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Résumé

Cette thèse traite des phénomènes critiques deux dimensionels. Plus précisément,
nous étudions des modèles planaires de physique statistique qui exhibent une transi-
tion de phase, c’est-à-dire un changement brusque de leurs propriétés macroscopiques.
L’étude se concentre sur deux familles de modèles: la FK-percolation et les modèles de
boucles dénommés modèles O(n). Ces modèles englobent deux cas particuliers fonda-
mentamentaux que sont le modèle d’Ising et les marches auto-évitantes. Cette thèse est
donc à l’interface entre la physique statistique, les combinatoires et les probabilitiés. Elle
s’articule en trois parties.

Dans un premier temps, nous identifions la phase critique de la FK-percolation. Ce
résultat est le point de départ de notre étude, puisqu’il localise le point auquel la tran-
sition de phase de nos modèles a lieu. Nous étudions ensuite la transition de phase –
en particulier son ordre – par le biais d’observables parafermioniques. Cette étude est
l’opportunité d’introduire ces observables et de les étudier en détail. Elles sont au coeur
des deux autres parties de la thèse.

La deuxième partie est dévolue au modèle d’Ising et son équivalent FK, le modèle
FK-Ising (ces deux modèles constituent un modèle mathématique concrêt pour les
phénomèmes de magnétisme). L’observable parafermionique se révèle alors être holo-
morphe discrète. Ce fait important a été exploité par Smirnov puis Chelkak-Smirnov
afin de montrer l’invariance conforme de ces deux modèles au point critique. Ce résultat
primordial ouvre la voie à de nombreuses questions. Nous nous attachons à répondre à
certaines d’entre elles. En particulier, nous étudions la géométrie de la phase critique, et
les relations entre les phases critique et presque-critique.

La dernière partie traite des marches auto-évitantes. Ce modèle de polymères, intro-
duit par Flory, est la source de difficiles problèmes, pour lesquels les outils mathématiques
sont peu développés. Cependant, il est possible d’exhiber une observable parafermionique
dans ce cas particulier également. Nous étudions cette observable afin d’estimer le nom-
bre de marches auto-évitantes de longueur prescrite sur le réseau en nid d’abeille. Deux
autres résultats concernant les marches auto-évitantes et leur limite d’échelle conjecturée
complètent ce manuscript.

Nous espèrons que vous prendrez autant de plaisir à lire ces lignes que nous en avons
eu à les écrire. Bonne lecture!
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Abstract

This thesis deals with two-dimensional planar phenomenon. More precisely, we study
planar models of statistical physics that exhibit a phase transition, i.e. an abrupt change
of their macroscopic properties. The study focuses on two families of models: random-
cluster models and loop O(n)-models. These models encompass two fundamental cases:
the Ising model and the self-avoiding walk. This thesis is at the interface between statis-
tical physics, combinatorics and probabilities. It is organized in three parts.

In the first part, we identify the critical phase of the random-cluster model. This result
is the starting point of our study, since it localizes the point at which the phase transition
occurs. We then study the phase transition itself – in particular its order – by means of
parafermionic observables. It also gives us the opportunity to introduce these observables
and study them in detail. They are indeed at the hearts of the two next parts.

The second part is devoted to the Ising model and its random-cluster representation,
the FK-Ising model (these two models constitute a concrete mathematical frame for the
study of ferro-magnetism). The parafemionic observable appears to be discrete holomor-
phic in these cases. This important fact was harnessed by Smirnov and Chelkak-Smirnov
in order to prove conformal invariance of these two models at criticality. This deep result
paved the way to a complete study of the critical phase. In particular, we study the ge-
ometry of the critical phase, as well as the relation between the critical and near-critical
phases.

The last part deals with the self-avoiding walk. This model of polymers, introduced by
Flory, offers many difficult problems, for which mathematical tools are limited. Neverthe-
less, it is possible to exhibit a parafermionic observable once again in this particular case.
We study this observable in order to estimate the number of self-avoiding walks with a
prescribed length on the honeycomb lattice. Two other results dealing with self-avoiding
walks and their conjecture scaling limits complete the study.

We hope you will enjoy reading these lines at least as much as we enjoyed writing
them. Bonne lecture!
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Organization of the thesis

Chapters 2, 3, 6 and 13 describe more-or-less standard theories and do not present new
results. They contain the necessary background for understanding the other chapters.
Chapter 7 contains Smirnov’s proof of conformal invariance, which is used in several
parts of the thesis. Other chapters describe joint works. We use published results as a
basis for most of the chapters, even though the original articles have been modified in
order to unify notation and concepts, and to avoid repetitions. New results are also added
at several places in the thesis.

Let us now describe briefly the content of each chapter.

Chapter 1 is a general description of two-dimensional statistical physics intended for a
large audience of mathematicians. This chapter is independent of the rest of the document.

Chapter 2 is a toolbox on discrete complex analysis. Theorems gathered in this chapter
will be used extensively in the rest of the document. The first section surveys general
definitions on graphs and should not be skipped.

Part 1: Random-cluster models Chapters 3, 4 and 5 form the first part of this
thesis. They all deal with planar random-cluster models with q ≥ 1.

Chapter 3 is a mathematical introduction to the random-cluster model. It studies its
basic properties. We chose to restrict ourselves to the case of the random-cluster model on
the square lattice. A particular emphasize is made on the existence of a phase transition
and on planar duality.

Chapter 4 identifies rigorously the position of the phase transition. The proof harnesses
two ingredients: first, the study of crossing probabilities in the torus at the so-called self-
dual point (this is the equivalent of the celebrated Russo-Seymour-Welsh Theorem for
percolation) and second, a sharp threshold argument to prove that crossing probabilities
go to 0 or 1 away from the self-dual point. It is then possible to prove that the phase
transition must occur at the self-dual point. A byproduct of the proof is the fundamental
property of exponential decay of correlations in subcritical phase.

Chapter 5 dives into the study of the critical regime itself. We introduce the so-called
parafermionic observable and use it to prove several properties on random-cluster models.
We will see in the next chapters that special values of q are much better understood than

1
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the general ones, yet it is possible to prove interesting results for every q ≥ 1. In particular,
we show that the phase transition is second order by proving that the correlation length
ξ blows up when p approaches the critical point when 1 ≤ q ≤ 4. We strengthen this
property by showing that the susceptibility diverges when 1 ≤ q ≤ 3. On the other hand,
when q > 4, we give another identification of the critical point, and we provide evidences
that the phase transition is of first order.

Part 2: The FK-Ising and Ising models. The second part of the thesis contains
a more elaborated study of the FK-Ising model, i.e. the random-cluster model with
q = 2. Indeed, this model, which can be coupled with the Ising model, satisfies special
integrability properties that allow a much more precise understanding.

Chapter 6 presents the Ising and FK-Ising models in the planar case. Our goal is
once again to focus on specific properties of these models and not to provide a general
exposition. We will focus on the Edwards-Sokal coupling between the Ising and the FK-
Ising model, and on the low and high-temperature expansions of the model, which leads
the definition of the so-called spin fermionic observable.

Chapter 7 is an exposition of Smirnov’s proof of conformal invariance for the FK-Ising
model. The main ingredient is the discrete holomorphicity of the fermionic observable.
In the scaling limit, the properly rescaled observable converges to a conformally covariant
object, namely the solution to a certain Riemann-Hilbert boundary problem. We also
include a sketch of Chelkak-Smirnov proof of conformal invariance for the Ising model.
Let us insist on the fact that these proofs are not due to us.

Chapter 8 studies the observable away from the critical point. We show that it becomes
massive harmonic. This massive harmonicity allows the computation of the correlation
length of the model explicitly, and its comparison to large deviation estimates for the
simple random walk, thus proving a link between Ising and random walks first noticed by
Messikh.

Chapter 9 is devoted to the proof of Russo-Seymour-Welsh type bounds on crossing
probabilities at criticality. The proof relates crossing probabilities on the boundary of a
domain to the fermionic observable and to discrete harmonic measure. The novelty of
this chapter with respect to crossing probabilities proved in Chapter 4 comes from the
uniformity with respect to boundary conditions. This fact allows us to deduce several
noteworthy results.

Chapter 10 investigates a generalization of the result of Chapter 9. Namely, we prove
crossing probabilities in general discrete topological rectangles. While this result could
appear technical, we believe it to be crucial in the proof of the so-called full scaling-limit of
the FK-Ising and Ising models. As an application, we derive the universal arm exponents
for FK-Ising, and in particular we show that the five-arm exponent is equal to 2. We
deduce an alternative proof of convergence to SLE.

Chapter 11 presents a proof that interfaces of the FK-Ising and the Ising model con-
verge to the Schramm-Loewner Evolution of parameters 16/3 and 3 respectively. The
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main ingredients are contained in Chapter 7 and 9. We sketch two proofs, one invoking
a result by Kemppainen and Smirnov (they proved it using this strategy in [KS10], and
the other invoking the estimation of the five-arm event.

Chapter 12 is a study of the near-critical regime. In particular, we identify the ge-
ometric correlation length of the FK-Ising. Contrarily to the percolation case, it is not
possible to obtain the correlation length using the so-called four-arm exponents. In this
case, one should consider a exponent related to the influence of an edge, an exponent
which is different from the four-arm event. We discuss the mechanisms involved in this
phenomenon.

Part 3: O(n)-models and the Self-avoiding walk. Chapter 13 recall general facts
on the O(n)-model and the self-avoiding walk which will be used in the next section. In
particular, we discuss the bridge decomposition of self-avoiding walks.

Chapter 14 presents a computation of the connective constant on the hexagonal lattice.
We show Nienhuis’s prediction that µ =

√
2 +

√
2. We also study self-avoiding walks on

the so-called 3.122 lattice and on a slightly modified lattice. These walks can easily be
obtained from the self-avoiding walks on the hexagonal lattice via a so-called star-triangle
transformation. Surprisingly, these three lattices are the only planar lattices for which a
close formula is known (or even conjectured) for the connective constant. We also state a
conjecture concerning the behavior of critical planar self-avoiding walks.

Chapter 15 studies supercritical self-avoiding walks. We show that these walks become
space-filling in the scaling limit. The theorem is much more rigid that the previous one
and applies on any lattice with sufficient symmetry and in any dimensions.

Chapter 16 studies the decomposition of SLE(8/3) (the conjectured scaling limit of
self-avoiding walks) into bridges.

Last but not least, Chapter 17 gather open questions on the different subjects treated
in this thesis. In particular, parafermionic observables are used to predict the critical
behavior of random-cluster and O(n) models. In addition, we include a short discussion
of the square lattice O(n)-model.
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Chapter 1

Introduction

Abstract: The first chapter is independent of the rest of the document. It contains a
general presentation of planar statistical physics aimed for a wide audience of mathemati-
cians. The main objective is neither completeness nor rigor, but rather to provide a soft
introduction of the main concepts appearing in the thesis.

1 Phase transitions
When heating a block of ice, it turns to water. This very familiar phenomenon hides a
rather intricate one: the properties of H2O molecules do not depend continuously on the
temperature. More precisely, macroscopic properties of a large system of H2O molecules
evolve non-continuously when the temperature rises. For instance, when passing through
0 degree Celsius, the density increases from 0.91 to 1 (it is even more impressive when
passing from water to vapor, where the density drops by a factor 1600).

This example of the every day life is an instance of phase transition. In a system com-
posed of many particles interacting directly only with their neighbors, a phase transition
occurs if a macroscopic property of the system changes abruptly as a relevant parameter
(temperature, porosity, density) is varied continuously through a critical value. Under-
standing how local interactions can govern the behavior of the whole system is extremely
hard in general, and involve all fields of physics.

In order to simplify the problem, one can introduce a model, i.e. an idealized system of
particles following elementary rules, which should mimic the behavior of the real model.
An example of model could be the following. In order to model the evolution of a large
population, one can forget about mortality, fecundity or sex, and simply assume that
every individual is hermaphrodite and dies after giving birth to exactly n children. It is
then straightforward to see that such a population survives for ever if and only if n ≥ 1.
Of course, this model is pretty far from reality and can be improved in a number of ways.
For instance, one can assume that every individual has a random number N ∈ {0,1, ..}
of children. It is then possible to show that the population survives forever if and only

5
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Figure 1.1: A high-temperature supraconductor levitating above a ferromagnet.

if E[N] > 1, where E[N] is the averaged number of children per individual. In human
populations, it is usually admitted that E[N] should be around 2.1 per couple to insure
stability of the population. It exceeds the theoretical prediction and shows that other
factors must be taken into consideration (which is not surprising). Nevertheless, the
study of simplified models provides good guesses about the behavior of phenomenon in
real life.

The area of science in charge of modeling large systems mathematically is called statis-
tical physics. Before diving into mathematical models, let us mention other two classical
phase transitions.

Another example of phase transition is given by superconductors. Superconductivity
is the phenomenon of exact zero electrical resistance occurring in special materials at very
low temperature. It was discovered by Heike Kamerlingh Onnes in 1911 when studying
solid mercury at very low temperature (liquid helium was recently discovered, allowing
to work with cryogenic temperatures). Below a certain critical temperature Tc = 4.2 K,
the mercury looses its resistance abruptly (Kamerlingh also discovered, without noticing
it, the superfluid transition of helium at Tc = 2.2 K). Since then, superconductivity has
been studied extensively, and the number of examples of superconductors has exploded.
Practical applications are numerous, and everyone has the image of a superconductor
levitating above a magnet in mind (Fig. 1.1).

Another experiment, which is perhaps even more important historically, was performed
in 1895 by Pierre Curie. He showed that a ferromagnet looses its magnetization, when
heated above a critical temperature, called the Curie temperature. The experiment is
fairly simple theoretically: one attaches a rod of iron to an axis, near a large magnet. At
room temperature, the rod is attracted by the magnet. When the rod gets hot enough,
it abruptly come back to vertical, witnessing a loss of magnetization, see Fig. 1.2. Prac-
tically, the difficulty of the experiment comes from the fact that this temperature equals
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Figure 1.2: Experimental setup to find the Curie temperature of a ferromagnetic material.

770 degree celsius for iron. If the composition of the magnet is different, the critical
temperature changes (it can be 30 degree celsius only), yet the phenomenon remains the
same. The moral is: it is always possible to un-magnet a matter by heating it, which nat-
urally leads to the following question: what is the microscopic phenomenon explanation
this macroscopic behavior?

2 Three models of statistical physics
The previous examples illustrate the different kinds of phase transitions occurring in
nature. We now aim for a theoretical study of phase transitions. The three following
examples illustrate the different properties of statistical models we wish to study through
the phase transition. Before starting, a warning: everything contained in this section is
not necessarily proved mathematically! We simply plan to motivate the introduction of
divers notions, such as critical exponents, universality, correlation length, order of a phase
transition, thermodynamical quantities in a comprehensive way.

2.1 Percolation

Definition and phase transition Percolation is probably the simplest model of sta-
tistical physics. It was introduced by Broadbent and Hammersley in 1957 as a model for a
fluid in a porous medium [BH57]. The medium contains a network of randomly arranged
microscopic pores through which fluid can flow. One can interprate the d-dimensional
medium as being a lattice (for instance the hypercubic lattice with Zd as vertex set and
edges between nearest neighbors), each vertex being a possible hole in the medium. In
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Figure 1.3: A three-dimensional percolation cluster on Z3.

our setting, a vertex is called open if it is a hole, and closed otherwise. One can then think
of the open vertices together with the edges between them as a subgraph of Zd.

In order to model the randomness inside the medium, we simply state that each vertex
is open with probability p, and closed with probability 1 − p, and this independently of
each others. The random graph obtained is called ωp, and the probability measure is
denoted by Pp.

For a fluid to flow through the medium there must exist a macroscopic set of connected
open vertices. The phase transition in this model on Zd thus corresponds to the emergence
of an infinite connected component (sometimes called cluster) of open vertices.

Intuitively, there are more and more open vertices in the graph when we increase p.
It is thus not surprising that there exists a critical pc = pc(d) ∈ [0,1] such that

• for p < pc(d), there is no infinite cluster,

• for p > pc(d), there is a infinite cluster. This cluster is unique on Zd (this result is
due to [AKN87], alternative arguments were presented in [GGR88] and [BK89]).

Actually, pc(1) = 1, since as soon as the vertex-density equals p < 1, there are always
closed vertices to the right and left of every given vertex. Therefore, there is no phase
transition in dimension 1. However, as soon as d > 1, the phase transition occurs in the
sense that pc(d) lies strictly between 0 and 1. The behavior changes drastically when the
porosity parameter p evolves continuously through pc(d).

Infinite-cluster density θ(p) and universality When p > pc(d), there exists a unique
infinite cluster. Via invariance by translation, this cluster has a positive density θ(p),
which can be defined as

θ(p) = Pp(0 belongs to the infinite cluster).
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Figure 1.4: Percolation configurations on the triangular lattice for three different values
of p (0.35, 0.5 and 0.65). For esthetic reasons, every vertex is replaced by an hexagonal
face: a face is open (blue) with probability p and closed (yellow) with probability 1 − p,
independently of the others.
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We are interested in the behavior of θ(p) when p ↘ pc(d). This behavior is very similar
in every dimensions, even though subtle differences do occur. More precisely, θ(p) is
predicted to always follow a power law decay in (p − pc). The power, usually named β,
depends on the dimension in the following way:

θ(p) ≈ (p − pc)β where β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

5/36 if d = 2

numerical value if d ∈ {3,4,5}
1 if d ≥ 6

The value β is called a critical exponent.
As mentioned earlier, one can consider percolation on the hypercubic lattice. Nev-

ertheless, percolation can be defined on any graph or lattice. For instance, it could be
defined on the triangular lattice or the triangular lattice in dimension two (see Fig. 1.4). A
striking feature of percolation, and more generally of a relevant statistical model1, is that
the behavior is universal: the microscopic properties of the model depend on the local
geometry of the graph, while the macroscopic do not. It mimics real phase transitions:
the critical temperature for superconductors ranges from a few degrees Kelvin to thirty or
even more degrees Kelvin, yet the phase transition is similar. In the case of percolation,
connectivity properties between two neighbors in the square or the hexagonal lattices are
not the same, yet the thermodynamical properties, such as the infinite-cluster density,
behave similarly. Thus, the exponent β is expected to be the same for any lattice of a
fixed dimension. For instance, β equals 5/36 for the hexagonal, triangular and square
lattices.

Correlation length ξ(p) and order of a phase transition As a matter of fact, a
phase transition always occurs in infinite volume. To illustrate this, let us make a brief
detour and discuss the physical notion of correlation length. It is also an opportunity to
introduce an additional critical exponent.

Consider the percolation of parameter p on a box of size N ∈ (0,∞]. Can we decide
with high probability if p is supercritical or not? When N = ∞ (in other words, we
look at the percolation on Zd itself), it is sufficient to check the existence of an infinite
cluster. Now, if N is finite, the situation is more intricate. Indeed, when N is very small,
it is even difficult to give good bounds on p, see the left-side picture in Fig. 1.5, while
when N is very large, the configuration looks pretty much like the one on Zd. Roughly
speaking, the correlation length is the smallest N = N(p) for which we can recognize with
good probability if p is supercritical or not. Similarly, the correlation length in subcritical
phase (when p < pc(d)) is the smallest N = N(p) for which we can decide if p is subcritical
or not.

Mathematically, the correlation length is defined in a a priori completely different
fashion. We will discuss the relation between the previous non-rigorous definition and the
mathematical one in Chapter 12. Formally, when p < pc(d), largest connected components

1we will encounter other examples further on
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Figure 1.5: Pictures of three percolation configurations with p = 0.58. In the first one, the
size of the box is so small that the number of blue hexagons is not even a good indicator
of the value of p. In the second one, blue hexagons are in majority, yet connectivity
properties of the configuration are still ’in favor’ of the yellow hexagons (for instance,
there is an open yellow path crossing the rectangle from top to bottom). In the last one,
the size is big enough that there exists a net of open paths crossing the square from one
side to the other. These connected paths are reminiscent of the infinite cluster, and it
becomes natural to expect p to be supercritical. These three pictures are respectively
much below, around and much above the correlation length. If p was closer to pc, the
third picture would have to be taken much bigger to be sure to find such a net of open
paths.
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pc = 1/20 1

p

1

θ(p) = (p− 1/2)5/36

ξ(p) = |p− 1/2|−4/3

Figure 1.6: Behavior of thermodynamical quantities through the critical value.

in boxes of size N are typically of size logN . Equivalently, the probability for points
(0,0, ..,0) and (N,0, ..,0) to be connected by a path of adjacent open vertices decays
exponentially fast and more precisely like

Pp((0,0, ..,0) ↔ (N,0, ..,0)) = e−N/(ξ(p)+oN (1))

where ξ(p) ∈ (0,∞) is called the correlation length2. In supercritical, a corresponding
definition can be introduced.

In the case of percolation, the correlation length is finite when p ≠ pc and goes to
infinity when p ↗ pc. This is not the case for every model and it is a proof of a second
order phase transition. Once again, the behavior of ξ(p) is expected to follow a power
law governed by a critical exponent:

ξ(p) ≈ ∣p − pc∣−ν where ν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4/3 if d = 2

numerical value if d ∈ {3,4,5}
1/2 if d ≥ 6

.

2.2 Ising model

The celebrated Lenz-Ising model is one of the simplest models in statistical physics ex-
hibiting an order-disorder transition. It was introduced by Lenz in [Len20] and studied

2The mathematical justification of this definition is the following: for every x, y, Pp(0 ↔ x)Pp(x ↔
x+ y) ≤ Pp(0↔ x and x↔ x+ y) ≤ Pp(0↔ x+ y) (the right inequality is direct, while the left one follows
from the fact that conditionally on the existence of one of the two paths, the second is more likely to
exist, see the FKG inequality in Chapter 3 for more details). Now, translation invariance implies that
Pp(x ↔ x + y) = Pp(0 ↔ y), thus giving that the sequence uN = Pp(0 ↔ Ne1) is submultiplicative. A
classical use of Fekete’s subadditive lemma allows us to define ξ(p).
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by his student Ising in his thesis [Isi25]. It is a model for ferromagnetism as an attempt
to explain Curie’s temperature. See [Nis05, Nis09] for a historical review of the classical
theory.

Definition The definition is slightly more intricate than for percolation. In the Ising
model, iron is modeled as a collection of atoms with fixed positions on a crystalline lattice.
In order to simplify, each atom has a magnetic ’spin’, pointing in one of two possible
directions. We will set the spin to be equal to 1 or −1. Each configuration of spins has
an intrinsic energy, which takes into account the fact that neighboring sites prefer to be
aligned (meaning that they have the same spin), exactly like magnets tend to attract or
repel themselves.

Formally, fix a box Λ of size n in dimension d. let σ ∈ {−1,1}Λ be a configuration of
spins 1 or −1, the energy of the configuration σ is given by the Hamiltonian

EΛ(σ) ∶= −∑
x∼y

σxσy

where x ∼ y means that x and y are neighbors in Λ. Note that up to an additive constant
equal to −∣Λ∣, EΛ is twice the number of disagreeing neighbors3.

Following a fundamental principle of physics, we wish to construct a model of random
spin configurations that favor configurations with small energy. A natural choice is to
sample a random configuration proportionally to its Boltzman weight: at a temperature
T , the probability µT,Λ of a configuration σ satisfies

µT,Λ(σ) ∶= e−
1
T
EΛ(σ)

ZT,Λ

where
ZT,Λ ∶= ∑

σ̃∈{−1,1}Λ

e−
1
T
EΛ(σ̃)

is the so-called partition function defined in such a way that the sum of the weights over
all possible configurations equals 1.

Note that the configurations minimizing the energy, and therefore the most likely, are
the extremal ones: either all +1 or all −1. Nevertheless, there are only two of them, thus
the probability to see them in the nature is tiny. In other words, there is a competition
between energy and entropy. The number of configurations for some level of energy can
balance the decrease of energy. Finally, properties of a typical configurations are not
trivial to study, and depends on the temperature. For instance, if T converges to ∞, the
configurations become equally likely and the model is almost equivalent to a percolation
model (on sites this time) where sites are independent. This phase is called disordered.
On the contrary, when T goes to 0, the energy outdoes the entropy and configurations
with a large majority or +1 (or −1) become typical. This phase is called ordered. The
existence of two different phases suggests a phase transition.

3−σxσy + 1 equals 2 if the two sites agree, and 0 otherwise.
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Figure 1.7: A configuration of the Ising model on the square lattice (© S. Smirnov).

Phase transition of the Ising model Assume that spins on the boundary of the
box Λ are forced to be +1 (we denote the measure thus obtained by µ+T,Λ) and define the
magnetization at the origin in the box Λ by

MΛ(T ) ∶= µ+T,Λ(σ0).

Since the boundary favors pluses, this magnetization is positive. Now, when letting the
size of the box go to infinity, the magnetization decreases and converges to a limiting
quantity, called the (spontaneous) magnetization M(T ) ∶= limΛ↗ZdMΛ(T ).

The phase transition in dimension d ≥ 2 is the following: there exists a critical tem-
perature Tc = Tc(d) ∈ (0,∞) such that

• when T > Tc, MT = 0,

• when T < Tc, MT > 0.

In other words, when the temperature is large, the spin at zero forgets about the boundary
conditions: there is no long-range memory. When the temperature is low, the spin keeps
track of the boundary conditions at infinity and is still plus with probability larger than
1/2.

We are now in a position to explain Curie’s experiment. A magnet imposes an exterior
field on an iron rod, forcing exterior sites to be align within it. At low temperature, sites
deep inside ’remember’ that boundary sites are aligned, while at high temperature, they
do not. Therefore, sites become globally aligned at low temperature, hence explaining the
magnetization and the attraction.



CHAPTER 1. INTRODUCTION 15

In his thesis, Ising proved that there is no phase transition when d = 1. In other words,
at any positive temperature, the spontaneous magnetization equals 0. He predicted the
absence of phase transition to be the norm in every dimension. This belief was widely
shared, and motivated Heisenberg to introduce a famous alternative model where spins
take value in the three-dimensional sphere S3 (in fact, this is the classical counterpart,
first studied in [HK34] of the quantum Heisenberg model) .

However, some years later Peierls [Pei36] used estimates on the length of interfaces
between spin clusters to disprove the conjecture, showing a phase transition in the two
dimensional case. In fact, a phase transition occurs in every dimension d ≥ 2 4, making
the prediction of Ising among the wrongest generalizations in mathematics. The funny
thing is that the name ’Ising model’ was coined by Peierls in his publication. Ising retired
from academics and discovered only 25 years later that his model became famous. Today,
the Ising model is widely believed to be the most celebrated model in statistical physics.

Physical phase transition Fixing boundary conditions to be +1 or −1 is not com-
pletely satisfying physically. In order to mimic the real life experiment, let us add a
magnetic field h in the following way: redefine the energy to be

EΛ,h(σ) ∶= −∑
x∼y

σxσy − h∑
x∈Λ

σx.

