an isoradial graph.

Given a subgraph configuration ω, construct a configuration ω∗ on G∗ by declaring
any edge of the dual graph to be open (resp. closed) if the corresponding edge of the
primal lattice is closed (resp. open) for the initial configuration. The new configuration
is called the dual configuration of ω. The dual model on the dual graph given by the dual
configurations then corresponds to a random-cluster measure with isoradial weights and
dual boundary conditions. We do not want to discuss too much the details of how dual
boundary conditions are defined (we refer to [35] for details and to [18] for the isoradial
setting) and we simply observe that the dual of free boundary conditions are the wired
ones, and vice versa.

Loop model. The loop representation of a configuration on G is supported on the medial
graph of G defined as follows (see Figure 7). For an isoradial lattice G, let G� be the
graph with vertex-set given by the midpoints of edges of G and edges between pairs of
nearest vertices. For future reference, note that the faces of G� contain either a vertex
of G or one of G∗, and that it is the dual of the diamond graph. Let G� be the subgraph
of G� spanned by the edges of G� adjacent to a face corresponding to a vertex of G.

Let ω be a configuration on G; recall its dual configuration ω∗. Draw self-avoiding
paths on G� as follows: a path arriving at a vertex of the medial lattice always takes a
turn at vertices so as not to cross the open edges of ω or ω∗. The loop configuration ω
thus defined is formed of disjoint loops. Together these form a partition of the edges of
G�.

Let us conclude this section by mentioning that we will (almost) always consider
G = L(ααα).

3.3 Uniform bounds on crossing probabilities

As it is often the case when investigating the critical behaviour of lattice models, we
will rely on uniform crossing estimates in rectangles, as well as estimates on certain
universal and non-universal critical exponents. Such crossing estimates initially emerged
in the study of Bernoulli percolation in the late seventies under the coined name of
Russo-Seymour-Welsh theory [53, 54].

21



Figure 7: We depicted in black, dotted black, red and blue respectively the primal, dual,
diamond and medial lattices. The primal configuration ω is in bold and the dual one ω∗

in dashed bold. Finally, the loop configuration ω is in black.

Recall the following definition: for a quad Q, let C(Q) be the event that Q is crossed
in the percolation configuration ω (when ω is seen as an element of the Schramm-Smirnov
set H, this corresponds to the event ω ∈ Q).

Theorem 3.2. For 1 ≤ q ≤ 4 and ρ, ε > 0, there exists c = c(ρ, ε) > 0 such that for
every n ≥ 1, every ααα = (αi : i ∈ Z) with ε ≤ αi ≤ π − ε for every i ∈ Z, every Ω ⊂ R2

containing the εn neighborhood of R := [0, ρn]× [0, n]), and every boundary conditions ξ,

c ≤ φξL(ααα)∩Ω[C(R)] ≤ 1− c. (RSW)

Proof. This result is a direct consequence of [18, Thm. 1.1]. While that paper stud-
ies doubly-periodic isoradial graphs, the techniques in it extend to our framework with
rectangular-type tracks with angles αi ∈ (ε, π − ε) for every i ∈ Z (this condition guar-
antees a uniform bounded angle property; see comments below [18, Thm. 1.2]).

Remark 3.3. We will repeatedly use this theorem as well as a number of its classical
applications. We are aware that some proofs may be difficult to read for somebody
not familiar with Russo-Seymour-Welsh type arguments. We tried to be complete but
succinct, as there is a clear trade-off in the proofs below between providing a large amount
of detail on classical RSW machinery, and putting emphasis on the novel arguments in
this paper. We refer to the large literature on the RSW theory to see some of the classical
arguments we will use in this article.

We now discuss some consequences of the above. The previous theorem has classical
applications for the probability of so-called arm events. Below, Λn ⊂ G is the subgraph
of G induced by vertices in [−n, n]2 ⊂ R2. A self-avoiding path of type 0 or 1 connecting
the inner to the outer boundary of an annulus ΛR \ Λr−1 is called an arm. We say that
an arm is of type 1 if it is composed of primal edges that are all open in ω, and of type 0
if it is composed of dual edges that are all open in ω∗. For k ≥ 1 and σ ∈ {0, 1}k , define
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ti αi x x

Figure 8: On the left is an isoradial lattice in the left half-plane, almost identical to L(ααα).
The three arm events for any point on the vertical axis have the same probability in the
left and right graphs.

Aσ(r,R) to be the event that there exist k disjoint arms from ∂Λr to ∂ΛR which are
of type σ1, . . . , σk, when indexed in counterclockwise order. We also introduce AXσ (r,R)
to be the same event as Aσ(r,R), except that the paths must lie in the lower half-plane
H− := R × (−∞, 0] if X = T, upper-half-plane H+ := R × [0,+∞) if X = B, and left
half-plane L(ααα) ∩ ((∞, 0]× R) if X = R.

Finally, let ATR
010(r,R) be the event that there are three arms (two of type 0 and one

of type 1) in the quarter plane [−∞, 0]2, and AX010(r,R) ◦ A1(r,R) the event that there
are three arms in the corresponding half-plane, plus an additional disjoint arm of type 1
in the plane.

We will need the following two estimates.

Proposition 3.4 (Estimates on certain arm events). For every ε > 0, there exist c, C ∈
(0,∞) such that for every 1 ≤ q ≤ 4, every R ≥ r ≥ 1 and every ααα with αi ∈ (ε, π − ε)
for every i ∈ Z,

φL(ααα)[A1(r,R)] ≤ C(r/R)c, (9)

φL(ααα)[A
T
010(r,R)] ≤ C(r/R)2, (10)

φL(ααα)[A
B
010(r,R)] ≤ C(r/R)2, (11)

φL(ααα)[A
R
010(r,R)] ≤ C(r/R)1+c, (12)

φL(ααα)[A
TR
010(r,R)] ≤ C(r/R)2+c, (13)

φL(ααα)[A
T
010(r,R) ◦A1(r,R)] ≤ C(r/R)2+c. (14)

Furthermore, if αi is equal to π/2 except for one value of i, then we also have

φL(ααα)[A
R
010(r,R)] ≤ C(r/R)2, (15)

φL(ααα)[A
R
010(r,R) ◦A1(r,R)] ≤ C(r/R)2+c. (16)

Proof. The first bound can be obtained from (RSW) using standard techniques from
Bernoulli percolation.
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Figure 9: On the left, an instance of AT
010(0, R) where the primal path is depicted by a

bold path, and the dual ones by dashed paths. In the middle, an instance of ATR
010(0, R).

On the right, AT
010(0, R) ◦A1(0, R).

For the second and third ones, the case of the square lattice is also a direct consequence
of (RSW) and standard techniques of Bernoulli percolation. Transferring the estimates
to L(ααα) can be done using the techniques in [18, Theorem 1.4]).

The argument involving [18, Theorem 1.4] only allows one to access exponents for
half-planes delimited by straight tracks, but does not apply to arm exponents in the left
half-plane of L(ααα). Nevertheless, the special condition on the lattice allows one to obtain
(15) via a simple trick. Indeed, assuming that αi < π/2, consider the isoradial graph on
the left of Figure 8. Applying repeated star-triangle transformations (see also Figure 28
for the exact procedure), the probability of a half-plane three arm event for any vertex on
the vertical axis may be shown to be the same in the left and right lattices of Figure 8,
and ultimately be equal to the corresponding probability in the square lattice. Thus,
(15) follows from the result for the square lattice.

For (12), note that the classical argument for Bernoulli percolation for the two-arm
event in the half-plane immediately implies that

φL(ααα)[A
R
01(r,R)] ≤ C(r/R). (17)

Therefore, (12) follows by conditioning on the first two arms, and then using (RSW) and
the comparison between boundary conditions to bound the probability of the third arm.

For (13), one may use (RSW) to prove that

φL(ααα)[A
TR
010(r,R)] ≤ C(r/R)cφL(ααα)[A

T
010(r,R)] ≤ C(r/R)2+c.

For (14), one can condition on the first three arms, and then use (9) and the comparison
between boundary conditions to bound the probability of the fourth arm.

A second consequence of (RSW) that we will repeatedly use is the mixing property.

Proposition 3.5 (Mixing property). For every ε > 0, there exist Cmix, cmix ∈ (0,∞)
such that for every ααα with αi ∈ (ε, π − ε) for every i ∈ Z, every r ≤ R/2, every event
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A depending on edges in Λr, and every event B depending on edges outside ΛR, we have
that ∣∣∣φL(ααα)[A ∩B]− φL(ααα)[A]φL(ααα)[B]

∣∣∣ ≤ Cmix(r/R)cmixφL(ααα)[A]φL(ααα)[B].

Proof. The argument follows the same lines as for the square lattice, see e.g. [24, Propo-
sition 2.9].

The previous properties imply the following, which we will use repeatedly.

Proposition 3.6 (Crossing in annulus with adverse boundary conditions). There exists
c > 0 such that for every r ≤ R/2, every Ω ⊂ L(ααα) with αi ∈ (ε, π − ε) for every i ∈ Z,
and every boundary conditions ξ inducing free boundary conditions on ∂Ω ∩ (ΛR \ Λr),

φξΩ[Λr ←→ ∂ΛR] ≤ (r/R)c.

Proof. The comparison between boundary conditions implies that

φL(ααα)[Λr ←→ ∂ΛR] ≤ φ1
ΛR\Λr [Λr ←→ ∂ΛR].

Now, the mixing property together with (9) conclude the proof.

Finally, we will also use the following easy claim.

Proposition 3.7 (Tight number of macroscopic clusters in a box). For ε > 0, there
exist c, C ∈ (0,∞) such that for every N ≥ 0 and every ααα with αi ∈ (ε, π − ε) for every
i ∈ Z,

φL(ααα)[exp(cNε)] ≤ C, (18)

where Nε be the number of clusters of diameter at least εN intersecting ΛN .

Proof. The claim follows if we can show that for some constant c0 > 0, we have that for
every k ≥ 0,

φL(ααα)[Nε ≥ k + 1|Nε ≥ k] ≤ 1− c0.

Index the vertices in the box one by one and let Ci be the cluster of the i-th vertex (it
is equal to the clusters Cj for every j such that the j-th vertex belongs to Ci). Let i
be the smallest index i such that there are k clusters of diameter at least εN among
Cj for 1 ≤ j ≤ i. Conditioned on C1, . . . , Ci, the boundary conditions outside of the
union of these clusters are free within the box. One easily deduces from (RSW) and the
comparison between boundary conditions that the probability that there is an additional
cluster of diameter at least εN is smaller than 1− c0, hence concluding the proof of the
proposition.
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3.4 Incipient Infinite Clusters with three arms in the half-plane

In this section, we introduce the Incipient Infinite Cluster (IIC) measures with three
arms in the half-plane. Let α, β ∈ (0, π) be two angles. Recall the definitions of L(β)
and Li(α, β). Below, we use the shorthand notation L := L(β) and Li := Li(α, β) and
embed the lattices in such a way that the origin 0 is a vertex of the graph. Let lmax(v)
be the left-most highest vertex of the cluster of v.

Theorem 3.8. For every α, β ∈ (0, π), there exist a measure

Ψ

on L(β) and measures

Ψ

i and

Ψ2
i on Li for every i ∈ Z such that for every event A depending on finitely many

edges,

Ψ

[A] = lim
R→∞

φ0
L[A|0←→ ∂ΛR, lmax(0) = 0],

Ψ

i[A] = lim
R→∞

φ0
Li [A|0←→ ∂ΛR, lmax(0) = 0],

Ψ2
i [A] = lim

R→∞
φ0
Li [A|{0←→ ∂ΛR, lmax(0) = 0} ∪ {0+ ↔ ∂ΛR, lmax(0+) = 0+}].

Proof. The proof of this theorem follows the same lines as the construction of the IIC
for Bernoulli percolation once one has (RSW). We omit the details here and refer to
[1, 32, 40, 46].

We also mention a mixing property. We state it in the way which is closest to
applications.

Proposition 3.9 (Mixing property for IIC). For every ε > 0, there exist C, c > 0 such
that for every α, β ∈ (ε, π − ε), every r ≤ R/2, every event A depending on Λr, every
Ω ⊃ [−R,R]2, every I ⊂ ∂Ω, every x ∈ ∂Ω\I, and every boundary conditions ξ, we have
that

|

Ψ

[A]− φξΩ∩L[A|x /←→ I, lmax(x) = 0]| ≤ C(r/R)c,

|

Ψ

i[A]− φξΩ∩Li [A|x /←→ I, lmax(x) = 0]| ≤ C(r/R)c,∣∣∣ Ψ2
i [A]− φξΩ∩Li [A

∣∣∣x /←→ I, lmax(x) ∈ {0, 0+}]
∣∣∣ ≤ C(r/R)c.

Proof. As before, we refer to [1, 32, 40, 46] for details.

We also introduce the measures Ψi where the conditioning is over the right-most
bottom-most vertex of the cluster being 0. It also coincides with the symmetry with
respect to the origin of the measure

Ψ

−i defined on L1−i(π − α, π − β). The measures
Ψi satisfy properties corresponding to the properties above.

Finally, we introduce Ψ to be the measure obtained as the limit as R→∞ of measures
on L0 conditioned on the events that 0 is connected to ∂ΛR and is not connected to the
right of the vertical line {(x, y) ∈ R2 : x = 0}. Again, the properties of the measures

Ψ

i

extend to this measure.
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3.5 The star-triangle and the track-exchange transformations

In this section, we present the track-exchange transformation. In order to do it, we first
introduce the star-triangle transformation and then define the track-exchange transfor-
mation as the result of a sequence of star-triangle transformations.

Star-triangle transformation The star-triangle transformation, also known as the
Yang-Baxter relation, was first discovered by Kennelly in 1899 in the context of electrical
networks [41]. Then, it became a key relation in different models of statistical mechan-
ics [3, 49] indicative of the integrability of the system. We do not plan to do a full review
on this transformation (see for instance [18] for more details) and focus directly on the
context of the random-cluster model on isoradial graphs with isoradial edge-weights.

Figure 10: The three diamonds together with the drawing, on the left, of the triangle (in
which case the dual graph in dashed has a star) and, on the right, of the star (in which
case the dual graph has a triangle).

First of all, note that for any triangle ABC contained in an isoradial graph, there
exists a unique choice of point O (namely the orthocenter) such that, if the triangle ABC
is replaced by the star ABCO, the resulting graph is also isoradial. Conversely, for every
star ABCO in an isoradial graph, the graph obtained by removing this star and putting
the triangle ABC is isoradial. This process of changing the graph is called the star-
triangle transformation. Note that triangles and stars of isoradial graphs correspond to
hexagons formed of three rhombi in the diamond graph. Thus, when three such rhombi
are encountered in a diamond graph, they may be permuted as in Figure 10 using a
star-triangle transformation.

The star-triangle transformation was first used to prove that the laws of connections
between vertices of a graph G with a triangle ABC and the graph G′ obtained from G
with the star ABCO instead of ABC are the same, except for the additional vertex O
in G′. The fact that the star-triangle transformation can be used to construct a coupling
between the random-cluster models on G and G′ was proved in several places, see for
instance [18]. The first observation that this could be done goes back to the work of
[36, 37, 38], even though the identification that the star-triangle transformation was
preserving the partition functions of models on isoradial graphs with isoradial weights
goes long back.

Definition 3.10 (Star-triangle coupling). Consider a graphG containing a triangle ABC
and let G′ be the graph with the star ABCO instead. Introduce the star-triangle coupling
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between ω ∼ φξG and ω′ ∼ φξG′ defined as follows (see Figure 11):

• For every edge e which does not belong to ABCO, ω′e = ωe,
• If two or three of the edges of ABC are open in ω, then all the edges in ABCO

are open in ω′,
• If exactly one of the edges of ABC is open in ω, say BC, then the edges BO and
OC are open in ω′, and the third edge of the star is closed in ω′,
• If no edge of ABC is open in ω, then ω′OABC has

– no open edge with probability equal to 1−pOA
pOA

1−pOB
pOB

1−pOC
pOC

,
– the edge OA is open and the other two closed with probability q 1−pOB

pOB

1−pOC
pOC

,
– similarly with cyclic permutations for B and C.

and symmetric cases

and symmetric cases

Figure 11: A picture of the possible transformations in the star-triangle coupling (the
probabilities in the case of multiple outcomes are described in the definition). We also
pictured the reverse map.

Let us make a few observations concerning the coupling. First, note that the trans-
formation uses extra randomness in one case and that it is not a deterministic matching
of the different configurations. Second, the coupling preserves the connectivity between
the vertices, except at the vertex O. Third, in the coupling, given ω′, the edges of ABC
in ω are sampled as follows:

• If there is one or zero edge of ABCO that is open in ω′, then none of the edges in
ABC is open in ω,
• If exactly two of the edges in ABCO are open in ω′, say AO and BO, then the

edge AB is the only edge of ABC that is open in ω,
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• If all the edges of ABCO are open in ω′, then

– all the edges of ABC are open in ω with probability 1
q

pAB
1−pAB

pBC
1−pBC

pCA
1−pCA ,

– AB andBC are open and CA is closed with probability equal to 1
q

pAB
1−pAB

pBC
1−pBC ,

– similarly with cyclic permutations.

Track-exchange operator The previous star-triangle operator gives rise to a track-
exchange operator defined as follows. For L = L(ααα) and i ∈ Z, let L′ = L(ααα′) be the
lattice obtained by exchanging the tracks ti and ti−1 that is exchanging αi and αi−1 in
the sequence ααα. Index the vertices of t−i−1 from left to right by (xk : k ∈ Z) and assume
that αi−1 > αi. Also, let Lk be the isoradial graph, see Figure 13, obtained by

• taking the same diamonds as L (or equivalently L′) on tj with j /∈ {i− 1, i};
• taking the same diamonds as L on the part of ti−1 and ti on the right of xk;
• taking the same diamonds as L′ on the part of ti−1 and ti on the left of xk;
• adding a diamond above xk to complete the gap.

Note that the properties above determine all the diamonds in Lk, and that there is only
one diamond in Lk which does not belong to either L or L′. Denote this diamond by
♦. We now define an operator sending configurations on L to configurations on L′, that
gives a formal meaning to the intuitive idea of inserting ♦ at the position +∞ and using
the star-triangle transformation to exchange the tracks by moving ♦ step by step to −∞.

Let ω be some configuration on L and define for every k ∈ Z the configuration ω̃k
on Lk coinciding with ω on the diamonds common to Lk and L (i.e. outside ti−1, ti
and on the left of xk), and defined arbitrarily otherwise. Denote ω̃kk := ω̃k and for
every j < k, define inductively ω̃jk to be the result of the star-triangle transformation
mapping a configuration on Lj+1 to a configuration on Lj , applied to ω̃j+1

k . Define
ωk := limj→−∞ ω̃

j
k, which is a configuration on L′. Now remark the important fact that

if we have three integers k, k′ ≥ j such that ω̃jk and ω̃jk′ coincide on ♦, then the (local)
outcome of the star-triangle transformation from ω̃jk and ω̃jk′ will be the same (as long as
it uses the same external randomness). More generally, applying all the subsequent steps
we see that ωk and ωk′ coincide on the part of ti−1 ∪ ti that is to the left of xj . Finally,
notice that some configurations on the two diamonds left of ♦ in Lk fix deterministically
the state of ♦ in Lk−1 after a star-triangle transformation (e.g. see Figure 12). Denote
by Fk this event. If Fk occurs for ω, then for all k′, k′′ > k, it also does by definition for
ωk′ and ωk′′ , and therefore ωk′ and ωk′′ coincide left of xk. This leads to the following
definition.

Definition 3.11 (Track exchange by star-triangle transformation). If αi−1 > αi, and ω
is a percolation configuration on L such that ω ∈ Fk occurs for an infinite number of
indices k > 0, define the track-exchange operator Ti by Ti(ω) = limk→−∞ ωk, where ωk
is defined as in the previous paragraph.

We will only work with measures (random cluster measures, IIC measures) that verify
some finite energy property so that Fk occurs for an infinite number of k < 0, k > 0 almost
surely. Hence the operator Ti is well defined on almost all configurations ω.
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Figure 12: An example where the configuration on the two diamonds left of the grey
diamond ♦ determines the configuration on ♦ after the star-triangle transformation,
irrespectively of the configuration on or right of ♦.