Obviously, h favors pluses when it is positive (the energy decreases for each spin +1), and
minuses when it is negative. Exactly as before, the measure µΛ,T,h is defined by assigning
to each configuration a weight proportional to e−

1
T
EΛ,h(σ) 5. As expected, M(T,h) is

strictly positive when h > 0 and strictly negative when h < 0, but what about h going
to 0? This operation corresponds to removing the magnetic field in the model. A phase
transition occurs, at the same critical temperature Tc as above, in the following way:

• When T > Tc, M(T,h) goes to 0 when h goes to 0.

• When T < Tc, M(T,h) goes to M(T ) > 0 when h goes to 0 from above, and to
−M(T ) when h goes to 0 from below.

Therefore, at low temperature, the magnet keeps a spontaneous magnetization.

Can we find the equivalent of the percolation critical exponent β? Let us study
the phase transition, and in particular try to recover critical exponents. Exactly as in the
percolation case, the behavior of the magnetization M(T,0) when T approaches Tc from
below follows a power law:

M(T,0) ≈ (Tc − T )β where β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/8 if d = 2

real number if d = 3

1/2 if d ≥ 4

.

4It occurs whenever the lattice is not quasi-isometric to Z. Here we are cheating a little since this
result is not yet known on Cayley graphs with intermediate growth.

5Boundary spins are not compelled to be +1 anymore.
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The critical exponent β can be compared to the infinite-cluster density of percolation.
We will see in Chapter 6 that they are related via the class of random-cluster models.

2.3 Self-avoiding walks

In 1953, Nobel prize winner Paul Flory introduced self-avoiding walks as a model for
ideal polymers6 [Flo53]. The model is very simple. Consider a lattice (for instance the
hypercubic lattice): a self-avoiding walk is a self-avoiding sequence of neighboring vertices.

Enumeration of self-avoiding walks Of course, the first question that comes to mind
deals with the number of self-avoiding walks of length n. More precisely, define Ωn to be
the set of self-avoiding walks of length n on Zd, and cn to be its cardinality.

Counting self-avoiding walks has a long history, see [MS93]. Let us consider the case
of the hypercubic lattice Z3. Orr [Orr47] counted them up to n = 6 by hand. For instance,

c6 = 16 926

Computers opened a new scope by offering computational power, yet they reached their
full capacity very quickly. The difficulty comes from the fact that there is an exponential
number of self-avoiding walks of length n (we leave to the reader the pleasure to prove
the following bounds dn ≤ cn ≤ 2d(2d − 1)n−1). In 1959, Fisher and Sykes [FS59]
enumerated 3D self-avoiding walks up to n = 9. In 1987, Guttman [Gut87] pushed the
computation up to n = 20. Recently, [SBB11] used a new algorithm together with 50000
hours of computing time to count self-avoiding walks up to n = 36:

c36 = 2 941 370 856 334 701 726 560 670.

Even though it seems hopeless to compute cn explicitly for every n, it is possible to study
its asymptotic behavior. Since a (n+m)-step self-avoiding walk can be uniquely cut into
a n-step self-avoiding walk and a parallel translation of a m-step self-avoiding walk, we
infer that

cn+m ≤ cncm,

from which it follows that there exists µc ∈ (0,+∞) such that

µc ∶= lim
n→∞

c
1
n
n .

The positive real number µc is called the connective constant of the lattice. We thus obtain
that cn = µn+o(n)c and the computation of the connective constant becomes a tempting
question... Unfortunately, explicit formulæ for µc are not expected to be frequent, and
mathematicians and physicists only possess numerical predictions for the most common
lattices with the exception of the hexagonal lattice, for which µc =

√
2 +

√
2.

6i.e. long chains of identical monomers like DNA.
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Figure 1.8: A 1000-step self-avoiding walk (© Vincent Beffara).

Overcoming the deception due to the absence of explicit formula for µc, one can use
µc to get sharper predictions on the behavior of cn. Physicists (always one step ahead)
conjecture that

cn ≈ nγ−1µnc where γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

43/32 if d = 2

1.162... if d = 3

1 if d ≥ 4 (with logarithmic correction for d = 4)
.

Once again, γ is a universal exponent depending only on the dimension of the lattice.
In this context, universality seems even more surprising: it implies that even though
the number of self-avoiding walks is growing exponentially at different speeds for say the
hexagonal and the square lattice, the correction to the exponential growth is the same for
both lattices.

Mean-square displacement Flory was not interested in the combinatorial aspect of
self-avoiding walks but rather in its geometry. He predicted that the averaged squared
euclidean distance between the ending point and the origin for self-avoiding walks of
length n

⟨∣γ(n)∣2⟩ ∶= 1

cn
∑
γ∈Ωn

∣γ(n)∣2
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behaves like n3/2 in dimension 2, where γ(n) is the last step of a n-steps self-avoiding
walk. Later, physicists provided strong evidences that

⟨γ(n)⟩ ≈ n2ν where ν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3/4 if d = 2

0.59.. if d = 3

1/2 if d ≥ 4

It is now a good place to compare self-avoiding walks to the simple random walks
model. A walk is a trajectory in Zd, possibly self-crossing. The number of walks of length
n is obviously (2d)n and the uniform measure on the family of walks of length n has a nice
interpretation. It corresponds to the random walk constructed as follows: every step, the
walker chooses a neighbor uniformly at random. This model is much better understood
that the self-avoiding walk. For instance, 1

(2d)n ∑γ∈Ωn ∣γn∣2 behaves asymptotically like n.
Self-avoiding walks are more spread (they go further) than simple random walks in

dimensions 2 and 3. This fact is natural, since a self-avoiding trajectory repulses itself.
Interestingly, it is no longer true when the dimension becomes larger. It is actually
possible to guess that this would occur, since the simple random walk itself becomes
macroscopically self-avoiding at large scales when d ≥ 4.

Phase transition for self-avoiding walks So far, the self-avoiding walk did not fit in
the frameworkworkof statistical physics since it does not depend on any parameter and
does not exhibit a phase transitions. Thus, let us restate the model in a slightly different
way.

Imagine we are now modeling a polymer in a solvent tied between two points a, b on
the boundary of a domain Ω. We can model these polymers by self-avoiding walks on
a fine lattice Ωδ ∶= δZd ∩ Ω of meshsize δ ≪ 1. In order to take into consideration the
properties of the solvent, let x be a real positive number. Our polymer will be a curved
picked at random among every possible self-avoiding paths in Ωδ from aδ to bδ (aδ and
bδ are the closest points to a and b on Ωδ), with probability proportional to x∣γ∣, where
∣γ∣ is the length of the self-avoiding walk γ 7. More precisely, let Γδ(Ω, a, b) be the set of
self-avoiding trajectories from aδ to bδ in Ωδ. The random polymer will have the law

Pµ,δ(γδ) ∶= x∣γδ ∣

∑γ∈Γδ(Ω,a,b) x
∣γ∣ .

This model of random interface exhibits a phase transition when x varies8. On the one
hand, when x is very small, the walk is penalized very much by its length, and it tends
to be as straight as possible. On the other hand, if x is very large, the walk is favored by
its length and tends to be as long as possible. Therefore, there exists xc such that:

• When x < xc, γδ (which is a random curve) becomes ballistic when δ goes to 0: it
converges to the (deterministic) geodesic between a and b in Ω.

7This is similar to the Ising model, the energy is equal to the number of vertices on the walk, and the
’temperature’ parameter T = −1/ logx

8Here, δ → 0 replaces the passage to the infinite-volume n→∞ for percolation and Ising.
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• When x > xc, γδ converges to a random continuous curve filling the whole domain
Ω when δ goes to 0.

It is possible to prove that xc = 1/µc. In other words, in order to obtain a critical model,
one should penalize a walk of length n by µ−nc (which is intuitive, since there are roughly
µnc of them). When x = xc, the sequence (γδ) should converge in the space of random
continuous curve when δ goes to 0. In particular, the possible limiting curves should be
invariant under scaling. Typical objects having the scale-invariance property are fractals,
and it is conjectured that the scaling limit of self-avoiding walk at x = xc is a random
fractal.

Flory’s exponents and mean-field approximation For the anecdote, let us present
Flory’s original determination of ν (a little bit of sweetness in the hostile world of critical
exponents). We aim to identify the typical distance N of the last site γn of a n-step self-
avoiding walk. In order to do so, we compute the probability of ∣γn∣ = N in two different
ways

First, let us make the assumption that sites are roughly spread on the box of size N 9,
and that all sites play symmetric roles with respect to each other. We thus know that
at each step k + 1 ≤ n, a random walker must avoid the k previous sites if it wants to
remain self-avoiding, so that it must choose one of the Nd − k available sites. Thus, the
probability that γ is still self-avoiding after n steps is of order

n−1

∏
k=0

(N
d − k
Nd

) ≈ exp(−
n−1

∑
k=0

k/Nd) ≈ exp(− n2

2Nd
)

as long as n≪ Nd. The assumption consisting to forget geometry (we do not require that
the k-th point is a neighbor of the k − 1-th one) is called the mean-field approximation.

Second, make the natural assumption that the end-point of the walk is distributed as
a Gaussian, the probability for a walk to be at distance N from the origin is then equal
to

Nd−1 ⋅ 1

Nd/2 exp(−N2/n).

Equaling the two quantities, we find that n3 ≈ Nd+2 i.e. N ≈ n3/(d+2). It gives the following
predictions for d = 1,2,3,4:

νFlory =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if d = 1

3/4 if d = 2

3/5 if d = 3

1/2 if d = 4

.

Flory’s argument is slightly more evolved and checks in particular that the reasoning
cannot be valid when d > 4. Surprisingly, the prediction is true for d = 1,2 and 4. It
is slightly off for d = 3. In fact, the prediction is obvious when d = 1. For d = 4, the

9actually one could take cst ⋅N with a very large constant instead of N , but this would not matter.
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mean-field approximation is valid, even though its rigorous justification is a very hard
problem. Funnily, the prediction in dimension 2 is saved by the surprising cancellation
of two large mistakes. The probability to be self-avoiding is much smaller than the one
described above. In the same time the Gaussian behavior of the walk is also completely
wrong.

Flory’s argumentation (especially in dimension 4) emphasizes an important fact of
statistical physics: the mean-field approximation (i.e. assuming that the system lives on
the complete graph) provides tractable ways to predict values for critical exponents and
in large enough dimensions, these predictions are right. The reason for this connection is
actually much deeper than Flory’s argument. Roughly speaking, high-dimensional lattices
behave with respect to statistical models like sparse graphs. Making the assumption that
we are on the complete graph is then a small mistake. In the case of the self-avoiding walk,
the comparison with the simple random walk illustrates this phenomenon. The dimension
at which lattice exponents start to equal mean-field exponents is called the upper critical
dimension dc. It is equal to 4 for the self-avoiding walk and the Ising model, while it is 6
for percolation.

In low dimensions, the behavior does not correspond to the mean-field one. Interest-
ingly, the critical exponents in two dimensions are all rational and fairly simple, which
suggests a specific feature of two-dimensions that we shall discuss now.

3 Why two dimensions?
In the previous section, we self-avoiding walk by studying three very different models of
statistical physics, that they shared properties concerning their phase transitions. On the
one hand, critical exponents become independent of the dimension when exceeding the
upper critical dimension of the model. On the other hand, exponents have rational values
in two dimensions, which suggests the existence a deep underlying mechanism coming
from physical laws. Our goal is to understand the phase transition in the latter case and
we now fix d = 2 for the rest of the manuscript. Mathematicians also make the
assumption that models are critical.

This latter assumption is not very dramatic. In order to study the phase transition,
in particular the critical exponents related to thermodynamical quantities, it is sufficient
to study the critical phase. Indeed, critical exponents are not independent: they are
connected via the so-called scaling relations, which do not depend on the model. One
example of scaling relation is given by β = νη, where β and ν were defined in the context
of percolation, but also exist for other statistical models, and η is the one-arm exponent 10.

10The exponent η can be introduced in most statistical physics models. In the case of percolation or
Ising, it is defined as follows:

• for percolation at criticality, there is no infinite cluster and the probability for two points to be
connected converges to 0 when their distance goes to ∞. In fact, the behavior should be

Ppc(0↔ x) ≈ 1

∣x∣d−2+η ,
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Therefore, critical exponents depending only on the critical phase are often sufficient to
understand the other critical exponents (such as β or ν).

3.1 Exactly solvable models and Conformal Field Theory:

The planar Ising model has been the subject of experimentation for both mathematical
and physical theories for almost a century. Through a short historic of this model, we
shall explain two physical perspectives on statistical physics.

Exactly solvable models It all started with Peierls’s proof of the existence of a phase
transition. This argument (the first of the kind) paved the way to the study of the
critical regime11. The next step was achieved by Onsager in 1944. In a series of seminal
papers [Ons44, KO50], he12 computed the partition function of the model and proved
the equality β = 1/8. This result represented a shock for the community: it was the
first mathematical proof that the mean-field behavior was inaccurate in low dimensions!
Moreover, in the physical approach to statistical models, the computation of the partition
function is the first step towards a deep understanding of the model, enabling for instance
the computation of the free energy. The formula provided by Onsager led to an explosion
in the number of results on the planar Ising model (papers published on the Ising model
can now be counted by thousands). Among the most noteworthy results, Yang derived
rigorously the spontaneous magnetization [Yan52] (the result was derived non rigorously
by Onsager himself), McCoy and Wu [MW73] computed many important quantities of
the Ising model, including several critical exponents, culminating with the derivation of
two-point correlations µT (σ0σx) between sites 0 and x = (n,n) in the whole plane. See
the more recent book of Palmer for an exposition of these and other results [Pal07].

The computation of the partition function was accomplished later by several other
methods and the model became the most prominent example of an exactly solvable model.
The most classical techniques include the transfer-matrices technique developed by Lieb
and Baxter [Lie67, Bax89], the Pfaffian method, initiated by Fisher and Kasteleyn, using
a connection with dimers models [Fis66, Kas61], and the combinatorial approach to the
Ising model, initiated by Kac and Ward [KW52] and then developed by Sherman [She60]
and Vdovichenko [Vdo65], see also the more recent [DZM+99, Cim10].

Despite the number of results that can be obtained using the partition function, the
impossibility to compute it explicitly enough in finite volume makes the geometric study
of the model very hard to perform while using the classical methods. The lack of under-
standing of the geometric nature of the model remained unsatisfying for years.

• for the Ising model, the magnetization equals 0 and we have

µTc(σ0σx) ≈ 1

∣x∣d−2+η .

11Peierls argument was later extended to many other statistical models.
12later helped by Kaufman.
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Renormalization group theory and Conformal Field Theory The arrival of the
renormalization group formalism (see [Fis98] for a historical exposition) led to a better
physical and geometrical understanding, albeit mostly non-rigorous. It suggests that
block-spin renormalization transformation (coarse-graining, e.g. replacing a block of
neighboring sites by one site having a spin equal to the dominant spin in the block)
corresponds to appropriately changing the scale and the temperature of the model. The
critical point arises then as the fixed point of the renormalization transformations. In par-
ticular, under simple rescaling the Ising model at the critical temperature should converge
to a scaling limit, a ’continuous’ version of the originally discrete Ising model, correspond-
ing to a quantum field theory. This leads to the idea of universality: the Ising models on
different regular lattices or even more general planar graphs belong to the same renor-
malization space, with a unique critical point, and so at criticality the scaling limit of the
Ising model should always be the same (it should be independent of the lattice while the
critical temperature depends on it).

Being unique, the scaling limit at the critical point must satisfy translation, rota-
tion and scale invariance, which allows us to deduce some information about correlations
[PP66, Kad66].

In seminal papers [BPZ84b, BPZ84a] Belavin, Polyakov and Zamolodchikov, suggested
a much stronger invariance of the model. Since the scaling-limit quantum field theory is a
local field, it should be invariant by any map which is locally a composition of translation,
rotation and homothety. Thus it becomes natural to postulate full conformal invariance
(under all conformal transformations13 of subregions). This prediction generated an ex-
plosion of activity in conformal field theory, allowing for non rigorous explanations of
many phenomena, see [ISZ88] for a collection of the original papers of the subject.

Note that planarity enters into consideration through the fact that conformal maps
form a rich family of operators. Indeed, the category of conformal maps in dimension two
is composed of many elements, while it restricts in higher dimensions to compositions of
rotations, translations and inversions.

Where are we now? The above exposition shows two different approaches to the same
problem relying heavily on two-dimensionality:

• The exact solvability of the (discrete) planar Ising model, which allows rigorous
derivation of important quantities, yet at the same time provides a poor geometric
understanding.

• The non-rigorous conformal field theory approach, with the postulate of a ’contin-
uum limit’, invariant under many geometric transformations, which allows a deep
geometric understanding of the model.

13Conformal maps are maps on open sets of C conserving the angles. Equivalently, they are the
one-to-one holomorphic maps.
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3.2 A mathematical setting for conformal invariance of lattice
models

To summarize, Conformal Field Theory asserts that a planar statistical model, such as
percolation, Ising or the self-avoiding walk, admits a ’scaling limit’ at criticality, and that
this scaling limit is a conformally invariant object.

From a mathematical perspective, this notion of conformal invariance of a model is
ill-posed, since the meaning of scaling limit is not even clear. The following solution to
this problem can be implemented: the scaling limit of the model could simply be less rich
and retain the information given by ’interfaces’ only14. The advantage of this approach
is that there exists a mathematical setting for families of continuous curves.

Let us first start with the study of one curve. There is a number of ways to isolate
an ’interface’ 15 in a model. For pedagogical reasons, we simplify the presentation as
much as possible by providing two examples in elementary cases. Fix a simply connected
domain (Ω, a, b) with two points on the boundary and consider discretizations (Ωδ, aδ, bδ)
of (Ω, a, b) by an hexagonal lattice of meshsize δ. A particularly simple model to start
with is the critical self-avoiding walk. The model of random polymer between aδ and bδ
contains by definition only one interface (the walk itself), denoted γself−avoidingwalkδ . The
parameter x being critical, Conformal Field Theory predicts that γself−avoidingwalkδ should
converge when δ goes to 0 to a random continuous curve between a and b in Ω. A second
model of interest is the critical Ising model on the triangular lattice. Assume now that
we fix the spins to be +1 on the arc ∂ab and −1 on the arc ∂ba. Thus, there exists a unique
interface between +1 and −1 going from a to b. We call this interface γIsingδ . Conformal
Field Theory once again predicts that γIsingδ converges when δ goes to 0 to a random
continuous non-selfcrossing curve between a and b in Ω. By the way, how would you
proceed for site percolation on the triangular lattice (the answer hides in Fig. 1.11)? In
fact, Conformal Field Theory also predicts that the limits of (γself−avoidingwalkδ )δ>0 and
(γIsingδ )δ>0 must be conformally invariant, where now conformal invariance has a precise
meaning:

A family of random continuous curves γ(Ω,a,b) indexed by simply connected domains
with two marked points on the boundary (Ω, a, b) is conformally invariant if for any
(Ω, a, b) and any conformal map16 ψ ∶ Ω→ C,

ψ ○ γ(Ω,a,b) has the same law as γ(ψ(Ω),ψ(a),ψ(b)).

14There is no reason why all the information of a model should be encoded into information on interfaces,
yet one can hope that most of the relevant quantities can be recovered from it.

15i.e. a boundary between two different regions determined by the model
16conformal means holomorphic and one-to-one. Via Riemann mapping theorem, we know that many

such maps exist



CHAPTER 1. INTRODUCTION 24

Figure 1.9: The interface of an Ising model at critical temperature (© Stanislav Smirnov).

In words, the random curve obtained by taking the scaling limit of self-avoiding walks
on (ψ(Ω), ψ(a), ψ(b)) has the same law as the image by ψ of the scaling limit of self-
avoiding walks on (Ω, a, b). It is clear when working on the hexagonal lattice, that rota-
tions by an angle π/3 are preserving the model. Conformal Field Theory predicts that
the model possesses much more symmetries as soon as we allow ourselves to go to the
scaling limit.

In 1999, Schramm proposed a natural candidate for the possible conformally invari-
ant families of continuous non-selfcrossing curves. He noticed that interfaces of models
further satisfy the domain Markov property (see Chapter 11), which, together with the
assumption of conformal invariance, determine the possible families of curves. In [Sch00],
he introduced the Schramm-Loewner Evolution17 – SLE for short. The SLE(κ), for κ > 0,
is the random Loewner Evolution with driving process

√
κBt, where (Bt) is a standard

Brownian motion (the precise definition of SLE is presented in Chapter 11). By construc-
tion, the process is conformally invariant, random and fractal. In addition, it is possible
to study quite precisely the behavior of SLEs using stochastic calculus and to derive path
properties such as the Hausdorff dimension, intersection exponents, etc... Depending on
κ, the behavior of the process is very different, as one can see on Fig. 1.10. The prediction
of Conformal Field Theory then translates into the following predictions for models.

The limit of (γself−avoidingwalkδ )δ>0 and (γIsingδ )δ>0 in (Ω, a, b) is a Schramm-Loewner
Evolution.

17In the original paper, the process is called Stochastic-Loewner Evolution.
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Naturally, the parameter κ depends on the model, yet, it is usually possible to guess
which one it should be. For instance, self-avoiding walks should converge to SLE(8/3),
while Ising interfaces should converge to SLE(3).

In order to finish this chapter, let us deal with families of interfaces. In the case of
self-avoiding walks, the problem does not make sense, yet for the Ising model, there are
many interfaces. More precisely, consider the Ising model without boundary conditions
in an approximation of Ω. Interfaces now form a family of loops. By consistency, each
loop should look like a SLE(3). Sheffield and Werner [SW10a, SW10b] introduced a one-
parameter family of processes of non-intersecting loops which are conformally invariant
– called the Conformal Loop Ensembles CLE(κ) for κ > 8/3. Non-surprisingly, loops
of CLE(κ) are locally similar to SLE(κ). In the case of the Ising model, the limits of
interfaces all-together should be a CLE(3).

Interestingly, path properties of SLEs and CLEs allow us to derive some critical expo-
nents governing the scaling limit at criticality. Then, scaling relations allow us to obtain
a complete understanding of the phase transition.

3.3 Conformal invariance of percolation and Ising models

Even though we now have a mathematical frameworkwork for conformal invariance, it
remains an extremely hard task to prove convergence of interfaces to SLEs. Observe that
working with interfaces offers a further simplification: properties of these interfaces should
also be conformally invariant. Therefore, we could simply look at an observable of the
model, i.e. something that we can measure by looking at the configuration. Of course,
it is not clear that this observable would tell us anything about critical exponents, yet it
already represents a significant step toward conformal invariance.

In 1994, Langlands, Pouliot and Saint-Aubin [LPSA94] published a number of numeri-
cal values in support of conformal invariance (in the scaling limit) of crossing probabilities
in the percolation model. More precisely, they checked that taking different topological
rectangles, the probability Cδ(Ω,A,B,C,D) of having a path of adjacent open edges from
AB to CD converges when δ goes to 0 towards a limit which is the same for (Ω,A,B,C,D)
and (Ω′,A′,B′,C ′,D′) if they are image of each other by a conformal map18. The paper
[LPSA94], while only numerical, attracted many mathematicians to the domain. The
same year, Cardy [Car92] proposed an explicit formula for the limit of crossing probabil-
ities. In 2001, Smirnov proved Cardy’s formula rigorously for critical site percolation on
the triangular lattice, hence rigorously providing a concrete example of a conformally in-
variant property of the model. A somewhat incredible consequence of this theorem is that
the mechanism can be reversed: even though Cardy’s formula seems much weaker than
convergence to SLE, they are actually equivalent. In other words, conformal invariance
of one well-chosen observable of the model can be sufficient to prove conformal invariance
of interfaces, which in turn is sufficient to determine critical exponents. We are now in a

18This property can be expressed in terms of properties of an interface, thus keeping this discussion in
the frameworkworkproposed earlier.
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Figure 1.10: Two examples of Schramm-Loewner Evolution (SLE(8/3) and SLE(6)). The
behavior is very different: the first one is almost surely a simple curve while the second one
has self-touching points, the haussdorff dimensions are different, etc... (© V. Beffara).



CHAPTER 1. INTRODUCTION 27

Figure 1.11: An exploration path for percolation. It converges to SLE(6) in the scaling
limit (© V. Beffara).

much better position in order to understand conformal invariance of a model: it suffices
to show that an observable of the discrete model converges to a conformally invariant (in
fact a conformally covariant) family of functions.

In 2010, Smirnov strake a second time by exhibiting conformally covariant observables
for the so-called FK-Ising [Smi10a] and Ising [CS09] models. Nonetheless, in this case
the study of the critical regime is harder than in the percolation case. Indeed, long-range
dependence at criticality makes the mathematical understanding more involved and even
convergence of interfaces to SLE is difficult. Anyway, the philosophy remains the same and
full conformal invariance should follow from conformal covariance of these observables.

We conclude this paragraph with a warning (or a touch of hope, depending on personal
opinion): there are very few models which have been proved to be conformally invariant.
For instance, the self-avoiding walk does not belong to this restricted club and it remains
a very important open problem to prove convergence of self-avoiding walks to SLE(8/3).

3.4 Discrete holomorphicity and statistical models

The previous discussion (especially in the Ising case) sheds a new light on both approaches
described in Subsection 3.1: combinatorial properties of the discrete Ising model allow
us to prove the convergence of discrete observables to conformally covariant objects. In
other words, exact integrability and Conformal Field Theory are connected via the proof
of the conformal invariance of the Ising model.



CHAPTER 1. INTRODUCTION 28

Archetypical examples of conformally covariant objects are holomorphic solutions to
boundary value problems such as Dirichlet or Riemann problems. It becomes natural
that discrete observables which are conformally covariant in the scaling limit are naturally
preharmonic or preholomorphic functions, i.e. relevant discretizations of harmonic and
holomorphic functions. Therefore, proofs of conformal invariance harness discrete complex
analysis in a substantial way. The use of discrete holomorphicity appeared first in the
case of dimers [Ken00] and has been extended to several statistical physics models since
then. Other than being interesting in themselves, preholomorphic functions found several
applications in geometry, analysis, combinatorics, probability, and we refer the interested
reader to the expositions by Lovász [Lov04], Stephenson [Ste05], Mercat [Mer01], Bobenko
and Suris [BS08].

To conclude this section, we are now in a possession of a natural mathematical frame-
workwork to prove conformal invariance of a model: one needs to prove conformal invari-
ance of an observable. Proving this requires a deep understanding of discrete complex
analysis, and of its connections to the model. Very often, the integrability properties of
the model are at the heart of the proof, thus showing a new connection between exactly
solvable models and Conformal Field Theory.

4 Unifying families of models
Percolation, Ising and self-avoiding walks provide us with three examples of models which
are conformally invariant in the scaling limit (only conjecturally for the self-avoiding
walk). They correspond to three values of the Schramm-Loewner Evolution (κ equals 6,
3 and 8/3 respectively). But what about other values of κ? Is it always possible to find
a conformally invariant model which interfaces converge to SLE(κ)? More importantly,
can these seemingly very different models be related? At last, can this relation explain
the similarities between the different models? The answer to these questions come from
the existence of two grand families of models. These models will be at the heart of the
theory, we would like to present them now.

4.1 Random-cluster model

Fortuin and Kasteleyn introduced the random-cluster model in 1969. Roughly speaking,
the random-cluster model on a graph G is also a percolation model, in the sense that the
output is a random subgraph of G with the same set of vertices and a subset of its edges,
but not longer independent. More precisely, an edge of a finite graph G is either open
or closed. The random-cluster configuration ω is the graph obtained by keeping only the
open edges. Let p ∈ [0,1] and q ∈ (0,∞). The probability of ω for the random-cluster
model on G with parameters p, q is given by

φp,q(ω) ∶= 1

ZG,p,q
p# open edges(1 − p)# closed edgesq# connected components
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Figure 1.12: A macroscopic cluster in a critical percolation configuration with p = 1/2.

where ZG,p,q is once again a normalizing factor called the partition function of the model.
When q = 1, the model is simply edge percolation (a model very similar to the site
percolation described earlier). When q ≠ 1, the model is different and exhibits long range
dependence.

It is possible (yet non-trivial) to define the model on Z2. As for percolation, the
random-cluster model with fixed q > 0 should encounter a phase transition in p. Below
some critical parameter pc(q), there is no infinite cluster, while above it, there exists a
unique infinite cluster. The phase transition is different when q varies, and the richness
of this behavior is one of the success of random-cluster models. More precisely,

• when q ∈ (0,4], the transition is expected to be continuous, in the sense that the
infinite-density cluster θ(p, q) converges to 0 when p ↘ pc(q). The critical phase
should also be conformally invariant, and the collection of interfaces at criticality19

should converge to CLE(κ), where κ = 4π/arccos(−√q/2).

• when q > 4, the phase transition becomes first order. More precisely, θ does not
converge to 0 when p goes down to pc(q).

Another important advantage of the random-cluster model is its connection to other
models. When p → 0 with q/p → 0, we obtain a model of a random connected graph,
called the uniform spanning tree, see Fig. 1.13. When q is an integer, one can play the
following game. Color independently each connected component of a (p, q)-random-cluster

19We did not describe interfaces in percolation or the random-cluster model, yet one can consider
boundary of connected components for instance.
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Figure 1.13: The pink part forms a spanning tree (a tree passing through every vertex).
The black path is a space-filling curve bordering the spanning tree. It is also possible
to consider the scaling limit of the black path: it converges to SLE(8) [LSW04a] (© O.
Schramm).

configuration ω with one of q fixed colors chosen uniformly. We obtain a random coloring
σ ∈ {1, .., q}Λ of Λ. The probability measure P is a Boltzman measure with energy given
by

Hq,Λ(σ) ∶= −∑
x∼y

1σx=σy .

The random coloring of the lattice with law P is called the Potts model with q colors at
a temperature T . When q = 2, it corresponds to the Ising model (simply call one color
+1 and the other −1). Therefore, there exists a coupling of the Ising model with the q = 2
random-cluster model. This property links the Ising model to random-cluster models and
thus to percolation.

4.2 O(n)-models

We would like to finish this first chapter by introducing another class of models. Ising’s
conjecture of the absence of phase transition led Heisenberg to introduce his famous model.
In the classical version of this quantum model, spins are 3-dimensional unit vectors. The
energy of a configuration is then

H(σ) ∶= −∑
x∼y

⟨σx, σy⟩ .
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In [Sta68], this model was generalized by taking spins to be n-dimensional unit vectors,
and called spin O(n)-models. The n = 1 model is the Ising model yet again. Ironically,
while spin O(n)-models were introduced in order to create relevant models for magnetism
with a phase transition, it appears that only the n = 1 model (the Ising model) exhibits
one.

Now take the Ising model on the triangular lattice. Interfaces between +1 and −1
define a loop model on the dual hexagonal lattice. The statistics of this model is easy
to compute: the probability of a configuration is proportional to e−2β# edges. In fact,
this model gives rise to a family of models, called loop O(n)-models. Consider a finite
subgraph Λ of the hexagonal lattice and set n ≥ 0 and x > 0. Choose a configuration ω of
loops with one self-avoiding path starting from the origin with probability

Px,n(ω) ∶= x# edgesn# loops

ZΛ,x,n

.

When n = 0, we obtain the self-avoiding walk and the model undergoes a phase transition
when x varies from 0 to ∞. The n = 1 and x = 1 model is exactly the interfaces of site
percolation with parameter p = 1/2 on the triangular lattice. For integer values of n,
one can relate the spin O(n)-model to the loop O(n)-model, see Chapter 13 for details.
Therefore, spin and loop O(n)-models form two families of models that relate the self-
avoiding walk, the percolation and the Ising models.

Conclusion
We presented several aspect of statistical physics, in particular when the models are

planar. We sketched deep links between physics and mathematics. Nevertheless, most of
what we presented is still conjectural. In this thesis, we make some of the connections
between physics and mathematics rigorous by studying random-cluster and O(n)-models.
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Chapter 2

Discrete complex analysis on graphs

Abstract: This chapter must be understood as a toolbox. It gathers several theorems
concerning the theory of discrete holomorphic maps on discretizations of domains of the
plane. These theorems will be extensively used in the whole manuscript. The two first
parts are classical and can be found in any textbook on discrete harmonic functions. The
third part is extracted from [Smi10a].

Complex analysis is the study of harmonic and holomorphic functions in complex
domains. In this section, we shall discuss how to discretize harmonic and holomorphic
functions, and what are the properties of these discretizations.

There are many ways to introduce discrete structures on graphs which can be developed
in parallel to the usual complex analysis. We will consider scaling limits (as mesh of the
lattice tends to zero), therefore we wish to deal with discrete structures which converge
to the continuous complex analysis as graphs become finer and finer.

The chapter is organized as follows. The first section (perhaps the most important one)
defines the notion of discrete approximation of a continuous domain. The second section
deals with discrete harmonic functions. While the theory is fairly classical, we chose
to expose it anyway, in particular because specific properties are needed later, and that
they are not necessarily known to everyone. Section 3 introduces discrete holomorphic
functions. Section 4 is devoted to s-holomorphic maps while the last section discusses
other possible approaches.

1 Lattices and approximation of domains

1.1 Primal, dual and medial graphs

The (rotated) square lattice L = (V,E) is the graph with vertex set V ∶= eiπ/4Z2 and
edge set E given by edges between nearest neighbors, see Fig. 2.1. An edge with end-
points x and y will be denoted by [xy]. If there exists an edge e such that e = [xy], write
x ∼ y.

33
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dual site

primal site

primal edge

dual edge

Figure 2.1: The black sites together with the plain edges constitute the primal lattice L.
The white sites, together with the dashed edges constitute the dual lattice L⋆.

A finite graph G = (V,E) is always a subgraph of L and is called a primal graph. The
boundary of G, denoted by ∂G, is the set of sites of G with fewer than four neighbors
in G.

The dual graph G⋆ of a planar graph G is defined as follows: sites of G⋆ correspond
to faces of G (for convenience, the infinite face will not correspond to a dual site), edges
of G⋆ connect sites corresponding to two adjacent faces of G. The dual lattice of L is
denoted by L⋆.

The medial lattice L◇ is the graph with the centers of edges of L as vertex set, and
edges connecting nearest vertices, see Fig. 2.2. The medial graph G◇ is the subgraph
of L◇ composed of all the vertices of L◇ corresponding to edges of G. Note that L◇ is
a rotate and rescaled (by a factor 1/

√
2) version of L. We will often use the connection

between the faces of L◇ and the sites of L and L⋆. A face of the medial lattice is said to
be black if it corresponds to a site of L, and white otherwise. Faces are sometimes called
diamonds and a color is associated to them in a unequivocal fashion. Edges of L◇ are
oriented counterclockwise around black faces.

1.2 Approximations of domains

We will be interested in finer and finer graphs approximating continuous domains. For
δ > 0, the square lattice

√
2δL of mesh-size

√
2δ will be denoted by Lδ. The definitions

of dual and medial lattices extend to this context. Note that the medial lattice L◇
δ has

mesh-size δ 1.
For a simply connected domain Ω in the plane, set Ωδ = Ω∩Lδ. The edges connecting

sites of Ωδ are those included in Ω. The graph Ωδ should be thought of as a discretization
1The convention is convenient since the medial lattice will be used more frequently than the primal

one.
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oriented edge

white face (or diamond)

black face (or diamond)

medial vertex

Figure 2.2: The medial lattice associated to L and L⋆. Each face corresponds to either a
black site or a white site.

of Ω. We will always make the assumption that the graph is simply connected2. Under
mild hypothesis, this assumption is always fulfilled when δ is small enough.

More generally, when no continuous domain Ω is specified, Ωδ stands for a finite simply
connected subgraph of Lδ.

We will be considering sequences of functions on Ωδ for δ going to 0. In order to
make functions live in the same space, we implicitly perform the following operation: for
a function f on Ωδ, choose a diagonal for every square and extend the function to Ω in a
piecewise linear way on every triangle. Since no confusion will be possible, the extension
is denoted by f as well.

2 Preharmonic functions

2.1 Definition and connection with random walks

Introduce the (non-normalized) discretization of the Laplacian operator ∆ ∶= 1
4(∂2

xx+∂2
yy)

in the case of the square lattice Lδ. For u ∈ Lδ and f ∶ Lδ → C, define

∆δf(u) = 1

4
∑
v∼u

(f(v) − f(u)).

The definition extends to rescaled square lattices in a straightforward way (for instance
to L◇

δ ).

Definition 2.1. A function h ∶ Ωδ → C is preharmonic (resp. pre-superharmonic, pre-
subharmonic) if ∆δh(x) = 0 (resp. ≤ 0, ≥ 0) for every x ∈ Ωδ.

One fundamental tool in the study of preharmonic functions is the classical relation
between preharmonic functions and simple random walks:

2Meaning that it is connected and the complement in L is connected.
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Let (Xn) be a simple random walk killed at the first time it exits Ωδ, then h is prehar-
monic on Ωδ if and only if (h(Xn)) is a martingale.

Using this fact, one can prove that harmonic functions are determined by their value
on ∂Ωδ, that they satisfy Harnack’s principle, etc. We refer to [Law91] for a deeper study
on preharmonic functions and their link to random walks. Also note that the set of
preharmonic functions is a complex vector space. As in the continuum, it is easy to see
that preharmonic functions satisfy the maximum and minimum principles.

2.2 The discrete harmonic measure

The discrete harmonic measure HΩδ(⋅, y) of y ∈ ∂Ωδ is the unique harmonic function on
Ωδ ∖ ∂Ωδ vanishing on the boundary ∂Ωδ, except at y, where it equals 1. Equivalently,
HΩδ(x, y) is the probability that a simple random walk starting from x exits Ωδ ∖ ∂Ωδ

through y.

Proposition 2.2. For any harmonic function h ∶ Ωδ → C,

h = ∑
y∈∂Ωδ

h(y)HΩδ(⋅, y).

Proof Note that ∑y∈Ωδ h(y)HΩδ(⋅, y) is harmonic in Ωδ with same boundary conditions
as h. Since a harmonic function is determined by its boundary conditions, the result
follows. ◻

We recall two results on discrete harmonic measures. The first one is asserting that
the exiting distribution of a random-walk starting at the center of a cube is more or less
uniform.

Proposition 2.3. There exists C > 0 such that HQδ(0, y) ≤ Cδ for every δ > 0 and
y ∈ ∂Qδ, where Q = [−1,1]2.

We omit the easy proof of this statement. The second result is a discrete (weak)
Beurling estimate.

Proposition 2.4 (Beurling’s estimate). There exists α > 0 such that for any 1 ≫ r > δ > 0
and any curve γ inside D ∶= {z ∶ ∣z∣ < 1} from C = {z ∶ ∣z∣ = 1} to {z ∶ ∣z∣ = r}, the probability
for a random walk on Dδ starting at 0 to exit (D ∖ γ)δ through C is smaller than rα.

Proof For any annulus Ax ∶= {z ∶ x ≤ ∣z∣ ≤ 2x}, with r ≤ x ≤ 1, the random walk
trajectory has a uniformly positive probability c > 0 to close a loop around the origin
while crossing this annulus. In this case, the trajectory necessarily intersects γ. Since the
random walk trajectory must cross roughly log2 r annuli A2−n , and that at each step it
has a probability at least c > 0 to close a circuit, the result follows with α = −1/ log2 c. ◻
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2.3 Derivative estimates and compactness criteria

For general functions, a control on the gradient provides regularity estimates on the
function itself. It is a well-known fact that harmonic functions satisfy the reverse property:
controlling the function allows us to control the gradient. The following lemma shows that
the same is true for preharmonic functions.

Proposition 2.5. There exists C > 0 such that, for any preharmonic function h ∶ Ωδ → C
and any two neighboring sites x, y ∈ Ωδ,

∣h(x) − h(y)∣ ≤ Cδ
supz∈Ωδ ∣h(z)∣
d(x,Ωc)

. (2.1)

Proof Let x, y ∈ Ωδ. The preharmonicity of h translates to the fact that h(Xn) is
a martingale (where Xn is a simple random walk killed at the first time it exits Ωδ).
Therefore, for x, y two neighboring sites of Ωδ, we have

h(x) − h(y) = E[h(Xτ) − h(Yτ ′)] (2.2)

where under E, X and Y are two simple random walks starting respectively at x and y,
and τ , τ ′ are any stopping times. Let 2r = d(x,Ωc) > 0, so that U = x+[−r, r]2 is included
in Ωδ. Fix τ and τ ′ to be the hitting times of ∂Uδ and consider the following coupling of
X and Y (one has complete freedom in the choice of the joint law in (2.2)): (Xn) is a
simple random walk and Yn is constructed as follows,

• if X1 = y, then Yn =Xn+1 for n ≥ 0,

• if X1 ≠ y, then Yn = σ(Xn+1), where σ is the orthogonal symmetry with respect to
the perpendicular bisector ` of [X1, y], whenever Xn+1 does not reach `. As soon as
it does, set Yn =Xn+1.

It is easy to check that Y is also a simple random walk. Moreover, we have

∣h(x) − h(y)∣ ≤ E[∣h(Xτ) − h(Yτ ′)∣1Xτ≠Yτ ′ ] ≤ 2( sup
z∈∂Uδ

∣h(z)∣) P(Xτ ≠ Yτ ′)

Using the definition of the coupling, the probability on the right is known: it is equal to
the probability that X does not touch ` before exiting the ball and is smaller than C′

r δ
(with C ′ a universal constant), since Uδ is of radius r/δ for the graph distance. We deduce
that

∣h(x) − h(y)∣ ≤ 2( sup
z∈∂Uδ

∣h(z)∣) C
′

r
δ ≤ 2(sup

z∈Ωδ
∣h(z)∣) C

′

r
δ

◻

Recall that functions on Ωδ are implicitly extended to Ω.
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Proposition 2.6. A family (hδ)δ>0 of preharmonic functions on the graphs Ωδ is precom-
pact for the uniform topology on compact subsets of Ω if one of the following properties
holds:

(1) (hδ)δ>0 is uniformly bounded on any compact subset of Ω,
or

(2) for any compact subset K of Ω, there exists M =M(K) > 0 such that for any δ > 0

δ2 ∑
x∈Kδ

∣hδ(x)∣2 ≤M.

Proof Let us prove that the proposition holds under the first hypothesis and then that
the second hypothesis implies the first one.

We are faced with a family of continuous maps hδ ∶ Ω → C and we aim to apply the
Arzelà-Ascoli theorem. It is sufficient to prove that functions hδ are uniformly Lipschitz
on any compact subset since they are uniformly bounded on any compact subset of Ω.
Let K be a compact subset of Ω. Proposition 2.5 shows that ∣hδ(x) − hδ(y)∣ ≤ CKδ for
any two neighbors x, y ∈Kδ, where

CK = C
supδ>0 supx∈Ω∶d(x,K)≤r/2 ∣hδ(x)∣

d(K,Ωc)
,

implying that ∣hδ(x) − hδ(y)∣ ≤ 2CK ∣x − y∣ for any x, y ∈ Kδ (not necessarily neighbors).
The Arzelá-Ascoli theorem concludes the proof.

Now assume that the second hypothesis holds, and let us prove that (hδ)δ>0 is bounded
on any compact subset of Ω. Take K ⊂ Ω compact, let 2r = d(K,Ωc) > 0 and consider
x ∈Kδ. Using the second hypothesis, there exists k ∶= k(x) such that r

2δ ≤ k ≤
r
δ and

δ ∑
y∈∂Ukδ

∣hδ(y)∣2 ≤ 2M/r, (2.3)

where Ukδ = x + [−δk, δk]2 is the box of size k (for the graph distance) around x and
M =M(y + [−r, r]2). Proposition 2.2 implies

hδ(x) = ∑
y∈∂Ukδ

hδ(y)HUkδ(x, y) (2.4)

for every x ∈ Uδk. Using the Cauchy-Schwarz inequality, we find

hδ(x)2 =
⎛
⎝ ∑
y∈∂Ukδ

hδ(y)HUkδ(x, y)
⎞
⎠

2

≤
⎛
⎝
δ ⋅ ∑

y∈∂Ukδ
∣hδ(y)∣2

⎞
⎠
⎛
⎝

1

δ
⋅ ∑
y∈∂Ukδ

HUkδ(x, y)2
⎞
⎠

≤ 2M/r ⋅C

where C is a uniform constant. The last inequality used Proposition 2.3 to affirm that
HUkδ(x, y) ≤ Cδ for some C = C(r) > 0. ◻
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2.4 Discrete Dirichlet problem and convergence in the scaling
limit

Preharmonic functions on square lattices of smaller and smaller mesh size were studied
in a number of papers in the early twentieth century (see e.g. [PW23, Bou26, Lus26]),
culminating in the seminal work of Courant, Friedrichs and Lewy. It was shown in [CFL28]
that solutions to the Dirichlet problem for a discretization of an elliptic operator converge
to the solution of the analogous continuous problem as the mesh of the lattice tends to
zero. A first interesting fact is that the limit of preharmonic functions is indeed harmonic.

Proposition 2.7. Any limit of a sequence of preharmonic functions on Ωδ converging
uniformly on any compact subset of Ω is harmonic in Ω.

Proof Let (hδ) be a sequence of preharmonic functions on Ωδ converging to h. Via
Propositions 2.5 and 2.6, (1

δ [hδ(⋅+δ)−hδ])δ>0 is precompact. Since ∂xh is the only possible
sub-sequential limit of the sequence, ( 1√

2δ
[hδ(⋅ + δ)−hδ])δ>0 converges (indeed its discrete

primitive converges to h). Similarly, one can prove convergence of discrete derivatives
of any order. In particular, 0 = 1

2δ2 ∆δhδ converges to 1
4[∂xxh + ∂yyh]. Therefore, h is

harmonic. ◻

In particular, preharmonic functions with a given boundary value problem converge
in the scaling limit to a harmonic function with the same boundary value problem in a
rather strong sense, including convergence of all partial derivatives. The finest result of
convergence of discrete Dirichlet problems to the continuous ones will not be necessary in
our setting and we state the minimal required result:

Theorem 2.8. Let Ω be a simply connected domain with two marked points a and b on the
boundary, and f a bounded continuous function on the boundary of Ω. Let fδ ∶ ∂Ωδ → C
be a sequence of uniformly bounded functions converging uniformly away from a and b to
f . Let hδ be the unique preharmonic map on Ωδ such that (hδ)∣∂Ωδ = fδ. Then

hδ Ð→ h when δ → 0

uniformly on compact subsets of Ω, where h is the unique harmonic function on Ω, con-
tinuous on Ω, satisfying h∣∂Ω = f .

Proof Since (fδ)δ>0 is uniformly bounded by some constant M , the minimum and max-
imum principles imply that (hδ)δ>0 is bounded by M . Therefore, the family (hδ) is
precompact (Proposition 2.6). Let h̃ be a sub-sequential limit. Necessarily, h̃ is harmonic
inside the domain (Proposition 2.7) and bounded. To prove that h̃ = h, it suffices to show
that h̃ can be continuously extended to the boundary by f .

Let x ∈ ∂Ω ∖ {a, b} and ε > 0. There exists R > 0 such that for δ small enough,

∣fδ(x′) − fδ(x)∣ < ε for every x′ ∈ ∂Ω ∩Q(x,R),
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where Q(x,R) = x + [−R,R]2. For r < R and y ∈ Q(x, r), we have

∣hδ(y) − fδ(x)∣ = Ey[fδ(Xτ) − fδ(x)]

for X a random walk starting at y, and τ its hitting time of the boundary. Decomposing
between walks exiting the domain inside Q(x,R) and others, we find

∣hδ(y) − fδ(x)∣ ≤ ε + 2MPy[Xτ ∉ Q(x,R)]

Proposition 2.4 guarantees that Py[Xτ ∉ Q(x,R)] ≤ (r/R)α for some independent constant
α > 0. Taking r = R(ε/2M)1/α and letting δ go to 0, we obtain ∣h̃(y)−f(x)∣ ≤ 2ε for every
y ∈ Q(x, r). ◻

2.5 Discrete Green functions

This paragraph concludes the section by mentioning the important example of discrete
Green functions. For y ∈ Ωδ ∖ ∂Ωδ, let GΩδ(⋅, y) be the discrete Green function in the
domain Ωδ with singularity at y, i.e. the unique function on Ωδ such that

• its Laplacian on Ωδ ∖ ∂Ωδ equals 0 except at y, where it equals 1,

• GΩδ(⋅, y) vanishes on the boundary ∂Ωδ.

The quantity −GΩδ(x, y) is the number of visits at x of a random walk started at y and
stopped at the first time it reaches the boundary. Equivalently, it is also the number of
visits at y of a random walk started at x stopped at the first time it reaches the boundary.
Green functions are very convenient, in particular because of the Riesz representation
formula for (not-necessarily harmonic) functions:

Proposition 2.9 (Riesz representation formula). Let f ∶ Ωδ → C be a function vanishing
on ∂Ωδ. We have

f = ∑
y∈Ωδ

∆δf(y)GΩδ(⋅, y).

Proof Note that f −∑y∈Ωδ ∆δf(y)GΩδ(⋅, y) is harmonic and vanishes on the boundary.
Hence, it equals 0 everywhere. ◻

Finally, a regularity estimate on discrete Green functions will be needed. This
proposition is slightly technical. In the following, aQδ = [−a, a]2 ∩ Lδ and ∇xf(x) =
(f(x + δ) − f(x), f(x + iδ) − f(x)).

Proposition 2.10. There exists C > 0 such that for any δ > 0 and y ∈ 9Qδ,

∑
x∈Qδ

∣∇xG9Qδ(x, y)∣ ≤ Cδ ∑
x∈Qδ

G9Qδ(x, y).
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Proof In the proof, C1,...,C6 denote universal constants. First assume y ∈ 9Qδ ∖ 3Qδ.
Using random walks, one can easily show that there exists C1 > 0 such that

1

C1

G9Qδ(x, y) ≤ G9Qδ(x′, y) ≤ C1G9Qδ(x, y)

for every x,x′ ∈ 2Qδ (this is a special application of Harnack’s principle). Using Proposi-
tion 2.5, we deduce

∑
x∈Qδ

∣∇xG9Qδ(x, y)∣ ≤ ∑
x∈Qδ

C2δ max
x∈2Qδ

G9Qδ(x, y) ≤ C1C2δ ∑
x∈Qδ

G9Qδ(x, y)

which is the claim for y ∈ 9Qδ ∖ 3Qδ.
Assume now that y ∈ 3Qδ. Using the fact that G9Qδ(x, y) is the number of visits of x

for a random walk starting at y (and stopped on the boundary), we find

∑
x∈Qδ

G9Qδ(x, y) ≥ C3/δ2.

Therefore, it suffices to prove ∑x∈Qδ ∣∇G9Qδ(x, y)∣ ≤ C4/δ. Let GLδ be the Green function
in the whole plane, i.e. the function with Laplacian equal to δx,y, normalized so that
GLδ(y, y) = 0, and with sublinear growth. This function has been widely studied, it was
proved in [MW40] that

GLδ(x, y) =
1

π
ln(∣x − y∣

δ
) +C5 + o(

δ

∣x − y∣
) .

Now, GLδ(⋅, y) −G9Qδ(⋅, y) − 1
π ln (1

δ
) is harmonic and has bounded boundary conditions

on ∂9Qδ. Therefore, Proposition 2.5 implies

∑
x∈Qδ

∣∇x(GLδ(x, y) −G9Qδ(x, y))∣ ≤ C6δ ⋅ 1/δ2 = C6/δ.

Moreover, the asymptotic of GLδ(⋅, y) leads to

∑
x∈Qδ

∣∇xGLδ(x, y)∣ ≤ C7/δ.

Summing the two inequalities, the result follows readily. ◻

3 Preholomorphic functions

3.1 Historical introduction

Preholomorphic functions appeared implicitly in Kirchhoff’s work in 1847 [Kir47], in which
a graph is modeled as an electric network. Assume every edge of the graph is a unit resistor
and for u ∼ v, let F (uv) be the current from u to v. The first and the second Kirchhoff’s
laws of electricity can be restated:
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• the sum of currents flowing from a vertex is zero:

∑
v∼u

F (uv) = 0, (2.5)

• the sum of the currents around any oriented closed contour γ is zero:

∑
[uv]∈γ

F (uv) = 0. (2.6)

Different resistances amount to putting weights into (2.5) and (2.6). The second law
is equivalent to saying that F is given by the gradient of a potential function H, and the
first equivalent to H being preharmonic.

Besides the original work of Kirchhoff, the first notable application of preholomorphic
functions is perhaps the famous article [BSST40] of Brooks, Smith, Stone and Tutte,
where preholomorphic functions were used to construct tilings of rectangles by squares.

Preholomorphic functions distinctively appeared for the first time in the papers [Isa41,
Isa52] of Isaacs, where he proposed two definitions (and called such functions ’mono-
diffric’). Both definitions ask for a discrete version of the Cauchy-Riemann equations
∂iαF = i∂αF or equivalently that the z̄-derivative is 0. In the first definition, the equation
that the function must satisfy is

i [f (E) − f (S)] = f (W ) − f (S)

while in the second, it is

i [f (E) − f (W )] = f (N) − f (S) ,

where N , E, S and W are the four corners of a face. A few papers of his and others
mathematicians followed, studying the first definition, which is asymmetric on the square
lattice. The second (symmetric) definition was reintroduced by Ferrand, who also dis-
cussed the passage to the scaling limit and gave new proofs of Riemann uniformization
and the Courant-Friedrichs-Lewy theorems [Fer44, LF55]. This was followed by extensive
studies of Duffin and others, starting with [Duf56].