If αi > αi−1, we construct Ti similarly by inverting the left and the right, and −∞
and +∞.

It should be noted that the mixing properties of the random-cluster model implies
that the random-cluster measure on L is the limit of the random-cluster measures on Lk
and therefore, if ω is distributed according to φL, then Ti(ω) has law φL′ . Let us also
insist on the fact that Ti is not a deterministic map, as at each step where a star-triangle
operator is used, there is extra randomness in the outcome of the transformation.

We finish this section by an important proposition.

Proposition 3.12. If ααα and βββ satisfy αi = βi for a ≤ i ≤ b, the law of ω restricted to
the strip between t−a and t+b as well as the law of the homotopy classes of loops in ω with
respect to points in this strip is the same in φL(ααα) and φL(βββ).

Proof. As a sequence of star-triangle transformations, the track-exchange operator pre-
serves the connection properties of the vertices that are not on the tracks which are
exchanged. From this, one may deduce that for every event A involving only edges inside
the strip, or only the homotopy classes mentioned above,

φL(ααα)[A] = lim
R→∞

φL(ααα(R))[A] = lim
R→∞

φL(βββ(R))[A] = φL(βββ)[A],

where

ααα(R) :=


αi if |i| ≤ R,
βi−R+b if i > R,

βR−i+a if i < −R,
and βββ(R) :=


βi if |i| ≤ R,
αi−R+b if R < i < 2R− b,
αR−i+a if − 2R+ a < i < −R,
βi otherwise.

(In the first and last inequalities, we use the measurability and the uniqueness of the
infinite-volume measure, and in the second one the track-exchange operator.)

4 Probabilities in 2-rooted IIC: proof of Theorem 2.4

The goal of this section is to prove Theorem 2.4. As mentioned in the introduction, the
main steps will be Propositions 2.5 and 2.6. We prove these two statements in Sections 4.1
and 4.2 respectively. The proof of Theorem 2.4 is postponed to Section 4.3 (recall that
it relies on Theorem 2.7, which was obtained in [17]).
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t−1

v

v+

t0

t1

t2

Figure 13: An example of a graph Lk for k = 4. What happens between tracks t2 and t5
is a mixture of the isoradial lattice L with angles π/2 for i ≤ 3 and α for i ≥ 4, and L′
is obtained by exchanging the tracks 4 and 5. The only diamond that does not belong
to L or L′ is in gray.

4.1 Harvesting exact integrability: Proof of Proposition 2.5

Below, for an event E and i,M,N , introduce the convenient notation

ZTi(N,M)[E] := ZξRCM(Ti(N,M), q)φξTi(N,M),q[E].

We divide the proof in two lemmata. The first one uses an aspect of the commutation of
transfer matrices. To be more precise, we will use a result of [50, Theorem 1.3] which is
written for Bernoulli percolation but works with almost no change for the random cluster
model, proving the existence of a (track-exchange) map ‹Ti : ΩTi(N,M) → ΩTi−1(N,M)

(slightly different from our track-exchange maps) between percolation configurations on
the tori, such that,

(a) For any ω ∈ ΩTi(N,M), ‹Ti(ω) and ω coincide outside of ti−1 ∪ ti;
(b) For any x, y /∈ t−i , x and y are connected in ω if and only if they are in ‹Ti(ω);
(c) For every event E, ZTi(N,M)[‹T−1

i (E)] = ZTi−1(N,M)[E].

Let us mention that with a little bit of work one can also simply use the star-triangle
transformation, or the commutation of transfer matrices to produce a more abstract
proof.

Recall the definition of Ej(k) from the introduction.

Lemma 4.1. For every k,N,M , we have that

(i) For fixed j, i 7→ ZTi(N,M)[Ej(k)] is constant for i > j and similarly for i < j,
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(ii) ZT1(N,M)[E0(k) ∪ E1(k)] = ZT0(N,M)[E0(k) ∪ E1(k)].

Proof. We use the track-exchange map mentioned above. The connectivity preservation
(a) and (b) imply that ω belongs to Ej(k) ∪ Ej+1(k) (resp. Ej(k) for j 6= i) if and only
if ‹Ti(ω) does. Therefore, (c) implies the lemma.

The second lemma harvests the transfer matrix formalism to get an explicit formula
for the probability of events Ej(k) in terms of eigenvalues of the transfer matrix. Below,
we use the following connection between the eigenvalues of the transfer matrix of the
six-vertex model and the partition function of the random-cluster model obtained via
the Baxter-Kelland-Wu coupling [4] (see also [20, Section 3.3.] for details). Let T(N,M)
be the N by 2M torus with tracks of angle β only and introduce the notation ZT(N,M)[E]
in the same way as for Ti(N,M). Consider the event G(k) that there exist exactly k
disjoint clusters wrapping around the torus in the vertical direction. Then6

ZT(N,M)[G(k)] = C(q,N,M)(1 + oM (1)) · (q/4)k · λ(k)
N (β)2M , (19)

ZTi(N,M)[G(k)] = C(q,N,M)(1 + oM (1)) · (q/4)k · λ(k)
N (α)λ

(k)
N (β)2M−1, (20)

where C(q,N,M) := qNM/2/(1 +
√
q)2MN and oM (1) is a quantity tending to 0 as M

tends to infinity.

Lemma 4.2. For every k,N, α, β ∈ (0, π), there exists C(k)
N (α, β) ∈ (0,∞) such that

lim
M→∞

ZTi(N,M)[Ej(k)]

ZT0(N,M)[E0(k)]
=
[λ(k+3)

N (β)

λ
(k)
N (β)

]j
×


C

(k)
N (α, β)

λ
(k)
N (α)

λ
(k)
N (β)

if i > j,

1 if i = j,

C
(k)
N (α, β)

λ
(k+3)
N (α)

λ
(k+3)
N (β)

if i < j.

(21)

Proof. We start with the case i = j. For 1 ≤ m ≤ M/3 with M − j − m even, let
Ej(k,m) ⊂ Ej(k) be the event (see Figure 14) that

6To be precise, [20] proves an inequality only, but an equality is easily derived. Indeed, to explain
the first formula, recall from [20] that the weight of each random cluster configuration ω may be written
as the sum over all orientations of its loop configuration of the weight of the ensuing oriented loop
configuration. The latter is the product over each oriented loop of e+iζ , e−iζ or √q/2 depending whether
the oriented loop is retractable and oriented counter-clockwise, clockwise or non-retractable, respectively,
with ζ = arccos

√
q/2. Notice now that for ω ∈ G(k), there exist at least 2k non-retractable loops winding

vertically around the torus; all but an exponentially small proportion of ZT(N,M)[G(k)] actually comes
from configuration with exactly 2k non-retractable loops, and we will ignore all other contributions as
they can be incorporated in the oM (1). For each such configuration, rather than orienting all loops in
one of two directions, consider the two possible orientations only for retractable loops and orient all
vertically-winding loops upwards. When summing the weights of resulting oriented loop configurations,
we obtain the partition function of the six vertex model on the torus with exactly N/2 + k up-arrows on
each row (up to the multiplicative factor C(q,N,M)). This may be written using the transfer matrix as
λ
(k)
N (β)2M (1 + oM (1)). The factor (2/

√
q)2k in the formula for ZT(N,M)[G(k)] accounts for the arbitrary

choice of orientation of the vertically-winding loops. The same explanation applies for the second formula,
with the only difference coming from the computation of the partition function in the six-vertex model.
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2
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ỹ1
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ỹ5ỹ4

ỹ+4 ỹ+5 ỹ+1 ỹ+2
ỹ+3

y4 y5 y1
y2

y3

tM

tj+m

tj−m

t−1−M

lmax(z0) ∈ t−j

tj

Figure 14: A picture of the event Ej(k,m) (except that the minimality of m is not really
explicitly depicted). Compared to Figure 5, additional conditions are forced on the tracks
tj−m and tj+m and what happens in between.

• all the edges of tj+m are closed except the edges from ỹ1, . . . , ỹk to ỹ+
1 , . . . , ỹ

+
k ,

where the former are the vertical translates on t−j+m of the vertices y1, . . . , yk used
in the definition of E(k),
• all the edges of tj−m are closed except the edges from x̃1, . . . , x̃k, z̃−1, z̃0, z̃1 to
x̃+

1 , . . . , x̃
+
k , z̃

+
−1, z̃

+
0 , z̃

+
1 , where the latter are the vertical translates on t−j−m of the

vertices x1, . . . , xk, z−1, z0, z1 used in the definition of E(k),
• Ej(k) occurs and x̃i and ỹi are connected to xi (and therefore yi) for 1 ≤ i ≤ k,

and z̃i to zi for −1 ≤ i ≤ 1,
• m is the smallest integer satisfying the three first properties.

With this definition, we can now proceed as follows. On the one hand, let Zj(k,m) =
Z(k,m) (it does not depend on j by vertical translation invariance) be the sum of the
random-cluster weights (counted as there would be free boundary conditions) of configu-
rations ω on tj−m+1 ∪ · · · ∪ tj+m−1 that are compatible with the occurrence of Ej(k,m).
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Then, if M+ := 1
2(M − j −m) and M− := 1

2(M + j −m), we find that

ZTj(N,M)[Ej(k,m)] = Z(k,m)ZT(N,M+)[F (k)]ZT(N,M−)[F (k + 3)],

where F (`) is the event that the conditions (i) and (ii) of the definition of E(`) occur.
Now, the existence of a thermodynamical limit (as M tends to infinity) implies that for
fixed `,

ZT(N,M±)[F (`)] = C
(`)
N (β)(1 + oM (1))ZT(N,M±)[G(`)].

Therefore, (19) and the two previous displayed equations give that uniformly in 1 ≤ m ≤
M/3,

lim
M→∞

ZTj(N,M)[Ej(k,m)]

ZT0(N,M)[E0(k,m)]
=
[λ(k+3)

N (β)

λ
(k)
N (β)

]j
.

The claim follows by summing over m and observing that the finite-energy property
implies the existence of c = c(N) > 0 such that for every m,

φTj(N,M)

î ⋃
1≤m′≤m

Ej(k,m
′)
∣∣∣Ej(k)

ó
≥ 1− exp[−cm]. (22)

We now turn to the case i > j. We first use Lemma 4.1(i) to “push the track of angle
α up to macroscopic distance”, meaning that we observe that for M/2 > j,

ZTi(N,M)[Ej(k)] = ZTM/2(N,M)[Ej(k)].

As before, we can fixm and run the same argument to get that for some constant Z ′(k,m)
and with i′ := M/2− j −m,

ZTM/2(N,M)[Ej(k,m)]

= (1 + oM (1))C
(k)
N (β)C

(k+3)
N (β)Z ′(k,m)ZTi′ (N,M+)[G(k)]ZT(N,M−)[G(k + 3)]

= (1 + oM (1))
Z ′(k,m)

Z(k,m)

ZTi′ (N,M+)[G(k)]

ZT(N,M+)[G(k)]
ZT0(N,M)[E0(k,m)].

We wish to highlight the fact that the constants C(`)
N (β) involved in the previous equation

are the same as for i = j, as the track of angle α is at a distance larger than M/2 −m
of the m-th track (this quantity tends to infinity as M tends to infinity), but that the
constant Z ′(k,m) is a priori different from Z(k,m) (it is a sum on the same configurations
but the track tj has an angle of α instead of β, hence some edge-weights are different).

Using (20) instead of (19) to estimate ZTi′ (N,M+)[F (k)], we infer that the second

ratio converges to λ(k)
N (α)/λkN (β). We obtain the result by summing over m. Indeed, we

may use again a uniform bound that is similar to (22) and observe that the case i = j
immediately implies that φT0(N,M)[E0(k,m)|E0(k)] converges as M tends to infinity.
Note that

C
(k)
N (α, β) :=

∑
m

Z ′(k,m)

Z(k,m)
lim
M→∞

φT0(N,M)[E0(k,m)|E0(k)].
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Using this definition of the constant and applying the same reasoning for i < j concludes
the proof.

We are now in a position to prove Proposition 2.5.

Proof of Proposition 2.5. Lemma 4.2 (for i, j = 0, 1) and Lemma 4.1(ii) imply that

C
(k)
N (α, β)

λ
(k)
N (α)

λ
(k)
N (β)

+
λ

(k+3)
N (β)

λ
(k)
N (β)

= 1 + C
(k)
N (α, β)

λ
(k+3)
N (α)

λ
(k)
N (β)

,

which gives

C
(k)
N (α, β) =

λ
(k)
N (β)− λ(k+3)

N (β)

λ
(k)
N (α)− λ(k+3)

N (α)
.

Plugging this formula into Lemma 4.2 gives

lim
M→∞

φT1 [E1(k)]

φT1 [E0(k)]
=

λ
(k)
N (β)

λ
(k+3)
N (β)

× 1

C
(k)
N (α, β)

λ
(k)
N (α)

λ
(k)
N (β)

=
λ

(k)
N (β)

λ
(k+3)
N (β)

× 1− λ(k+3)
N (α)/λ

(k)
N (α)

1− λ(k+3)
N (β)/λ

(k)
N (β)

.

Similarly,

lim
M→∞

φT0 [E1(k)]

φT0 [E0(k)]
=
λ

(k+3)
N (α)

λ
(k)
N (β)

× C(k)
N (α, β) =

λ
(k+3)
N (α)

λ
(k)
N (α)

× 1− λ(k+3)
N (β)/λ

(k)
N (β)

1− λ(k+3)
N (α)/λ

(k)
N (α)

.

4.2 Separation of interfaces: Proof of Proposition 2.6

In this section, ΓΓΓ is the left-most boundary of the cluster of z1. For r > 0 and a ≤ b in
Z, introduce two events

Iso(r) := {ΓΓΓ ∩ Λr(lmax(z0)) = ∅},

E[a,b](k) :=
⋃

a≤j≤b
Ej(k).

The following proposition states a form of typical isolation of clusters.

Proposition 4.3 (Isolation of the top of the cluster of z0). For every ε > 0, there exist
C, η > 0 such that for every α, β ∈ (ε, π − ε), i, j ∈ Z, k ≤ N , and 13r ≤ s ≤ N , we
have that for M large enough,

φTi(N,M)[Ej(k) \ Iso(r)|E[j−s,j](k)] ≤ Crη

s1+η
. (23)

Before focusing on this proposition, let us explain how it combines with the mixing of
the 2-rooted IIC (Proposition 3.9) to imply Proposition 2.6. The key observation is that
when Iso(r) occurs, one may sample everything but the cluster of z0, and then sample
the cluster of z0 in such a way that near its maximum, the configuration looks like a
2-rooted IIC (since this maximum is far from the other clusters).
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Proof of Proposition 2.6. The result is trivial when λ(k)
N (β)/λ

(k+3)
N (β)− 1 is large as we

may choose C in such a way that the right-hand side is larger than 1. We will therefore
assume in the proof that it is small. We will also omit integer approximations. For a
vertex v, define the event

Ev(k) := E(k) ∩ {lmax(z0) = v}.

We can write

φTi(N,M)[E1(k)|E[0,1](k), Iso(r)] =

∑
v∈t−0

φTi(N,M)[Ev+(k)|Iso(r)]

∑
v∈t−0

φTi(N,M)[Ev+(k) ∪ Ev(k)|Iso(r)]
. (24)

Fix some v ∈ t−0 . On the event Iso(r), one may explore the clusters of the xi’s and ΓΓΓ and
use the spatial Markov property to sample the cluster of z0. The mixing property of the
2-rooted IIC given by Proposition 3.9 thus implies that

|φTi(N,M)[Ev+(k)|Ev(k) ∪ Ev+(k), Iso(r)]−

Ψ2
i [lmax(∞) = 0+]| ≤ Cr−η. (25)

Proposition 4.3 gives that for every choice of s, for M large enough,

φTi(N,M)[Iso(r)c|E[0,1](k)] ≤ φTi(N,M)[Iso(r)c|E1(k)] + φTi(N,M)[Iso(r)c|E0(k)]

≤ Crη

s1+η

(φTi(N,M)[E[1−s,1](k)]

φTi(N,M)[E1(k)]
+
φTi(N,M)[E[−s,0](k)]

φTi(N,M)[E0(k)]

)
.

Using Lemma 4.2 and taking the limsup as M tends to infinity implies that

lim sup
M→∞

φTi(N,M)[Iso(r)c|E[0,1](k)] ≤ 2Crη

s1+η

s∑
u=0

( λ
(k)
N (β)

λ
(k+3)
N (β)

)u
≤ 2Crη

s1+η

(
λ
(k)
N (β)

λ
(k+3)
N (β)

)s+1

λ
(k)
N (β)

λ
(k+3)
N (β)

− 1

.

(26)
Combining (24), (25), and (26) for

s :=
⌊ 1

log[λ
(k)
N (β)/λ

(k+3)
N (β)]

⌋
and r := b

√
sc

(one has r ≤ s/13 since we assume the ratio of eigenvalues is close to 1) gives the result
by possibly changing the value of C.

We now focus on Proposition 4.3. In the rest of this section, we fix i, j, and k ≤ N ≤
M as well as 13r ≤ s ≤ N . We drop the dependency in these parameters when it cannot
lead to any confusion. In particular, we write

E := E[j−s,j](k)
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and

φ := φTi(N,M)[ · |edges of tM that are open are exactly the {xi, yi} for 1 ≤ i ≤ k].

We first prove, in Lemma 4.4, a bound for the probability that a vertex x is equal
to lmax(z0) while being not isolated, conditionally on the event that the cluster of z0

intersects a box of size s centered around x (in fact around a vertex y near x). Then we
prove, in Lemma 4.5, that conditionally on E[j−s,j](k), the number of disjoint boxes of size
s centered on a vertex of t−j intersected by the cluster of z0 is bounded in expectation.
The proposition then follows by combining the two lemmata (see below for a formal
proof).

Lemma 4.4. There exist uniform constants c, η > 0 such that for every two vertices
x, y ∈ t−j such that d(x, y) ≤ s/4,

φ[x = lmax(z0), Iso(r)c|E, z0 ↔ Λs(y)] ≤ Crη

s2+η
. (27)

Proof. Fix x, y ∈ t−j as in the statement. Let C be the union of the clusters of x1, . . . , xk,
and C0 be the cluster of z0 in Ti \ Λs(y). Introduce the events

F := E ∩ {z0 ←→ Λs(y)},
Riskx := {d(x,ΓΓΓ) ≤ r} ∩ {x is below ΓΓΓ},

where by “below” we mean in the connected component of z0 in the graph Ti \ (ΓΓΓ∪ t−M ).
We have that

φ[x = lmax(z0), Iso(r)c|F ] = φ[x = lmax(z0),Riskx|F ]

= φ[x = lmax(z0)|Riskx, F ]φ[Riskx|F ]. (28)

We now bound separately the two probabilities of the last product.

Claim 1. There exists C0 > 0 independent of everything such that

φ[x = lmax(z0)|Riskx, F ] ≤ C0s
−2. (29)

Proof. Let CΓΓΓ be the union (see Figure 15) of the clusters intersecting ΓΓΓ in ω \ Λs/2(y).
Introduce the random variable A := (C,ΓΓΓ,C0,CΓΓΓ). The following inequality will imply
(29): for every A = (C,Γ, C0, CΓ),

φ[x = lmax(z0),Riskx, F |A = A] ≤ C0s
−2φ[Riskx, F |A = A]. (30)

Indeed, it suffices to sum the above over all possible realizations A of A. We now prove
(30).

Below, we set Ω to be the set of edges belowΓΓΓ whose state is not deterministically fixed
on the event {A = A}. We may assume without loss of generality that the probability
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yx

Λs/2(y)

Λs(y)

C0C

C

C

CΓ

Γ

(ii)

(i)

Figure 15: The conditioning on (C,ΓΓΓ,C0,CΓΓΓ). The plain lines correspond to open
paths, and the dashed ones to closed ones, or more precisely to open paths in the dual
configuration ω∗. We kept the same color code as in Figure 14. Green clusters are
the clusters of x1, . . . , xk and depict C. The red ones depict ΓΓΓ (in bold) and CΓΓΓ (they
are connected to z−1 and z1). These induce wired boundary conditions on the part of
Ω∩Λs/2(y) below Γ, and free boundary conditions outside of Λs/2(y). Finally, the yellow
part is C0, i.e. the cluster of z0 outside of Λs(y). We also depicted (i) and (ii) in blue.
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on the left is strictly positive otherwise there is nothing to prove. Under this condition,
Riskx ∩ {z0 ←→ Λs(y)} already happens (since it is measurable in terms of (Γ, C0)). As
a consequence, the following two conditions are sufficient (but not necessary) for E to
happen:

(i) z0 is not connected to t+j in Ti \ Λs/2(y),
(ii) ∂Λs(y) is not connected to ∂Λs/2(y) in Ω.

Indeed, we must guarantee that z0 is not connected to z±1 (or equivalently to Γ), and
that the highest-most vertex of the cluster of z0 is strictly below t+j . The conditioning
on A = A implies that the only way for z0 to be connected to Γ is via a path intersecting
∂Λs/2(y). Since we only conditioned on C0 = C0, i.e. on the cluster of z0 outside Λs(y),
the condition (ii) is sufficient to prevent the occurrence of a connection between z0 and
Γ. Moreover, (ii) ensures that z0 is not connected to Λs/2(y). Once this is guaranteed,
(i) suffices to ensure that z0 is disconnected from t+j .

Since the boundary conditions induced by A = A are free on the part of ∂Ω strictly
inside Λs(y) \ Λs/2(y), Proposition 3.6 shows that (ii) happens with probability larger
than some universal constant c0 > 0. Since both events in (i) and (ii) are decreasing,
the FKG inequality implies that

φ[Riskx, F |A = A] ≥ φ[(i), (ii)|A = A] ≥ c0φ[(i)|A = A]. (31)

Conversely, on {A = A}, for x = lmax(z0) to occur, (i) must occur together with

(iii) The half-plane three-arm event with type 010 in Ω to distance s/4 of x.

This gives

φ[x = lmax(z0),Riskx, F |A = A] ≤ φ[(iii), (i)|A = A]

= φ[(iii)|(i),A = A]φ[(i)|A = A]

≤ 1
c0
φ[(iii)|(i),A = A]φ[Riskx, F |A = A]

(32)

(in the last line we used (31)). Thus, to prove (30) it suffices to show that

φ[(iii)|(i),A = A] ≤ C1s
−2.

In order to see that, we claim the following. For every n, every Ω′ containing 0, and
every boundary conditions ξ for which all the vertices of ∂Ω′ ∩ Λn are wired together,

φξΩ′ [A
T
010(0, n)] ≤ C2φL(β)[A

T
010(0, n/2)] ≤ C3n

−2 (33)

(the last inequality follows from Proposition 3.4). Note that this inequality would imply
the result. Indeed, if A = A and (i) occurs, the remaining unexplored edges in Λs/2(y)
that are in the connected component of x are bordered, strictly inside Λs/2(y), by Γ only,
which is wired by definition.
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We will now conclude the proof of the claim by showing (33). Notice that this is a
general property independent of the setting used in the claim. Fix Ω′ and some boundary
conditions ξ. By spatial Markov property, we may condition on everything outside Λn
and assume without loss of generality that Ω′ ⊂ Λn. To get (33), let C(0) be the cluster
of 0 in Ω′ (without considering the connection due to boundary conditions). Let ψ be
the boundary conditions on Λn corresponding to ξ on (∂Ω′) \ Λn−1, and wired for all
the other vertices of ∂Λn. For every realization C(0) ⊂ Ω′ of C(0) for which AT

010(0, n)
occurs, the spatial Markov property and the FKG inequality imply

φξΩ′ [C(0) = C(0)] = φψΛn [C(0) = C(0)|ω|Λn\Ω′ = 1]

=
φψΛn [ω|Λn\Ω′ = 1|C(0) = C(0)]

φψΛn [ω|Λn\Ω′ = 1]
φψΛn [C(0) = C(0)]

=
φψΛn [ω|Λn\Ω′ = 1|ω|∂eC(0) = 0]

φψΛn [ω|Λn\Ω′ = 1]
φψΛn [C(0) = C(0)] ≤ φψΛn [C(0) = C(0)],

where ∂eC(0) is the edge-boundary composed of the edges in Λn with one endpoint in
and the other outside C(0). Summing over the C(0) included in Ω′, we obtain that

φξΩ′ [A
T
010(0, n)] ≤ φψΛn [AT

010(0, n)].

Comparing the later to the full space is now a simple use of the mixing property (Propo-
sition 3.5):

φψΛn [AT
010(0, n)] ≤ φψΛn [AT

010(0, n/2)] ≤ Cmixφ
0
L(β)[A

T
010(0, n/2)].

The previous inequalities imply (33) and therefore conclude the proof.

We now turn to the bound on the second term of (28). Introduce

G := F ∩ {z0 /←→ Λs/2(y)} ∩ {z1 ←→ z−1 in T \ Λs/3(y)}.

Claim 2. There exists C1 > 0 independent of everything such that

φ[Riskx|F ] ≤ C1φ[Riskx|G]. (34)

Proof. We reuse the notation from Claim 1. We only need to prove that for every A,

φ[Riskx, F |A = A] ≤ Cφ[Riskx, G|A = A]. (35)

Fix A and note that we may focus on A for which the left-hand side is strictly positive.
Now, for such values of A, Riskx ∩G occurs if the following sufficient conditions do:

(i) z0 is not connected to t+j in Ti \ Λs/2(y);
(ii) ∂Λs(y) is not connected to ∂Λs/2(y) in ω ∩ Ω;
(iv) ∂Λs/2(y) and ∂Λs/3(y) are not connected in ω∗ ∩ Ω.
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C0C

C

C

CΓ

Γ

(ii)

(i)

(iv)

Figure 16: The picture is almost the same as in the previous one, except we depicted
(iv) instead of (iii).

Conditions (i) and (ii) are the same as in Claim 1. They ensure that F and z0 /←→
∂Λs/2(y) ∪ t+j occur. Condition (iv) ensures that, when ΓΓΓ visits Λs/3(x), there exists a
path between z−1 and z1 that by-passes Λs/3(x).

Using the previous claim, we already know that

φ[(i), (ii)|A = A] ≥ c0φ[(i)|A = A].

Also, since the boundary conditions induced by {A = A}∩(ii) on vertices in ∂Ω∩Λs/2(y)
are wired (see Figure 16), we deduce from Proposition 3.6 applied to the dual model that

φ[(iv)|(i), (ii),A = A] ≥ c0.

Combining the previous two displayed inequalities implies that

φ[Riskx, G|A = A] ≥ φ[(i), (ii), (iv)|A = A] ≥ c2
0φ[(i)|A = A].
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Λs(y)

C

C

C+

y

Λs/3(y)

x

C′
0

Λr(x)

(v)

Figure 17: The conditioning on (C,C′0,C+). Note that the boundary conditions in the
remaining set Ω are free within Λs/3(y). In fact, the only points that are wired on ∂Ω
are the vertices of C+ on the boundary of ∂Λs/3(y) (the red bullets on the picture). In
blue, the path that must exist for (v) to occur. Note that since r < s/13, the distance
between Λr(x) and ∂Λs/3(y) is larger than s/3− |x− y| − r ≥ s/156.

Since (i) is needed for F to occur, we find

φ[(i)|A = A] ≥ φ[Riskx, F |A = A]

and therefore (35) follows from the last two displayed equations. This concludes the
proof of the claim.

Claim 3. There exist c2, C2 > 0 independent of everything such that for every r ≤ s/13
and every M large enough,

φ[Riskx|G] ≤ C2(r/s)c2 . (36)

Proof. Recall the definition of C and introduce the clusters C′0 of z0 in Ti and C+ of z1 in
Ti \ Λs/3(y). Consider the random variable B := (C,C′0,C+). Since G is B-measurable,
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it suffices to show that for every B = (C, C′0, C+) for which G occurs,

φ[Riskx, G|B = B] ≤ C2(r/s)c2 (37)

and to sum the previous inequality over all possible B.
Fix B as above. Below, we set Ω to be the set of edges whose states are not deter-

ministically fixed on the event {B = B}. Note that for Riskx to occur, there must exist
(see Figure 17)

(v) an open path in Ω from ∂Λs/3(y) to ∂Λr(x).

Since the boundary conditions induced by {B = B} on the part of ∂Ω strictly inside
Λs/3(y) are free, Proposition 3.6 implies that

φ[Riskx|B = B] ≤ φ[(v)|B = B] ≤ C2( rs)c2 .

This concludes the proof of (37) and of the claim.

Plugging Claims 1, 2 and 3 into (28) concludes the proof of the lemma.

We now deal with the second lemma, which states a bound on the probability that two
boxes of size s centered on vertices in t−j are connected to z0 in terms of the probability
that one of them is. Below, | · | denotes the Euclidean distance.

Lemma 4.5. There exists a uniform constant C > 0 such that for every x, y ∈ t−j ,

φ[z0 ↔ Λs(x), z0 ↔ Λs(y), E] ≤ C( s
|y−x|)

2 max
z∈{x,y}

φ[z0 ↔ Λs(z), E].

Proof. Assume that |x− y| ≥ 13s otherwise one may simply set C = 16 to guarantee the
inequality. Set L := b|x− y|/3c. Let C and ΓΓΓ be defined as in the proof of Lemma 4.4,
and write D := (C,ΓΓΓ). We will prove that for every possible realization D = (C,Γ) of D,

φ[z0 ↔ Λs(x),z0 ↔ Λs(y), E|D = D]

≤ C( s
|y−x|)

2
(
φ[z0 ↔ Λs(x), E|D = D] + φ[z0 ↔ Λs(y), E|D = D]

)
, (38)

which implies the claim by summing over all possible D.
From now on, fix a realization D for which the left-hand side is strictly positive. Let

Ω be the set below ΓΓΓ. Consider the family of arcs `x,i (indexed by i) of Ω ∩ ∂ΛL(x)
disconnecting z0 in Ω from at least one vertex in Λs(x). Since ΓΓΓ is a path, any z ∈
Λs(x)∩Ω is separated from z0 by at least one such arc. Let Px,i be the region of Ω \ `x,i
separated from z0, see Figure 18. Introduce the events

Hx,i := {∃z ∈ Λs(x) ∩ Px,i : z ←→ z0} ∩ {∃z′ ∈ Λs(y) \ Px,i : z′ ←→ z0} ∩ E

and Hy,j defined in a similar fashion by considering arcs of Ω∩ ∂ΛL(y), with the roles of
x and y exchanged.
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We claim that

{z0 ←→ Λs(x), z0 ←→ Λs(y), E} ⊂
(⋃

i

Hx,i

)
∪
(⋃

j

Hy,j

)
. (39)

Indeed, assume that the event on the left holds true and consider the regions Pu,k with
u ∈ {x, y} for which there exists z ∈ Λs(u)∩Pu,k with z ←→ z0. There exists at least one
Pu,k with this property. Fix a region Pu,k with the property above, and which is minimal
among such regions for the inclusion. For simplicity, assume u = x. The first condition
is ensured by the choice of Px,k, and E occurs by assumption. The only way for Hx,k

to fail is if the second condition does, which implies the existence of z′ ∈ Λs(y) ∩ Px,k
which is connected to z0. Now, if we take Py,j to be the minimal (for the inclusion again)
region containing z′, we have Py,j ( Px,k, which contradicts the minimality of Px,k.

We now prove the following claim.

Claim. There exists a universal constant C0 > 0 such that

φ[Hx,i|D = D] ≤ C0φZ2 [Ex,i]φ[z0 ↔ Λs(y), E|D = D], (40)

where Ex,i is the event that Λs(x)∩Px,i contains a vertex z which is connected to ∂ΛL/4(x)

but not to ∂Px,i ∪ t+j .

Proof. Introduce the event H ′x,i that Hx,i occurs and there exists z′ ∈ Λs(y) \Px,i which
is connected to z0 outside of Px,i ∩ ΛL/2(x). There exists c0 > 0 such that

φ[H ′x,i|D = D] ≥ c0φ[Hx,i|D = D]. (41)

Indeed, consider the outer boundary ΓΓΓ0 of the cluster of z0. By definition on Hx,i, ΓΓΓ0

must contain a vertex z ∈ Λs(x) ∩ Px,i and a vertex z′ ∈ Λs(y) \ Px,i. As a consequence,
H ′x,i occurs as soon as there is no crossing in ω∗ from ∂ΛL/2(x) to ∂ΛL(x) in the interior
of ΓΓΓ0, see Figure 18 and its caption for more details. Since conditioning on ΓΓΓ0 induces
wired boundary conditions on its interior, the probability of this event is bounded from
below by some universal constant c0 > 0 by Proposition 3.6.

Now, following a reasoning similar to Claim 1 of the previous lemma – here C0

becomes the cluster of z0 outside Px,i ∩ ΛL/2(x) (which, on the event H ′x,i, necessarily
contains a vertex in Λs(y)), and CΓΓΓ the union of the clusters of ΓΓΓ outside of Px,i∩ΛL/4(x)
– we obtain that

φ[H ′x,i|D = D, z0 connected to Λs(y) but not to t+j in Ω \ ΛL/2(x)] ≤ C1φZ2 [Ex,i]. (42)

The two inequalities together give the result.

We are ready to conclude. Write N for the number of disjoint clusters (in ΛL/4(x))
from Λs(x) to ∂ΛL/4(x) that are contained in the lower half-plane. By exploring the
clusters one by one we obtain easily from (RSW) and the comparison between boundary
conditions that there exist c2, C2 ∈ (0,∞) such that for every k ≥ 0,

φZ2 [N > k] ≤ C2(s/L)2+c2k.
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`x,1

`x,3

`x,2

`y,2

`y,1

xy

Γ

C

Γ0Py,1

Py,2

Px,1

Px,2

Px,3

ΛL(y) ΛL(x) ΛL/2(x)

Λs(x)
Λs(y)

C

Figure 18: We depicted in green (for C) and dark red (for ΓΓΓ) the event D = D. We also
listed the arcs `x,i and `y,i, as well as the domains Px,i enclosed by them. Note that the
domains can be included into each other: here Py,2 and Px,2 are included in Px,1, and
Px,3 is itself included in Px,2. In yellow, the path Γ0 contains a vertex in Λs(y) and a
vertex in Λs(x). In the picture, Hx,1 occurs. Then, if the bold black paths are open, z0

is connected to Λs(y) outside of Px,1∩Λs/2(x) by following ΓΓΓ0 and shortcutting any visit
of ΓΓΓ0 to ΛL/2(x) via the black paths.

We deduce that ∑
i

φZ2 [Ex,i] ≤ φ[N] ≤ C3(s/L)2.

Summing over i the estimate provided by the claim and using the previous inequality
gives

φ
[⋃
i

Hx,i

∣∣∣D = D
]
≤ C4(s/L)2φ[z0 ↔ Λs(y), E|D = D]. (43)

A similar estimate holds for the union of the Hy,j . Together with (39), this gives (38)
and therefore the claim.

We are now in a position to prove Proposition 4.3.

Proof of Proposition 4.3. Without loss of generality, we may assume that 4 divides s
which divides N (otherwise the proof can be trivially adapted). Let Y be a set of
vertices y ∈ t−j at a distance s/4 of each other. For any vertex x ∈ t−j , define [x] to be
the vertex y ∈ Y closest to x.

45



On the one hand, using the inclusion of events, we get that

φ[E0(k), Iso(r)c|E] ≤
∑
x∈t−j

φ[x = lmax(z0), z0 ↔ Λs([x]), Iso(r)c|E]

=
∑
y∈Y

∑
x∈t−j
[x]=y

φ[x = lmax(z0), z0 ↔ Λs(y), Iso(r)c|E].

Now, Lemma 4.4 and the fact that there are at most s vertices x satisfying [x] = y for
every fixed y ∈ Y give

∑
x∈t−j
[x]=y

φ[x = lmax(z0), z0 ↔ Λs(y), Iso(r)c|E] ≤ Crη

s1+η
φ[z0 ↔ Λs(y)|E].

It remains to bound the sum over y ∈ Y of φ[z0 ↔ Λs(y)|E] by a uniform constant. To
do that, observe that the Cauchy-Schwarz inequality and Lemma 4.5 give( ∑

y∈Y
φ[z0 ↔ Λs(y)|E]

)2
≤

∑
y,z∈Y

φ[z0 ↔ Λs(y), z0 ↔ Λs(z)|E]

≤ C
∑
y∈Y

φ[z0 ↔ Λs(y)|E]

+ C
∑

y 6=z∈Y
( s
|z−y|)

2
[
φ[z0 ↔ Λs(y)|E] + φ[z0 ↔ Λs(z)|E]

]
≤ C ′

∑
y∈Y

φ[z0 ↔ Λs(y)|E],

which implies that the sum is at most C ′, and therefore concludes the proof.

4.3 Proof of Theorem 2.4

We prove the first identity (the second follows from the same argument). It suffices to
show that Ψ2

1[lmax(∞) = 0+]

Ψ2
1[lmax(∞) = 0]

=
sinα

sinβ
.

First of all, as seen in Theorem 3.8, for every ε > 0, there exists R > 0 such that for
every α, β ∈ (ε, π − ε) and q ∈ [1, 4], for every event A,

|

Ψ2
1[A]− φ0

L1
[A|{0↔ ∂ΛR, lmax(0) = 0} ∪ {0+ ↔ ∂ΛR, lmax(0+) = 0+}]| ≤ ε.

The convergence in Theorem 3.8 is uniform in q ∈ [1, 4] and α, β ∈ (ε, π − ε) (as shown
by Proposition 3.9). Also, the eigenvalues λ(k)

N (θ) are continuous in θ and q. As a
consequence, we only need to prove the claim for α, β 6= π/2 and 1 ≤ q < 4.
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We now focus on this case. Applying Propositions 2.5 and 2.6 gives that∣∣∣∣ Ψ2
1[lmax(∞) = 0+]

Ψ2
1[lmax(∞) = 0]

− λ(k)(β)

λ(k+3)(β)
× 1− λ(k+3)

N (α)/λ
(k)
N (α)

1− λ(k+3)
N (β)/λ

(k)
N (β)

∣∣∣∣ ≤ C( λ
(k)
N (β)

λ
(k+3)
N (β)

− 1
)η
. (44)

Below, o(1) denotes a quantity tending to 0 as N tends to infinity. Theorem 2.7 implies
that for k ∈ [N1/2, 2N1/2],

1− λ(k+3)
N (α)/λ

(k)
N (α)

1− λ(k+3)
N (β)/λ

(k)
N (β)

=
log λ

(k)
N (α)− log λ

(k+3)
N (α)

log λ
(k)
N (β)− log λ

(k+3)
N (β)

+ o(1)

and
λ

(k)
N (β)

λ
(k+3)
N (β)

= 1 + o(1)

so (44) implies that

Ψ2
1[lmax(∞) = 0+]

Ψ2
1[lmax(∞) = 0]

=
log λ

(k)
N (α)− log λ

(k+3)
N (α)

log λ
(k)
N (β)− log λ

(k+3)
N (β)

+ o(1). (45)

At this stage, we use Theorem 2.7 one more time to notice that

log λ
(N1/2)
N (α)− log λ

(2N1/2)
N (α)

log λ
(N1/2)
N (β)− log λ

(2N1/2)
N (β)

=
sinα

sinβ
+ o(1).

We deduce that there exists k− between N1/2 and 2N1/2 such that

log λ
(k−)
N (α)− log λ

(k−+3)
N (α)

log λ
(k−)
N (β)− log λ

(k−+3)
N (β)

≥ sinα

sinβ
− o(1)

and similarly k+ such that

log λ
(k+)
N (α)− log λ

(k++3)
N (α)

log λ
(k+)
N (β)− log λ

(k++3)
N (β)

≤ sinα

sinβ
+ o(1).

Applying (45) to k+ and k− and letting N tend to infinity concludes the proof.