3.2 Isaacs’s definition of preholomorphic functions

We will be working with Isaacs’s second definition (although the theories based on both
definitions are almost the same). The definition involves the following discretization of the
∂̄ = 1

2(∂x + i∂y) operator. For a complex valued function f on Lδ (or on a finite subgraph
of it), and x ∈ L⋆

δ , define

∂̄δf(x) = 1

2
[f (E) − f (W )] + i

2
[f (N) − f (S)]

where N , E, S and W denote the four vertices adjacent to the dual vertex x indexed in
the obvious way.
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Remark 2.11. When defining derivation, one uses duality between a graph and its dual.
Quantities related to the derivative of a function on G are defined on the dual graph
G⋆. Similarly, notions related to the second derivative are defined on the graph G again,
whereas a primitive would be defined on G⋆.

Definition 2.12. A function f ∶ Ωδ → C is called preholomorphic if ∂̄δf(x) = 0 for every
x ∈ Ω⋆

δ . For x ∈ Ω⋆
δ , ∂̄δf(x) = 0 is called the discrete Cauchy-Riemann equation at x.

The theory of preholomorphic functions starts much like the usual complex analy-
sis. Preholomorphic functions are preharmonic. Moreover, sums of preholomorphic func-
tions are also preholomorphic, discrete contour integrals vanish, primitive (in a simply-
connected domain) and derivative are well-defined and are preholomorphic functions on
the dual square lattice, etc... In particular, the (discrete) gradient of a preharmonic func-
tion is preholomorphic (this property has been proposed as a relevant generalization in
higher dimensions).

Proposition 2.13. Preholomorphic functions are preharmonic for a slightly modified
Laplacian (the average over edges at distance

√
2δ minus the value at the point).

Unfortunately, the product of two preholomorphic functions is no longer preholomor-
phic in general: e.g., while restrictions of 1, z, and z2 to the square lattice are preholo-
morphic, the higher powers are only approximately so. The restriction of a continuous
holomorphic function to Lδ satisfies discrete Cauchy-Riemann equations up to O(δ3).
This makes the theory of preholomorphic functions significantly harder than the usual
complex analysis, since one cannot transpose proofs from continuum to discrete in a
straightforward way.

3.3 Discrete contours and weak discrete-holomorphicity

In the continuum, many definitions of holomorphicity are equivalent. Most of these defi-
nitions have natural counterparts in the discrete. The previous section was dealing with
discretization of Cauchy-Riemann equations. This definition is the most suitable to study
integrable systems. Nevertheless, we can be interested in weaker versions of discrete
holomorphicity.

Morera’s theorem asserts that continuous functions with integrals around any contour
vanishing are exactly holomorphic functions. Therefore, it can be interesting to have an
equivalent of this definition in the discrete.

Definition 2.14 (Discrete contours). A discrete contour in a graph G is a one-to-one
circuit of oriented edges in G⋆.

Recall that every edge e of G is in correspondence with an edge of G⋆ denoted e⋆ (and
vice versa). For a function f ∶ E[G] → C and a discrete contour γ, the discrete integral of
f on γ is defined by

Iγ(f) ∶= ∑
e⋆=[uv]∈γ

f(e) ⋅ (v − u).

As mentioned in Remark 2.11, discrete integrals are thus defined on the dual graph.
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Definition 2.15 (Weak discrete holomorphicity). A function h ∶ G→ C is weakly discrete
holomorphic if its integral on any discrete contour vanishes.

This definition corresponds to assuming only the second Kirchhoff’s law. Note that
the definition is much weaker than the previous one. For instance, a weakly discrete
holomorphic function is not determined by its boundary conditions.

A sequence of weakly discrete holomorphic functions on approximations of a given
domain converging uniformly on any compact subset tends to a continuous function with
vanishing integrals along contours. Morera’s theorem then implies that the limit is holo-
morphic. Hence, this notion is sufficient to imply holomorphicity in the scaling limit,
when such scaling limit is known to exist.

Let us mention that Smirnov used this notion of weak discrete holomorphicity in
order to prove Cardy’s formula [Smi01]. Many statistical models will be shown to possess
weakly discrete holomorphic observables. The difficulty is that convergence (or simply
precompactness) of these observables is out of reach for now.

4 s-holomorphic functions
As explained in the previous sections, there are difficulties when dealing with the square
of a preholomorphic function. In order to partially overcome this difficulty, we introduce
s-holomorphic functions (for spin-holomorphic), a notion that will be central in the study
of the spin and FK fermionic observables. This notion was developed in [Smi10a] and we
refer to it for additional information.

4.1 Definition of s-holomorphic functions

In this section, s-holomorphic functions are defined on the medial lattice L◇
δ only. For

any edge of the medial lattice e 3, the complex line passing through the origin and
√
ē

(the choice of the square root is not important) is denoted by `(e). The different lines
associated with medial edges on L◇

δ are R, eiπ/4R, iR and e−iπ/4R, see Fig. 2.3.

Definition 2.16. A function f ∶ Ω◇
δ → C is s-holomorphic if for any edge e of Ω◇

δ , we
have

P`(e)[f(x)] = P`(e)[f(y)]

where x, y are the endpoints of e and P` is the orthogonal projection on `.

The definition of s-holomorphicity is not rotationally invariant. Nevertheless, f is
s-holomorphic if and only if eiπ/4f(i⋅) (resp. if(−⋅)) is s-holomorphic.

Proposition 2.17. Any s-holomorphic function f ∶ Ω◇
δ → C is preholomorphic on Ω◇

δ .

3The edge e being oriented, it can be thought of as a complex number.
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e−iπ/4
1

eiπ/4

i

v

NW NE

SESW

Figure 2.3: Lines `(e) for medial edges around a white face.

Proof Let f ∶ Ω◇
δ → C be a s-holomorphic function. Let v be a vertex of Lδ ∪ L⋆

δ (this
is the vertex set of the dual of the medial lattice). Assume that v ∈ Ω⋆

δ , the other case
is similar. We aim to show that ∂̄δf(v) = 0. Let NW , NE, SE and SW be the four
vertices around v as illustrated in Fig. 2.3. Next, let us write relations provided by the
s-holomorphicity, for instance

P R[f(NW )] = P R[f(NE)].

Expressed in terms of f and its complex conjugate f̄ only, we obtain

f(NW ) + f(NW ) = f(NE) + f(NE).

Doing the same with the other edges, we find

f(NE) + if(NE) = f(SE) + if(SE)
f(SE) − f(SE) = f(SW ) − f(SW )
f(SW ) − if(SW ) = f(NW ) − if(NW )

Multiplying the second identity by −i, the third by −1, the fourth by i, and then summing
the four identities, we obtain

0 = (1 − i) [f(NW ) − f(SE) + if(SW ) − if(NE)] = 2(1 − i)∂̄δf(v)

which is exactly the discrete Cauchy-Riemann equation in the medial lattice. ◻

4.2 Discrete primitive of F 2

One might wonder why s-holomorphicity is an interesting concept, since it is more restric-
tive than preholomorphicity. The answer comes from the fact that a relevant discretization
of 1

2Im (∫
z
f 2) can be defined for s-holomorphic functions f .
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Theorem 2.18. Let f ∶ Ω◇
δ → C be an s-holomorphic function on the discrete simply

connected domain Ω◇
δ , and b0 ∈ Ωδ, then there exists a unique function H ∶ Ωδ ∪ Ω⋆

δ → C
such that

H(b0) = 1 and

H(b) −H(w) = δ ∣P`(e)[f(x)]∣
2 (= δ ∣P`(e)[f(y)]∣

2 )

for every edge e = [xy] of Ω◇
δ bordered by a black face b ∈ Ωδ and a white face w ∈ Ω⋆

δ .

An elementary computation shows that for two neighboring sites b1, b2 ∈ Ωδ, with v
being the medial vertex at the center of [b1b2],

H(b1) −H(b2) = 1

2
Im [f(v)2 ⋅ (b1 − b2)] ,

the same relation holding for sites of Ω⋆
δ . This legitimizes the fact that H is an analogue

of 1
2Im (∫

z
f 2).

Proof The uniqueness of H is straightforward since Ω◇
δ is simply connected. To obtain

the existence, construct the value at some point by summing increments along an arbitrary
path from b0 to this point. The only thing to check is that the value obtained does not
depend on the path chosen to define it. Equivalently, we must check the second Kirchhoff’s
law. Since the domain is simply connected, it is sufficient to check it for elementary
’square’ contours around each medial vertex v (these are the simplest closed contours).
Therefore, we need to prove that

∣P`(n)[f(v)]∣
2 − ∣P`(e)[f(v)]∣

2 + ∣P`(s)[f(v)]∣
2 − ∣P`(w)[f(v)]∣

2 = 0, (2.7)

where n, e, s and w are the four medial edges with end-point v, indexed in the obvious
way. Note that `(n) and `(s) (resp. `(e) and `(w)) are orthogonal. Hence, (2.7) follows
from

∣P`(n)[f(v)]∣
2 + ∣P`(s)[f(v)]∣

2 = ∣f(v)∣2 = ∣P`(e)[f(v)]∣
2 + ∣P`(w)[f(v)]∣

2
. (2.8)

◻

Even if the primitive of f is preholomorphic and thus preharmonic, this is not the case
for H in general4. Nonetheless, H satisfies subharmonic and superharmonic properties.
Denote by H● and H○ the restrictions of H ∶ Ωδ ∪ Ω⋆

δ → C to Ωδ (black faces) and Ω⋆
δ

(white faces).

Proposition 2.19. If f ∶ Ω◇
δ → C is s-holomorphic, then H● and H○ are respectively

subharmonic and superharmonic.
4H is roughly (the imaginary part of) the primitive of the square of f .
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B

Figure 2.4: Arrows corresponding to contributions to 2∆H●. Note that arrows from black
to white contribute negatively, those from white to black positively.

Proof Let B be a vertex of Ωδ ∖ ∂Ωδ. We aim to show that the sum of increments of
H● between B and its four neighbors is positive. In other words, we need to prove that
the sum of increments along the sixteen arrows drawn in Fig. 2.4 is positive. Let a, b,
c and d be the four values of

√
δP`(e)[f(y)] for every vertex y ∈ Ω◇

δ around B and any
edge e = [yz] bordering B (there are only four different values thanks to the definition
of s-holomorphicity). An easy computation shows that the eight ’interior’ increments
are thus −a2, −b2, −c2, −d2 (each appearing twice). Using the s-holomorphicity of f on
vertices of Ω◇

δ around B, we can compute the eight ’exterior’ increments in terms of a, b,
c and d: we obtain (a

√
2− b)2, (b

√
2− a)2, (b

√
2− c)2, (c

√
2− b)2, (c

√
2− d)2, (d

√
2− c)2,

(d
√

2 + a)2, (a
√

2 + d)2. Hence, the sum S of increments equals

S = 4(a2 + b2 + c2 + d2) − 4
√

2(ab + bc + cd − da) (2.9)

= 4∣e−iπ/4a − b + ei3π/4c − id∣2 ≥ 0. (2.10)

The proof for H○ follows along the same lines. ◻

Remark 2.20. A subharmonic function in a domain is smaller than the harmonic func-
tion with the same boundary conditions. Therefore, H● is smaller than the harmonic
function solving the same boundary value problem while H○ is bigger than the harmonic
function solving the same boundary value problem. Moreover, H●(b) is larger than H○(w)
for two neighboring faces. Hence, if H● and H○ are close to each other on the boundary,
then they are ’sandwiched between two harmonic functions with roughly the same bound-
ary conditions’. In this case, they are almost harmonic. This fact will be central in the
proof of conformal invariance.
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Figure 2.5: The black graph is the isoradial graph. Grey vertices are the vertices on the
dual graph. There exists a radius r > 0 such that all faces can be put into an incircle of
radius r. Dual vertices have been drawn in such a way that they are the centers of these
circles.

5 Isoradial graphs and circle packings
Duffin [Duf68] extended the definition of preholomorphic functions to isoradial graphs.
Isoradial graphs are planar graphs that can be embedded in such a way that there exists
r > 0 so that each face has a circumcircle of same radius r > 0, see Fig. 2.5. When
the embedding satisfies this property, it is said to be an isoradial embedding. We would
like to point out that isoradial graphs form a rather large family of graphs. While not
every topological quadrangulation (graph all of whose faces are quadrangles) admits a
isoradial embedding, Kenyon and Schlenker [KS05] gave a simple necessary and sufficient
topological condition for its existence. It seems that the first appearance of a related
family of graphs in the probabilistic context was in the work of Baxter [Bax89], where the
eight vertex model and the Ising model were considered on Z-invariant graphs, arising
from planar line arrangements. These graphs are topologically the same as the isoradial
ones, and though they are embedded differently into the plane, by [KS05] they always
admit isoradial embeddings. In [Bax89], Baxter was not considering scaling limits, and
so the actual choice of embedding was immaterial for his results. However, weights in his
models would suggest an isoradial embedding, and the Ising model was so considered by
Mercat [Mer01], Boutilier and de Tilière [BdT10, BdT11], Chelkak and Smirnov [CS08]
(see Chapter 17 for more details). Additionally, the dimer and the uniform spanning
tree models on such graphs also have nice properties, see e.g. [Ken02]. Today, isoradial
graphs seem to be the largest family of graphs for which certain lattice models, including
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the Ising model, have nice integrability properties (for instance, the star-triangle relation
works nicely). A second reason to study isoradial graphs is that it is perhaps the largest
family of graphs for which the Cauchy-Riemann operator admits a nice discretization.
In particular, restrictions of holomorphic functions to such graphs are preholomorphic to
higher orders. The fact that isoradial graphs are natural graphs both for discrete analysis
and statistical physics sheds yet more light on the connection between the two domains.

In [Thu86], Thurston proposed circle packings as another discretization of complex
analysis. Some beautiful applications were found, including yet another proof of the
Riemann uniformization theorem by Rodin and Sullivan [RS87]. More interestingly, circle
packings were used by He and Schramm [HS93] in the best result so far on the Koebe
uniformization conjecture, stating that any domain can be conformally uniformized to a
domain bounded by circles and points. In particular, they established the conjecture for
domains with countably many boundary components. More about circle packings can be
learned from Stephenson’s book [Ste05]. Note that unlike the discretizations discussed
above, the circle packings lead to non-linear versions of the Cauchy-Riemann equations,
see e.g. the discussion in [BMS05].
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Part I

The random-cluster models
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Chapter 3

Two-dimensional random-cluster
models

Abstract: The family of random-cluster models is presented mathematically. The chapter
gathers several properties (some non-standard) on this model and we refer to the extensive
literature on the subject for additional information. The presentation is deliberately not
general and is focused on crucial properties for this text.

1 The family of random-cluster models

1.1 Definition of the model

The random-cluster model can be defined on any graph. However, we restrict ourselves
to the square lattice L = (V,E) of mesh size 1 (recall that it is a version rotated by an
angle π/4 of Z2).

A configuration ω on G is a subgraph of G, composed of the same sites and a subset of
its edges. The edges belonging to ω are called open, the others closed. Two sites a and b
are said to be connected if there is an open path, i.e. a path composed of open edges only,
connecting them (this event will be denoted by a↔ b). Two sets A and B are connected
if there exists an open path connecting them (denoted A↔ B). The maximal connected
components will be called clusters.

Boundary conditions ξ are given by a partition of ∂G. The graph obtained from
the configuration ω by identifying (or wiring) the edges in ξ that belong to the same
component of ξ is denoted by ω∪ξ. Boundary conditions should be understood as encoding
how sites are connected outside of G. Let o(ω) (resp. c(ω)) denote the number of open
(resp. closed) edges of ω and k(ω, ξ) the number of connected components of ω ∪ ξ.

53
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Definition 3.1. The probability measure φξG,p,q of the random-cluster model on G with
parameters p and q and boundary conditions ξ is defined by

φξG,p,q({ω}) ∶=
po(ω)(1 − p)c(ω)qk(ω,ξ)

Zξ
G,p,q

(3.1)

for every configuration ω on G, where Zξ
G,p,q is a normalizing constant referred to as the

partition function.

Figure 3.1: Left: Example of a configuration on the rotated lattice. Right: A configu-
ration together with its dual configuration.

1.2 Special boundary conditions

Four boundary conditions play a special role in the study of the random-cluster model:

• The wired boundary conditions, denoted by φ1
G,p,q, is specified by the fact that all

the vertices on the boundary are pairwise wired (only one set in the partition).

• The free boundary conditions, denoted by φ0
G,p,q, is specified by no wiring between

sites.

• The periodic boundary conditions: for n ≥ 1, the torus of size n can be seen as
the box [0, n]2 with the boundary conditions obtained by imposing that (i,0) is
wired to (i, n) for every i ∈ [0, n] and that (0, j) is connected to (n, j) for every
j ∈ [0, n]. The random-cluster measure on the torus of size n is denoted by φp

p,q,[0,n]2

or more concisely φp
p,q,n. Note that this realization of the torus provides us with a

natural embedding in the plane (although of course the boundary conditions cannot
be realized using disjoint paths outside the square [0, n]2 because the torus itself is
not a planar graph).
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• The Dobrushin boundary conditions: assume that ∂G is a self-avoiding polygon in
L, let a and b be two sites of ∂G. Orienting its boundary counterclockwise defines
two oriented boundary arcs ∂ab and ∂ba; the Dobrushin boundary conditions are
defined to be free on ∂ab (there are no wirings between boundary sites) and wired on
∂ba (all the boundary sites are pairwise connected). These arcs are referred to as the
free arc and the wired arc, respectively. The measure associated to these boundary
conditions will be denoted by φa,bG,p,q.

2 Finite energy and Domain Markov properties

2.1 The domain Markov property

Consider a graph G = (V,E) and F ⊂ E. One can encode, using appropriate boundary
conditions ξ, the influence of the configuration outside F on the measure within it. In
other words, given the state of edges outside a graph, the conditional measure inside F is
a random-cluster measure with boundary conditions given by the wiring outside F . More
formally,

Theorem 3.2. Let G = (V,E) be a graph, (p, q) ∈ [0,1] × (0,∞) and xi boundary condi-
tions. Fix F ⊂ E. Let X be a random variable measurable in terms of edges in F (call
FE∖F the σ-algebra generated by edges of E ∖ F ). Then,

φξG,p,q(X ∣FE∖F )(ψ) = φξ∪ψF,p,q(X),

where ψ is a configuration outside F and ξ ∪ψ is the wiring inherited by ξ and the edges
in ψ.

This property allows us to decorrelate events in disjoint areas even though they are
not independent.

Proof Let us deal with the case F = E ∖ {e}. Let ω a configuration on F and define
ωe to be the configuration on E coinciding with ω on F and with e open. Then for any
configuration ω,

φξG,p,q(ω∣F{e})(e open) ∶= φξG,p,q(ω∣e open) = φξG,p,q(ωe)/φ
ξ
G,p,q(e open)

= po(ω)+1(1 − p)c(ω)qk(ωe,ξ)

∑ω̃ p
o(ω̃)(1 − p)c(ω̃)qk(ω̃,ξ)

/∑ω̃∶e is open p
o(ω̃)(1 − p)c(ω̃)qk(ω̃,ξ)

∑ω̃ p
o(ω̃)(1 − p)c(ω̃)qk(ω̃,ξ)

= po(ω)+1(1 − p)c(ω)qk(ω,ψ)

∑ω̃∣F p
o(ω̃∣F )+1(1 − p)c(ω̃∣F )qk(ω̃∣F ,ψ)

= φψG,p,q(ω)

where ψ is given by the boundary conditions ξ with the two end-points of e wired together.
Similarly

φξG,p,q(ω∣F{e})(e closed) = φξG∖e,p,q(ω̃)
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and the claim follows easily for F = E ∖{e}. The result can be deduced for every random
variable X by linearity. Now, one can repeat the previous reasoning recursively and the
result follows for any arbitrary subset of edges F . ◻

2.2 Finite energy property

This is a very simple property of random-cluster models. Let ε ∈ (0,1/2). The conditional
probability for an edge to be open, knowing the states of all the other edges, is bounded
away from 0 and 1 uniformly in p ∈ (ε,1− ε) and in the configuration away from this edge.
This property extends to any finite family of edges. Via the domain Markov property:

Proposition 3.3. Let p, q > 0 and G a graph. There exists c = c(G,p, q) such that for
any configuration ω, φξG,p,q(ω) ≥ c for any boundary conditions ξ.

The proof is extremely easy and is not included here. A typical example of a model not
satisfying the finite energy property if the uniform (or any decent) measure on spanning
trees. Indeed, knowing the whole configuration outside an edge e, it is not necessarily
possible for e to be open (for instance if there is a cycle once e is open).

3 Strong positive association when q ≥ 1

An event is called increasing if it is preserved by addition of open edges. A typical
increasing event is the existence of a path between two sets A and B. The class of
increasing events is central in the study of random-cluster models, due to the so-called
positive association of the model.

3.1 Holley criterion

A measure µ1 stochastically dominates µ2 if for every increasing event A, µ1(A) ≥ µ2(A).
We first present a sufficient condition for two measures to be stochastically ordered.

Let Ω be the space of subgraphs (V,F ) of G = (V,E) with F ⊂ E (edges in F are
called open). We restrict ourselves to positive1 probability measures on Ω. For ω1, ω2 ∈ Ω,
ω1 ∨ ω2 (resp. ω1 ∧ ω2) is the configuration with set of open edges being the union (resp.
the intersection) of the sets of open edges of ω1 and ω2.

Theorem 3.4 (Holley inequality [Hol74]). Let µ1, µ2 be two measures such that

µ1(ω1 ∨ ω2)µ2(ω1 ∧ ω2) ≥ µ1(ω1)µ2(ω2), ω1, ω2 ∈ Ω, (3.2)

then µ1(A) ≥ µ2(A) for any increasing event A.
1i.e. measures µ which satisfies µ(ω) > 0 for every ω ∈ Ω.



CHAPTER 3. TWO-DIMENSIONAL RANDOM-CLUSTER MODELS 57

The proof of this statement is a construction via Markov chains of a coupling (ω1, ω2)
between the two measures (ω1 is chosen according to the measure µ1, and ω2 according to
the measure µ2), in a way that every open edge in ω2 is open in ω1. The proof is omitted
here (see Theorem (2.1) of [Gri06] for details). Let us mention that Theorem 3.4 possesses
an elegant simplification: (3.2) does not need to be checked for every configurations ω1,
ω2. Define ωe (resp. ωe) to be the configurations coinciding with ω on E ∖ {e}, and
with e open (resp. e closed). Define ωef (resp. ωfe , ωef and ωef ) to be the configurations
coinciding with ω on E ∖{e, f} and with e open and f closed (resp. e closed and f open,
e, f open and e, f closed).

Theorem 3.5. Let µ1, µ2 be two measures such that for any ω and e, f ,

µ1(ωe)µ2(ωe) ≥ µ1(ωe)µ2(ωe) (3.3)
µ1(ωef)µ2(ωef) ≥ µ1(ωfe )µ2(ωef), (3.4)

then µ1 stochastically dominates µ2.

Holley criterion is particularly suitable to prove the Fortuin-Kasteleyn-Ginibre in-
equality [FKG71]. First proved by Harris in the case of product measures (in this case, it
is called Harris inequality), the inequality relates the probability of the intersection of two
events to the product of the probabilities. It belongs to the class of correlation inequalities
(several other examples will be provided in this manuscript).

Theorem 3.6 (FKG lattice condition). Let G = (V,E) be a finite graph and µ be a
positive measure on Ω. If for any configuration ω and e, f ∈ E

µ(ωef)µ(ωef) ≥ µ(ωfe )µ(ωef), (3.5)

then for any increasing events A,B,

µ(A ∩B) ≥ µ(A)µ(B). (3.6)

The previous inequality immediately implies

µ(XY ) ≥ µ(X)µ(Y ) (3.7)

for any increasing random variables X,Y . By taking the complement, one can also work
with decreasing events or decreasing random variables.

Proof Equation (3.6) can be understood as µ(⋅∣B) stochastically dominates µ(⋅). Let
us check Holley inequalities (3.3) and (3.4). We do it only for (3.4) ((3.3) is even easier).
Fix ω as well as e and f ,

µ(ωef ∣B)µ(ωef) ≥ µ(ωfe ∣B)µ(ωef)

is equivalent to (multiplying by µ(B))

1ωef ∈B µ(ωef)µ(ωef) ≥ 1ωfe ∈B µ(ωfe )µ(ωef).

The indicator function on the left is equal to 1 if the one on the right is equal to 1,
therefore, the previous inequality is a consequence of (3.5). ◻
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3.2 Strong positive association for random-cluster models

Theorem 3.7 (Fortuin-Kasteleyn-Ginibre inequality [FKG71]). Fix a finite graph G,
boundary conditions ξ and two parameters p ∈ [0,1] and q ≥ 1. For any two increasing
events A and B, we have

φξG,p,q(A ∩B) ≥ φξG,p,q(A)φξG,p,q(B). (3.8)

Proof Let us check criterion (3.5). Fix ω a configuration and two edges e, f . We need
to prove

[p/(1 − p)]o(ωef )+o(ωef )qk(ωef )+k(ωef ) ≥ [p/(1 − p)]o(ω
f
e )+o(ωef )qk(ω

f
e )+k(ωef ).

Since o(ωef)+o(ωef) = o(ωfe )+o(ωef), the only property to check is that k(ωef)+k(ωef) ≥
k(ωfe ) + k(ωef) (recall q ≥ 1). Yet this inequality is obvious if we study wether both
end-points of f are already connected or not in ω∣G∖{e}. ◻

Corollary 3.8. Fix a finite graph G, boundary conditions ξ and q ≥ 1. For any p1 ≤ p2

and any increasing event A,

φξp1,q,G
(A) ≤ φξp2,q,G

(A). (3.9)

Proof For a random variable X, an easy computation implies

φξp2,q,G
(X) = φξp1,q,G

(XY )/K

where K is a normalizing constant and

Y (ω) = (p2/(1 − p2)
p1/(1 − p1)

)
o(ω)

.

Plugging X = 1, we find K = φξp1,q,G
(Y ). Now, X and Y are increasing, therefore (3.7)

implies
φξp2,q,G

(X) = φξp1,q,G
(XY )/φξp1,q,G

(Y ) ≥ φξp1,q,G
(X).

◻

Theorem 3.9. Fix a finite graph G and two parameters p ∈ [0,1] and q ≥ 1. For any
boundary conditions ψ ≤ ξ (i.e. sites wired in ψ are wired in ξ), we have

φψG,p,q(A) ≤ φξG,p,q(A) (3.10)

for any increasing event A.
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Proof Consider ψ as being the partition (E1, ..,Ek) of boundary vertices and construct
a new graph by adding edges between vertices of Ei for every i. Call this new graph G0

and E0 the set of additional edges. Now, the domain Markov property implies

φξG,p,q(⋅) = φξG0,p,q
(⋅∣ all the edges of E0 are closed)

φψG,p,q(⋅) = φξG0,p,q
(⋅∣ all the edges of E0 are open).

Using the FKG inequality twice, we obtain

φξG,p,q(A) ≤ φξG0,p,q
(A) ≤ φψG,p,q(A)

for any increasing event A depending on edges in G. ◻

For stochastic ordering, the free and the wired boundary conditions are thus extremal.
More formally, for any increasing event A and any boundary conditions ξ,

φ0
G,p,q(A) ≤ φξG,p,q(A) ≤ φ1

G,p,q(A). (3.11)

Combined with the domain Markov property, the comparison between boundary condi-
tions allows us to bound conditional probabilities.

4 Planar duality

4.1 Statement and self-dual point

In two dimensions, one can associate with any random-cluster model on a graph G a dual
model on G⋆. Given a subgraph configuration ω, construct a model on G⋆ by declaring
any edge of the dual graph to be open (resp. closed) if the corresponding edge of the
primal lattice is closed (resp. open) for the initial configuration. The new configuration
is called the dual configuration of ω and is denoted ω⋆, see Fig. 3.1.

Two sites u and v in G⋆ are said to be dual-connected if there is a dual-open path, i.e.
an open path in the dual model between u and v (this event will be denoted by a ⋆↔ b).
Two sets U and V are dual connected if there exists a dual-open path connecting them
(denoted U

⋆↔ V ). The maximal dual-connected components will be called dual-(open)
clusters.

So far, nothing depends on the model and the construction of the dual configuration
is not especially interesting. The miracle of this duality is that the dual configuration is
also a random-cluster configuration, however with other parameters. In crude words, the
duality could be describe as:

If ω is sampled according to a random-cluster measure with parameters (p, q), the law
of the dual configuration ω⋆ is the random-cluster measure on G⋆ with parameters (p⋆, q)
where

p⋆ = p⋆(p, q) ∶= (1 − p)q
(1 − p)q + p

. (3.12)
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When defining the dual of a random-cluster model, one must be careful about bound-
ary conditions or the previous statement remains too vague. Before describing in more
detail how boundary conditions should be handled, let us introduce the self-dual point
psd(q):

Definition 3.10. The self-dual point psd = psd(q) is the unique solution of the equation
p⋆(psd, q) = psd, i.e.

psd(q) =
√
q

1 +√
q
. (3.13)

4.2 Planar duality and boundary conditions

As mentioned above, the previous statement is very rough, and one needs to be careful
about boundary conditions. We now treat three crucial examples to us.

Free-wired boundary conditions The dual of the wired boundary conditions are
the free boundary conditions. Similarly, the dual of a random-cluster model with free
boundary conditions is a random-cluster model with wired boundary conditions. Formally,

Proposition 3.11. The dual model of the random-cluster on G with parameters (p, q) and
wired boundary conditions is the random-cluster with parameters (p⋆, q) and free boundary
conditions on G⋆.

Proof Note that the state of edges between two sites of ∂G is not relevant when bound-
ary conditions are wired. Indeed, sites on the boundary are connected via boundary
conditions anyway, so that the state of each boundary edge does not alter the connectiv-
ity properties of the subgraph, and is independent of other edges. For this reason, forget
about edges between boundary sites and consider only inner edges (which correspond to
edges of G⋆): o(ω) and c(ω) then denote the number of open and closed inner edges.

Set e⋆ for the dual edge of G⋆ associated to the (inner) edge e. From the definition of
the dual configuration ω⋆ of ω, we have o(ω⋆) = a − o(ω) where a is the number of edges
in G⋆ and o(ω⋆) is the number of open dual edges. Moreover, connected components of
ω⋆ correspond exactly to faces of ω, so that f(ω) = k(ω⋆), where f(ω) is the number of
faces (counting the infinite face). Using Euler’s formula

# edges + # connected components + 1 = #sites + # faces,

which is valid for any planar graph, we obtain, with s being the number of sites in G,

k(ω) = s − 1 + f(ω) − o(ω) = s − 1 + k(ω⋆) − a + o(ω⋆).
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The probability of ω⋆ is equal to the probability of ω under φ1
G,p,q, i.e.

φ1
G,p,q(ω) = 1

Z1
G,p,q

po(ω)(1 − p)c(ω)qk(ω)

= (1 − p)a
Z1
G,p,q

[p/(1 − p)]o(ω)qk(ω)

= (1 − p)a
Z1
G,p,q

[p/(1 − p)]a−o(ω⋆)qs−1−a+k(ω⋆)+o(ω⋆)

= paqs−1−a

Z1
G,p,q

[q(1 − p)/p]o(ω⋆)qk(ω⋆) = φ0
p⋆,q,G⋆(ω⋆)

since q(1 − p)/p = p⋆/(1 − p⋆), which is exactly the statement. ◻

Dobrushin boundary conditions The same reasoning as before (using Euler’s for-
mula) shows that the dual of φa,bG,p,q is φb

⋆,a⋆
G⋆,p⋆,q. In words, the dual of a random-cluster

model with parameters (p, q), free boundary conditions on ∂ab and wired boundary con-
ditions on ∂ba is the random-cluster model with parameters (p⋆, q) with wired boundary
conditions on ∂⋆ab and free boundary conditions on ∂⋆ba, where ∂

⋆
ab is the inner dual arc

adjacent to ∂ab and ∂⋆ba is the outer arc adjacent to ∂ba2.

Periodic boundary conditions The case of periodic boundary conditions, or equiva-
lently the case of the random-cluster model defined on a torus (with no boundary condi-
tions) is a little more involved: indeed, its dual is not a random-cluster model; yet it is
not very different from one, and that will be enough for our purposes. In order to state
duality in this case, additional notations are required. Let f(ω) be the number of faces
delimited by ω, i.e. the number of connected components of the complement of the set
of open edges, and s(ω) be the number of vertices in the underlying graph (it does not
depend on ω). We will now define an additional parameter δ(ω).

Call a (maximal) connected component of ω a net if it contains two non-contractible
simple loops of different homotopy classes, and a cycle if it is non-contractible but is not
a net. Notice that every configuration ω can be of one of three types:

• One of the clusters of ω is a net. Then no other cluster of ω can be a net or a cycle.
In that case, let δ(ω) = 2;

• One of the clusters of ω is a cycle. Then no other cluster can be a net, but other
clusters can be cycles as well (in which case all the involved, simple loops are in the
same homotopy class). Then let δ(ω) = 1;

• None of the clusters of ω is a net or a cycle. Let δ(ω) = 0.
2One should be careful when defining these arcs. In the next chapters, we will take care of this

technical issue.
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With this additional notation, Euler’s formula becomes

s(ω) − o(ω) + f(ω) = k(ω) + 1 − δ(ω). (3.14)

Besides, these terms transform in a simple way under duality: o(ω)+ o(ω⋆) is a constant,
f(ω) = k(ω⋆) and δ(ω) = 2 − δ(ω⋆). The same proof as that of usual duality, taking the
additional topology into account, then leads to the relation

(φp
p,q,n)⋆({ω}) ∝ q1−δ(ω)φp

p⋆,q,n({ω}). (3.15)

This means that even though the dual model of the periodic boundary conditions random-
cluster model is not exactly a random-cluster model at the dual parameter, it is absolutely
continuous with respect to it and the Radon-Nikodym derivative is bounded above and
below by constants depending only on q. Another way of stating the same result would
be to define a balanced random-cluster model with weights

φ̃p
p,q,n({ω}) =

(√q)1−δ(ω)

Z
φp
p,q,n({ω}) ∶

this one is absolutely continuous with respect to the usual random-cluster model and does
satisfy exact duality.

5 Infinite-volume measures and phase transition.

5.1 Definition of infinite-volume measures

The definition of an infinite-volume random-cluster measure is not direct. Indeed, one
cannot count the number of open or closed edges on L = (V,E) since they could be
(and would be) infinite. We thus define infinite-volume measures indirectly: they are the
measures which coincide, when restricted to a finite box, with random-cluster measures
in finite volume.

So far, the problem of the σ-field was eluded since every set of configurations was
measurable in finite volume. In infinite-volume, we must be careful and proceed as follows:
Ω is the space of configurations on the whole lattice and F is the smallest σ-algebra
containing every events depending on a finite number of edges.

Definition 3.12. Let p ∈ [0,1] and q ∈ (0,∞). A probability measure φ on (Ω,F) is
called an infinite-volume random-cluster measure with parameters p and q if for every
event A ∈ F and any box Λ,

φ(A∣FL∖Λ)(ξ) = φξΛ,p,q(A),

for φ-almost every ξ ∈ Ω, where FE∖Λ is the σ-algebra generated by edges in E ∖Λ.
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The domain Markov property and the comparison between boundary conditions allow
us to construct infinite-volume measures. Indeed, consider a sequence of measures on
boxes of increasing size with free boundary conditions. This sequence is increasing in the
sense of stochastic domination, which implies that it converges weakly to a limiting mea-
sure, called the random-cluster measure on L with free boundary conditions and denoted
by φ0

p,q
3. This construction can be performed with many other sequences of measures,

defining several a priori different infinite-volume measures on L. For instance, one can
define the random-cluster measure φ1

p,q with wired boundary conditions by considering
the decreasing sequence of random-cluster measures on finite boxes with wired boundary
conditions. It could also be possible to see infinite-volume measures existing intrinsiquely,
in the sense that they are not limits of random-cluster measures in finite volume.

The question of uniqueness of infinite measures is very difficult in general. The fol-
lowing powerful theorem answers partially this question and will be useful in the next
paragraphs.

Theorem 3.13 (see Theorem (4.60) of [Gri06]). For q ≥ 1, the set Dq of edge-weight p
for which uniqueness fails is at most countable.

There is an easy criterion, due to the positive association, to decide wether or not the
infinite-volume measures are unique for some parameters p and q:

Proposition 3.14. Let p ∈ [0,1] and q ∈ (0,∞). If φ1
p,q = φ0

p,q, then there exists a unique
infinite-volume measure with parameters p and q, denoted φp,q.

5.2 Ergodicity of infinite-volume random-cluster measures

A property that will be used implicitely in many arguments in this chapter and the next
ones is the ergodicity of the measures. More precisely,

Theorem 3.15 (Corollary (4.23) of [Gri06]). Fix p ∈ [0,1] and q ∈ (0,∞). Any
translational-invariant event A ∈ F has probability 0 or 1 under the measures φ1

p,q and
φ0
p,q.

5.3 Critical point

We are now in a position to discuss the phase transition of the random-cluster model.

Theorem 3.16. There exists a critical point pc ∈ (0,1) such that:

• For p < pc, any infinite-volume measure has no infinite cluster almost surely.

• For p > pc, any infinite-volume measure has a unique infinite cluster almost surely.
3More precisely, the restrictions to a box ΛN of measures with free boundary conditions on boxes Λn,

n ≥ N , form an increasing sequence of measures, allowing us to construct a limiting measure φ on ΛN
by the formula φ(A) ∶= limN→∞ φp,q,N(A). Since these limits are compatible for different N , it defines a
measure on Z2 (with σ-algebra F).
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Note that several parts of the previous statement are not straightforward:
- It is natural to define the parameter pc as the infimum of edge-weights p for which

there is an infinite-volume measure possessing an infinite cluster with positive probability.
Yet, non-uniqueness of infinite-volume measures can copromise this strategy. Fortunately,
Theorem 3.8 guarantees that the set of edge-weights such that uniqueness fails is discrete,
which is enough to legitimate the definition of pc.

- The fact that the infinite cluster exists with probability one or zero is a consequence
of ergodicity (Theorem 3.15).

- The uniqueness of the infinite cluster is a consequence of an argument of Burton-
Keane [BK89] (note that this uniqueness can fail when considering random-cluster models
on more general graphs such as non-amenable Cayley graphs).

- The fact that pc lies strictly between 0 and 1 is not obvious (and false in one dimen-
sion). A counting argument similar to Peierls’s argument [Pei36] allows us to rule out
these two possibilities. Since Peierls’s argument will be presented in the case of the Ising
model, we do not spend more time on it now.

Overall, the existence of a critical point is not completely direct. Nevertheless, it
remains a well understood problem. Its computation is a much harder task and the
existence of a nice formula for pc(q) is not even obvious.

On the square lattice, it is natural to conjecture that the critical point satisfies pc = psd.

Conjecture 3.17. The critical parameter pc(q) of the random-cluster model on the square
lattice equals psd(q) =

√
q/(1 +√

q) for every q ≥ 1.

Indeed, if one assumes pc ≠ psd, there would be two phase transitions, one at pc, due to
the change of behavior in the primal model, and one at p⋆c , due to the change of behavior
in the dual model. Hence, the natural assumption that only one phase transition occurs
implies pc = psd. Nevertheless, this heuristic argument is not a mathematical proof, and
a formal derivation was lacking for many years. Recently, the critical point was finally
identified rigorously. This is the subject (among other things) of Chapter 4.

6 The inequality pc ≥ psd.
A lower bound for the critical value can be derived using the uniqueness of the infinite
cluster. Indeed, if one assumes that pc < psd, the configuration at psd must contain one
infinite open cluster and one infinite dual open cluster (since the dual random-cluster
model is then supercritical as well). Intuition indicates that such coexistence would imply
that there is more than one infinite open cluster; an elegant argument (due to Zhang in
the case of percolation) formalizes this idea. We refer to the presentation in Theorem
(6.17) of [Gri06] for full detail, but still give a sketch of the argument.

Proposition 3.18. For q ≥ 1, there exists almost surely no infinite cluster at psd(q) for
the infinite-volume measure with free boundary conditions.
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The proof goes as follows, see Figure 3.2. Assume that pc < psd and consider the
random-cluster model with p = psd. There is an infinite open cluster, and therefore, one
can choose a large box such that the infinite open cluster and the dual infinite open cluster
touch the boundary with probability greater than 1−ε. The FKG inequality (through the
so-called “square-root trick”: for two increasing events A and B with same probabilities,
φξG,p,q(A∩B) ≥ 1−(1−φξG,p,q(A))1/2) implies that the infinite open cluster actually touches
the top side of the box, using only edges outside the box, with probability greater than
1 − ε1/4. Therefore, with probability at least 1 − 2ε1/4, the infinite open cluster touches
both the top and bottom sides, using only edges outside of the box.

A similar argument implies that the infinite dual open cluster touches both the left and
right sides of the box with probability at least 1−2ε1/4. Therefore, with probability at least
1−4ε1/4, the complement of the box contains an infinite open path touching the top of the
box, one touching the bottom, and infinite dual open paths touching each of the vertical
edges. Enforcing edges in the box to be closed, which brings only a positive multiplicative
factor due to the finite energy property of the model, and choosing ε sufficiently small,
there are two infinite open clusters with positive probability. Since the infinite open
cluster must be unique, this is a contradiction which implies that pc ≥ psd.

square root
trick

finite energy

∞

[0, n)2

φp,q(·) ≥ 1 − ε

∞

[0, n)2

φp,q(·) ≥ 1 − ε
1
4

intersection of
events

∞

∞

∞

∞

[0, n)2

φp,q(·) ≥ c(1 − 4ε
1
4 )

∞

∞

∞

∞

[0, n)2

φp,q(·) ≥ 1 − 4ε
1
4

Figure 3.2: A figurative description of the proof of pc ≥ psd.

Uniqueness of the infinite measure for p < psd(q) When p < psd ≤ pc, there is no
infinite cluster for any infinite-volume measure. The following theorem will be very useful
in our study.

Theorem 3.19. Fix q ≥ 1. The unique edge-weight p ∈ [0,1] for which there can exist
distinct infinite-volume measures is psd(q).

From now on, when p ≠ psd(q), the unique infinite measure with parameters (p, q) is
denoted by φp,q. This measure can be equivalently thought of as φ0

p,q or φ1
p,q.
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Proof First, note that it is sufficient to prove φ1
p,q = φ0

p,q (or even φ1
p,q ≤ φ0

p,q since the
other bound is obvious) for p < psd(q). Indeed, (3.11) implies that every infinite-volume
measure is sandwiched between φ0

p,q and φ1
p,q. Moreover, duality implies that φ0

p⋆,q = φ1
p⋆,q,

giving uniqueness above psd(q) from uniqueness below it.
Fix an increasing event A depending on a finite number of edges (all included in the

box of size N). When n goes to infinity, the probability of the event En that [−N,N]2 is
connected to the exterior of [−n,n]2 goes to 0 (there is no infinite cluster since p < pc).

On the one hand, φ1
p,q(A ∩En) goes to 0 when n goes to infinity. On the other hand,

conditioning on the exterior most dual circuit Γ surrounding [−N,N]2 in [−n,n]2 to be
equal to a deterministic circuit γ in L⋆ implies:

φ1
p,q(A∣Γ = γ) ≤ φ0

p,q,[−n,n]2(A) ≤ φ0
p,q(A).

Indeed, the conditioning boils down to fixing free boundary conditions on γ thanks to the
domain Markov property. In addition, comparison between boundary conditions allow
us to compare to the case where the free boundary conditions are on ∂[−n,n]2 (which is
further from [−N,N]2). Since the result is uniform on γ, φ1

p,q(A ∩Ec
n) ≤ φ0

p,q(A). Now,

φ1
p,q(A) = φ1

p,q(A ∩En) + φ1
p,q(A ∩Ec

n) ≤ φ1
p,q(A ∩En) + φ0

p,q(A),

thus implying φ1
p,q(A) ≤ φ0

p,q(A) for increasing events depending on a finite number
of edges (simply let n go to infinity). The proof can be concluded by recalling that
any increasing events can be approached by increasing events depending only on a finite
number of edges. ◻



Chapter 4

The self-dual point of the
two-dimensional random-cluster model
is critical for q ≥ 1

Abstract: This chapter is devoted to the determination of the critical point of the
random-cluster models with q ≥ 1 for the square, the hexagonal and the triangular lattices.
It is inspired by the article The self-dual random-cluster model is critical above q = 1
[BDC10], written with V. Beffara and published in Probability Theory and Related Fields.

There are no conjectures for the value of the critical point for general infinite graphs.
However, in the case of the square lattice, planar duality hints that the critical point is
the same as the so-called self-dual point satisfying psd = p⋆(psd), which has a known value

psd(q) =
√
q

1 +√
q
.

In this chapter, we prove this result for all q ≥ 1:

Theorem 4.1. Let q ≥ 1. The critical point pc = pc(q) for the random-cluster model with
cluster-weight q on the square lattice satisfies

pc =
√
q

1 +√
q
.

A rigorous derivation of the critical point was previously known in three cases. For
q = 1, the model is simply bond percolation, proved by Kesten in 1980 [Kes80] to be critical
at pc(1) = 1/2. For q = 2, the self-dual value corresponds to the critical temperature of
the Ising model, as first derived by Onsager in 1944 [Ons44]; one can actually couple
realizations of the Ising and random-cluster models to relate their critical points, see

67



CHAPTER 4. CRITICAL POINT OF THE 2D RANDOM-CLUSTER MODEL 68

Chapter 6. For modern proofs in that case, see [ABF87] or the short proof of Chapter 8
[BDC11]. Finally, for sufficiently large q, a proof is known based on the fact that the
random-cluster model exhibits a first order phase transition (see [LMMS+91, LMR86],
the proofs are valid for q larger than 25.72). Let us mention that physicists derived
the critical temperature for the Potts models with q ≥ 4 in 1978, using non-geometric
arguments based on analytic properties of the Hamiltonian [HKW78].

In the subcritical phase, the probability for two points x and y to be connected by a
path is proved to decay exponentially fast with respect to the distance between x and y.
In the supercritical phase, the same behavior holds in the dual model. This phenomenon
is known as the sharp phase transition:

Theorem 4.2. Let q ≥ 1. For any p < pc(q), there exist 0 < C(p, q), c(p, q) < ∞ such that
for any x, y ∈ Z2,

φp,q(x↔ y) ≤ C(p, q)ε−c(p,q)∣x−y∣, (4.1)

where ∣ ⋅ ∣ denotes the Euclidean norm.

The proof involves two main ingredients. The first one is an estimate on crossing
probabilities at the self-dual point p = psd =

√
q/(1 + √

q): the probability of crossing a
rectangle with aspect ratio (α,1) — meaning that the ratio between the width and the
height is of order α — in the horizontal direction is bounded away from 0 and 1 uniformly
in the size of the box. It is a generalization of the celebrated Russo-Seymour-Welsh
theorem for percolation.

The second ingredient is a collection of sharp threshold theorems, which were originally
introduced for product measures. They have been used in many contexts, and are a pow-
erful tool for the study of phase transitions, see Bollobás and Riordan [BR06a, BR06b].
These theorems were later extended to positively associated measures by Graham and
Grimmett [GG11, GG06, Gri06]. In our case, they may be used to show that the proba-
bility of crossings goes to 1 when p > √

q/(1 +√
q).

Actually, the situation is complicated: the dependence inherent in the model makes
boundary conditions difficult to handle. More precisely, one can use a classic sharp thresh-
old argument for symmetric increasing events in order to deduce that the crossing prob-
abilities of larger and larger domains, under wired boundary conditions, converge to 1
whenever p > √

q/(1+√
q). Moreover, the theorem provides us with bounds on the speed

of convergence for rectangles with wired boundary conditions. A new way of combining
long paths allows us to create an infinite cluster. We emphasize that classical arguments,
used by Kesten [Kes80] in the case of percolation, do not seem to work in our case.

This approach allows the determination of the critical value, yet it provides us with a
rather weak estimate on the speed of convergence for crossing probabilities. Nevertheless,
combining the fact that the crossing probabilities go to 0 when p < psd with a very general
threshold theorem, we deduce that the cluster-size at the origin has finite moments of any
order. It is then an easy step to derive the exponential decay of the two-point function in
the subcritical case.
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Theorem 4.2 has several notable consequences. First, it extends up to the critical point
results that are known for the subcritical random-cluster models under the exponential
decay condition (for instance, Ornstein-Zernike estimates [CIV08] or strong mixing prop-
erties). Second, it identifies the critical value of the Potts models via the classical coupling
between random-cluster models with cluster-weight q ∈ N and the q-state Potts models
(see Chapter 6).

The methods of this chapter harness symmetries of the graph, together with the self-
dual property of the square lattice. In the case of the hexagonal and triangular lattices, the
symmetries of the graphs, the duality property between the hexagonal and the triangular
lattices and the star-triangle relation allow us to extend the crossing estimate proved in
Section 1, at the price of additional technical difficulties. The rest of the proof can be
carried over to the triangular and the hexagonal lattices as well, yielding the following
result:

Theorem 4.3. The critical value pc = pc(q) for the random-cluster model with cluster-
weight q ≥ 1 satisfies

y3
c + 3y2

c − q = 0 on the triangular lattice and
y3
c − 3qyc − q2 = 0 on the hexagonal lattice,

where yc ∶= pc/(1 − pc). Moreover, there is exponential decay in the subcritical phase.

The technology developed in the present chapter relies heavily on the positive associ-
ation property of the random-cluster measures with q ≥ 1. Our strategy does not extend
to random-cluster models with q < 1. Understanding these models is a challenging open
question.

The chapter is organized as follows. Section 1 is devoted to the statement and the proof
of the crossing estimates. In Section 2, we briefly present the theory of sharp threshold
that will be employed in the next section. Section 3 contains the proofs of Theorems 4.1
and 4.2. Section 4 is devoted to extensions to other lattices and contains the proof of
Theorem 4.3.

1 Crossing probabilities for rectangles at the self-dual
point

In this section, we prove crossing estimates for rectangles of prescribed aspect ratio. This
is an extension of the Russo-Seymour-Welsh theory for percolation. We will work with
p = psd(q) and the measures φ1

psd,q
and φp

psd,q,n; we present the proof in the periodic
case. The case of the (bulk) wired boundary condition can be derived from this case (see
Corollary 4.9).
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For a rectangle R, let Cv(R) denote the event that there exists a path between the top
and the bottom sides which stays inside the rectangle. Such a path is called a vertical
(open) crossing of the rectangle. Similarly, define Ch to be the event that there exists an
horizontal open crossing between the left and the right sides. Finally, C⋆v (R⋆) denotes the
event that there exists a dual-open crossing from top to bottom in the dual graph R⋆ of
R.

The following theorem states that, at the self-dual point, the probability of crossing a
rectangle horizontally is bounded away from 0 uniformly in the sizes of both the rectangle
and the torus provided that the aspect ratio of the rectangles remains constant. The size
of the ambient torus is denoted by m. Note that p = p⋆ when p = psd, and hence the
balanced random-cluster measure on the torus is self-dual.

Theorem 4.4. Let α > 1 and q ≥ 1. There exists c(α) > 0 such that for every m > αn > 0,

φp
psd,q,m

(Ch([0, αn) × [0, n))) ≥ c(α). (4.2)

The proof begins with a lemma, which corresponds to the existence of c(1) and is
based on the self-duality of random-cluster measures on the torus. This lemma is classic
and is the natural starting point for any attempt to prove RSW-like estimates.

Lemma 4.5. Let q ≥ 1, there exists c(1) > 0 (depending only on the parameter q) such
that for every m > n ≥ 1, φp

psd,q,m
(Ch([0, n)2)) ≥ c(1).

[0, n)2

or

Figure 4.1: Left: The square [0, n)2 (all the sites in the shaded region) and its dual have
the same graph structure. Right: The events Ch([0, n)2) and C⋆v ([0, n)2).

Proof Note that the dual of [0, n)2 is [0, n)2 (meaning the sites of the dual torus inside
[0, n)2), see Figure 4.1. If there is no open crossing from left to right in [0, n)2, there exists
necessarily a dual-open crossing from top to bottom in the dual configuration. Hence, the
complement of Ch([0, n)2) is C⋆v ([0, n)2), thus yielding

φp
psd,q,m

(Ch([0, n)2)) + φp
psd,q,m

(C⋆v ([0, n)2)) = 1.
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Using the duality property for periodic boundary conditions and the symmetry of the
lattice, the probability φp

psd,q,m(C⋆v ([0, n)2)) is larger than cφp
psd,q,m(Ch([0, n)2)) (for some

constant c only depending on q), giving

1 ≤ (1 + c)φp
psd,q,m

(Ch([0, n)2)),

which concludes the proof. ◻

Remark 4.6. This lemma could be stated in terms of the balanced random-cluster measure
instead of the usual one. Then, as in the case of percolation, one would obtain that the
probability of a horizontal crossing of the square is exactly 1/2. However, because going
back and forth between the balanced and standard measure would be a little tedious in what
follows, everything is stated in terms of φp

psd,q,m — and c(1) depends on the value of q.