5 Homotopy distance: proof of Theorem 2.2

5.1 Encoding of homotopy classes

In the introduction, we were not precise in the way we compute homotopy classes. We
now remedy this approximation. Recall that Bη := ηZ2 ∩ [−1/η, 1/η]2. Consider the set
of oriented edges ~E:

~E := {(x, y) : x, y ∈ Bη : ‖x− y‖2 = η}.
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Below, we see an oriented edge (x, y) as a segment joining the endpoints x and y with
an orientation from x to y.

Let W be the set of finite words on the alphabet ~E and denote the empty word by ∅.
Define the “cyclic” equivalence relation ∼ on W by (ui)1≤i≤p ∼ (vj)1≤j≤q if and only if
p = q and there exists k ∈ [1, p] such that u1 . . . up = vk . . . vpv1 . . . vk−1. Define the set
of cyclic words as the quotient CW :=W/ ∼.

We also wish to work with a reduced representation of cyclic words. Let � be
the (smallest) order relation on CW such that for any word u = u1 · · ·up, any inte-
ger 1 ≤ k < p (resp. 1 ≤ k ≤ p) such that uk+1 = (x, y) and uk = (y, x), and
v = u1 · · ·uk−1uk+2 · · ·up, we have v � u. It is straightforward to check that there
exists a smallest u � u for every u. We call this the reduced word of u.

Definition 5.1 (Homotopy classes). For a non-self-intersecting smooth loop γ ⊂ R2\Bη,
let u = u(γ) be the word associated to γ defined as follows: orient the loop counterclock-
wise, fix a ∈ γ not on an oriented edge7, and let u(γ) = u1 · · ·uk, where ui is the
i-th (when going counter-clockwise along the curve starting from a) oriented edge (x, y)
crossed by γ in such a way that x is on the left of the crossing and y on the right. Then,
the homotopy class [γ]η of γ is the reduced word u(γ).

Remark 5.2. The previous definitions are sufficient for the proof of Theorem 2.2. In
preparation for the proof of Theorem 2.3 in the next section, we explain how homotopy
classes in other spaces considered in this paper are encoded. Consider a collection of
non-self-intersecting loops (`x : x ∈ Bη) satisfying that the right-most point z(`x) in `x
(if there is more than one such point, consider the lowest one) belongs to B(x, 1

4η) for
every x ∈ Bη. We wish to compute homotopy classes in the space R2 \ ∪x∈Bη`x in a way
that is consistent with the definition of [·] above. Define the segment (x, y) for x and y
neighbors to be the oriented segment from z(`x) to z(`y). Encode the homotopy classes
of loops in R2 \ ∪x∈Bη`x using reduced words in the same way as above with segments
between z(`x) and z(`y) playing the role of the segment between x and y in the case of
R2 \ Bη.

5.2 Proof of Theorem 2.2

Proof of Theorem 2.2. We show the result for the Camia-Newman distance. The version
of the result for the Schramm-Smirnov distance follows readily from known implications
between the former and the latter (see e.g. [11, Theorem 7]). In this proof, fix κ, η, δ > 0
such that

κ > 12
√

2η ≥ 1000δ.

Below, a word v = v1 · · · v` ∈ W is a subword of u ∈ CW if there exists k such that
vi = uk+i for all 1 ≤ i ≤ `. We extend the order relation to non-cyclic words and can
therefore talk of v. Also, we call diam(v) the maximal Euclidean distance between two
centers of edges in {v1, . . . , vk} and say that v intersects B(0, 1/κ) if it contains a letter

7Changing a will correspond to a rerooting of the loop and will lead to the same cyclic word.
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x
y

`x

z(`x)

z(`y)
`y

Figure 19: In dashed black, the segments corresponding to the oriented edges in Bη.
Also, the crosses correspond to the points z(`x) for the loops. Finally, the associated
segments are depicted in dashed red.

which is incident to a point of Bη ∩ B(0, 1/κ). With these definitions, introduce the
events

Normal(κ, η) :=
{ @ a loop γ such that u(γ) contains a subword v

intersecting B(0, 1/κ) with v = ∅ and diam(v) ≥ 1
3κ

}
,

Dense(η) := {every face of ηZ2 ∩B(0, 1/η) contains a loop in F0 and one in F1}.

Now, consider ωδ ∼ φδL(α) and ω′δ of ωδ ∼ φδL(π/2) and let Fi(ωδ) and Fi(ω′δ) be the
collections of loops (primal or dual depending on i) in ωδ and ω′δ respectively.

Claim 1. For every κ > 12
√

2η, one has

{dH(ωδ, ω
′
δ) ≤ η} ∩ {ωδ, ω′δ ∈ Normal(κ, η) ∩Dense(η, δ)} ⊂ {dCN(ωδ, ω

′
δ) ≤ κ}. (46)

Proof. Consider a loop γ ∈ Fi(ωδ) that is included in B(0, 1/κ), we need to prove that
there exists γ′ ∈ Fi(ω′δ) such that d(γ′, γ) ≤ κ. Since the same can be done for Fi(ω′δ),
this will conclude the proof of (46).

Write uuu(γ) = u1v
1u2v

2 · · ·ukvk, where ui are the letters of u = [γ]η and v1, . . . , vk are
words satisfying v1 = · · · = vk = ∅ (such a decomposition exists but may not be unique).
We justify in the next paragraph that ωδ ∈ Normal(κ, η) implies that d(γ,γγγ) ≤ κ/2 for
any non-self-crossing smooth curve γγγ satisfying u(γγγ) = [γ]η = u.
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To prove that d(γ,γγγ) ≤ κ/2, consider a parametrization of γ on [0, 1] and let ti be
the first time t ≥ ti−1 such that γ(ti) ∈ ui (where we consider t0 = 0) and parametrize
γγγ on [0, 1] in such a way that γγγ(ti) ∈ ui. Then, we claim that for every t ∈ [0, 1],
|γ(t) − γγγ(t)| ≤ κ/2. Indeed, we know that for ti ≤ t < ti+1, γγγ(t) belongs to the face of
ηZ2 that contains ui and ui+1 and γ(t) belongs to one of the faces bordering ui, ui+1, or
one of the letters in vi. Now, the diameter of vi is smaller than κ/3, and we therefore
deduce that γ(t) is within distance κ/3 + 2

√
2η ≤ κ/2 of γγγ(t), hence d(γ,γγγ) ≤ κ/2.

We are now ready to conclude. Assume first that γ surrounds at most one point
x ∈ Bη. Then, [γ]η is either the empty word, or a word made of four letters corresponding
to edges incident to x. As a consequence, we may choose γγγ with a diameter which is
smaller than 2

√
2η and such that u(γγγ) = [γ]η. Also, since ω′δ ∈ Dense(η), there exists a

loop γ′ ∈ Fi(ω′δ) included in one of the faces intersected by γγγ. We obtain immediately
that d(γγγ, γ′) ≤ 2

√
2η and therefore d(γ, γ′) ≤ κ/2 + 2

√
2η ≤ κ.

Let us now assume that γ surrounds at least two points in Bη. Being included in
B(0, 1/κ), γ cannot surround all the points in Bη. The fact that dH(ωδ, ω

′
δ) ≤ η thus

implies the existence of γ′ ∈ F ′i such that [γ]η = [γ′]η. Since γ′ must intersect B(0, 1/κ) as
well, and ωδ and ω′δ are in Normal(κ, η), we obtain that d(γ,γγγ) ≤ κ/2 and d(γ′, γγγ) ≤ κ/2
for every γγγ with u(γγγ) = [γ]η = [γ′]η. The triangular inequality gives that d(γ′, γ) ≤ κ.
This concludes the proof.

We now turn to another claim.

Claim 2. There exist c, C ∈ (0,∞) such that for every β,

φδL(β)[Normal(κ, η)] ≥ 1− C
η2κ2

exp[−cκ/η]. (47)

Proof. Let A(κ, η) be the event that there exists a crossing of the rectangle R := [0, κ/3]×
[0, κ/12] whose cluster in the strip R × [0, κ/12] surrounds no vertex in ηZ2. We claim
the existence of c > 0 such that

φδL(β)[A(κ, η)] ≤ C exp[−cκ/η]. (48)

To prove (48), let N be the number of clusters that contain a vertical crossing of R and
for i ≤ N, call Γi the right-boundary of the i-th cluster Ci in R crossing R when starting
counting clusters from the right. Let Ωi be the set of vertices in R × [0, κ/12] on the
left of (and including) Γi (see Figure 20 for a picture). Note that Γi is measurable in
terms of the edges on Γi or on its right, and that it induces wired boundary conditions
on Γi for the measure in Ωi. Let Xi be a maximal set of vertices in Ωi ∩ ηZ2 that are
at a distance at least 4η of each other8, but at a distance at most η of Γi. Note that
one may easily construct such a set of cardinality at least bκ/(48η)c− 1. Then, for every
x ∈ Xi, by (RSW) there exists an open path disconnecting Λη(x) from ∂Λ2η(x) in Ωi

8This is a technical statement enabling to use the comparison between boundary conditions “inde-
pendently” in each of the boxes Λ2η(x).
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with probability larger than c0 > 0, even when we enforce free boundary conditions on
∂Λ2η(x). The comparison between boundary conditions thus implies that

φδL(β)[@x ∈ Xi surrounded by Ci|Γi] ≤ (1− c0)|Xi| ≤ (1− c0)bκ/(48η)c−1.

It remains to sum over i and use that φδL(β)[N] ≤ C0 (Proposition 3.7) to get (48):

φδL(β)[A(κ, η)] ≤ (1− c0)bκ/(48η)c−1φδL(β)[N] ≤ C0(1− c0)bκ/(48η)c−1.

We are now in a position to conclude. Consider the square box B1 := [−κ/24, κ/24]2

as well as the rectangle RR1 := [κ/12, κ/6] × [−κ/6, κ/6] and its rotations RT1 , RL1 , and
RB1 by angles π/2, π, and 3π/2, respectively. Also, consider a collection of translates
(Bi, R

R
i , R

T
i , R

L
i , R

B
i ) of (B1, R

R
1 , R

T
1 , R

L
1 , R

B
1 ) such that the boxes Bi cover B(0, 1/η −

κ/3). Note that the probability that a translate/rotation/dual of A(κ, η) occurs for some
R#
i is bounded by the right-hand side of (48). Write Aglobal for the event that the

rotation/translation of A or its dual occurs for some R#
i . The union bound implies that

φδL(β)[Aglobal(κ, η)] ≤ C1

η2κ2
(1− c0)bκ/(48η)c−1.

We next prove that Normal(κ, η) occurs as soon as Aglobal(κ, η) does.
To see this, assume Normal(κ, η) fails and consider a loop γ and a subword v of u(γ)

with v = ∅ of maximal diameter among the subwords intersecting B(0, 1/κ). The first
and last letters of v must necessarily border the same face f . Consider two times s and
t such that γ(s), γ(t) ∈ f and γ([s, t]) has v as an encoding word, and close γ([s, t]) into
a non-self-crossing loop `(γ) by going from γ(s) to γ(t) inside the face f . Note that f
must intersect a box Bi, and that `(γ) must cross one of the four rectangles R#

i around
it. Now, outside of f , `(γ) is identical to γ so it has either primal edges of ωδ bordering
it on its interior or dual edges. In the former case, the non occurrence of A(κ, η) for the
rectangle mentioned above implies that `(γ) must necessarily surround a point in Bη,
which contradicts the fact that v = ∅. In the latter case, the non occurrence of the dual
of A(κ, η) implies the same claim.

We are now in a position to conclude the proof of the theorem. Claim 1 implies that

P[dH(ωδ, ω
′
δ) ≤ η, dCN(ωδ, ω

′
δ) > κ] ≤ φδL(α)[Normal(κ, η)c] + φδL(π/2)[Normal(κ, η)c]

+ φδL(α)[Dense(η)c] + φδL(π/2)[Dense(η)c].

Now, Claim 2 applied to β equal to α or π
2 gives

φδL(α)[Normal(κ, η)c] + φδL(π/2)[Normal(κ, η)c] ≤ 1
2κ,

provided η = η(κ) > 0 is chosen small enough.
Finally, since any vertex with four closed edges incident to it gives rise to a small loop

in F1, and similarly for F0 when considering the dual graph, the finite-energy property
immediately implies that

φδL(α)[Dense(η)c] + φδL(π/2)[Dense(η)c] ≤ 2C

η2
exp[−c(η/δ)2] ≤ 1

2κ,
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κ/3

κ/12

4η

4η

4η

4η

Γ1

Γ2

X2

Figure 20: An example with two clusters crossing. Note that the set Xi does not have to
be included in the rectangle R. A way to construct a large set of points with the properties
of Xi is to choose for each 1 ≤ j < bκ/48ηc−1, on each line {(x, y) ∈ R2 : y = (2j+1)η},
a vertex of Ωi which is at a distance smaller than η of Γi.

provided δ = δ(η) small enough. The last three displayed inequalities conclude the proof
of the theorem.

6 Universality in isoradial rectangular graphs: proof of The-
orem 2.3

The section is divided in six subsections. In the first one, we recall the setting of the proof
and introduce some convenient notation. In the second one, we define the notion of nails,
give a precise definition of H, and introduce the formal definition of our coupling. The
third one explains how one can couple the increments of the maximal coordinates of nails
with independent increments that have the law of increments in a track-exchange on the
IIC. In the fourth subsection, we will explore the combination of several increments into
so-called compounded steps corresponding to bringing down one track from its starting
to its ending position. The fifth subsection shows that the speed that can be associated
to the evolution of a compounded step is approximately zero. Finally, the last subsection
contains the proof of the theorem.

6.1 Setting of the proof

Below, fix α ∈ (0, π/2) (the case α > π/2 can be obtained by a global reflection with
respect to the y-axis). We further assume, except when otherwise stated, that

cosα /∈ Q. (49)

This assumption plays an implicit role in the definition of the coupling, and is essential
in the proof of Proposition 6.14, see Remark 6.15.
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−N

N

h(t)

b(t)

d(t)

a(t)

Figure 21: The quantities h(t), a(t), b(t) and d(t). One may deduce from the picture
that bt/(2N)c = 12 as there are 12 tracks of angle α stacked above level −N .

Also, let 0 < ε � η � 1 be fixed along the whole section (they will be chosen
appropriately in the proof of the theorem at the end of the section). Set

Bη(N) := ηNZ2 ∩ [−N,N ]2

(note that it is not quite the blow up by a factor N of Bη) and

T := 2N × d2N/ sinαe.

As in Section 2, L(0) is the isoradial lattice with angles

αj = αj(α,N) :=

{
α if j ≥ N,
π
2 if j < N.

Recall the successive transformations Tj(t) of the lattice described in Section 2: at time
0 ≤ t < T , the track to be descended is tj(t) with

j(t) := N + (2N + 1)bt/(2N)c − t.

and the graph L(t) obtained from the graph L(0) by applying successively the maps Tj(s)

for 0 ≤ s < t.
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We use the following four convenient quantities (see Figure 21):

h(t) := the second coordinate of the horizontal line t−j(t) in L(t),

a(t) := h(2Nbt/(2N)c) + sinα,

b(t) := h(2Nbt/(2N)c − 1) + sinα− 1 if t > 2N and := −N if t ≤ 2N,

d(t) := min{h(t)− b(t), a(t)− h(t)}.

Note that b(t) is the top of the track of angle α below tj(t) (except when t < 2N in which
case we set it to be −N by convention), and a(t) is the bottom of the track of angle α
above tj(t).

6.2 Definition of nails, marked nails, and the coupling P

Recall the definition, for a (primal) cluster C in a configuration ω, of T(C), B(C) and
R(C), which are respectively the maximal second, minimal second and maximal first
coordinates of a vertex in C. Define Vspan(C) := T(C)− B(C).

Definition 6.1 (Nail). For x = (x1, x2) ∈ Bη(N) and a configuration ω, call a (primal)
cluster C of ω on some L(t) a nail (near x) if

Vspan(C) ≥ εN and max{|T(C)− x2|, |B(C)− x2|, |R(C)− x1|} ≤
√
ηεN.

We now define the coupling of the measures φL(t) for 0 ≤ t ≤ T .

Step 0 of the coupling P. Sample ω(0) ∼ φL(0) .

Index the nails near all points in Bη in ω(0) by integers 1, . . . ,M = M(ω(0)), and let
C(ω(0), i) be the nail indexed by i. Define I(0) := {1, . . . ,M}. Write T(0), B(0) and
R(0) for the functions from I(0) into R giving, for every i ∈ I(0) and A ∈ {T,B,R},
A(0)(i) := A(C(ω(0), i)). Also set Vspan(i) := Vspan(C(ω(0), i)).

For each x = (x1, x2) ∈ Bη(N), choose, if it exists, ix ∈ I(0) such that

Vspan(ix) ≥ 2εN and max{|T(ix)−x2|, |B(ix)−x2|, |R(ix)−x1|} ≤ (
√
ηε−ε)N

(50)
(if there is more than one, pick the smallest such integer). Call C(ω(0), ix) the marked
nail near x. Let I• ⊂ I(0) be the indexes corresponding to the marked nails near each
x ∈ Bη(N), with the understanding that there may be some x for which there is no such
marked nail (we will see later in this section that, with a very large probability, there is
a marked nail near every x ∈ Bη(N)).

Finally, if there exists a marked nail near every x ∈ Bη, introduce the two multisets9

[·](0)
•,0 and [·](0)

•,1 gathering the homotopy classes (in the sense of Remark 5.2) in the full

9Formally, these are functions from the set of homotopy classes, or in our case of reduced words, into
non-negative integers.
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Figure 22: In black, the nails (i.e. the elements indexed by I(ω)) and in bold black the
marked nails. The red segments depict the information provided by (T(t),B(t),R(t)). The
blue loops are the loops surrounding at least two marked nails, i.e. the loops contributing
to [·]•,0 and [·]•,1. The grey area are the boxes Λ√εηN (x), which one should think of
potentially much bigger than the minimal size O(εN) of nails, but much smaller than
the minimal distance ηN between vertices of Bη(N).

plane minus the marked nails R2 \ {C(ω, i) : i ∈ I•} of the loops in F0(ω(0)) and F1(ω(0))
that surround at least two but not all marked nails. At this stage, we insist on the fact
that [·](0)

•,0 and [·](0)
•,1 are multisets as there may be more than one loop in ω(0) of a given

homotopy class. If there exists x ∈ Bη that does not have a marked nail near it, simply
set [·](0)

•,0 = [·](0)
•,1 = ∅.

To lighten the notation, we write

H(0) := (I(0),T(0),B(0),R(0), [·](0)
•,0, [·]

(0)
•,1).

Fix now 0 ≤ t < T and assume that ω(t) and H(t) = (I(t),T(t),B(t),R(t), [·](t)•,0, [·]
(t)
•,1)

have been constructed (for the latter, the way it is given in terms of ω(t) is explained for
t+ 1 below), where

• I(t) is a subset of Z>0,
• T(t),B(t),R(t) are functions from I(t) to R,
• [·](t)•,0 and [·](t)•,1 are multisets with elements in homotopy classes in R2 \ {C(ω(t), i) :

i ∈ I•} if I• ⊂ I(t), and equal to ∅ otherwise.
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Step t to t+ 1
2 of the coupling P. Sample ω(t+1/2) ∼ φL(t) [ · |H = H(t)],

where ω ∈ {H = H} (with H = (I,T,B,R, [·]•,0, [·]•,1) a possible realization of H(t))
denotes the event that

(i) there exists an indexation of the nails in ω by I (call C(ω, i) the nail indexed by
i ∈ I);

(ii) A(C(ω, i)) = A(i) for every i ∈ I and A ∈ {T,B,R};
(iii) if I• ⊂ I, the further requirement that [·]•,0 and [·]•,1 are giving the homotopy

classes of the loops of ω that surround at least two but not all marked nails.

Step t+ 1
2 to t+ 1 of the coupling P. Set ω(t+1) := Tj(t)(ω

(t+1/2)) (remember that
Tj(t) is a map sending a configuration to a random configuration).

Due to the previous step, ω(t+1/2) necessarily satisfies the event {H = H(t)}. Consider
the indexation of the nails of ω(t+1/2) by I(t) given by (i) and write C(ω(t+1/2), i) for the
nail indexed by i.