The only major difficulty is to prove that rectangles of aspect ratio α are crossed in the
horizontal direction — with probability uniformly bounded away from 0 — for some α > 1.
There are many ways to prove this in the case of percolation. Nevertheless, they always
involve independence in a crucial way; in our case, independence fails, so a new argument
is needed. The main idea is to invoke self-duality in order to enforce the existence of
crossings, even in the case where boundary conditions could look disadvantageous. In
order to do that, we introduce the following family of domains, which are in some sense
nice symmetric domains.

d = −
√

2
4 + iR

γ2

γ1

σd(γ2)

σd(γ1)

G(γ1, γ2)

free on this arc

Figure 4.2: Two paths γ1 and γ2 satisfying Hypothesis (⋆) and the graph G(γ1, γ2).

Define the line d ∶= −
√

2/4+ iR. The orthogonal symmetry σd with respect to this line
maps L to L⋆. Let γ1 and γ2 be two paths satisfying the following Hypothesis (⋆), see
Figure 4.2:

• γ1 remains on the left of d and γ2 remains on the right;

• γ2 begins at 0 and γ1 begins on a site of L ∩ (−
√

2/2 + iR+);
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• γ1 and σd(γ2) do not intersect (as curves in the plane);

• γ1 and σd(γ2) end at two sites (one primal and one dual) which are at distance
√

2/2
from each other.

The definition extends trivially via translation, so that the pair (γ1, γ2) is said to satisfy
Hypothesis (⋆) if one of its translations does.

When following the paths in counter-clockwise order, one can create a circuit by
linking the end points of γ1 and σd(γ2) by a straight line, the start points of σd(γ2)
and γ2, the end points of γ2 and σd(γ1), and the start points of σd(γ1) and γ1. The
circuit (γ1, σd(γ2), γ2, σd(γ1)) surrounds a set of vertices of L. Define the graph G(γ1, γ2)
composed of sites of L that are surrounded by the circuit (γ1, σd(γ2), γ2, σd(γ1)), and of
edges of L that remain entirely within the circuit (boundary included).

Themixed boundary conditions on this graph are wired on γ1 (all the edges are pairwise
connected), wired on γ2, and free elsewhere. The measure on G(γ1, γ2) with parameters
(psd, q) and mixed boundary conditions is denoted by φpsd,q,γ1,γ2 or more simply φγ1,γ2 .

Lemma 4.7. For any pair (γ1, γ2) satisfying Hypothesis (⋆), the following estimate holds:

φγ1,γ2(γ1 ↔ γ2) ≥
1

1 + q2
.

Proof On the one hand, if γ1 and γ2 are not connected, σd(γ1) and σd(γ2) must be
connected by a dual path in the dual model (event corresponding to σd(γ1) ↔ σd(γ2) in
the dual model). Hence,

1 = φγ1,γ2(γ1 ↔ γ2) + σd ∗ φ⋆γ1,γ2
(γ1 ↔ γ2), (4.3)

where σd∗(φ⋆γ1,γ2
) denotes the image under σd of the dual measure of φγ1,γ2 . This measure

lies on G(γ1, γ2) as well and has parameters (psd, q).
When looking at the dual measure of a random-cluster model, the boundary conditions

are transposed into new boundary conditions for the dual measure. In the case of the
periodic boundary conditions, the boundary conditions for the dual measure are the same.
Here, the boundary conditions become wired on γ1 ∪γ2 and free elsewhere (this is easy to
check using Euler’s formula).

It is very important to notice that the boundary conditions are not exactly the mixed
one, since γ1 and γ2 are wired together. Nevertheless, the Radon-Nikodym derivative of
σd ∗ φ⋆γ1,γ2

with respect to φγ1,γ2 is easy to bound. Indeed, for any configuration ω, the
number of cluster can differ only by 1 when counted in σd ∗ φ⋆γ1,γ2

or φγ1,γ2 so that the
ratio of partition functions belongs to [1/q, q]. Therefore, the ratio of probabilities of
the configuration ω remains between 1/q2 and q2. This estimate extends to events by
summing over all configurations. Therefore,

σd ∗ φ⋆γ1,γ2
(γ1 ↔ γ2) ≤ q2φγ1,γ2(γ1 ↔ γ2).
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When plugging this inequality into (4.3), we obtain

φγ1,γ2(γ1 ↔ γ2) + q2φγ1,γ2(γ1 ↔ γ2) ≥ 1

which implies the claim. ◻

We are now in a position to prove the key result of this section.

Proposition 4.8. For all m > 3n/2 > 0, the following holds:

φp
psd,q,m

[Cv([0, n) × [0,3/2n))] ≥ c(1)3

2(1 + q2)
.

Before proving this proposition, let us show how it implies Theorem 4.4. The strat-
egy is straightforward and classic: crossings can be combined together using the FKG
inequality only.

Proof of Theorem 4.4 If α < 3/2, Proposition 4.8 implies the claim so we can assume
α > 3/2. Define the following rectangles, see Figure 4.3:

Rh
j = [jn/2, jn/2 + 3n/2) × [0, n) and Rv

j = [jn/2, jn/2 + n) × [0, n)

for j ∈ [0, ⌊2α⌋ − 1], where ⌊x⌋ denotes the integer part of x. If every rectangle Rh
j is

crossed horizontally, and every rectangle Rv
j is crossed vertically, then [0, αn) × [0, n) is

crossed horizontally. This event is denoted by B. The rectangle Rh
j is crossed horizontally

with probability greater than c(1)3/[2(1 + q2)] (Proposition 4.8), the rectangle Rv
j is

crossed vertically with probability greater than c(1) (Lemma 4.5) and so, using the FKG
inequality,

φp
psd,q,m

(Ch([0, αn) × [0, n))) ≥ φp
psd,q,m

(B) ≥ ( c(1)4

2(1 + q2)
)
⌊2α⌋

.

The claim follows with c(α) ∶= [c(1)4/(2 + 2q2)]⌊2α⌋. ◻

Proof of Proposition 4.8 The proof goes as follows: we start with creating two paths
crossing square boxes, and we then prove that they are connected with good probability.

Setting of the proof. Consider the rectangle R = [0,3n/2) × [0, n) which is the union
of the rectangles R1 = [0, n) × [0, n) and R2 = [n/2,3n/2) × [0, n), see Figure 4.3. Let A
be the event defined by the following conditions:

• R1 and R2 are both crossed horizontally (these events have probability at least c(1)
to occur, using Lemma 4.5);
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Rh
2Rh

1
RRv

2

R1 R2

n/2 n 3n/20

in

Figure 4.3: Left: A combination of crossings in smaller rectangles creating a horizontal
crossing of a very long rectangle. Right: The rectangles R, R1 and R2 and the event A.

• [n/2, n) × {0} is connected inside R2 to the top side of R2 (which has probability
greater than c(1)/2 to occur using symmetry and Lemma 4.5).

Employing the FKG inequality, we deduce that

φp
psd,q,m

(A) ≥ c(1)
3

2
. (4.4)

When A occurs, define Γ1 to be the top-most horizontal crossing of R1, and Γ2 the right-
most vertical crossing of R2 from [n/2, n) × {0} to the top side. Note that this path is
automatically connected to the right-hand side of R2 — which is the same as the right-
most side of R. If Γ1 and Γ2 are connected, then there exists a horizontal crossing of R.
In the following, Γ1 and Γ2 are shown to be connected with good probability.

Exploration of the paths Γ1 and Γ2. There is a standard way of exploring R in order
to discover Γ1 and Γ2. Start an exploration from the top-left corner of R that leaves open
edges on its right, closed edges on its left and remains in R1. If A occurs, this exploration
will touch the right-hand side of R1 before its bottom side; stop it the first time it does.
Note that the exploration process “slides” between open edges of the primal lattice and
dual open edges of the dual (formally, this exploration process is defined on the medial
lattice). The open edges that are adjacent to the exploration form the top-most horizontal
crossing of R1, i.e. Γ1. At the end of the exploration, the process has a priori discovered
a set of edges which lies above Γ1, so that the remaining part of R1 is undiscovered.

By starting an exploration at point (n,0), leaving open edges on its left and closed
edges on its right, the rectangle R2 can be explored entirely. If A holds, the exploration
ends on the top side of R2. The open edges adjacent to the exploration constitute the
path Γ2 and the set of edges already discovered lies “to the right” of Γ2.

The reflection argument. Assume first that Γ1 = γ1 and Γ2 = γ2, and that they do
not intersect. Let x be the end-point of γ1, i.e. its unique point on the right-hand side of
R1. We wish to define a set G0(γ1, γ2) similar to those considered in Lemma 4.7. Apply
the following “surgical procedure,” see Figure 4.4:
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γ1

γ2

G0(γ̃1, γ̃2)

σd(γ̃1)

σd(γ1)

G(γ̃1, γ̃2)

σd(γ̃2)

x
γ̃1

γ̃2

σd(γ2)

y
z

Figure 4.4: The light gray area is the part of R that is a priori discovered by the explo-
ration processes (note that this area can be much smaller). The dark gray is the domain
G0(γ̃1, γ̃2). All the paths involved in the construction are depicted. Note that dashed
curves are “virtual paths” of the dual lattice obtained by the reflection σd: they are not
necessarily dual open.

• First, define the symmetric paths σd(γ1) and σd(γ2) of γ1 and γ2 with respect to
the line d ∶= (n −

√
2/4) + iR;

• Then, parametrize the path σd(γ1) by the distance (along the path) to its starting
point σd(x) and define γ̃1 ⊂ γ1 so that σd(γ̃1) is the part of σd(γ1) between the start
of the path and the first time it intersects γ2. As before, the paths are considered
as curves of the plane; denote the intersection point of the two curves by z. Note
that γ1 and γ2 are not intersecting, which forces σd(γ1) and γ2 to be;

• From this, parametrize the path γ2 by the distance to its starting point (n,0) and
set y to be the last visited site in L before the intersection z. Define γ̃2 to be the
part of γ2 between the last point intersecting n + iR before y and y itself;

• Paths γ̃1 and γ̃2 satisfy Hypothesis (⋆) so that the graph G(γ̃1, γ̃2) can be defined;

• Construct a sub-graph G0(γ1, γ2) of G(γ̃1, γ̃2) as follows: the edges are given by
the edges of L included in the connected component of G(γ̃1, γ̃2) ∖ (γ1 ∪ γ2) (i.e.
G(γ̃1, γ̃2) minus the set γ1 ∪ γ2) containing d (it is the connected component which
contains x − εi, where ε is a very small number), and the sites are given by their
endpoints.

The graph G0(γ1, γ2) has a very useful property: none of its edges has been discov-
ered by the previous exploration paths. Indeed, σd(γ1) and σd(x) are included in the
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unexplored connected component of R ∖R1, and so does G0(γ1, γ2) ∩ (R ∖R1). Edges of
G0(γ1, γ2) in R1 are in the same connected component of R ∖ (γ1 ∪ γ2) as x− εi, and thus
lie ‘below’ γ1.

Conditional probability estimate. Still assuming that γ1 and γ2 do not intersect, we
would like to estimate the probability of γ1 and γ2 being connected by a path knowing
that Γ1 = γ1 and Γ2 = γ2. Following the exploration procedure described above, γ1 and γ2

can be discovered without touching any edge in the interior of G0(γ1, γ2). Therefore, the
process in the domain is a random-cluster model with specific boundary conditions.

The boundary of G0(γ1, γ2) can be split into several sub-arcs of various types (see
Figure 4.4): some are sub-arcs of γ1 or γ2, while the others are (adjacent to) sub-arcs
of their symmetric images σd(γ1) and σd(γ2). The conditioning on Γ1 = γ1 and Γ2 = γ2

ensures that the edges along the sub-arcs of the first type are open; the connections along
the others depend on the exact explored configuration in a much more intricate way, but in
any case the boundary conditions imposed on the configuration inside G(γ̃1, γ̃2) are larger
than the mixed boundary conditions. Notice that any boundary conditions dominate the
free one and that γ̃1 and γ̃2 are two sub-arcs of the first type (they are then wired). Thus,
the measure restricted to G0(γ̃1, γ̃2) stochastically dominates the restriction of φγ̃1,γ̃2 to
G0(γ̃1, γ̃2).

From these observations, we deduce that for any increasing event B depending only
on edges in G0(γ1, γ2),

φp
psd,q,m

(B∣Γ1 = γ1,Γ2 = γ2) ≥ φγ̃1,γ̃2(B). (4.5)

In particular, this inequality can be applied to {γ1 ↔ γ2 in G0(γ1, γ2)}. Note that if γ̃1

and γ̃2 are connected in G(γ̃1, γ̃2), γ1 and γ2 are connected in G0(γ̃1, γ̃2). The first event
is of φγ̃1,γ̃2-probability at least 1/(1 + q2), implying

φp
psd,q,m

(γ1 ↔ γ2∣Γ1 = γ1,Γ2 = γ2) ≥ φγ̃1,γ̃2(γ1 ↔ γ2 in G0(γ1, γ2))

≥ φγ̃1,γ̃2(γ̃1 ↔ γ̃2) ≥
1

1 + q2
. (4.6)

Conclusion of the proof. Note the following obvious fact: if γ1 and γ2 intersect, the
conditional probability that Γ1 and Γ2 intersect, knowing Γ1 = γ1 and Γ2 = γ2 is equal to
1 — in particular, it is greater than 1/(1 + q2). Now,

φp
psd,q,m

(Ch(R)) ≥ φp
psd,q,m

(Ch(R) ∩A)
≥ φp

psd,q,m
({Γ1 ↔ Γ2} ∩A)

= φp
psd,q,m

(φp
psd,q,m

(Γ1 ↔ Γ2∣Γ1,Γ2)1A)

≥ 1

1 + q2
φp
p,q,m(A) ≥ c(1)3

2(1 + q)2

where the first two inequalities are due to inclusion of events, the third one to the definition
of conditional expectation, and the fourth and fifth ones, to (4.6) and (4.4). ◻
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An equivalent of Theorem 4.4 holds in the case of the infinite-volume random-cluster
measure with wired boundary conditions.

Corollary 4.9. Let α > 1 and q ≥ 1; there exists c(α) > 0 such that for every n ≥ 1,

φ1
psd,q

[Ch([0, αn) × [0, n))] ≥ c(α). (4.7)

Proof Let α > 1 and m > 2αn > 0. Using the invariance under translations of φp
psd,q,m

and comparison between boundary conditions, we have

φ1
psd,q,[−m2 ,

m
2
)2[Ch([0, αn) × [0, n))] ≥ φp

psd,q,m
[Ch([0, αn) × [0, n))] ≥ c(α).

When m goes to infinity, the left hand side converges to the probability in infinite volume,
so that

φ1
psd,q

[Ch([0, αn) × [0, n))] ≥ c(α).

◻

Remark 4.10. The only place where periodic and (bulk) wired boundary conditions are
used is in the estimate of Lemma 4.5. For instance, if one could prove that the probability
for a square box to be crossed from top to bottom with free boundary conditions stays
bounded away from 0 when n goes to infinity, then an equivalent of Theorem 4.4 would
follow with free boundary conditions.

Uniform estimates with respect to boundary conditions should be true for q ∈ [1,4);
the random-cluster model is expected to be conformally invariant in the scaling limit. It
should be false for q ≥ 4. Indeed, for q > 4, the phase transition is (conjecturally) of first
order in the sense that there should not be uniqueness of the infinite-volume measure. At
q = 4, the random-cluster model should be conformally invariant, but the probability of a
crossing with free boundary conditions should converge to 0. Nevertheless, the probability
that there is an open circuit surrounding the box of size n in the box of size 2n with free
boundary conditions should stay bounded away from 0.

Proving an equivalent of Theorem 4.4 with uniform estimates with respect to boundary
conditions is an important question, since it would allow us to study the critical phase.
The special case q = 2 will be derived in Chapter 9.

2 A sharp threshold theorem for crossing probabilities

The aim of this section is to understand the behavior of the function p ↦ φξp,q,n(A) for a
non-trivial increasing event A. This increasing function is equal to 0 at p = 0 and to 1 at
p = 1, and we are interested in the range of p for which its value is between ε and 1− ε for
some positive ε (this range is usually referred to as a window). Under mild conditions on
A, the window will be narrow for large graphs, and its width can be bounded above in
terms of the size of the underlying graph, which is known as a sharp threshold behavior.
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Historically, the general theory of sharp thresholds was first developed by Kahn, Kalai
and Linial [KKL88] (see also [Fri04, FK96, KS06]) in the case of product measures. In
lattice models such as percolation, these results are used via a differential equality known
as Russo’s formula, see [Gri99, Rus81]. Both sharp threshold theory and Russo’s formula
were later extended to random-cluster measures with q ≥ 1, see references below. These
arguments being not totally standard, we remind the readers of the classical results and
refer them to [Gri06] for general results. Except for Theorem 4.13, the proofs are quite
short so that it is natural to include them. The proofs are directly extracted from the
Grimmett’s monograph [Gri06].

In the whole section, G denotes a finite graph; if e is an edge of G, let Je be the
random variable equal to 1 if the edge e is open, and 0 otherwise. Let us start with an
example of a differential inequality, which will be useful in the proof of Theorem 4.2.

Proposition 4.11 (see [Gri06, GP97]). Let q ≥ 1; for any random-cluster measure φξp,q,G
with p ∈ (0,1) and any increasing event A,

d

dp
φξp,q,G(A) ≥ 4φξp,q,G(A)φξp,q,G(HA),

where HA(ω) is the Hamming distance between ω and A.

Proof Let A be an increasing event. The key step is the following inequality, see
[BGK93, Gri06], which can be obtained by differentiating with respect to p (for details of
the computation, see Theorem (2.46) of [Gri06]):

d

dp
φξp,q,G(A) = 1

p(1 − p) ∑e∈E
[φξp,q,G(1AJe) − φ

ξ
p,q,G(Je)φ

ξ
p,q,G(A)] . (4.8)

A similar differential formula is actually true for any random variable X, but this fact will
not be used in the proof. Define ∣η∣ to be the number of open edges in the configuration, it
is simply the sum of the random variables Je, e ∈ E. With this notation, one can rewrite
(4.8) as

d

dp
φξp,q,G(A) = 1

p(1 − p)
[φξp,q,G(∣η∣1A) − φ

ξ
p,q,G(∣η∣)φ

ξ
p,q,G(A)]

= 1

p(1 − p)
[φξp,q,G((∣η∣ +HA)1A) − φξp,q,G(∣η∣ +HA)φξp,q,G(A)

− φξp,q,G(HA1A) + φξp,q,G(HA)φξp,q,G(A)]

≥ 1

p(1 − p)
φξp,q,G(HA)φξp,q,G(A).

To obtain the second line, simply add and subtract the same quantity. In order to go
from the second line to the third, remark two things: in the second line, the third term
equals 0 (when A occurs, the Hamming distance to A is 0), and the sum of the first two
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terms is positive thanks to the FKG inequality (indeed, it is easy to check that ∣η∣ +HA

is increasing). The claim follows since p(1 − p) ≤ 1/4. ◻

This proposition has an interesting reformulation: integrating the formula between p1

and p2 > p1, we obtain

φξp1,q,G
(A) ≤ φξp2,q,G

(A) e
−4(p2−p1)φξp2,q,G(HA) (4.9)

(note that HA is a decreasing random variable). If one can prove that the typical value
of HA is sufficiently large, for instance because A occurs with small probability, then one
can obtain bounds for the probability of A. This kind of differential formula is very useful
in order to prove the existence of a sharp threshold. The next example presents a sharper
estimate of the derivative.

Intuitively, the derivative of φξp,q,G(A) with respect to p is governed by the influence
of one single edge, switching from closed to open (roughly speaking, considering the
increasing coupling between p and p+dp, it is unlikely that two edges switch their state).
The following definition is therefore natural in this setting. The (conditional) influence
on A of the edge e ∈ E, denoted by IA(e), is defined as

IA(e) ∶= φξp,q,G(A∣Je = 1) − φξp,q,G(A∣Je = 0).

Proposition 4.12. Let q ≥ 1 and ε > 0; there exists c = c(q, ε) > 0 such that for any
random-cluster measure φξp,q,G with p ∈ [ε,1 − ε] and any increasing event A,

d

dp
φξp,q,G(A) ≥ c∑

e∈E
IA(e).

Proof Note that, by definition of IA(e),

φξp,q,G(1AJe) − φ
ξ
p,q,G(A)φξp,q,G(Je) = IA(e)φ

ξ
p,q,G(Je)(1 − φξp,q,G(Je))

so that (4.8) becomes

d

dp
φξp,q,G(A) = 1

p(1 − p) ∑e∈E
φξp,q,G(Je)(1 − φξp,q,G(Je))IA(e)

= ∑
e∈E

φξp,q,G(Je)(1 − φξp,q,G(Je))
p(1 − p)

IA(e)

from which the claim follows since the term

φξp,q,G(Je)(1 − φξp,q,G(Je))
p(1 − p)

is bounded away from 0 uniformly in p ∈ [ε,1 − ε] and e ∈ E when q is fixed. ◻
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There has been an extensive study of the largest influence in the case of product
measures. It was initiated in [KKL88] and recently lead to important consequences in
statistical models, see e.g. [BR06a, BR06b]. The following theorem is a special case of
the generalization to positively-correlated measures.

Theorem 4.13 (see [GG11]). Let q ≥ 1 and ε > 0; there exists a constant c = c(q, ε) ∈
(0,∞) such that the following holds. Consider a random-cluster model on a graph G with
∣E∣ denoting the number of edges of G. For every p ∈ [ε,1 − ε] and every increasing event
A, there exists e ∈ E such that

IA(e) ≥ cφξp,q,G(A)(1 − φξp,q,G(A)) log ∣E∣
∣E∣

.

There is a particularly efficient way of using Proposition 4.12 together with Theo-
rem 4.13. In the case of a translation-invariant event on a torus of size n, horizontal
(resp. vertical) edges play a symmetric role, so that the influence is the same for all the
edges of a given orientation. In particular, Proposition 4.12 together with Theorem 4.13
provide us with the following differential inequality:

Theorem 4.14. Let q ≥ 1 and ε > 0. There exists a constant c = c(q, ε) ∈ (0,∞) such that
the following holds. Let n ≥ 1 and let A be a translation-invariant event on the torus of
size n: for any p ∈ [ε,1 − ε],

d

dp
φp
p,q,n(A) ≥ c(φp

p,q,n(A)(1 − φp
p,q,n(A)) logn.

For a non-empty increasing event A, the previous inequality can be integrated between
two parameters p1 < p2 (we recognize the derivative of log(x/(1 − x))) to obtain

1 − φp
p1,q,n(A)

φp
p1,q,n(A)

≥ 1 − φp
p2,q,n(A)

φp
p2,q,n(A)

nc(p2−p1).

If φξp1,q,n(A) is assume to stay bounded away from 0 uniformly in n ≥ 1, there exists c′ > 0
such that

φp
p2,q,n(A) ≥ 1 − c′n−c(p2−p1). (4.10)

This inequality will be instrumental in the next section.

3 The proofs of Theorems 4.1 and 4.2
The previous two sections combine in order to provide estimates on crossing probabilities
(see [BR06a, BR06b] for applications in the case of percolation). Indeed, one can consider
the event that some long rectangle is crossed in a torus. At p = psd, the probability of this
event is known to be bounded away from 0 uniformly in the size of the torus (thanks to
Theorem 4.4). Therefore, Theorem 4.14 can be applied to conclude that the probability
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goes to 1 when p > psd (there is also an explicit estimate on the probability). It is then an
easy step to deduce a lower bound for the probability of crossing a particular rectangle.

Theorem 4.1 is proved by constructing a path from 0 to infinity when p > psd, which
is usually done by combining crossings of rectangles. There is a major difficulty in doing
such a construction: one needs to transform estimates in the torus into estimates in
the whole plane. One solution is to replace the periodic boundary conditions by wired
boundary conditions. The path construction is a little tricky since it must propagate
wired boundary conditions through the construction (see Proposition 4.17); it does not
follow the standard lines.

Theorem 4.2 follows from a refinement of the previous construction in order to estimate
the Hamming distance of a typical configuration to the event {0↔ L∖[−n,n)2}. It allows
the use of Proposition 4.11, which improves bounds on the probability that the origin is
connected to distance n. With these estimates, the cluster size at the origin can be shown
to have finite moments of any order, whenever p < psd. Then, it is a standard step to
obtain exponential decay in the subcritical phase.

The following two lemmas will be useful in the proofs of both theorems. We start with
proving that crossings of long rectangles exist with very high probability when p > psd.

Lemma 4.15. Let α > 1, q ≥ 1 and p > psd; there exists ε0 = ε0(p, q, α) > 0 and c0 =
c0(p, q, α) > 0 such that

φp
p,q,α2n

(Cv([0, n) × [0, αn))) ≥ 1 − c0n
−ε0 (4.11)

for every n ≥ 1.

Proof The proof will make it clear that it is sufficient to treat the case of integer α, we
therefore assume that α is a positive integer (not equal to 1). Let B be the event that
there exists a vertical crossing of a rectangle with dimensions (n/2, α2n) in the torus of
size α2n. This event is invariant under translations and satisfies

φp
psd,q,α2n

(B) ≥ φp
psd,q,α2n

(Cv([0, n/2) × [0, α2n))) ≥ c(2α2)

uniformly in n.
Let p > psd. Since B is increasing, Theorem 4.14 (more precisely (4.10)) can be applied

to deduce that there exist ε = ε(p, q, α) and c = c(p, q, α) such that

φp
p,q,α2n

(B) ≥ 1 − cn−ε. (4.12)

If B holds, one of the 2α3 rectangles

[in/2, in/2 + n) × [jαn, (j + 1)αn), (i, j) ∈ {0,⋯,2α2 − 1} × {0,⋯, α − 1}

must be crossed from top to bottom. Denote these events by Aij — they are translates of
Cv([0, n)× [0, αn)). Using the FKG inequality in the second line (this is another instance
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of the “square-root trick” mentioned earlier), we find

φp
p,q,α2n

(B) ≤ 1 − φp
p,q,α2n

(Bc) ≤ 1 − φp
p,q,α2n

(∩i,jAcij)

≤ 1 −∏
i,j

φp
p,q,α2n

(Acij) = 1 − [1 − φp
p,q,α2n

(Cv([0, n) × [0, αn))]
2α3

.

Plugging (4.12) into the previous inequality, we deduce

φp
p,q,α2n

(Cv([0, n) × [0, αn))) ≥ 1 − (cn−ε)1/(2α3).

The claim follows by setting c0 ∶= c1/(2α)3 and ε0 ∶= ε/(2α3). ◻

Let α > 1 and n ≥ 1; define the annulus

Aαn ∶= [−αn+1, αn+1]2 ∖ [−αn, αn]2.

An open circuit in an annulus is an open path which surrounds the origin. Denote by
Aαn the event that there exists an open circuit surrounding the origin and contained in
Aαn, together with an open path from this circuit to the boundary of [−αn+2, αn+2]2, see
Figure 4.5. The following lemma shows that the probability of Aαn goes to 1, provided
that p > psd and that boundary conditions are wired on [−αn+2, αn+2]2.

[−αn+2, αn+2]2

[−αn, αn]2

[−αn+1, αn+1]2

0

Figure 4.5: Left: The event Aαn. Right: The combination of events Aαn: it indeed
constructs a path from the origin to infinity.

Lemma 4.16. Let δ > 1, q ≥ 1 and p > psd; there exists c1 = c1(p, q, δ) and ε1 = ε1(p, q, δ)
such that for every n ≥ 1,

φ1
p,q,δn+2(Aδn) ≥ 1 − c1e

−ε1n.
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Proof First, observe that Aδn occurs whenever the following events occur simultaneously:

• The following rectangles are crossed vertically:

R1 ∶= [δn, δn+1] × [−δn+1, δn+1],
R2 ∶= [−δn+1,−δn] × [−δn+1, δn+1];

• The following rectangles are crossed horizontally:

R3 ∶= [−δn+1, δn+1] × [δn, δn+1],
R4 ∶= [−δn+1, δn+1] × [−δn+1,−δn],
R5 ∶= [−δn+2, δn+2] × [−δn, δn].

For the measure in the torus, these events have probability greater than 1 − c(δn)−ε with
c = c0(p, q,2δ/(δ − 1)) and ε = ε0(p, q,2δ/(δ − 1)). Using the FKG inequality, we obtain

φp
p,q,αn+2(Aδn) ≥ (1 − c(δn)−ε)5

from which the following estimate can be deduced, harnessing the comparison between
boundary conditions,

φ1
p,q,δn+2(Aδn) ≥ (1 − c(δn)−ε)5.

The claim follows by setting c1 ∶= 5c and ε1 ∶= ε log δ. ◻

The following proposition readily implies Theorem 4.1; It will also be useful in the proof
of Theorem 4.2. We wish to prove that the probability of the intersection of events Aδn is
of positive probability when p > psd. So far, we know that there is an open circuit with
very high probability when we consider the random-cluster measure with wired boundary
conditions in a slightly larger box. In order to prove the result, assume the existence of
a large circuit. Then, we iteratively condition on events Aδn−k, k ≥ 0. When conditioning
‘from the outside to the inside’, there exists an open circuit in Aδn−k+1 that surrounds Aδn−k
at every step k. Using comparison between boundary conditions, the measure in Aδn−k
stochastically dominates the measure in Aδn−k+1 with wired boundary conditions. In other
words, we keep track of advantageous boundary conditions. Note that the reasoning, while
reminiscent of Kesten’s construction of an infinite path for percolation, is not standard.

Proposition 4.17. Let δ > 1, q ≥ 1 and p > psd; there exist c, c1, ε1 > 0 (depending on p,
q and δ) such that for every N ≥ 1,

φp,q ( ⋂
n≥N
Aδn) ≥ c

∞
∏
n=N

(1 − c1e−ε1n) > 0.
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Proof Let δ > 1, q ≥ 1, p > psd, N ≥ 1 and recall that there is a unique infinite-volume
measure φp,q. For every n ≥ 1, we know that

φp,q (
n

⋂
k=N
Aδk) = φp,q(Aδn)

n−1

∏
k=N

φp,q(Aδk∣Aδj , k + 1 ≤ j ≤ n). (4.13)

On the one hand, let k ∈ [N,n − 1]. Conditionally on Aδj , k + 1 ≤ j ≤ n, there
exists a circuit in the annulus Aδk+1. Consider the exterior-most such circuit, denoted
by Γ, by exploring from the outside. Conditionally on Γ = γ, the unexplored part of the
box [−δk+2, δk+2]2 follows the law of a random-cluster configuration with wired boundary
condition. In particular, the conditional probability that there exists a circuit in Aδk
connected to γ is greater than the probability that there exists a circuit in Aδk connected
to the boundary of [−δk+2, δk+2]2 with wired boundary conditions. Therefore, we obtain
that almost surely

φp,q(Aδk∣Aδj , k + 1 ≤ j ≤ n) = φp,q(φp,q(Aδk∣Γ = γ))
≥ φp,q(φ1

p,q,δk+2(Aδk))
≥ 1 − c1e−ε1k

where Lemma 4.16 was harnessed in the last inequality.
On the other hand, for p = psd, consider the event Aδn in the bulk. Thanks to Corol-

lary 4.9, its probability is bounded away from 0 uniformly in n. Since the event is
increasing, there exists c = c(δ) > 0 such that

φp,q(Aδn) = φ1
p,q(Aδn) ≥ c

for any n ≥ N and p > psd. Plugging the two estimates into (4.13), we obtain

φp,q (
n

⋂
k=N
Aδk) ≥ c

n−1

∏
k=N

(1 − c1e−ε1k) ≥ c
∞
∏
k=N

(1 − c1e−ε1k).

Letting n go to infinity concludes the proof. ◻

Proof of Theorem 4.1 The bound pc ≥ psd is provided by Proposition 3.18. For p > psd,
fix δ > 1. Applying Proposition 4.17 with N = 1, we find

φp,q(0↔∞) ≥ cφp,q (⋂
n≥1

Aδn) > 0

so that p is supercritical. The constant c > 0 is due to the fact that [−δ2, δ2]2 is required
to contain open edges only (c > 0 exists using the finite energy property). Since p is
supercritical for every p > psd, we deduce pc ≤ psd. ◻
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Proof of Theorem 4.2 Let x be a site of Z2, and let Cx be the cluster of x, i.e. the
maximal connected component containing the site x. Its cardinality is denoted by ∣Cx∣. We
first prove that ∣Cx∣ has finite moments of any order. Then we deduce that the probability
of {∣Cx∣ ≥ n} decays exponentially fast in n. The proof of the Step 2 is extracted from
[Gri06].

Step 1: finite moments for ∣Cx∣. Let d > 0 and p < psd; we wish to prove that

φp,q(∣Cx∣d) < ∞. (4.14)

In order to do so, let p1 ∶= (p + psd)/2 and define Dn ∶= {x↔ Z2 ∖ (x + [−n,n)2)}; denote
by Hn the Hamming distance to Dn. Note that Hn is the minimal number of closed edges
that one must cross in order to go from x to the boundary of the box of size n centered
at x. Let

α ∶= exp [ p1 − p
2d + 3

] > 1.

From Proposition 4.17 applied to the (supercritical) dual model, the probability of
⋂n>N(Aαn)⋆ is larger than c∏∞

N (1 − c1e−ε1n) > 0 ((Aαn)⋆ is the occurrence of Aαn in the
dual model). Hence, there exists N = N(p1, q, α) sufficiently large such that

φp1,q (
∞
⋂
n≥N

(Aαn)⋆) ≥ 1

2
.

On this event, Hn is greater than (logn/ logα)−N since there is at least one closed circuit
in each annulus Aαk with k ≥ N (thus increasing the Hamming distance by 1). We obtain

φp1,q(Hn) ≥ ( logn

logα
−N)φp1,q (

∞
⋂
n≥N

(Aαn)⋆) ≥ logn

4 logα

for n sufficiently large. Then, (4.9) implies

φp,q(Dn) ≤ φp1,q(Dn) exp [ − 4(p1 − p)φp1,q(Hn)] ≤ n−(2d+3) (4.15)

for n sufficiently large, from which (4.14) follows readily.

Step 2: exponential decay. Note that, from the first inequality of (4.15), it is sufficient
to prove that for some constant c > 0,

lim inf
n→∞

Hn/n ≥ c a.s.

in order to show that φp,q(Dn) decays exponentially fast.
Consider a (not necessarily open) self-avoiding path γ going from the origin to the

boundary of the box of size n. The number T (γ) of closed edges along this path can be
bounded from below by the following quantity:

T (γ)
n

≥ 1

∣γ∣
T (γ) ≥ 1

∣γ∣ ∑z∈γ
1

∣Cz ∣
≥ ( 1

∣γ∣ ∑z∈γ
∣Cz ∣)

−1

.
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Indeed, the number of closed edges in γ is larger than the number of distinct clusters
intersecting γ. Moreover, if C denotes such a cluster, we have that 1 ≥ ∑z∈γ ∣C∣−11z∈C. The
last inequality is due to Jensen’s inequality. Since Hn can be rewritten as the infimum of
T (γ) on paths going from 0 to the boundary of the box, we obtain

Hn

n
≥ inf
γ∶0↔Z2∖Bn

( 1

∣γ∣ ∑z∈γ
∣Cz ∣)

−1

. (4.16)

The goal of the end of the proof is to give an almost sure lower bound of the right-hand
side. We will harness a two-dimensional analogue of the strong law of large number. In
order to do that, the random variables ∣Cz ∣ need to be transformed to obtain independent
variables. We start with the following domination.

Let (C̃z)z∈Bn be a family of independent subsets of Z2 distributed as Cz. We claim that
(∣Cz ∣)z∈Bn is stochastically dominated by the family (Mz)z∈Bn defined as

Mz ∶= sup
y∈Z2∶z∈C̃y

∣C̃y ∣.

Let v1, v2, . . . be a deterministic ordering of Z2. Given the random family (C̃z)z∈Bn ,
we shall construct a family (Dz)z∈Bn having the same joint law as (Cz)z∈Bn and satisfying
the following condition: for each z, there exists y such that Dz ⊂ C̃y. First, set Dv1 = C̃v1 .
Given Dv1 , Dv2 , . . . , Dvn , define E = ⋃ni=1Dv1 . If vn+1 ∈ E, set Dvn+1 =Dvj for some j such
that vn+1 ∈Dvj . If vn+1 ∉ E, proceed as follows. Let ∆eE be the set of edges of Z2 having
exactly one end-vertex in E. A (random) subset F of C̃vn+1 may be found in such a way
that F has the conditional law of Cn+1 given that all edges in ∆eE are closed; now set
Dvn+1 = F . The domain Markov property and the positive association can be used to show
that the law of Cvn+1 depends only on ∆eE, and is stochastically dominated by the law
of the cluster in the bulk without any conditioning. The required stochastic domination
follows accordingly. In particular, ∣Cz ∣ ≤Mz and Mz has finite moments.

From (4.16) and the previous stochastic domination, we get

lim inf
n→∞

Hn

n
≥ lim inf

n→∞
inf

γ∶0↔Z2∖Bn
( 1

∣γ∣ ∑z∈γ
∣Cz ∣)

−1

≥ (lim sup
n→∞

sup
γ∶0↔Z2∖Bn

1

∣γ∣ ∑z∈γ
Mz)

−1

.

The second step is now to replaceMz by random variables that are independent. Lemma 2
of [FN93] can be harnessed to show that

(lim sup
n→∞

sup
γ∶0↔Z2∖Bn

1

∣γ∣ ∑z∈γ
Mz)

−1

≥ (2 lim sup
n→∞

sup
∣Γ∣≥n

1

∣Γ∣ ∑z∈γ
∣C̃z ∣2)

−1

where the supremum is over all finite connected graphs Γ of cardinality larger than n that
contain the origin (also called lattice animals).

Since the ∣C̃z ∣2 are independent and have finite moments of any order, the main result
of [CGGK93, GK94] guarantees that
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2 lim sup
n→∞

sup
∣Γ∣≥n

1

∣Γ∣ ∑z∈γ
∣C̃z ∣2 ≤ C a.s.

for some C > 0. Therefore, with positive probability, lim infHn/n is greater than a given
constant, which concludes the proof. ◻

4 The critical point for the triangular and hexagonal
lattices

Let T be the triangular lattice of mesh size 1, embedded in the plane in such a way that
the origin is a vertex and the edges of T are parallel to the lines of equations y = 0,
y =

√
3x/2 and y = −

√
3x/2. The dual graph of this lattice is a hexagonal lattice, denoted

by H, see Figure 4.6. Via planar duality, it is sufficient to handle the case of the triangular
lattice in order to prove Theorem 4.3. Define pT as being the unique p ∈ (0,1) such that
y3 + 3y2 − q = 0, where y ∶= pT/(1 − pT). The goal is to prove that pc(T) = pT.

0

pT

pT

pT

p!
T

p!
T

p!
T

HT

Figure 4.6: Left: The triangular lattice T with its dual lattice H. Right: The exchange
of the two patterns does not alter the random-cluster connective properties of the black
vertices.

The general strategy is the same as in the square lattice case. We prove that at
p = pT, a crossing estimate similar to Theorem 4.4 holds. Sharp threshold arguments
and proofs of Section 3 can be adapted mutatis mutandis, replacing square-shaped annuli
by hexagonal-shaped annuli. The crossing estimate must be slightly modified, and we
present the few changes. It harnesses the planar-duality between the triangular and the
hexagonal lattices, and the so-called star-triangle transformation (see e.g. Section 6.6 of
[Gri06] and Figure 4.6). The reader is assumed to be already familiar with the star-triangle
transformation.

Let e1 =
√

3/2 + i/2 and e2 = i; whenever coordinates are written, they are understood
as referring to the basis (e1, e2). A ‘rectangle’ [a, b)×[c, d) is the set of points in z ∈ T such
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that z = λe1+µe2 with λ ∈ [a, b) and µ ∈ [c, d) (it has a lozenge shape, see e.g. Figure 4.8).
By analogy with the case of the square lattice, Cv(D) denotes the event that there exists
a path between the top and the bottom sides of D which stays inside D. Such a path is
called a vertical open crossing of the rectangle. Other quantities are defined similarly. Let
Tm be the torus of size m constructed using the “rectangle” [0,m]×[0,m] with respect to
the basis (e1, e2). The crossing estimate is presented in the case of the torus Tm (deriving
the bulk estimate follows the same lines as in the square lattice case); φp

psd,q,m denotes the
random-cluster measure on Tm.

Theorem 4.18. Let α > 1 and q ≥ 1. There exists c(α) > 0 such that for every m > αn > 0,

φp
pT,q,m(Ch([0, n) × [0, αn))) ≥ c(α). (4.17)

The main difficulty is the adaptation of Lemma 4.7. Define the line d ∶= −
√

3/3 + iR.
The orthogonal symmetry σd with respect to d maps T to another triangular lattice. Note
that this lattice is a sub-lattice of H (in the sense that its vertices are also vertices of H).
Let γ1 and γ2 be two paths satisfying the following Hypothesis (⋆), see Figure 4.7:

• γ1 remains on the left of d and γ2 remains on the right,

• γ2 begins at 0 and γ1 begins on a site of T ∩ (−
√

3/2 + iR+),

• γ1 and σd(γ2) do not intersect (as curves in the plane),

• γ1 and σd(γ2) end at two sites (one primal and one dual) which are at distance
√

3/3
from one another.

When following the paths in counter-clockwise order, a circuit can be created by linking
the end points of γ1 and σd(γ2) by a straight line, the start points of σd(γ2) and γ2,
the end points of γ2 and σd(γ1), and the start points of σd(γ1) and γ1. The circuit
(γ1, σd(γ2), γ2, σd(γ1)) surrounds a set of vertices of T. Define the graph G(γ1, γ2) with
sites being site of T that are surrounded by the circuit (γ1, σd(γ2), γ2, σd(γ1)), and with
edges of T that remain entirely inside the circuit (boundary included).

γ1

γ"
2

0

σd(γ1)

σd(γ2)

d = −
√

3/3 + iR+γ"
1

γ2

T

σd(T)

H

G(γ1, γ2)

Figure 4.7: The graph G(γ1, γ2) with the two solid arcs γ1 and γ2 and the dashed arcs
σd(γ1) and σd(γ2). The dual arcs γ⋆1 and γ⋆2 are dotted.
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An additional technical condition will be needed, which we present now. Note that for
any edge of σd(T) there is one vertex of T and one vertex of H at distance

√
3/6 from its

midpoint. For any edge of σd(γ1) and σd(γ2), the associated vertex of T is assumed to be
in the interior of the domain G(γ1, γ2) (therefore, the associated vertex of H is outside the
domain, see white vertices in Fig 4.7). This condition will be referred to as Hypothesis
(⋆⋆).

Themixed boundary conditions on this graph are wired on γ1 (all the edges are pairwise
connected), wired on γ2, and free elsewhere. The measure on G(γ1, γ2) with parameters
(pT, q) and mixed boundary conditions is denoted by φpT,q,γ1,γ2 or more simply φγ1,γ2 . With
these definitions, we find an equivalent of Lemma 4.7:
Lemma 4.19. For any γ1, γ2 satisfying Hypotheses (⋆) and (⋆⋆), we have

φγ1,γ2(γ1 ↔ γ2) ≥
1

1 + q2
.

Proof As previously, if γ1 and γ2 are not connected, γ⋆1 and γ⋆2 are connected in the dual
model, where γ⋆1 , γ⋆2 ⊂ H are the dual arcs bordering G(γ1, γ2) close to σd(γ1) and σd(γ2).
Thanks to Hypothesis (⋆⋆) and the mixed boundary conditions, this event is equivalent
to the event that σd(γ1) and σd(γ2) are dual connected. Using Hypothesis (⋆) and the
symmetry, we deduce

φγ1,γ2
(γ1 ↔ γ2) + σd ∗ φ⋆γ1,γ2

(γ1 ↔ γ2) = 1,

where as before σd ∗ φ⋆γ1,γ2
denotes the push-forward under the symmetry σd of the dual

measure of φγ1,γ2 — in particular, it lies on σd(H) and the edge-weight is p⋆T. This lattice
contains the sites of T and those of another copy of the triangular lattice which is denoted
by T′. Since γ1 and γ2 are two paths of T, one can use the star-triangle transformation
for any triangle of T included in G(γ1, γ2) that contains a vertex of T′: one obtains that
σd∗φ⋆γ1,γ2

(γ1 ↔ γ2) is equal to the probability of γ1 and γ2 being connected, in a model on
T with edge-weight pT. Here, Hypothesis (⋆⋆) is needed again in order to ensure that all
the triangles containing a vertex of T′ have no edges on the boundary (which would have
forbidden the use of the star-triangle transformation). The same observation as in the
case of the square lattice shows that the boundary conditions are the same as for φγ1,γ2 ,
except that arcs γ1 and γ2 are wired together. The same reasoning as in Lemma 4.7
implies that

σd ∗ φ⋆γ1,γ2
(γ1 ↔ γ2) ≤ q2φγ1,γ2

(γ1 ↔ γ2),
and the claim follows readily. ◻

The existence of c(1) is obtained in the same way as in the case of the square lattice,
with only the obvious modifications needed; the details are left as an “exercise for the
reader”. Theorem 4.18 is derived exactly as in Section 1, as soon as an equivalent of
Proposition 4.8 holds:
Proposition 4.20. There exists a constant c(3/2) > 0 such that, for all m > 3n/2 > 0,

φp
pT,q,m(Cv([0,3n/2) × [0, n))) ≥ c(3/2).
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0

3n/2e1

ne2

3n/2e1 + ne2

ne1 + ne2

ne1

D1

D2

replaced by

Figure 4.8: Left: The set [0,3n/2) × [0, n) and the event A. Right: One can obtain
the path Γ′

1 from Γ1 by replacing any bad edge with two edges. Since Γ1 is the top-most
crossing, it contains no double edges and this construction can be done.

Proof The general frameworkwork of the proof is the same as before, but some tech-
nicalities occur because the underlying lattice is not self-dual. Consider the rectan-
gle D = [0,3n/2) × [0, n), which is the union of rectangles D1 = [0, n) × [0, n) and
D2 = [n/2,3n/2) × [0, n), see Figure 4.8. Let A be the event that:

• D1 and D2 are both crossed horizontally (each crossing has probability at least c(1)
to occur);

• [n/2, n) × {0} (resp. [n,3n/2) × {n}) is connected inside D2 to the top side (resp.
to the bottom). Using the FKG inequality and symmetries of the lattice, this event
occurs with probability larger than c(1)2/4.

Therefore, A has probability larger than c(1)4/4.
When A occurs, define Γ1 to be the top-most crossing of the rectangle D1, and Γ2 the

right-most crossing in D2 between [n/2, n) × {0} and the top side of D2. Note that Γ2 is
automatically connecting [n/2, n) × {0} to the right edge and to [n,3n/2) × {n}. In order
to conclude, it is sufficient to prove that Γ1 and Γ2 are connected with probability larger
than some positive constant.

Consider the lowest path Γ′
1 above Γ1 which satisfies the following property: for any

edge e in Γ′
1, the associated site of σd(H) (see the definition of Hypothesis (⋆⋆)) is in

the connected component of D1 ∖ Γ′
1 above Γ′

1. Such a path can be obtained from Γ1 by
replacing every ‘bad’ edge with the other two edges of a triangle, as shown in Figure 4.8.
Since Γ1 is the top-most crossing, it cannot have double edges and the path Γ′

1 can be
constructed. In particular it ends at the same point as Γ1, and it goes from left to right.
Note that it is not necessarily open. Define Γ′

2 similarly in the obvious way (the left-most
path on the right of Γ2 such that for any edge of Γ′

2, the associate site of σd(H) is on the
right of Γ′

2).
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We now sketch the end of the proof. Apply a construction similar to the proof of
Proposition 4.8 in order to create a domain G(Γ′

1,Γ
′
2). With mixed boundary conditions,

the probability of connecting Γ′
1 to Γ′

2 in G(Γ′
1,Γ

′
2) is larger than 1/(1 + q2) (Γ′

1 and Γ′
2

have been constructed in such a way that Hypothesis (⋆⋆) is fulfilled). But Γ1 disconnects
Γ′

1 from Γ′
2, and Γ2 disconnects Γ′

2 from Γ1. Using boundary conditions inherited from the
fact that Γ1 and Γ2 are crossings, one can prove that Γ1 is connected to Γ2 in G(Γ′

1,Γ
′
2)

with probability larger than 1/(1 + q2). The end of the proof follows exactly the same
lines as in the case of the square lattice. ◻
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Chapter 5

Parafermions in the random-cluster
model

Abstract: Parafermionic observables were introduced in order to study the critical
phase (p, q) = (psd(q), q). The main results of this chapter include the weak discrete
holomorphicity of parafermionic observables, an alternative proof of Theorem 4.1 for q ≥
4, and the divergence of the correlation length when approaching the critical point for
random-cluster models with q ≤ 4 (this shows that the transition is of second order).
This chapter is inspired by the article Parafermions in the planar random-cluster model
[BDCS11] written with V. Beffara and S. Smirnov.

Critical random-cluster models exhibit a very rich behavior depending on the value
of q. Exact computations can be performed (see [Bax89]), and despite the fact that they
do not lead to fully rigorous mathematical proofs, they do provide insight and further
conjectures on the behavior of these models at and near criticality. For a wide range
of values of q, the so-called scaling limit is expected to be conformally invariant (see
the second part of the manuscript for additional details). Nevertheless, very little of the
behavior of the model is rigorously understood. In particular, the question of the order
of the phase transition is far from being solved. The random-cluster phase transition is
conjectured to be of first order for q > 4 and second order for q < 4.

Definitions of the order of a phase transition differ from one field to the other. In
physics, Ehrenfest classified phase transitions based on the behavior of the thermodynam-
ical free energy viewed as a function of other thermodynamical quantities. He defined the
order of the phase transition as the lowest derivative of the free energy which is discon-
tinuous at the phase transition. For instance, the partition function is continuous yet non
differentiable when the transition is of first order. Even though physics predict that all the
notions of order of a phase transition are the same, probabilistic definitions are slightly
different and involve uniqueness of infinite-volume measures or the so-called correlation
length. Let us describe these two points of view in the special case of random-cluster
models.

93
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The first point of view invokes Gibbs measures. The random-cluster model is then
said to exhibit a first order phase transition if there are several critical infinite-volume
measures. This boils down to φ1

psd,q
being different from φ0

psd,q
, or equivalently to the

φ1
psd,q

-almost sure existence of an infinite cluster. On the contrary, the transition is of
second order if φ1

psd,q
= φ0

psd,q
.

The second point of view uses the correlation length ξ(p) defined by:

ξ(p)−1 = − inf
n>0

1

n
logφ0

p,q(0↔ n).

The transition is of second order if the correlation length goes to infinity when p goes to pc.
It is of first order otherwise. In physics, the two definitions are believed to be equivalent in
natural cases. Nevertheless, the second definition of first order phase transition is a priori
stronger than the first one. Indeed, exponential decay for φ0

psd,q
is implied, thanks to a

submultiplicativity argument1, by the fact that the correlation length does not diverge
near criticality. A classical application of the Borel-Cantelli lemma gives that exponential
decay of correlations for φ0

psd,q
implies the existence of an infinite cluster in its dual φ1

psd,q
.

In order to understand the phase transition in random-cluster models, the so-called
parafermionic observables are studied in depth. These observables were first introduced
in [Smi10a] for random-cluster models with parameter q ∈ [0,4], as (anti)-holomorphic
parafermions of fractional spin σ ∈ [0,1], given by certain vertex operators. So far discrete
holomorphicity was rigorously proved only for q = 2, and probably holds exactly only for
this value. In this chapter, these vertex operators are generalized to random-cluster
models with arbitrary q > 0.

Using the parafermionic observable, we are able to prove that the correlation length
diverges when 1 < q < 4, which proves that the phase transition is of second order (in the
weak sense):

Theorem 5.1. When 1 ≤ q < 4, ξ(p) tends to infinity when p↗ pc(q).

In fact, the following stronger result can be proved:

Theorem 5.2. When 1 ≤ q ≤ 3, we have

∑
x∈Z2

φ0
pc,q[0↔ x] = ∞.

In the physics litterature, the mean-size of the cluster is called susceptibility. Note
that for q = 1, this result implies that there is no dual infinite cluster for φ1/2,1 = φ0

pc(1),1.
It would be interesting to generalize this argument2 to other values of q, for instance when
q = 3, in order to obtain the stronger characterization of a second order phase transition:
uniqueness of infinite-volume measures at criticality.

1See the proof of Theorem 5.1 for details.
2The absence of infinite cluster for the infinite-volume measure with wired boundary conditions implies

that φ1psd,q = φ
0
psd,q

. Proposition 3.14 then implies uniqueness of the infinite-volume measure.
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Let us now deal with the q > 4 case. When q ≥ 25.72, first order phase transition
was proved in [LMMS+91, LMR86]. We are presently unable to prove that a first order
phase transition occurs in the whole regime q > 4, even though a fairly close result can be
proved: consider the graph U with vertex set Z3 and edges given by

• [(x, y, z), (x + 1, y, z)] for every x, y, z ∈ Z,

• [(x, y, z), (x, y + 1, z)] for every x, y, z ∈ Z such that ’y ≠ 0’ or ’y = 0 and x ≥ 0’,

• [(x,0, z), (x,1, z − 1)] for every x < 0 and z ∈ Z.

Theorem 5.3. When p = psd and q > 4, there exists an infinite cluster (not using boundary
sites) almost surely for the measure φ1

U,psd,q.

We hope it is possible to bootstrap the result on U to Z2, thus proving the weak
characterization of first order phase transition.

We conclude this chapter by providing an alternative derivation of the critical point
when q > 4. While this result also follows from the previous chapter, the technique gives
(a little) more information on the critical phase and is probably more robust. Note that
comparison between random-cluster models allow us to extend the next theorem to q = 4.