Since the track-exchange map Tj(t) is obtained as a sequence of star-triangle trans-
formations, one can check that a nail C(ω(t+1/2), i) is transformed into a cluster C in
ω(t+1). If C is still a nail in ω(t+1), include i in I(t+1) and define A(t+1)(i) = A(C) for
A ∈ {T,B,R}. If this is not the case, then do not include i in I(t+1). Finally, for each
“new” nail C′ in ω(t+1), i.e. a nail that was not in ω(t+1/2), pick an integer i that was not
used in any of the I(s) for s ≤ t and include it in I(t+1). As before, let A(t+1)(i) = A(C′)
for A ∈ {T,B,R}. Note that nails may appear or disappear when applying Tj(t) since
extrema of clusters may move during the star-triangle transformations, which may alter
the validity of the conditions of being a nail.

If I• ⊂ I(t+1), define [·](t+1)
•,0 and [·](t+1)

•,1 to be the multisets giving the homotopy
classes in R2 \ {C(ω(t+1), i) : i ∈ I• ∩ I(t+1)} of the loops surrounding at least two but
not all marked nails. Otherwise, set [·](t+1)

•,0 = [·](t+1)
•,1 = ∅.

Set
H(t+1) := (I(t+1),T(t+1),B(t+1),R(t+1), [·](t+1)

•,0 , [·](t+1)
•,1 ).

From now on, call P the coupling thus obtained.
Remark 6.2. Let us mention that a marked nail can disappear at some time t, meaning
that some i ∈ I• can be in I(t) but not in I(t+1), but no new marked nail may appear.
The disappearance of a marked nail affects significantly the notion of homotopy and
we stop keeping track of it (hence the convention of denoting [·](t)•,0 = [·](t)•,1 = ∅ and to
consider it as an empty condition in (iii) of the definition of H = H(t)). We will see that
the condition (50) on our marked nails guarantees a posteriori that the marked nails do
not disappear during the whole process with high probability. We will also see that [·](t)•,0
and [·](t)•,1 are preserved, and therefore equal to their values at time 0.
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6.3 Controlling one single time step using IIC increments

In this section, we wish to connect our configurations (ω(t) : 0 ≤ t < T ) with IIC measures
in order to be able to control the displacements of the nails during the process. We
therefore “decorate” our coupling by enhancing it with additional configurations sampled
according to IIC measures.

Recall the lattice L(i) with horizontal tracks of angle β except for ti which has angle
α. In this section, β is fixed to be π/2. Recall also the IIC measures

Ψ

i, Ψi and Ψ defined
on L(i) and L(0) respectively.

Let us give ourselves i.i.d. families of random variables ω(t)
A,j indexed by 0 ≤ t < T ,

j ∈ Z, and A ∈ {T,B,R}, with laws

Ψ

j , Ψj , and Ψ if A = T,B,R respectively (when
A = R there is no need for a subscript j but we will use this convenient “unified” notation).

We also give ourselves independent {0, 1}-valued random variables X(t)
H (i), indexed

by all possible values H = (I,T,B,R, [·]•,0, [·]•,1) of H(t) and i ∈ I, satisfying

P[X
(t)
H (i) = 1] = φL(t) [(R(i), h(t)) ∈ C(ω, i) |H = H]

(it is possible that (R(i), h(t)) is not a vertex of L(t), in which case X(t)
H (i) is 0 almost

surely). To get an intuition on these variables, in the coupling below, the fact that
X

(t)

H(t)(i) is equal to 1 will detect whether the cluster C(ω, i) has a right extremum on
t−j(t).

We are now ready to define the coupling of the process (ω(t) : 0 ≤ t < T ) with the
random variables introduced above. Below, the steps 0 and t + 1/2 to t + 1 are done
exactly as in the previous section. We therefore focus on the steps t to t+ 1/2. We will
sample ω(t+1/2) from ω(t) in a few steps, coupled to the variables introduced in the two
last paragraphs. Nevertheless, notice that the law of ω(t+1/2) given ω(t) is the same as in
the previous section. For this reason, we keep denoting this bigger coupling P.

For 0 ≤ t < T and a nail C, call a vertex x ∈ L(t) a

• Top t-extremum (of C) if x ∈ t−j(t) ∪ t
−
j(t)−1 and its second coordinate equals T(C),

• Bottom t-extremum (of C) if x ∈ t−j(t) ∪ t
−
j(t)+1 and its second coordinate equals

B(C),
• Right t-extremum (of C) if x ∈ t−j(t) and its first coordinate equals R(C),
• Fake right t-extremum (of C) if x ∈ t−j(t), its first coordinate is strictly larger than

R(C)− cosα, and the vertex of C with maximal first coordinate is below b(t).

We also use vertical t-extremum to denote a top or bottom t-extremum.

Remark 6.3. Note that for A(C) to be possibly modified by the track-exchange, there
must exist a A t-extremum or fake right t-extremum in the case A = R.
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Complete description of the coupling P from time t to t+ 1/2

Fix 0 ≤ t < T and assume that I•, ω(t), and H(t) have been defined. We divide the
construction of ω(t+1/2) in four cases; which case applies is determined by H(t).

Case 0: Two distinct nails contain vertical t-extrema. In such case, sample
ω(t+1/2) as in previous section independently of the variables ω(t)

A,j and X
(t)
H .

Case 1: A unique nail contains a vertical t-extremum and it is a top one.
Let i be the index of this nail. Proceed as follows:

Step 1. Sample the random variable x in such a way that for every x ∈ L(t),

P[x = x] = φL(t) [lmax(C(ω, i)) = x|H = H(t)].

Step 2. Sample ω according to

φL(t) [ · |lmax(C(ω, i)) = x,H = H(t)]

and sample ω(t+1/2) = ω on the set Ω(x, ω) of edges outside of Λd(t)1/3(x) that are
connected in ω to the complement of Λd(t)1/2(x) (see Figure 26).

Step 3. Sample (ω(t+1/2), ωT
h(t)−T (t)(i)

) (for the first one we only need to sample the
remaining edges) using the coupling between

φL(t) [ · |lmax(C(ω(t+1/2), i)) = x,H = H(t), ω
(t+1/2)

|Ω(x,ω(t+1/2))
] and

Ψ

j(t)−T (t)(i)

which is maximizing the probability that ω(t+1/2) and the translate of ω(t)

T,j(t)−T (t)(i)
by

x coincide on Λd(t)1/4(x).

Case 2: A unique nail contains a vertical t-extremum and it is a bottom one.
Proceed exactly as in the previous step with B instead of T and Ψ instead of

Ψ

.

Case 3: No nail contains a vertical t-extremum. Proceed as follows,

Step -1. Couplea in the best possible way the random variables

X(t) := (X
(t)

H(t)(i) : i ∈ I(t)) and ‹X(t) = (‹X(t)(i) : i ∈ I(t)),

where ‹X(t) has the law of the random variable (1[(R(i), h(t)) ∈ C(ω, i)] : i ∈ I(t)) with
ω ∼ φL(t) [ · |H = H(t)].
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Step 0. If X(t) 6= ‹X(t) or
∑
i∈I(t)

‹X(t)(i) 6= 1, sample independently the random variables
ω

(t)
A,j and the random variable

ω(t+1/2) ∼ φL(t) [ · |H = H(t), X = ‹X(t)],

where the event X = ‹X(t) means that (R(i), h(t)) belongs to the nail indexed by i if
and only if ‹X(t)(i) = 1.

Step 1. Otherwise, set x := (R(t)(i), h(t)) with i the integer such that ‹X(t)(i) = 1.

Step 2–3. Proceed as in Case 1 with R instead of T and Ψ instead of

Ψ

, except that we
further condition at each step on X = ‹X(t).

aNote that X(t) and ‹X(t) have the same marginal laws, but that in the former the random variables
X

(t)

H(t)(i) are independent, while in the latter they are not.

Remark 6.4. We will see in the next section that Case 0 occurs very rarely, hence we
do not bother coupling efficiently the true configuration with an IIC configuration in
this case. In Step 3 of Case 1, it could be that the best coupling is terrible due to the
fact that ω(t+1/2) does something strange on Ω(x, ω(t+1/2)). Yet, this will be shown to
occur with only small probability and the best coupling guarantees equality of the two
configurations with very large probability. Finally, in Step 0 of Case 3, the best coupling
(which depends on H(t)) is typically making the two random variables equal. We will see
that in this case there is typically a single i for which X(t)(i) = 1.

We now turn to an important proposition describing the increments A(t+1)(i)−A(t)(i)
for the nails i ∈ I(t) in terms of increments of IIC variables, called the IIC displacement
random variables.

Definition 6.5 (IIC displacements). Sample a configuration according to

Ψ

j , apply Tj ,
and call δIIC

j T the maximal y-coordinate of a vertex of the incipient infinite cluster after
the transformation. Similarly, sample a configuration according to Ψj , apply Tj , and
call δIIC

j B the maximal y-coordinate of a vertex of the incipient infinite cluster after
the transformation. Finally, sample a configuration according to Ψ, apply T0, and call
δIICR the maximal x-coordinate of a vertex of the incipient infinite cluster after the
transformation.

Remark 6.6. The effect of a track exchange on the top and right of a cluster is described in
Figures 23 and 24. Notice that δIIC

1 T ∈ {0, sinα}, δIIC
0 T ∈ {−1, sinα−1}, and δIIC

j T = 0

for other values of j. Similarly, δIIC
0 B ∈ {sinα, sinα−1}, δIIC

−1 B ∈ {0,−1}, and δIIC
j B = 0

for other values of j. For the right, note that δIICR ∈ {0,−1, cosα− 1, cosα}.
Remark 6.7. The effect of a track exchange implies that T(t+1)(i)−T(t)(i) and B(t+1)(i)−
B(t)(i) belong to {−1, sinα − 1, 0, sinα}. For R(t+1)(i) − R(t)(i), the situation is more
complicated since there may be a fake right t-extremum, whose coordinate is therefore
not equal to R(C(ω(t+1/2), i)), that jumps right and after the transformation has a first
coordinate equal to R(C(ω(t+1), i)). Nevertheless, one always has |R(t+1)(i)−R(t)(i)| ≤ 1.
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0

0 0

0

0

0

0

Figure 23: Different environments around 0 picked according to the incipient infinite
cluster measures with a track of angle α at height 1 (left) and 0 (right). The bold
edges and points are part of the incipient infinite clusters. The different outcomes of the
transformations give different top-most points for the infinite cluster.
Left two diagrams: Two possible outcomes of the track-exchange T1 corresponding to
δIIC

1 T = 0 and δIIC
1 T = sinα. The first outcome occurs certainly when the gray rhombus

contains a primal edge, and with positive probability when it contains a dual one; in the
latter case, the second outcome is also possible.
Right three diagrams: Three possible outcomes of the track-exchange T0 corresponding
to δIIC

0 T = −1 and δIIC
0 T = sinα − 1, respectively. The first outcome occurs only when

the edge below and to the left of 0 is the unique open edge adjacent to 0.

Let δIIC
j A(t) be the displacement constructed out of the IIC configuration ω

(t)
A,j by

applying Tj(t). Note that the δIIC
j A(t) form families of i.i.d. random variables with law

δIIC
j A. For i ∈ I(t), define the random variables

δerrT(t)(i) := T(t+1)(i)− T(t)(i)− δIIC
h(t)−T (t)(i)T

(t)(i),

δerrB(t)(i) := B(t+1)(i)− B(t)(i)− δIIC
h(t)−B(t)(i)B

(t)(i),

δerrR(t)(i) := R(t+1)(i)− R(t)(i)−X(t)

H(t)(i) δ
IICR(t)(i).

We are now ready to present the main statement of this section.

Proposition 6.8 (Properties of the coupling). For ε, η > 0, the coupling P satisfies the
following properties:

(o) for every 0 ≤ t ≤ T , ω(t) ∼ φL(t);

(i) ([·](t)•,0, [·]
(t)
•,1) = ([·](0)

•,0, [·]
(0)
•,1) for every t < τ , where τ := inf{t > 0 : I• 6⊂ I(t)};

(ii) for every t ≥ 0, the variables (δerr
j A(s)(i), δIIC

j A(s)(i), X
(s)
H (i) : A, i, j,H, s < t) are

independent of the (δIIC
j A(t)(i), X

(t)
H (i) : A, i, j,H);
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0

0

Figure 24: When performing a track exchange between t0 and t−1, the vertex 0 is modified
locally so that the coordinate of the right-most point in t−0 ∪t

−
−1 moves by either −1 (first

line) or cosα (second line). The first outcome occurs certainly when both gray rhombi
contain primal edges, and with positive probability otherwise; the second outcome may
only occur when at least one of the two gray rhombi contains a dual edge. When the
second outcome occurs, δIICR = cosα. For the first outcome, δIICR may take values 0,
cosα − 1, or −1. The first two values appear if the incipient infinite cluster contains a
vertex below 0 with first coordinate 0, or one above 0, with first coordinate cosα − 1,
respectively. The same outcomes occur for any environment in t0 and t−1 to the left of 0.

Figure 25: We depicted the example of a nail having two top t-extrema.

(iii) there exist C, c ∈ (0,∞) such that for every t ≥ 0,

E[Err(t)] ≤ C

d(t)N c
,

where Err(t) :=
∑
i∈I(t)

M (t)(i) withM (t)(i) := |δerrT(t)(i)|+|δerrB(t)(i)|+|δerrR(t)(i)|.

Remark 6.9. Let us mention that we expect the bound of (iii) to be valid with N1+c

instead of d(t)N c in the denominator. The reason for the appearance of d(t) is due to
the fact that we do not, at this stage, know how to prove (15) for generic sequences
of angles ααα. In retrospect, our rotation invariance result shows that (15) does hold for
arbitrary sequences, but only post factum.

The rest of the subsection is dedicated solely to proving Proposition 6.8. This proof
is tedious, but does not involve particularly innovative ideas (the heavy lifting was done
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when properly defining the coupling). In the first reading, one may skip the proof and
focus on the next sections first.

Before diving into the proof of this proposition, let us start with a lemma. Define

BAD1(t) := {a nail contains a vertical and a right t-extremum},
BAD2(t) := {a nail contains two vertical t-extrema x, y satisfying |x− y| ≥ d(t)1/5},
BAD3(t) := {two nails contain a t-extremum},
BAD4(t) := {a nail contains a fake right t-extremum},

BAD5(t) :=
{ a nail i contains a right t-extremum and a vertex (x1, x2)

with R(t)(i)− 1 < x1 < R(t) and |x2 − h(t)| ≥ d(t)1/5

}
.

Lemma 6.10. There exist C, c ∈ (0,∞) such that for every 0 ≤ t < T and 1 ≤ i ≤ 4,

φL(t) [BADi(t)] ≤
C

d(t)N c
.

Proof. We divide into the different events BADi(t).

Bound on the probability of BAD1(t). Assume that the vertical t-extremum is a
top t-extremum (the bottom case is treated similarly) and let x be the right t-extremum
of the nail. In this case, there must be a three-arm event in the bottom-left quarterplane
translated by x, and going from Λ1(x) to ∂ΛεN (x). We therefore deduce from (13) that
the probability of this is bounded by C/(εN)2+c. Summing over O(N) possible values
of x – recall that since it is a right t-extremum, x is within a distance √εηN of one of
the points in Bη(N) – gives the required bound.

Bound on the probability of BAD2(t). In this case, the two t-extrema are either
both in the top direction, or both in the bottom one (since Vspan ≥ εN > 1 + sinα for
N large enough). Let us assume it is the former that happens and let x and y be the two
t-extrema. We assume that x is on the left of y. Also, note that they have to be exactly
at the same height as they belong to the same nail. The following must therefore occur
(see Figure 25 for a picture):

• a 3-arm event in the half-plane below x from x to ∂Λ|x−y|/2(x);
• a 3-arm event in the half-plane below y from y to ∂Λ|x−y|/2(y);
• a 3-arm event in the half-plane below x from Λ2|x−y|(x) to ∂ΛεN (x) (this may be

an empty condition if |x− y| ≥ 1
2εN);

• a 1-arm event from ΛεN (x) to ΛN in Z×[−N,N ] (this last condition is only relevant
in case x /∈ ΛN , which may occur since nails may be very long in the left direction,
and have maxima far on the left of ΛN – obviously, this is atypical, but should be
taken care of nonetheless).
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We deduce from (10) that

φL(t) [x, y top t-extrema of the same nail] ≤ C

|x− y|4
( |x− y|

εN

)2
exp
Ä
− c|x|

N

ä
. (51)

Summing over x and y at a distance d(t)1/4 of each other (with y on the right of x and
left of the right-side of ΛN ) gives that

φL(t) [BAD2(t)] ≤ C ′

ε2Nd(t)1/4
. (52)

Bound on the probability of BAD3(t). Assume that x and y are the right t-extrema
of two different nails. The cases of the top or bottom t-extrema are actually simpler to
handle (and they give better bounds).

First, assume that |x− y| ≤ 2d(t) and that y is on the right of x. In this case, for x
and y to be right t-extrema of their respective nails, there must be

• a 3-arm event in the half-plane on the left of x from x to ∂Λ|x−y|/2(x);
• a 3-arm event in the half-plane on the left of y from y to ∂Λ|x−y|/2(y);
• a 5-arm event in the half-plane on the left of y from Λ2|x−y|(y) to ∂Λd(t)(y) (this

may be an empty condition if |x− y| ≥ d(t)/2);
• a 3-arm event10 in the half-plane on the left of y from Λd(t)(y) to ∂ΛεN/2(y).

Using (15) (twice), (16), and (12), we deduce that

φL(t) [x, y right t-extrema of distinct nails] ≤ C

|x− y|4
( |x− y|
d(t)

)2+c0(2d(t)

εN

)1+c1
. (53)

Now, assume |x− y| > 2d(t) and assume that y is right of x. In this case, for x and
y to be at the right-most ends of their respective nails, there must be

• a 3-arm event in the half-plane on the left of x from x to ∂Λd(t)(x);
• a 3-arm event in the half-plane on the left of y from y to ∂Λd(t)(y);
• a 3-arm event in the half-plane on the left of x from Λd(t)(x) to ∂Λ|x−y|/2(x);
• a 3-arm event in the half-plane on the left of y from Λd(t)(y) to ∂Λ|x−y|/2(y);
• a 3-arm event11 in the half-plane on the left of y from Λ2|x−y|(y) to ∂ΛεN/2(y) (this

condition is empty if |x− y| ≥ εN/4).

Using (15) (twice) and (12) (three times), we deduce that

φL(t) [x, y right t-extrema of distinct nails] ≤ C

d(t)4

( d(t)

|x− y|

)2+2c1(2|x− y|
εN

)1+c1
. (54)

10In fact even a 5-arm event occurs up to ∂ΛεN/2−|x−y|(y). Also, once this is observed, one may wonder
why we distinguish between the third and fourth bullets since in both cases a 5-arm event occurs. The
reason comes from the fact that the estimate used in both cases is not quite the same, since one occurs
in an area with all but one track having a transverse angle equal to π

2
, while the second occurs in a

“mixed” lattice.
11Again, there is even a 5-arm event up to ∂ΛεN/2−|x−y|(y).

63



Let us now sum on y and then on x to obtain

φL(t) [two distinct nails in I(t) contain a right t-extremum]

≤ 2CN
[ 2d(t)∑
k=1

1

k4

( k

d(t)

)2+c0(d(t)

εN

)1+c1
+

2N∑
k=2d(t)

1

d(t)4

(d(t)

k

)2+2c1( k

εN

)1+c1]

≤ C1

d(t)1+c0

(d(t)

εN

)c1
+

C2

d(t)2

(d(t)

εN

)c1
≤ C3

d(t)(εN)c3
,

where we choose c3 := min{c0, c1}.
Doing the same with other types of t-extrema implies the bound for BAD3(t).

Bound on the probability of BAD4(t). For x to be a fake right t-extremum of a nail
C, there must exist y = (y1, y2) ∈ C with y2 ≤ b(t) and y1 = R(C). As a consequence,
there must be

• a 3-arm event in the half-plane on the left of x from x to ∂Λd(t)/2(x);
• a 3-arm event in the half-plane on the left of x from Λd(t)/2(x) to ∂Λ|x−y|/2(x);
• a 3-arm event in the half-plane on the left of y from y to ∂Λ|x−y|/2(y);
• a 3-arm event in the half-plane on the left of y from Λ2|x−y|(y) to ∂ΛεN/2(x).

If we denote E(x, y) the previous event, we deduce that

φL(t) [E(x, y)] ≤ C

d(t)2

( d(t)

|x− y|

)1+c1( 2

|x− y|

)1+c1(4|x− y|
εN

)1+c1
. (55)

Summing over y and then over x gives,

φL(t) [BAD4(t)] ≤
∑
x,y

φL(t) [E(x, y)] ≤
∑
x

C

d(t)

C2

N1+c1
≤ C3

d(t)N c1
. (56)

Bound on the probability of BAD5(t). The bound follows from a combination of
the arguments for BAD2(t) and BAD4(t). We leave it to the reader.

Proof of Proposition 6.8. By construction of the coupling, (o) and (ii) are trivial.
Property (i) follows from the locality of the star-triangle operations and the common

way of measuring ([·](t)•,0, [·]
(t)
•,1). Indeed, since [·](t−1)

•,0 = [·](t−1/2)
•,0 by definition of ω(t−1/2),

it suffices to check that [·](t−1/2)
•,0 = [·](t)•,0. Now, I• ⊂ I(s) for every s ≤ t so there are nails

near every x ∈ Bη(N). Recall the definition of oriented edges (x, y) from Section 5.1.
Since the star-triangle transformations modify the lowest right-most point of marked
nails of ω(t−1/2), but do so only locally, while preserving the connections outside of t−j(t),
we immediately get that the reduced words are not modified by the track-exchange, and
therefore [·](t−1/2)

•,0 = [·](t)•,0.
We therefore focus on proving (iii). We divide the analysis of Err(t) depending on

the case used for the coupling. Below, constants ci, Ci are universal and independent of
everything else except ε and η.
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Ω(ω(t),x)c

x

Λd(t)1/3(x)

Λd(t)1/2(x)

Λd(t)1/4(x)

Figure 26: A picture of the set Ω(ω(t+1/2), x) (in grey). The dark grey cluster is the unique
cluster of the annulus crossing from inside to outside. Everything outside Λd(t)1/2(x) is
included in Ω(ω(t+1/2), x). The red part is the place where we try to couple as best as
possible ω(t+1/2) and x + ω

(t)

T,j(t)−T (t)(i)
. In the proof of Proposition 6.8, note that when

applied to ω(t+1/2) ∈ E(x) (which means that there exists a unique cluster crossing the
annulus), all the conditions on the t-extrema of other nails and homotopy classes of loops
are not impacted by what happens inside Ω(ω(t+1/2),x)c. As a consequence, there is a
“screening” property and the conditioning inside is simply the existence of the red arms,
meaning that x is equal to the left-most top-most vertex in the cluster that is crossing
the annulus.

65



Error in Case 0 If Case 0 holds, then ω(t) ∈ BAD3(t). Due to the coupling generated
by the track-exchange, the displacement of any t-extremum is at most 1 so all variables
δerrA(t)(i) are deterministically bounded by 2. Thus, Markov’s inequality implies that
for every λ ≥ 0,

E[Err(t)1Case 0] ≤ 6E[|I(t)|1ω(t)∈BAD3(t)] ≤ 6λP[ω(t) ∈ BAD3(t)] + 6P[|I(t)| > λ].

Lemma 6.10 and Proposition 3.7 imply that by choosing λ to be a large multiple of logN ,
we obtain

E[Err(t)1Case 0] ≤ C2

d(t)N c2
.

Error in Cases 1 and 2 We deal with Case 1 as Case 2 can be treated in the same
way. Since x can take values x ∈ S(t) only, and that by (10),

φL(t) [lmax(C(ω, i)) = x,x = x,H = H(t)] ≤ C3

N2
exp[−c3

|x|
N ], (57)

(as in the bound of the probability of BAD2(t), we need to account for the possibility
that x is far on the left of ΛN ), it suffices to show that

P[Err(t) 6= 0|ω(t+1/2) ∈ {lmax(C(ω, i)) = x,x = x,H = H(t)}]

is small and to plug it in (57) above. Then, summing over x and applying a manipulation
similar to Case 0 will conclude the proof.

For (A, i) in {(B, i), i} ∪ {(T, i), i 6= i}, with i the unique integer such that C(ω, i)
contains a top t-extremum, we immediately find that

δerrA(t)(i) = A(t+1)(i)−A(t)(i) = δIICA(t)(i) = 0.

Therefore, the errors can only come from the evolution of T(t)(i) and the R(t)(i) for
i ∈ I(t). We treat the case A = T and A = R separately.

Below, we fix x and set ωT := ω
(T)

h(t)−T(t)(i)
.

Error from the top t-extremum We start with |δerrT(t)(i)|, which can come from a
number of facts (see Figure 27):

(i) ω(t+1/2) and x+ ωT are not equal on Λd(t)1/4(x);
(ii) there is another top t-extremum in C(ω(t+1/2), i) at a distance at least d(t)1/5 of x;
(iii) there are two top t-extrema in ωT at a distance at least d(t)1/5 of each other.
(iv) ω(t+1/2) and x + ωT are equal on Λd(t)1/4(x) but the track-exchange operators

outputs on Λd(t)1/5(x) are different in ω(t+1/2) and ωT;

Indeed, if none of (i)–(iv) occurs, then (i) gives that ω(t+1/2) and x + ωT coincide on
Λd(t)1/4(x), (iv) guarantees that the result of the track-exchange output is the same
in Λd(t)1/5(x). Finally, the absence of other top t-extrema in either ω(t+1/2) and ωT

guarantees that the change of height is measured by what happens within Λd(t)1/5(x).
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Subcase (i). Let E(x) be the event that there is a unique cluster in ω(t+1/2) crossing the
annulus Λd(t)1/2(x)\Λd(t)1/3(x) from outside to inside. Note that this event is measurable
in terms of ω(t+1/2) restricted to Ω(x, ω(t+1/2)). Furthermore, observe that this event has
a “screening effect” (see Figure 26) implying

φL(t) [ · |lmax(C(ω, i)) = x,x = x,H = H(t), ω
(t+1/2)

|Ω(x,ω(t+1/2))
] = φξ

Ω(x,ω(t+1/2))c
[ · |lmax(C) = x],

where ξ are the boundary conditions induced by ω(t+1/2) on the graph L(t)\Ω(x, ω(t+1/2)),
and C is the unique cluster crossing the annulus Λd(t)1/2(x) \ Λd(t)1/3(x).

Therefore, the mixing property of the IIC given by Proposition 3.9 implies that on
ω(t+1/2) ∈ E(x), the coupling does not give equality with probability at most C3d(t)−c3 .
Combined with (57) (and using |δerrT(t)| ≤ 2), we deduce that

E[|δerrT(t)(i)|1(i),lmax(C(ω(t+1/2),i))=x]

≤ 2C3

d(t)c3
P[lmax(C(ω(t+1/2), i)) = x] + 2P[lmax(C(ω(t+1/2), i)) = x, ω(t+1/2) /∈ E(x)]

≤ C4

N2d(t)c4
exp[−c|x|/N ],

where in the last inequality we used (10) and (14).

Subcase (ii). In this case, ω(t+1/2) belongs to BAD2(t) so Lemma 6.10 gives

E[|δerrT(t)(i)|1(ii)] ≤ 2φL(t) [BAD2(t)] ≤ C5

d(t)N c5

(we directly provided the estimate summed over x in this case as it follows from the
statement of Lemma 6.10).

Subcase (iii). First, since by construction ωT is independent of the event ω(t+1/2) ∈
{lmax(C(ω, i)) = x,x = x,H = H(t)}, it suffices to prove that

P[ωT contains a top t-extremum outside Λd(t)1/5 ] ≤ C6

d(t)1/4
.

To see this, simply sum over y ∈ Z\Λd(t)1/4 the probability of y being a top t-extremum,
which can easily be proved to be of order C7/|y|2. We conclude that

P[|δerrT(t)(i)|1(iii),lmax(C(ω(t+1/2),i))=x] ≤ C8

N2d(t)1/4
exp[−c|x|/N ].

Subcase (iv). To be in this case, it must be that in the intersection of the annulus
Λd(t)1/4(x) \ Λd(t)1/5(x) with t−j(t) ∪ t

−
j(t)−1 on the left and the right of x, there is no

pair of closed edges on top of each other since the existence of such edges decouple
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(ii)(i) (iii)

Λd(t)1/3(x)

Figure 27: The different cases zoomed at a distance d(t)1/2 around x. The configuration
ω(t+1/2) is depicted in black, and x + ω

(t)
T,j in blue.

the star-triangle transformations on their left and right as seen in the paragraph above
Definition 3.11. We deduce that

E[|δerrT(t)(i)|1(iv),lmax(i)=x] ≤ C8 exp[−c8d(t)1/4]

N2
exp[−c|x|/N ].

Error from the right t-extrema On the one hand, there can exist i ∈ I(t) such that
R(t+1)(i) 6= R(t)(i). Yet, this can occur only when some C(ω(t+1/2), i) contains a right
t-extremum, i.e. when ω(t+1/2) ∈ BAD1(t)∪BAD3(t). On the other hand, there can exist
i such that X(t)

H(t)(i) = 1 and δIICR(t)(i) 6= 0. Yet, the probability that X(t)

H(t)(i) = 1 is
such that

P[X
(t)

H(t)(i) = 1|H(t)] ≤ P[ω(t+1/2) ∈ BAD1(t) ∪ BAD3(t)|H(t)].

By proceeding in the same way as in Case 0, and using Lemma 6.10, we deduce that

E
[( ∑

i∈I(t)
|δerrR(t)(i)|

)
1Case 1] ≤ 2E[|I(t)|1ω(t+1/2)∈BAD1(t)∪BAD3(t)] ≤

C9

d(t)N c9

(again here we directly give the summed error as it is provided by Lemma 6.10).

Error in Case 3 In Case 3, no error is made for T and B, and we only need to control
the error due to movements of R(t)(i). Also, the error strictly after Step 0 can be treated
in exactly the same way as in Case 1. Indeed, any such error either implies the occurrence
of BAD5(t) or is generated by the configuration in the box of size d(t) around x, in which
case we use (15) instead of (10) as for Case 1.

The only new type of errors we need to control are those in Case 0, and they are of
three types:

(i) X(t) and ‹X(t) do not couple,
(ii) X(t) = ‹X(t) but there is no i with ‹X(t)(i) = 1,
(iii) X(t) = ‹X(t) but there are two i with ‹X(t)(i) = 1.

We divide our analysis between the different cases.
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Subcase (i). For every i ∈ I(t), X(t)(i) and ‹X(t)(i) have the same law. Using the
inclusion-exclusion principle, we see that for the best coupling between the two random
variables, we have that

P[X(t)(i) 6= ‹X(t)(i)|H(t)] ≤ C13P[|‹X(t)| ≥ 2|H(t)].

Yet, using an argument similar to Case 2, we find that

E
[
Err(t)1Case 2,X(t) 6=X̃(t)

]
≤ 2E[|I(t)|1(X(t) 6= ‹X(t))]

≤ 2C13E[|I(t)|1(|‹X(t)| ≥ 2)]

= 2C13E[|I(t)|1(ω(t+1/2) ∈ BAD3(t))]

(the last equality is due to the fact that ω(t+1/2) ∈ {X = ‹X(t)}). Then, we conclude
using Lemma 6.10 as before.

Subcase (ii). In this case, δIICR(t)(i) = 0 for every i ∈ I(t). Yet, for R(t+1)(i) to be
different from R(t)(i), it must be that C(ω(t+1/2), i) contains a fake right t-extremum (as
it does not contain a right t-extremum on the event X = ‹X(t)). Therefore, ω(t+1/2) must
contain a fake right t-extremum, i.e. that ω(t+1/2) ∈ BAD4(t). We deduce the result from
Lemma 6.10.

Subcase (iii). In this case, ω(t+1/2) must contain two right t-extrema. Therefore,
ω(t+1/2) ∈ BAD3(t) again and the proof follows from Lemma 6.10 and an argument
similar to Case 0.

6.4 Compounded time steps

We now group steps into so-called compounded time steps corresponding to the action
of a single track going down from its initial position to its final one. More precisely,
for 0 ≤ k < d2N/ sinαe we study the steps t ∈ [τk, τk+1), where τk := 2kN (it will be
important that the time steps correspond to the action of the same track of angle α, here
the (k + 1)-st one) to be pushed down.

First, introduce the speeds of the IIC in each direction, a notion which will be useful
in the next sections. Note that the definition below does not immediately seem to be
connected to the speed of a process. We will see later that it will in fact correspond to
the speed (or “drift”) of extrema of nails when bringing tracks down.

Definition 6.11 (Speed in each direction). Define

vT := sinα− P[δIIC
1 T = 0]

P[δIIC
0 T = sinα− 1]

vB := sinα− P[δIIC
0 B = sinα− 1]

P[δIIC
−1 B = 0]

,

vR :=
E[δIICR]

P[δIICR ∈ {0,−1}]
.
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For i ∈ I(τk), introduce the random time at which i ceases to be the index of a nail:

τend(i) := min{s : i /∈ I(s)}

(it is equal to T if such an s does not exist). Let Fk be the σ-algebra containing all the
variables

(ω(s) : s ≤ τk) , (ω(s+1/2) : s < τk) , (X
(s)
H (i) : s < τk) , (δIIC

j A(s)(i) : s < τk).

Recall the definition of M (s)(i) from the previous section.

Proposition 6.12 (Compounded time step for A = T or B). There exist c, C ∈ (0,∞)
such that for A ∈ {T,B}, i ∈ Z>0, 0 ≤ k < d2N/ sinαe, there exist random variables
∆IICA(k)(i) and ∆errA(k)(i) such that a.s. for every i ∈ I(τk),

(i) A(τend∧τk+1)(i)−A(τk)(i) = ∆IICA(k)(i) + ∆errA(k)(i);

(ii) E[exp(c|∆IICA(k)(i)|)|Fk] ≤ C;

(iii) E[|∆errA(k)(i)| |Fk] ≤ C E
[ τend∧τk+1∑

s=τk

M (s)(i)
∣∣∣Fk];

(iv) E[∆IICA(k)(i)|Fk] =

{
0 if A(τk)(i) ≤ b(τk),
vA +O(e−c|A

(τk)(i)−b(τk)| + P[τend < τk+1|Fk]) otherwise.

Remark 6.13. The O(·) quantity in (iv) comes from the fact that there are two types
of errors: the first term comes from cases where A(τk)(i) is close to the bottom b(τk) in
which case the process described in the next proof could be stopped because the track
reaches its final position, and the second from the fact that the nail i can cease to be
indexed during the interval [τk, τk+1).

Proof. We treat the case of A = T. The case of B is similar. In the whole proof, fix k
and i ∈ I(τk). To lighten the notation we omit i in the notation.

Case 1 T(τk) ≤ b(τk). In this case, the coupling P is such that T(τend∧τk+1)−T(τk) = 0
so we may define

∆IICT(k) = ∆errT(k) := 0.

Case 2 T(τk) > b(τk). We first describe how a track-exchange at time τk ≤ s < τk+1

modifies the value of T(s). There are three possibilities:

• T(s) /∈ {h(s)− 1, h(s)}, in which case T(s) is not altered;
• T(s) = h(s) − 1 which happens exactly once. In this case, T may either stay put

or increase by sinα. In the former case, T is not altered by subsequent steps and
in the latter T(s+1) = h(s+ 1);
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• T(s) = h(s), which implies that either T (s−1) = h(s − 1) and the track-exchange
“dragged down” the top of the nail, or T(s−1) = h(s−1)−1 but the track-exchange
failed to increase the top. In this case, T(s) may either increase by sinα − 1 in
which case it will not move at subsequent steps, or decrease by −1, in which case
T(s+1) = h(s+ 1).

From the previous discussion, we find

T(τend∧τk+1) − T(τk) = sinα− (σ − τ), (58)

where τ is the first (and unique) time for which T(τ) = h(τ)−1 and σ is the time defined
by

σ :=


τ if T(τ+1) = T(τ) + sinα,

inf{s ∈ (τ, τend ∧ τk+1) : T(s+1) − T(s) 6= −1} if T(τ+1) = T(τ) and s exists,
τend ∧ τk+1 otherwise.

To define ∆IICT, we use a similar formula except that we consider the random variables
δIIC
j T(s) instead of the true increments:

∆IICT(k) := sinα− (σIIC − τ), (59)

where

σIIC :=


τ if δIIC

1 T(τ) = sinα,

inf{s ∈ (τ, τend ∧ τk+1) : δIIC
0 T(s) 6= −1} if δIIC

1 T(τ) = 0 and such an s exists,
τend ∧ τk+1 otherwise

(note that τend is still a function of the true increments).
Finally, we set

∆errT(k) := σIIC − σ. (60)

We are now in a position to derive our proposition. First, (i) is satisfied by construc-
tion and (58)–(60). The definition of σIIC from independent “trial” events immediately
leads to (ii). For (iv), we have that

E[∆IICT(k)|Fk] = sinα−E[σIIC − τ |Fk]

= sinα− P[δIIC
1 T = 0]

1−P[δIIC
0 T = −1]

+O(e−c|T
(t)−b(t)| + P[τend < τk+1|Fk]),

where the error term comes from the fact that σIIC can be equal to τend ∧ τk+1. More
precisely, when τend ≥ τk+1, we obtain the first error since τk+1− τ ≥ T(t)− b(t) and the
difference is a geometric random variable, and when τend < τk+1, we obtain the second
term in the O(·).
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It only remains to prove (iii), i.e. to bound E[|σIIC − σ| |Fk]. In order to do it,
introduce further random times defined recursively by σIIC

0 = σIIC and

σIIC
`+1 := inf{s ∈ (σIIC

` , τend) : δIIC
0 T(s) 6= −1}

when s exists and σIIC
`+1 = τend∧τk+1 otherwise (note that for ` large enough, the sequence

becomes stationary at τend∧τk+1, which is compatible with the formula below). We have

σIIC − σ =
∑

τ≤s≤σIIC

1s>σ −
∑
`≥0

σIIC
`+1∑

s=σIIC
`

+1

1s≤σ.

Now, let X denote the sum of the |δerrT(s)| for s ∈ [τ, τend ∧ τk+1]. On the one hand, for
τ ≤ s ≤ σIIC to satisfy s > σ, it must be that δerrT(r) 6= 0 for some r ∈ [τ, s) and that
δIIC

0 T(r′) = −1 for every r′ ∈ (r, s). Independence provided by Proposition 6.8(ii) implies
that

E
[ ∑
τ≤s≤σIIC

1s>σ
∣∣∣Fk]

≤
∑

s≥r≥τ
P[∀r′ ∈ (τ, r), δerrT(r′) = 0; δerrT(r) 6= 0;∀s′ ∈ (r, s), δIIC

0 T(s′) = −1|Fk]

≤ P[X ≥ sinα|Fk]
P[δIIC

0 T = sinα− 1]
.

On the other hand, for σIIC
` < s ≤ σIIC

`+1 to be smaller than σ, it must be that δerrT(σIIC
l ) =

− sinα for every 0 ≤ l ≤ `, and that δIIC
0 T(r) = −1 for every r ∈ [σIIC

` , s] so that by
independence of the variables δIIC

0 T(r) for r > σIIC
` and δerrT(σIIC

l ) for l ≤ `, we get in a
fairly similar fashion to the previous displayed equation that

P
[ σIIC

`+1∑
s=σIIC

`
+1

1s≤σ
∣∣∣Fk] ≤∑

j≥0

P[δIIC
0 T = −1]jP[X ≥ ` sinα|Fk]

≤ C P[X ≥ ` sinα|Fk].

The claim follows by summing over `.

We now treat the impact of compounded steps on R.

Proposition 6.14 (Compounded time step for A = R). There exist c, C ∈ (0,∞) such
that for i ∈ Z>0 and 0 ≤ k < d2N/ sinαe, there exist random variables ∆IICR(k)(i) and
∆errR(k)(i) such that a.s. for every i ∈ I(τk),

(i) R(τend∧τk+1)(i)− R(τk)(i) = ∆IICR(k)(i) + ∆errR(k)(i);

(ii) E[exp(c|∆IICR(k)(i)|)|Fk] ≤ C;
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(iii) E[|∆errR(k)(i)| |Fk] ≤ CE
[ τend∧τk+1∑

s=t

M (s)(i)
∣∣∣Fk];

(iv) E[∆IICR(k)(i)|Fk] is equal to
0 if R(τk)(i) /∈ k cosα+ Z,

vR +O
(
E
[ τend∧τk+1∑

s=τk

M (s)(i)
∣∣∣Fk]+ P[τend < τk+1|Fk]

)
otherwise.

Remark 6.15. When cosα /∈ Q, the condition R(τk) /∈ k cosα + Z implies that no right-
most vertex can belong to the area below the (k + 1)-st track. The information on
R therefore gives more than simply the first-coordinate of the right-most point, it also
provides information on its vertical position. This is not necessary true for rational values
of cosα. In this case, one should therefore record this information more explicitly. We
chose to restrict ourselves to α with cosα irrational as we will see it is sufficient to get
our result.

Proof. Again, we fix k and i and drop i from the notation. We first describe how a
track-exchange for τk ≤ s < τk+1 modifies the value of R(s). There are three possibilities:

• R(s) ∈ k cosα + Z and (R(s), h(s)) does not belong to the nail C(ω(s), i), in such
case R(s+1) = R(s),
• R(s) ∈ k cosα + Z and (R(s), h(s)) belongs to the cluster. In such case, the track-

exchange creates a change of cosα, cosα− 1, or −1 (see Figure 24). In the former
case, R(s+1) = R(s) + cosα and the next track-exchanges will not impact the max-
imum. In the latter, R(s) can change by values in [−1, 0] ∩ (Z + {0, . . . , k − 2, k −
1, k + 1} cosα) due to the possible existence of other vertices that are not affected
by the track-exchange but had almost-maximal first coordinate12.
• R(s) /∈ k cosα+Z. In such a case, there is only one possibility for R(s+1) not to be

equal to R(s), which is that there exists a fake right s-extremum and that the track-
exchange implies an increase of cosα locally, which leads to R(s+1) = x1 + cosα
and no further change can occur.

Now, recall the definition of X(s)
H = X

(s)
H (i) from the previous section, and introduce

∆IICR(k) :=
∑

τk≤s≤σIIC

X
(s)

H(s)δ
IICR(s),

12In fact, essentially the only other two values that are possible are 0 if there is another extremum
of the cluster in the square region below t−

j(s)
, or cosα − 1 if there is a “near” extremum in the square

region above height h(s) that becomes the right-most point after the transformation. For the increment
to be different from 0, cosα− 1 or −1, it must be that C(ω(s), i) contains a vertex below b(t) with first
coordinate in (R(s) − 1,R(s)), which has small probability as shown in Lemma 6.10.
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where

σIIC :=

{
min{s ∈ [τk, τend ∧ τk+1) : δIICR(s) ∈ {cosα, cosα− 1} and X(s)

H(s) = 1} if s exists,
τend ∧ τk+1 otherwise,

and
∆errR(k) := R(τend∧τk+1) − R(τk) −∆IICR(k) .

By definition, (i) and (ii) are satisfied. The proof of (iii) follows the same steps as the
proof of (iii) in Proposition 6.12 (we leave the details to the reader), except in the case
corresponding to the third bullet above, i.e. that R(s) /∈ k cosα + Z but R(s+1) 6= R(s).
Yet, in this case M (s) 6= 0 and no further error is made at later times.

For (iv), note that if R(τk) /∈ k cosα+Z, then X(s)

H(s) is always equal to 0 and ∆IICR =

0. If, on the contrary, R(τk) ∈ k cosα+ Z, define

σ̃IIC := min{s ≥ τk : δIICR(s) ∈ {cosα, cosα− 1} and Y (s) = 1},

where Y (s) = X
(s)

H(s) for s ≤ τend ∧ τk+1 and 1 for s > τend ∧ τk+1. Also define ‹∆IICR(k)

using the same formulas as for ∆IICR(k) but with σ̃IIC instead of σIIC. Then, a direct
computation gives

E[‹∆IICR(k)|Fk] = vR.

Moreover,

|E[∆IICR(k)|Fk]− vR| ≤ E[σ̃IIC − σIIC|Fk] ≤ C0P[σ̃IIC 6= σIIC|Fk]

≤ C0P[∀s ≤ τend ∧ τk+1 : X
(s)

H(s) = 1, δIICR(s) = −1|Fk].

To estimate the probability on the right, observe that if τend ≥ τk+1 and δIICR(s) = −1

for every s such thatX(s)

H(s) = 1, it must be thatM (s) 6= 0 for at least one s since otherwise
R(τk+1) ∈ R(τk) + Z, which is impossible. We therefore obtain that

P[∀s ≤ τend ∧ τk+1 : X
(s)

H(s) = 1, δIICR(s) = −1|Fk]

≤ P[τend < τk+1|Fk] + E
[ τend∧τk+1∑

s=τk

M (s)
∣∣∣Fk].

This concludes the proof of the proposition.

6.5 Speed of the drift

In this section, we compute vA for A = T,B,R. We start with the first two.

Proposition 6.16. We have vT = vB = 0.
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Proof. We treat the case of vT (the case of vB is the same). Introduce lN := lmax((0,−N))
(i.e. the left-most highest vertex in the cluster of (0,−N)) and let E be the coupling be-
tween ω1 ∼ φL1 and ω0 ∼ φL0 obtained by setting ω0 = T1(ω1). Also, let ∆T be the
difference between the top height of the cluster of (0,−N) in ω1 and in ω0.

We find that

φL0 [lN ∈ t−1 ] = P[lN ∈ t−1 in ω0] (61)
= P[lN ∈ t−1 in ω1 and ∆T = sinα− 1] + P[lN ∈ t−0 in ω1 and ∆T = sinα]

= φL1 [lN ∈ t−1 ]P[δIIC
0 = sinα− 1] + φL1 [lN ∈ t−0 ]P[δIIC

1 = sinα] + oN (1),

where in the second step we used that we may couple the increment ∆T with an IIC
increment exactly as we did in the previous section (to estimate the error, one needs to
perform a reasoning similar to the error in the top extremum in Case 1 of the coupling).

Using the same coupling, we also see that lN ∈ t−0 ∪ t
−
1 in ω0 if and only if it does in

ω1, so we get that
φL0 [lN ∈ t−0 ∪ t

−
1 ] = φL1 [lN ∈ t−0 ∪ t

−
1 ]. (62)

Decomposing on the possible values of lN (like in the proof of Proposition 2.6) and using
the mixing of the IIC (Proposition 3.9), we also find that for i = 0, 1,

φLi [lN ∈ t
−
1 |lN ∈ t

−
0 ∪ t

−
1 ] =

Ψ2
i [lmax(∞) = 0+] + oN (1). (63)

Dividing (61) by (62) and plugging (63) into it, we find that

Ψ2
0[lmax(∞) = 0+] (64)

=

Ψ2
1[lmax(∞) = 0+]P[δIIC

0 = sinα− 1] +

Ψ2
1[lmax(∞) = 0]P[δIIC

1 = sinα].

Theorem 2.4 applied to β = π
2 gives

Ψ2
0[lmax(∞) = 0+] =

Ψ2
1[lmax(∞) = 0] = 1−

Ψ2
1[lmax(∞) = 0+] =

1

1 + sinα
,

which, when inserted in (64) and multiplied by 1 + sinα, gives vT = 0.

Next, we turn to the lateral speed vR, whose value is deduced from the one of vT.

Proposition 6.17. We have vR = 0.

The idea of the proof is to obtain the right displacement of the cluster as the top
displacement in a rotated version of the process. Below, we mention not only horizontal
tracks but also vertical tracks and their track-exchanges. We believe that at this point
the reader may easily make sense of these transformations so we omit the details of the
definitions. Also, we refer to [18] for more information.

Proof. We refer to Figure 28 for an illustration. ConsiderM andN two integers satisfying
M = N2. Consider the graph B(0) formed of 2M+2 “horizontal” tracks t−M , . . . , tM , tα of
transverse angles π/2 for the first 2M + 1 and transverse angle α for tα and M “vertical”
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s0 s1

tM

sM−1
tα

t−M

0

s0 s1

tM

sM−1
tα

t−M

0

Figure 28: The initial and final graphs B(0) and B(2M+1) of the two processes are the
same, but the intermediate graphs (B(t))0<t≤2M (top) and (B̃(t))0<t<M (bottom) are dif-
ferent (the figure depicts the diamond graphs). In the top process, horizontal tracks
are exchanged successively, by pushing the gray rhombus from right to left; in the bot-
tom process, the rhombus is pushed downwards, effectively exchanging vertical tracks.
Throughout the two processes, we record the right-most coordinate of the union of all
the clusters intersecting the base.

tracks s0, . . . , sM−1 of transverse angle 0. In addition to the intersection between the
vertical and horizontal tracks, B(0) contains also the intersection of tracks t−M , . . . , tM
with tα; these occur at the right side of the graph (note that tα is not straight and does
a sharp turn at the top-right corner of the rectangle). Translate B(0) so that 0 is the
vertex left of s0 and below t0.

We perform track-exchanges via star-triangle transformations applied to the graph
B(0). Contrary to the other parts of the paper, where exchanged tracks change name,
here the tracks will conserve their indexing during track-exchanges. Define recursively
B(t+1) for 0 ≤ t ≤ 2M as obtained from B(t) by performing the track-exchange TM−t
between tM−t and tα which is a composition of M star-triangle transformations.

We follow the extrema of the set Cbase obtained as the union of the primal clusters
intersecting the base {0} × [−N,N ]. Let (ω(t),R(t))0≤t≤2M+1 be obtained as follows:

• the initial step is defined by sampling ω(0) according to φ0
B(0) and setting R(0) to

be the maximal first coordinate of vertices in Cbase;
• at time 0 ≤ t ≤ 2M , sample a configuration

ω(t+1/2) ∼ φ0
B(t) [ · |R(Cbase) = R(t)],
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let ω(t+1) := TM−t(ω
(t)), and set R(t+1) to be the maximal first coordinate of a

vertex in Cbase.

Following the proofs of the previous sections (with some additional simplifications in
this context, for instance τend does not need to be introduced) we find that

R(2M+1) − R(0) = ∆IICR + ∆errR, (65)

with the equivalent of (iii) and (iv) of Proposition 6.14 being that a.s.,

E[|∆errR| |F0] ≤ C E
[ 2M∑
t=0

Err(t)
∣∣∣F0

]
,

E[∆IICR|F0] = vR +O
(
E
[ 2M∑
t=0

Err(t)
∣∣∣F0

])
,

where Err(t) is defined in a similar fashion to Proposition 6.14, but with Cbase playing
the role of the union of the nails now.

Let h(t) be the height of the bottom of tα at time t, d(t) := min{M−h(t), h(t)+M}.
Following an argument similar to the proof of Proposition 6.8, the mistake contributing
to Err(t) can be of three types:

(i) (R(t), h(t)) ∈ Cbase and R(t) ≤
√
N ,

(ii) (R(t), h(t)) ∈ Cbase and R(t) ≥M −
√
N ,

(iii) (R(t), h(t)) ∈ Cbase and
√
N ≤ R(t) ≤ M −

√
N , but the true configuration and

the IIC configurations are not coupled in the box of radius min{d(t), N}1/4 around
(R(t), h(t)),

(iv) (R(t), h(t)) ∈ Cbase and there is a vertex x = (x1, x2) ∈ Cbase with x1 ∈ (R(t)−1,R(t)]
and |x2 − h(t)| ≥ d(t)1/5.

Recalling that the error is deterministically bounded by 2, we therefore have that

E[Err(t)] ≤ 2(P[(i)] + P[(ii)] + P[(iii)] + P[(iv)]). (66)

We now bound the probabilities of the events (i), (ii), and (iii) separately. For (i),
(RSW) immediately implies the existence of c > 0 such that for every 0 ≤ t ≤ 2M ,

P[(i)] = φ0
B(t) [(i)] ≤ φ0

B(t) [R
(t) ≤

√
N ] ≤ exp[−c

√
N ].

To estimate (ii) and (iii), let us first estimate, for x ∈ t+M−t, the probability of the event
E(x) that (R(t), h(t)) = x and base←→ x. Let s(x) be the distance between x and ∂B(t).
We have that

φ0
B(t) [E(x)] ≤ φB(t)

[
{base←→ ∂Λd(t)(x)} ∩AR

010,x(s(x), d(t)
2 ) ∩AR

010,x(0, s(x)
2 )
]
, (67)
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where AR
010,x(r,R) is the translate of AR

010(r,R) by x. Using the mixing property, (RSW)
for the first event on the right-hand side, an argument similar to (12) for the third, and
(15) for the fourth, we obtain that

φ0
B(t) [E(x)] ≤ C

Ä N

max{N, |x|}
äc × Äd(t)

|x|
äc × Äs(x)

d(t)

ä1+c ×
Ä 1

s(x)

ä2
.

Summing over the x ∈ t+M−t that are at a distance at most
√
N from the right-hand side

of B(t), we obtain that

P[(ii)] = φ0
B(t) [(ii)] ≤ C

ÄN
M

ä2c × 1

d(t)
. (68)

For (iii), using the same argument as in Proposition 6.8 in the first step and summing
over x in the second

P[(iii)] ≤ C

min{d(t), N}c
∑

x∈t+M−t

φ0
B(t) [E(x)] ≤ C

min{d(t), N}c
× 1

M cd(t)1−c . (69)

The bound on (iv) can be obtained as in Lemma 6.10:

P[(iv)] ≤ C

d(t)M c
. (70)

Plugging (67)–(70) into (66) gives

E[Err(t)] = O
Ä

exp(−c
√
N) +

1

d(t)

ÄN
M

ä2c
+

1

min{d(t), N}cd(t)1−cM c
+

1

d(t)M c

ä
. (71)

When summing over t and using that M = N2, we deduce that

E
[∑

t

Err(t)
]

= O(N−c).

Overall, we find that

E[R(2M+1)]−E[R(0)] = E[∆errR] + E[∆IICR] = vR +O(N−c).

Now, define a similar sequence of graphs B̃(t) for 0 ≤ t ≤ M by setting B̃(0) = B(0)

and obtaining B̃(t+1) from B̃(t) by performing the track-exchange between sM−1−t and tα.
Also, define a Markov chain (‹R(t))0≤t≤M as before. Following again the same reasoning
as in the previous sections, and observing that the behaviour of ‹R(t) under the track-
exchange of vertical tracks is the same as the behaviour of the top of a cluster when
exchanging horizontal tracks, we obtain using a reasoning similar to Propositions 6.12
and 6.8 (with the same adaptation as above) that

E[‹R(M)]−E[‹R(0)] = vT +O(N−c) +O(φ0
B(0) [e

−c|R(0)|]) = vT +O(N−c)
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(in the second equality we used (67)). Here vT refers to passing a track with transverse
angle α+ π/2, or equivalently π/2− α by symmetry.

By definition, R(0) and ‹R(0) have the same law. Observe that B(2M+1) = B̃(M) and
since our transformations ensure that the random-cluster law is preserved, ‹R(M) has the
same law as R(2M+1). Thus,

vR = vT +O(N−c) = O(N−c),

where in the last equality we used Proposition 6.16. Letting N go to infinity concludes
the proof.

6.6 Proof of Theorem 2.3

We start with a lemma gathering the estimates obtained on the increments of the extrema.

Lemma 6.18 (Nails do not move). There exist c0, C0 ∈ (0,∞) such that for every N ,

P[∃i ∈ I(0), ∃t ≤ τend(i), ∃A ∈ {T,B,R}, |A(t)(i)−A(0)(i)| ≥ N1−c0 ] ≤ C0

N c0
.

Proof. First of all, observe that it is sufficient to control the increments at compounded
steps τk since A(t)(i) is between A(τk)(i) and A(τk+1∧τend(i))(i) for every t ∈ [τk, τk+1]. For
this reason, we only focus on compounded steps and introduce the time τ ′end(i) denoting
the integer k such that τk ≤ τend(i) < τk+1. For each i ∈ I(0), introduce the processes
indexed by integer times 0 ≤ K < d2N/ sinαe,

ΣΣΣA,i(K) :=

K∧τ ′end(i)∑
k=0

E[∆IICA(k)(i)|Fk],

MA,i(K) :=

K∧τ ′end(i)∑
k=0

∆IICA(k)(i)−ΣΣΣA,i(K),

∆∆∆errA(i,K) :=

K∧τ ′end(i)∑
k=0

|∆errA(k)(i)|.

We now bound the probability that each one of these processes is large, which by (i) of
Propositions 6.12–6.14 will bound the probability that |A(τK+1) −A(0)| is large.

Below, the constants c, C ∈ (0,∞) are introduced to satisfy Propositions 3.4, 6.8, 6.12,
and 6.14. They are fixed all along the proof. The other constants ci, Ci are independent
of everything and should be thought of as being respectively much smaller than c and
much larger than C.

We start with the easiest process, which is the last one. Note that the process is
increasing and non-negative. Markov’s inequality and Propositions 6.12–6.14(iii) imply
that for every i ∈ I(0),

P[∆∆∆errA(i, d2N/ sinαe − 1) ≥ N1−c0 |F0] ≤ 1

N1−c0 E[∆∆∆errA(i, d2N/ sinαe − 1)|F0]

≤ C

N1−c0 E
î ∑

0≤t<T
M (t)(i)

∣∣∣F0

ó
.
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Summing over on i ∈ I(0), averaging on F0 gives that

P
[
∃A, ∃i ∈ I(0), ∃K : ∆∆∆errA(i,K) ≥ N1−c0

]
≤ C

N1−c0 E
[ ∑

0≤t<T
Err(t)

]
≤ C1 logN

N c−c0 , (72)

where in the second inequality we used Proposition 6.8(iii).
Let us now turn to the second process, which is a martingale with increments that have

uniform exponential moments because of Propositions 6.12–6.14(ii). We deduce from a
trivial modification of the Azuma-Hoeffding inequality (to accommodate the unbounded
increments, simply truncate the martingale increments at N c1 and bound the error by the
probability that there exists a single increment larger than N c1) that for every i ∈ I(0),

P
î
∃A : max

K
|MA,i(K)| > N3/4

∣∣∣F0

ó
≤ exp[−c2N

c2 ].

By averaging on F0 and using that |I(0)| has uniformly bounded expectation (by Propo-
sition 3.7), we deduce that

P
î
∃A,∃i ∈ I(0) : max

K
|MA,i(K)| > N3/4

ó
≤ exp[−c3N

c3 ].

It only remains to prove the following inequality:

P[∃A, ∃i ∈ I(0),max
K
|ΣΣΣA,i(K)| ≥ 1

2N
1−c0 ] ≤ N−c4 . (73)

In order to prove this, let N1 be the number k such that there exists i ∈ I(τk) and
A ∈ {T,B} such that |A(τk)(i) − b(τk)| ≤ N c5 , and N2 the number of k such that
I(τk) 6⊂ I(τk+1).

Propositions 6.12–6.14(iv) give that for every A, i, and K,

|ΣΣΣA,i(K)| ≤ N exp(−cN c5) + C1N1 + C1

∑
0≤k<d2N/ sinαe

P[τ ′end = k|Fk].

Since the last term on the right has an expectation which is bounded by the expectation
of N2, the Markov property implies that for c0 < c and N large enough,

P[∃A,∃i ∈ I(0),max
K
|ΣΣΣA,i(K)| ≥ 1

2N
1−c0 ] ≤ 2C1E[N1 + N2]

N1−c0 + 2N c0 exp(−cN c5). (74)

Yet, for each time t it is a direct consequence of Propositions 3.4 that for c5 sufficiently
small,

P[∃i ∈ I(t), ∃A ∈ {T,B} : |A(t)(i)− b(t)| ≤ N c5 ] ≤ C2N
c5−c

so E[N1] ≤ C3N
1+c5−c.

Now, pick c6 < c/2. To have I(τk) 6⊂ I(τk+1), it must be that one of the following
three things occurs:

• there exists i ∈ I(τk) with Vspan(τk)(i) ≤ εN+2N1−c6 or max{|T(τk)(i)−x2|, |B(τk)−
x2|, |R(τk)(i)− x1|} ≥

√
ηεN − 2N1−c6 ,
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• ∆errA(k)(i) ≥ N1−c6 for some A and i ∈ I(τk),
• ∆IICA(k)(i) ≥ N1−c6 for some A and i ∈ I(τk).

Using Propositions 3.4 again, the first item occurs with probability O(N c6−c). The
second item occurs with probability O(N c6−c) by the same computation as (72). The
last item occurs with probability O(exp(−cN1−c6)) by (ii) of Propositions 6.12 and 6.14.
The bound c6 < c/2 gives

E[N2] ≤ C4N
1−c6 .

Moreover, by picking c0 � ci small enough and plugging the two expectation estimates
into (74) implies (73). This concludes the proof.

We now turn to a second lemma stating that with large probability, marked nails
exist near every x ∈ Bη(N) at time 0, or in other words when defining I• at the first step
of the coupling, we get |I•| = |Bη(N)|.

Lemma 6.19 (Nails exist). There exist c, C ∈ (0,∞) such that for every 0 < ε� η,

P[|I•| = |Bη(N)|] ≥ 1− C

η2

Ä ε
η

äc
.

Proof. Set κ := (ηε3)1/4. There are O(1/η2) elements in Bη(N). Furthermore, for fixed
x ∈ Bη(N), the non-existence of a “markable” nail near x requires the existence of a
dual path from Λ2εN (x) to ΛκN (x) or a primal path from ΛκN (x) to Λ((ηε)1/2−ε)N (x)
(otherwise there exists a primal circuit in the annulus ΛκN (x) \ Λ2εN (x) that is not
connected to ∂Λ((ηε)1/2−ε)N (x) and therefore constitutes a nail at x that we may mark.
Using (9) and the assumption that ε� η concludes the proof.

Proof of Theorem 2.3. We start by assuming that cosα /∈ Q. Consider 1 � η � ε > 0
and assume in particular that Cεc/η2+c ≤ η/2, where c and C are the constants of
Lemma 6.19. Also, we assume N is large enough that C0/N

c0 ≤ η/2, where c0 and C0

are the constants of Lemma 6.18.
The two previous lemmata imply immediately that provided that ε is sufficiently small

with probability 1− η, marked nails exist near all points in Bη(N) and belong to I(t) for
every 0 ≤ t < T . By Proposition 6.8(i), we deduce that ([·](T )

•,0 , [·]
(T )
•,1 ) = ([·](0)

•,0, [·]
(0)
•,1).

Now, the homotopy classes with respect to Bη(N) and with respect to marked nails
are equal for any loop that remains at a distance √ηεN of Bη(N). Since all loops (in ω(0)

and ω(T )) surrounding at least two but not all points in Bη(N) have a diameter which
is larger than ηN , (RSW) immediately implies that they satisfy the previous property
with probability larger than 1− η provided ε = ε(η) > 0 is chosen small enough.

In particular, when setting η0 =
√
η and assuming that 2η ≤ η0, we obtain that the

rescaled configurations ω(0)
δ and ω(T )

δ satisfy

P[dH(ω
(0)
δ , ω

(T )
δ ) ≤ η0] ≤ 2η ≤ η0.

It remains to observe that thanks to properties of the track-exchange operators (see
Remark 3.12), the law of the homotopy classes around Bη(N) is the same under φL(π/2)
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and φL(0) (and similarly under φL(α) and φL(T )). As a consequence, we may construct a
coupling between ω̃δ ∼ φδL(π/2) and ω̃′δ ∼ φδL(π/2) by first using Remark 3.12 to couple
ωδ and ω

(0)
δ in such a way that the homotopy classes of loops surrounding one but not all

points in Bη are the same, then use the coupling constructed above, and finally couple
ω

(T )
δ with ω′δ using Remark 3.12 again. Overall, we exactly proved that the rescaled

version of P satisfies the properties of the statement of our theorem for η0, so the proof
is finished.

To get the result for cosα rational, simply take the coupling obtained as the weak
limit of couplings with αn satisfying cosαn /∈ Q and tending to α. One easily checks
that the limit makes sense and satisfies all the requested properties as the bounds are
continuous in α (note that one may also directly define the coupling in this setting, being
careful with the vertical position of right-most points, see Remark 6.15 again). We insist
that this limit should be taken at N (or equivalently δ > 0) fixed.

7 Proofs of the main theorems

7.1 Proofs of the results for the random-cluster model

Proof of Theorem 1.2. We prove the result for the Schramm-Smirnov topology but a
similar proof works for the Camia-Newman one. By Theorem 2.2, it suffices to construct a
coupling of (ωδ, ω

′
δ) with ω, ω

′ ∼ φδL(π/2) for which the distance dH(ωδ, e
iαω′δ) is typically

small.

Case of Ω = R2 We start with a coupling on the full space δL(π/2). Let σu be the
reflection with respect to the line eiuR.

Fix ε > 0 and choose η ≤ ε/4 so that Theorem 2.2 implies that for every coupling of
ωδ ∼ φδL(π/2) and ω′δ ∼ φδL(π/2), we have

P[dH(ωδ, e
iαω′δ) ≤ η, dSS(ωδ, e

iαω′δ) >
ε
2 ] ≤ ε

4 . (75)

Now, construct an explicit coupling P between ωδ ∼ φδL(π/2) and ω′δ ∼ φδL(π/2) as follows:
sample ω′δ ∼ φδL(π/2) and couple σ0ω

′
δ with ω

α
δ ∼ φδL(α) using Theorems 2.2 and 2.3 (this

is doable since σ0ω
′
δ ∼ φδL(π/2)) and (75) in such a way that

P[dSS(σ0ω
′
δ, ω

α
δ ) ≥ ε

2 ] ≤ ε
2 , (76)

then, couple σα/2ωαδ with ωδ ∼ φδL(π/2) by Theorems 2.2 and 2.3 (this is doable since
σα/2ω

α
δ ∼ φδL(α)) in such a way that

P[dSS(ωδ, σα/2ω
α
δ ) ≥ ε

2 ] ≤ ε
2 . (77)

Since

dSS(ωδ, e
iαω′δ) = dSS(ωδ, σα/2σ0ω

′
δ) = dSS(σα/2ωδ, σ0ω

′
δ) (78)

≤ dSS(σα/2ωδ, ω
α
δ ) + dSS(ωαδ , σ0ω

′
δ) = dSS(ωδ, σα/2ω

α
δ ) + dSS(ωαδ , σ0ω

′
δ).

The result then follows by combining (76)–(78).
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Case of a bounded simply connected domain Ω with C1-smooth boundary To
obtain the result in a finite domain, we use the domain Markov property and the fact
that one may approximate φ0

Ωδ
by asking that there exists a loop Γ within distance η of

∂Ω in the infinite-volume measure. More precisely, let A(Ω, η) be the event that there
exists a loop ΓΓΓ ∈ F0(ωδ) which is included in Ω and such that d(ΓΓΓ, ∂Ω) ≤ η (d is the
distance between loops defined in the introduction). Note that whether A(Ω, η) occurs
or not can be measured in the Schramm-Smirnov topology (we leave this as an exercise).

Now, fix ε0 > 0. We use the characterization of the Schramm-Smirnov distance pro-
vided in [32, Proposition 3.9]. There exists a family of non-degenerate quads Q1, . . . , Qn
in Ω such that if the sets of quads in Q1, . . . , Qn that are crossed are the same in ωδ and
ω′δ, then dSS(ωδ, ω

′
δ) ≤ ε0. In particular, we deduce that if H ~Q(I) denotes the event that

Qi is crossed if and only if i ∈ I, then there exists a coupling P between ωδ ∼ φ0
Ωδ

and
ω′δ ∼ φ0

eiαΩδ
such that

P[dSS(ωδ, ω
′
δ) ≥ ε0] ≤ ε0

if and only if for every I ⊂ {1, . . . , n},

|φ0
Ωδ

[H ~Q(I)]− φ0
eiαΩδ

[Heiα ~Q(I)]| ≤ ε0/2
n =: ε. (79)

Now, the infinite volume result above implies that for every δ < δ0(Ω, η, ε),

|φδZ2 [H ~Q(I)|A(Ω, η)]− φδZ2 [Heiα ~Q(I)|A(eiαΩ, η)]| ≤ 1
2ε. (80)

We therefore wish to prove that

|φ0
Ωδ

[H ~Q(I)]− φδZ2 [H ~Q(I)|A(Ω, η)]| ≤ 1
2ε. (81)

The same can be done for the rotated version, so that the previous displayed equations
imply (79) and conclude the proof.

To get (81), let ΩΩΩδ be the interior of the outer-most loop in F0(ω) satisfying the
conditions of A(Ω, η). Using the spatial Markov property, it suffices to show that

|φ0
Ωδ

[H ~Q(I)]− φ0
ΩΩΩδ

[H ~Q(I))]| ≤ 1
2ε. (82)

Note that there is a clear increasing coupling between ωωωδ ∼ φ0
ΩΩΩδ

and ωδ ∼ φ0
Ωδ

(ωωωδ ≤ ωδ
because of ΩΩΩδ ⊂ Ωδ), so that for ωδ to belong to H ~Q(I) but not ωωωδ or vice versa, it must
be that one of the quads Qi must be crossed in one but not in the other. We deduce that
it suffices to show that for every possible realization of ΩΩΩδ,

φ0
Ωδ

[C(Qi)]− φ0
ΩΩΩδ

[C(Qi)] ≤ 1
2nε. (83)

Therefore, the result boils down to the following.
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Claim For every ε > 0, every bounded simply connected domain Ω with C1-smooth
boundary, and every quad Q inside Ω, there exists η = η(Ω, Q, ε) > 0 such that for every
Ω′ ⊂ Ω with d(∂Ω′, ∂Ω) ≤ η,

φ0
Ωδ

[C(Q)] ≤ φ0
Ω′
δ
[C(Q)] + ε

for δ small enough.

Proof. We only sketch the proof. Consider first the “epigraph“ domains indexed by
continuous functions f from [−2, 2] to R given by

Ω(f) := {x = (x1, x2) ∈ R2 : x1 ∈ (−2, 2), f(x1) < x2 < 2}

(see Figure 29). Define Λ := [−1, 1]2. For α > 0, a straightforward yet quite lengthy
application of the techniques developed13 in [24, Lemma 5.3] implies that for every f ≤
−2 and 1 ≤ k ≤ 1

2b1/αc =: K,

φ0
Ω(f)δ

[C(Λ)]− φ0
Ω(f+α)δ

[C(Λ)] ≤ C
Ä
φ0

Ω(f+kα)δ
[C(Λ)]− φ0

Ω(f+(k+1)α)δ
[C(Λ)]

ä
.

Summing over 1 ≤ k ≤ K, we deduce that

φ0
Ω(f)δ

[C(Λ)]−φ0
Ω(f+α)δ

[C(Λ)] ≤ C

K

Ä
φ0

Ω(f)δ
[C(Λ)]−φ0

Ω(f+Kα)δ
[C(Λ)]

ä
≤ C

K
≤ 4Cα. (84)

Note that a similar argument works for any rotation, translate, or rescaling of the domains
above.

We now use our assumption that ∂Ω is C1-smooth. Since ∂Ω is given by a curve γ
which is C1 and has non-vanishing differential, one may find (see Figure 29) constants
κ = κ(Ω) > 0 and C = C(Ω) > 0, functions fs : [−2, 2] → (−∞,−2] and Ts : R2 → R2

for 1 ≤ s ≤ S, where S depends on Ω (through the modulus of continuity of the derivative
for the function parametrizing ∂Ω) but not on η, satisfying the following properties:

• Ts is the composition of a rotation, a translation, and the multiplication by κ;
• Ts(Ω(fs)) is included in Ω for every s;
• for all η small enough, {x ∈ Ω : d(x,Ωc) ≤ η} is included in the union of the sets

As := Ts({x = (x1, x2) : x1 ∈ [−1, 1], f(x1) < x2 < f(x1) + Cη}).

Introducing the domains Ωs := Ω \⋃st=1At, and using again [24] for the first and second
inequalities, one can prove the existence of Ci = Ci(Ω, Q, κ) > 0 such that

φ0
Ωs−1

[C(Q)]− φ0
Ωs [C(Q)] ≤ C1

Ä
φ0

Ωs−1
[C(Ts(Λ))]− φ0

Ωs [C(Ts(Λ))]
ä

≤ C2

Ä
φ0

Ω(fs)
[C(Λ)]− φ0

Ω(fs+Cη)[C(Λ)]
ä

(85)

≤ C3η,

13The whole fo Section 4 of [24] should be adapted to finite domains and considering the covariance
of crossing events with edges on the boundary of the domain.
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Λ = [−1, 1]2

f

Ω(f)

Q

T3(Ω(f3))
T2(Ω(f2))

T1(Ω(f1))Ω

Figure 29: On the left, an example of a domain Ω(f). Note that the sets Ω(f + kα)
have a nested structure (the red part denotes Ω(f) \Ω(f +α)). On the right, the impact
of changing the boundary is compared with the impact of changing the boundary in a
family of subdomains which are images by simple transformations of domains Ω(f) (with
potentially different functions f). The existence of such a decomposition is made possible
by the fact that the boundary of Ω is C1.

where the last line is due to (84) applied to α = Cη.
Choose η = η(Ω, ε, S) > 0 small enough. Summing (85) over s gives

φ0
Ωδ

[C(Q)]− φ0
Ω′
δ
[C(Q)] ≤

S−1∑
s=0

φ0
Ωs−1

[C(Q)]− φ0
Ωs [C(Q)] ≤ ε.

Case of a (possibly unbounded) simply connected domain Ω with C1-smooth
boundary For every ε > 0, to determine the Schramm-Smirnov distance up to a
precision of ε > 0, only quads in B(0, 1/ε) need to be considered. Consider a bounded
domain Ω(ε) that coincides with Ω on B(0, 1/εC). By the mixing property, one has that
for every δ > 0 and every event E depending on edges in δZ2 ∩B(0, 1/ε) only,

|φ
Ω

(ε)
δ

[E]− φΩδ [E]| ≤ Cmixε
cmix(C−1)φΩδ [E].

Now, take the domain Ω(ε) very large but finite, equal to Ω up to large distance. Using
the invariance by rotation in Ω

(ε)
δ and taking δ to 0 then ε to 0 concludes the proof.

Proof of Corollary 1.3. When one considers a quad Q that remains at a distance at least
ε of the boundary of Ω, the result follows directly from Theorem 1.2 and the measurability
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of C(Q) in the Schramm-Smirnov topology (note that the event gets rewritten as Q ∈ ω
when ω is seen as an element of H).

Now, when 1 ≤ q < 4, to get the result without any assumption on the distance to
the boundary, note that for a quad Q, there exists a quad Q′ that is such that its distance
to ∂Ω is at least ε, and which is in Hausdorff distance at a distance at most 2ε from Q.
Using the strong version of crossing estimates from [25], we obtain easily (this type of
reasoning is now classical, see for instance [24, Lemma 3.12] for an example) that

|φΩδ [C(Q)]− φΩδ [C(Q
′)]| ≤ Cεc

for two constants C > 0 and c > 0. The result follows readily by first choosing ε small
enough and then letting δ tend to zero and use the rotational invariance result for Q′.

Proof of Corollary 1.4. We use a conditional mixing argument due to Garban, Pete, and
Schramm [34, Section 3] in the case of Bernoulli percolation and that can be extended
to the random-cluster model using crossing estimates. Consider the Euclidean ball Bn of
radius n, and its boundary ∂Bn. Introduce the quantities

ε(n,N) := φ0
Z2 [0←→ Bc

N |Bn ←→ Bc
N ] and ε(n) := lim

N→∞
ε(n,N).

The statement of conditional mixing from [34] implies the following claim (in [34] it is
stated for the four-arm event, but a similar – in fact simpler – argument can be performed
for the one-arm event, see e.g. Proposition 5.3 of the same paper). For every β, ε > 0,
there exists η = η(β, ε) > 0 such that for every Ω and every x1, . . . , xn at a distance ε of
each other and of the boundary, and every partition P of (x1, . . . , xn),∣∣∣∣φ0

Ωδ
[E(P, x1, . . . , xn)]−ε(ηδ )nφ0

Ωδ
[E(P,Bη/δ(x1), . . . , Bη/δ(xn))]

∣∣∣∣ ≤ βφ0
Ωδ

[E(P, x1, . . . , xn)],

where E(P,Bη/δ(x1), . . . , Bη/δ(xn)) is the event that the balls Bη/δ(xi) are connected to
each other if and only if they belong to the same element of the partition P . The same
formula applies in the rotated measure.

We conclude, by observing that eiαBη/δ(xi) and Bη/δ(eiαxi) are equal, and that the
event E(P,Bη/δ(x1), . . . , Bη/δ(xn)) is measurable in the Schramm-Smirnov topology, so
that its probability or the probability of its rotation by an angle of α are close to each
other by Theorem 1.2.

7.2 Proofs of the theorems for the other models

Proof of Corollary 1.6. Fix τ1, . . . , τn ∈ Tq. Let Ii ⊂ {x1, . . . , xn} be the sets of xj such
that τj = i and call a partition P = (P1, . . . , Pk) of {x1, . . . , xn} compatible with τ if
each Pj is included in one of the Ii. Also, let |P | = k be the number of elements in the
partition. The Edwards-Sokal coupling implies that

µΩδ [σxi = τi, 1 ≤ i ≤ n] =
∑

compatible P
q−|P |φ0

Ωδ
[E(P, x1, . . . , xn)].

We deduce the corollary by using Corollary 1.4.

86



Proof of Corollary 1.8. Fix x1, . . . , x2n ∈ (δZ2)∗ and let Γ1, . . . ,Γ2n be the exterior-most
loops in ωδ that surround one xi but not the others. Also, let Γ be the smallest loop
surrounding all the xi. Finally, let Fδ = Fδ(x1, . . . , x2n) be the set of loops in ωδ that
surround at least one of the Γi and are surrounded by Γ (including Γ and all Γi).

Also, let N be the number of loops surrounding the origin and introduce, for a curve
γ and δ > 0,

cδ(γ) := φ0
γδ

[N]− φ0
Bδ

[N],

where γ is the domain surrounded by γ.
It is shown in [22] that there exits a function F taking possible realizations of Fδ as

arguments and outputting a complex number such that

• E6V
δZ2

î∏n
i=1(hx2i − hx2i−1)

ó
= φδZ2 [F (Fδ)],

• F (Fδ) = G(Fδ, cδ(Γ1), . . . , cδ(Γ2n)) where G(Fδ, c1, . . . , c2n) is a function that
depends on Fδ only through the inclusions between the different loops.

• |F (Fδ)| ≤ C(log |Fδ|)n where |Fδ| is the number of loops in Fδ.

Now, the conditional mixing from [34] easily implies that cδ(Γ) − cδ(eiαΓ) tends to
0 as δ tends to 0. So we deduce the result from Theorem 1.2 for the Camia-Newman
distance using dominated convergence. One may be slightly worried about the fact that
cδ(Γ) is not bounded from below and can be very negative, but this is treated by the
third point: for |F (Fδ)| to exceed log k, there must be at least k loops in Fδ, an event
which occurs with probability smaller than Cnk−c for some constant c > 0 independent
of everything.

Remark 7.1. The previous connection between the six-vertex model on the medial lattice
and the random-cluster model on the primal one extends to generic weights a and b.
The outcome is a random-cluster model with isoradial weights. When choosing the
corresponding isoradial embedding for the primal lattice, and defining the six-vertex
model on the associated medial lattice, one obtains a rotational invariance for every
a, b, c with ∆ := (a2 + b2 − c2)/2ab ∈ [−1,−1/2].
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