Theorem 5.4. Let q > 4. The critical point pc = pc(q) for the random-cluster model with
parameter q on the square lattice satisfies

pc =
√
q

1 +√
q
.

The chapter is organized as follows. In the next section, the loop representation of the
random-cluster model is introduced, and the parafermionic observable is defined. Two
very important properties are also proved. They will be used extensively in the second
part of this manuscript. The second section deals with critical random-cluster models
on U. Theorems 5.1, 5.2 and 5.3 are proved in the third section. We also introduce a
parafermionic observable in the degenerated case q = 4. The last section is devoted to the
proof of Theorem 5.4.

1 The loop model representation and parafermionic ob-
servables

1.1 The loop representation of the planar random-cluster model

Let (G,a, b) be a Dobrushin domain. In this paragraph, we aim for the construction of the
loop representation of the random-cluster model, defined on the medial graph (G◇, a◇, b◇)
of the Dobrushin domain. The medial graph G◇ is defined in a slightly non-classical way,
see Fig. 5.1 for an explanatory picture: consider G together with its dual G⋆ and add all
the sites of L⋆ adjacent to the free arc ∂ab (call this set ∂⋆ab), the medial graph G◇ is the
subgraph of L◇ given by:
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∂ba

∂?ba

∂ab

∂?ab

G�

A
do not belong
to Ω�

A?

as b

Figure 5.1: A domain G with Dobrushin boundary conditions: the vertices of the primal
graph are black, the vertices of the dual graph G⋆ are white, and between them lies the
medial graph G◇. The arcs ∂ba and ∂⋆ab are the two outermost arcs. The arcs ∂⋆ba and ∂ab
are the arcs bordering ∂ba and ∂⋆ab from the inside. The arcs ∂ab and ∂ba (resp. ∂⋆ab and
∂⋆ba) are drawn in solid lines (resp. dashed lines)
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• E[G◇] is the set of edges bordering faces of L◇ corresponding to V [G]∪V [G⋆]∪∂⋆ab
• V [G◇] is the set of end-points of edges in E[G◇].

The medial vertices a◇ and b◇ are the two medial vertices of G◇ having three adjacent
medial edges.

The random-cluster measure on (G,a, b) with Dobrushin boundary conditions has a
rather convenient representation in this setting. Consider a configuration ω, it defines
clusters in G and dual clusters in G⋆ (note that the arc ∂ab being free, the arc ∂⋆ab must be
dual-wired thanks to planar duality). Through every vertex of the medial graph passes
either an open bond of G or a dual open bond of G⋆, hence there is a unique way to
draw an Eulerian (i.e. using every edge exactly once) collection of loops on the medial
lattice. These loops are the interfaces, separating clusters from dual clusters. Namely,
a loop arriving at a vertex of the medial lattice, always makes a ±π/2 turn so as not to
cross the open or dual open bond through this vertex, see Fig. 5.1. Besides loops, the
configuration will have a single curve joining the vertices adjacent to a and b, which are
the only vertices in V ◇ with three adjacent edges (the edges entering a and b are denoted
by ea and eb respectively). This curve is called the exploration path and is denoted by γ.
It corresponds to the interface between the cluster connected to the wired arc ∂ba and the
dual cluster connected to the free arc ∂⋆ab.

This gives a bijection between random-cluster configurations on G and Eulerian loop
configurations on G◇. The probability measure can be nicely rewritten (using Euler’s
formula) in terms of the loop picture:

Proposition 5.5. Let p ∈ (0,1) and q > 0 and let (G,a, b) be a Dobrushin domain, then
for any configuration ω,

φa,bG,p,q(ω) = 1

Z
xo(ω)

√
q
`(ω) (5.1)

where x = p/[√q(1 − p)], `(ω) is the number of loops in the loop configuration associated
to ω, o(ω) is the number of open edges, and Z is the normalization constant.

Proof Recall that
φa,bG,p,q(ω) = 1

Z
[p/(1 − p)]o(ω)qk(ω).

The dual of φa,bG,p,q is φ
b,a
G⋆,p⋆,q. With ω⋆ being the dual configuration of ω, we find

φa,bG,p,q(ω) =
√
φa,bG,p,q(ω) φ

b,a
G⋆,p⋆,q(ω⋆)

= 1√
ZZ⋆

√
p/(1 − p)

o(ω)√
q
k(ω)√

p⋆/(1 − p⋆)
o(ω⋆)√

q
k(ω⋆)

= 1√
ZZ⋆

¿
ÁÁÀp(1 − p⋆)

(1 − p)p⋆

o(ω)
√
p⋆/(1 − p⋆)

o(ω⋆)+o(ω)√
q
k(ω)+k(ω⋆)

=
√
q
√
p⋆/(1 − p⋆)

o(ω)+o(ω⋆)

√
ZZ⋆

xo(ω)
√
q
k(ω)+k(ω⋆)−1
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b
a

∂ba

∂?ab

γ := γ(ω)

G and G? ∪ ∂?ab

Figure 5.2: A random-cluster configuration in the Dobrushin domain (G,a, b), together
with the corresponding interfaces on the medial lattice: the loops are grey, and the ex-
ploration path γ from a◇ to b◇ is black. Note that the exploration path is the interface
between the open cluster connected to the wired arc and the dual-open cluster connected
to the white faces of the free arc.
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where the definition of p⋆ was used to prove that p(1−p⋆)
(1−p)p⋆ = x2. Note that `(ω) = k(ω) +

k(ω⋆) − 1 and

Z̃ =
√
ZZ⋆

√
q
√
p⋆/(1 − p⋆)

o(ω)+o(ω⋆)

does not depend on the configuration (the sum o(ω) + o(ω⋆) being equal to the total
number of edges). Altogether, this implies the claim. ◻

1.2 Observables for Dobrushin domains.

Fix a Dobrushin domain (G,a, b). Following [Smi10a], an observable F ∶ E◇ → C is now
defined on the edges of the medial graph. Roughly speaking, F is a modification of
the probability that the exploration path passes through an edge. First, introduce the
following definition

Definition 5.6. The winding WΓ(z, z′) of a curve Γ between two edges z and z′ of the
medial graph is the total (signed) rotation (in radians) that the curve makes from the
mid-point of the edge z to that of the edge z′ (see Fig. 5.5).

We are now in a position to define Smirnov’s edge-observable

Definition 5.7 (Smirnov’s observable). Consider a Dobrushin domain (G,a, b) and two
parameters p ∈ (0,1), q > 0. Define the (FK) parafermionic observable F for any edge
e ∈ E◇ by

F (e) ∶= φa,bG,p,q (eiσWγ(e,eb)1e∈γ) , (5.2)

where γ is the exploration path and σ is given by the relation

sin(σπ/2) =
√
q

2
(5.3)

For q ∈ [0,4], the observable F is a holomorphic parafermion of spin σ, which is a real
number in [0,1]. For q ≥ 4, σ ∈ 1 + iR and does not have an obvious physical meaning; it
would nonetheless be amusing to find one.

Sometimes, we use σ̃ ∶= σ − 1 and the observable F̃ defined for any edge e ∈ E◇ by

F̃ (e) ∶= φa,bG,p,q (eiσ̃Wγ(e,eb)1e∈γ) , (5.4)

1.3 Two fundamental properties of the observable

Let α = α(p, q) ∈ [0,2π) be given by the relation

eiα(p) ∶= eiσπ/2 + x(p)
eiσπ/2x(p) + 1

. (5.5)
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Proposition 5.8. Consider a medial vertex v in G◇∖∂G◇. The two edges pointing towards
v are indexed by N and S, and the other twos by E and W in the obvious way. Then,

F (N) − F (S) = eiα(p,q) i[F (E) − F (W )]. (5.6)

When p = psd(q), α(p, q) = 0 and the previous relation becomes a discretization of the
Cauchy-Riemann equation (see Chapter 2). Note that (5.6) immediately translates into
the relation:

F̃ (N) + F̃ (S) = eiα(p,q)[F̃ (E) + F̃ (W )]. (5.7)

Even though this relation has no natural interpretation in terms of discrete complex
analysis, it would sometimes be more convenient to handle than (5.6).

b

v

s(ω)

D

γ

free arc

wired arc

aa

b

v

ω

γ

wired arc

free arc

Figure 5.3: Two associated configurations ω and s(ω)

Proof Let us assume that v corresponds to a primal edge pointing SE to NW , see
Fig. 5.4. The case NE to SW is similar.

We consider the involution s (on the space of configurations) which switches the state
(open or closed) of the edge of the primal lattice corresponding to v. Let e be an edge of
the medial graph and denote by

eω ∶= φa,bG,psd,q(ω) eiσWγ(e,eb)1e∈γ

the contribution of the configuration ω to Fδ(e). Since s is an involution, the following
relation holds:

Fδ(e) = ∑
ω

eω = 1

2
∑
ω

[eω + es(ω)].

In order to prove (5.6), it suffices to prove the following for any configuration ω:

Nω +Ns(ω) − Sω − Ss(ω) = eiα(p,q) i[Eω +Es(ω) −Wω −Ws(ω)]. (5.8)
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There are three possibilities:
Case 1: the exploration path γ(ω) does not go through any of the edges adjacent to v.
It is easy to see that neither does γ(s(ω)). All the terms then vanish and (5.8) trivially
holds.
Case 2: γ(ω) goes through two edges around v. Note that it follows the orientation of
the medial graph, and thus enters v through either W or E and leaves through N or S.
Assume that γ(ω) enters through the edge W and leaves through the edge S (i.e. that
the primal edge corresponding to v is open). The other cases are treated similarly. It is
then possible to compute the contributions of all the edges adjacent to v of ω and s(ω)
in terms of Wω. Indeed,

• The probability of s(ω) is equal to 1/(x√q) times the probability of ω (due to the
fact that there is one less open edge of weight x and one less loop of weight √

q, see
Proposition 5.5);

• Windings of the curve can be expressed using the winding at W . For instance, the
winding of N in the configuration ω is equal to the winding of W plus an additional
π/2 turn.

The contributions are given as:

configuration W E N S
ω Wω 0 0 eiπ/4Wω

s(ω) Wω/(x
√
q) eiπ/2Wω/(x

√
q) e−iπ/4Wω/(x

√
q) eiπ/4Wω/(x

√
q)

Using the identity eiσπ/2 − e−iσπ/2 = i
√
q, we deduce (5.8) by summing (with the right

weight) the contributions of all the edges around v.
Case 3: γ(ω) goes through the four medial edges around v. Then the exploration path
of s(ω) goes through only two, and the computation is the same as in the second case.

In conclusion, (5.8) is always satisfied and the claim is proved. ◻

So far, we have shown that the (partial) integrability of the random-cluster model
implies local properties of the observable yet the observable was not related to connectivity
properties of the model. On the boundary, it is in fact possible to connect the observable
to the probability to be connected to the boundary.

Lemma 5.9. Let u ∈ G be a site on the free arc ∂ab, and e be a side of the black diamond
associated to u which borders a white diamond of ∂⋆ab, see Figure 5.5. Then,

F (e) = eiσW (e,eb) ⋅ φa,bG,p,q(u↔ wired arc),

where W (e, eb) is the winding of an arbitrary curve on the medial lattice from e to eb.
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W

N

E

S

W

N

E

S

v

v

bδ

bδ

Figure 5.4: A zoom on the consequence of switching the state of one bond in terms of
loops.

Proof Let u be a site of the free arc and recall that the exploration path is the interface
between the open cluster connected to the wired arc and the dual open cluster connected
to the free arc. Since u belongs to the free arc, u is connected to the wired arc if and only
if e is on the exploration path, so that

φa,bG,p,q(u↔ wired arc) = φa,bG,p,q(e ∈ γ).

The edge e being on the boundary, the exploration path cannot wind around it, so that
the winding of the curve is deterministic. Call it W (e, eb). We deduce from this remark
that

F (e) = φa,bG,p,q(eiσW (e,eb)1e∈γ) = eiσW (e,eb) φa,bG,p,q(e ∈ γ)
= eiσW (e,eb) φa,bG,p,q(u↔ wired arc).

◻

The observable in infinite Dobrushin domains. The definition of F can be ex-
tended to the case of infinite Dobrushin domains. Consider two non-intersecting doubly-
infinite arcs ∂ on L and ∂⋆ on L⋆ defining an infinite simply-connected domain G of L◇.
This domain has two ends, denoted −∞ and ∞, where ∞ is found at the end of ∂ 3. Set
φ∞,−∞G,p,q to be the random-cluster measure4 of parameters (p, q) on G with wired boundary
conditions on ∂ and dual-wired boundary conditions on ∂⋆ (corresponding to free bound-
ary conditions on the adjacent primal arc). The arc ∂ is the wired arc and ∂⋆ is the free
one. For instance, the strip S` = Z× [0, `] with wired boundary conditions on the bottom
and free boundary conditions on the top enters into this framework.

3When going along ∂ in the clockwise direction
4Here, the measure is not necessarily unique. We thus assume that it is constructed using nested

boxes with free boundary conditions on the intersection of their boundary with ∂⋆, and wired elsewhere.
When there is no infinite-cluster in infinite volume, the measure is unique (for instance when p ≠ psd).
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γ

wired arc ∂ba

free arc ∂?ab

a

b

u

e1

e2

WΓ(z, z′) = 0

z z′ Γ

Γ

Γ

WΓ(z, z′) = 2π

WΓ(z, z′) = π/2

z

z

z′

z′

Figure 5.5: Left: A schematic picture of the exploration path and a boundary point u,
together with two possible choices e1 and e2 for e. If u is connected to the wired arc,
the exploration path must go through e. Right: The winding of a curve. In the first
example, the curve did one quarter-turn on the left and one quarter-turn on the right.

The loop representation also exists in this setting. The φ∞,−∞G,p,q -probability of having
both an infinite cluster and a dual infinite cluster being 0, there is a unique interface γ
going from +∞ to −∞ and separating the primal cluster connected to ∂ and the dual-
cluster connected to ∂⋆. We define

F (e) ∶= φ∞,−∞G,p,q [eiσWγ(e,−∞)
1e∈γ]

where Wγ(e,−∞) is the winding of the curve between e and −∞. This winding is well-
defined up to an additive constant (since −∞ does not really make sense as a medial edge)
that we fix on a case by case basis. It is easy to see that F is the limit of observables in
finite boxes, so that properties of fermionic observables in finite Dobrushin domains carry
over to the infinite-volume case. In particular, the conclusions of the previous lemmas
apply to the infinite case as well.

2 The phase transition through parafermionic observ-
ables

2.1 Random-cluster models on surfaces with a singularity

We introduce a family of domains. Recall the definition of the graph U: it is given by the
vertex set Z3 and the edge set containing

• [(x, y, z), (x + 1, y, z)] for every x, y, z ∈ Z,
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• [(x, y, z), (x, y + 1, z)] for every x, y, z ∈ Z such that ’y ≠ 0’ or ’y = 0 and x ≥ 0’,

• [(x,0, z), (x,1, z − 1)] for every x < 0 and z ∈ Z.

This graph can be seen as a graph on the universal cover of R2∖{(−1/2,1/2)}. Its medial
graph is defined similarly to the previous cases and is denoted by U◇.

A subgraph of U is said to be simply connected if its complement in U is connected.
It is a Dobrushin domain if it has two marked points on its boundary. It is possible to
define the parafermionic observable on any Dobrushin domain in exactly the same way as
for planar simply connected domains G◇. Moreover, the following local relations are still
valid at criticality:

Proposition 5.10. Let q > 0 and p = psd(q) and fix a Dobrushin domain G of U. Consider
a medial vertex v in G◇ ∖ ∂G◇. Index the two edges pointing toward v by N and S, and
the other twos by E and W in the obvious way. Then,

F̃ (N) + F̃ (S) = F̃ (E) + F̃ (W ) (5.9)

Proof We shall not repeat the proof of Proposition 5.8 (which implies this case when
G is planar). The only point which could differ is the winding of possible loops, which
could be different of 2π on general graphs. Yet, this is not the case for these graphs and
the proposition holds true. ◻

For n ∈ N, define
U∞,n ∶= {(x, y, z) ∈ U ∶ ∣x∣ + ∣y∣ ≤ n}

For θ ∈ π
2N, define Uθ,n to be the connected component of the origin in U∞,n ∖(ρθ`∪ρ−θ`),

where
` ∶= {(x, y,0) ∶ x > 0 and x = y} ∪ {(x, y,0) ∶ x > 0 and x = y + 1}

and ρθ is the rotation in U by an angle θ.

Proposition 5.11. Fix q ≠ 4 and p = psd(q). There exists C > 0 such that for every θ, n,
there exists δx ∶ ∂Uθ,n → [0,C] such that

∑
∂Uθ,n

δx ⋅ e−iσ̃Θ(x) ⋅ φ0
Uθ,n

(0↔ x) = 1, (5.10)
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where Θ ∶ ∂Uθ,n → R is defined by

Θ(x, y, z) ∶= 2πz +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ + π/2 if (x, y, z) ∈ ρθ`
−θ − π/2 if (x, y, z) ∈ ρ−θ`
−3π/4 if y = 0, x < 0,

−π/2 if x, y < 0,

−π/4 if x = 0, y < 0,

0 if x > 0, y < 0,

π/4 if x > 0, y = 0,

π/2 if x, y > 0,

3π/4 if x = 0, y > 0,

π if x < 0, y > 0.

.

The function Θ(x, y, z) is a step function following the usual definition of the angle.

Proof Fix q ≠ 4, p = psd(q) and drop them from the notation. Consider the random-
cluster model on Uθ,n with free boundary conditions. This model can be thought of as
a random-cluster model in a Dobrushin domain, where the wired arc is empty. In other
words, if e0 denotes the medial edge adjacent to 0 and pointing south-west, e0 is both ea
and eb and the exploration path γ is the loop passing through is. For technical reasons, it
will be more convenient to consider the edge e0 as being two half-edges ea and eb. Then,
we define the parafermionic observable in this domain as usual.

Summing the relation (5.9) over all vertices in U◇
θ,n containing four adjacent medial

edges, we obtain
∑

e enteringE
F (e) − ∑

e exitingE
F (e) = 0, (5.11)

where E is the set of medial edges with two endpoints in U◇
θ,n∖∂U◇

θ,n and the edges entering
(resp. exiting) are the edges appearing not in E entering (resp. exiting) E.

Lemma 5.9 shows that for e on the boundary,

F (e) = eiσW (e,eb)φ0
Uθ,n

(0↔ x)

where x is the site bordered by e.
Now, one entering and one exiting edge is associated to each boundary site:

• if x ≠ 0, the entering edge is ea and the exiting is eb, and the associated windings
are 0 and 2π,

• for sites in `, the entering edge has winding −Θ(x)+π/2 and the exiting −Θ(x)+3π/2,

• for other sites with two neighbors in Uθ,n, the entering edge has winding −Θ(x)+π/2
and the exiting −Θ(x) + 3π/2,
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• for the remaining sites (with one neighbor), the entering edge has winding −Θ(x) +
π/4 and the exiting −Θ(x) + 7π/4.

Plugging this new input into (5.11), we obtain

1 − eiσ̃2π + ∑
1 neighbor

(eiσ̃π/4 − e7iσ̃π/4)e−iσ̃Θ(x)φ0
Uθ,n

(0↔ x) + (5.12)

+ ∑
others

(eiσ̃π/2 − e3iσ̃π/2)e−iσ̃Θ(x)φ0
Uθ,n

(0↔ x) = 0 (5.13)

which gives

sin(3σ̃π/4) ∑
1 neighbor

e−iσ̃Θ(x)φ0
Uθ,n

(0↔ x) + sin(σ̃π/2) ∑
others

e−iσ̃Θ(x)φ0
Uθ,n

(0↔ x) = sin(σ̃π).

(5.14)
To conclude, note that

sin(σ̃π) =
√
q − q2/4

sin(σ̃π/2) =
√

1 − q/4

sin(3σ̃π/4) = 1

2

√
1 − q/4(

√
1 +√

q/2 +√
q/(2

√
1 +√

q/2)).

◻

2.2 Divergence of the correlation length when 1 < q < 4

The main subject of this paragraph is the proof of Theorems 5.1 and 5.2.

Proof of Theorem 5.2 Fix 1 ≤ q ≤ 3 and p = psd(q). Set ∂2
n = ρπ` ∪ ρ−π and call

∂n1 = ∂Uπ,n ∖ ∂n2 . Taking the real part of (5.10), we find

∑
x∈∂n1

δx cos(σ̃Θ(x)) ⋅ φ0
Uπ,n(0↔ x) = 1 − ∑

x∈∂n2

δx cos(σ̃Θ(x)) ⋅ φ0
Uπ,n(0↔ x).

Yet, cos(σ̃Θ(x)) = cos(σ̃3π/2) is non-positive on ∂n2 since σ̃ ≥ 1/3 for q ∈ [1,3]. Therefore,

∑
x∈∂n1

φ0
Uπ,n(0↔ x) ≥ ∑

x∈∂n1

δx
C

cos(σ̃Θ(x)) ⋅ φ0
Uπ,n(0↔ x) ≥ 1

C

where C is defined in Proposition 5.11. Since ∂n1 is a subset of ∂Λn (where Λn is the ball
of size n for the graph distance),

∑
x∈L

φ0
psd,q

(0↔ x) ≥ ∑
n>0

∑
x∈∂Λn

φ0
psd,q

(0↔ x)

≥ ∑
n>0

∑
x∈∂n1

φ0
Uπ,n(0↔ x)

≥ ∑
n>0

1

C
= ∞.
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◻

We now prove a stronger result than Theorem 5.1: correlations decay polynomially fast
at criticality. This property distinguishes the critical phase from the subcritical one, since
correlations decay exponentially fast in the latter. Before proving this stronger result, let
us show how it implies Theorem 5.1:

Proof of Theorem 5.1 We have for every n,m > 0, using the FKG inequality,

φ0
p,q(0↔ (n +m)) ≥ φ0

p,q(0↔ n,n↔ n +m) ≥ φ0
p,q(0↔ n)φ0

p,q(0↔m)

which implies that
φ0
p,q(0↔ n) ≤ e−n/ξ(p),

where ξ(p) is the correlation length. If ξ(p) does not converge to ∞, it increases to ξ > 0
when p↗ psd. We thus obtain at pc:

φ0
psd,q

(0↔ n) = lim
p↗psd

φ0
p,q(0↔ n) ≤ lim

p↗psd
e−n/ξ(p) = e−n/ξ.

In particular, it converges exponentially fast to 0, which is in contradiction with the
polynomial decay of correlations (see Proposition 5.12 below), thus proving the claim. ◻

Proposition 5.12. Let q ∈ [1,4) and p = psd. There exists c > 0 such that

φ0
psd,q

(0↔ x) ≥ 1

∣x∣c
.

We first use the same reasoning as in the proof of Theorem 5.2 to provide lower
bounds on the probability for points in U to be connected. We then use these lower
bounds to prove lower bounds on the probability for two points of a Dobrushin domain
to be connected. This finally allows us to conclude the proof by getting rid of boundary
conditions.

Proof Fix 1 < q < 4 and p = psd and drop them from the notation. In this proof, the
constants C1, C2,.. will depend only on q.

Connection probabilities in a Dobrushin domain We generalize the argument
employed in the previous proof. Fix θ ∈ π/2N such that cos[σ̃(θ+π/2)] < 0 and cos[σ̃θ′] ≥ 0
for every 0 ≤ θ′ < θ + π/2. Set ∂n1 to be the set of points on ∂Uθ,n such that θ(x) < θ, and
∂n2 = ∂Uθ,n ∖ ∂n1 . The same reasoning as in the previous proof implies

∑
x∈∂n1

φ0
Uθ,n

(0↔ x) ≥ 1

C
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It implies that there exists x ∈ ∂n1 such that

φ0
Uθ,n

(0↔ x) ≥ 1

C ∣∂nq ∣
= C2

n
.

Let us translate and rotate Uθ,n (by an application T ) in such a way that Tx = 0 and the
domain lies above the origin. Trivially, for every n ≥m > 0

φ0
TUθ,n

(0↔ ∂[−m,m]2) ≥ φ0
TUθ,n

(0(= Tx) ↔ T0) ≥ C2

n
. (5.15)

Note that TUθ,n is not planar, which represents a difficulty. Nevertheless, (5.15) implies
two estimates in planar Dobrushin domains.

First, boundary conditions on Rn = [−2n,2n]×[0, n] inherited from those on TUθ,n are
stochastically dominated by wired boundary conditions on the top and free elsewhere. If
φdobr
Rn

denotes the measure on Rn with these boundary conditions, we find

φdobr
Rn

(0↔ ∂[−m,m]2) ≥ C2

n
(5.16)

for every m ≤ n.
Second, boundary conditions on Cn = [−2n,2n] × [0,2n] ∖ {n} × [n,2n] inherited from

those on TUθ,n are stochastically dominated by wired boundary conditions on {n}×[n,2n]
and free elsewhere. If φdobr

Cn
denotes the measure on Cn with these boundary conditions,

we obtain
φdobrCn

(0↔ ∂[−m,m]2) ≥ C2

n
(5.17)

for every m ≤ n.

Probability of long crossings in a strip Fix ε < 1/100. We aim for the following
result:

φ∞,−∞Sn
([0,2n] × [0,10εn] is horizontally crossed in S10εn) ≥ C3

nc
,

where c = c(ε) and φ∞,−∞Sn
is the random-cluster measure in the strip Sn ∶= R × [0, n] with

free boundary conditions on the bottom and wired boundary conditions on the top.

Applying (5.16) for m = εn, we face two cases:

• Case 1: φdobr
Rn

(0↔ {εn} × [0, εn] in [−εn, εn] × [0, εn]) ≥ C2

4n ,

• Case 2: φdobr
Rn

(0↔ [−εn, εn] × {εn} in [−εn, εn] × [0, εn]) ≥ C2

2n ,

Case 1: The assumption immediately implies that

φ∞,−∞Sn
(0↔ {εn} × [0, εn] in [−εn, εn] × [0, εn]) ≥ C2

4n
.
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0

x
εn

n

εn 2εn
0

Figure 5.6: Construction of paths to create a long dual-path from left to right.

In particular, there exists x ∈ {εn} × [0, εn] such that

φ∞,−∞Sn
(0↔ x in Sn/2) ≥ C3

n2
.

Using the FKG inequality and the symmetry under reflexion, see Fig. 5.6, we obtain that

φ∞,−∞Sn
(0↔ (2εn,0) in Sεn) ≥ C2

2

4n4
(5.18)

Using the FKG inequality repeatedly (around 1/ε times), we find

φ∞,−∞Sn
(0↔ (2εn,0) in Sεn) ≥ C3

nc
(5.19)

for some constants C3 = C3(ε) and c = c(ε).
Case 2: There exists x ∈ [−εn, εn] × {εn} such that

φdobr
Rn (0↔ x in [−εn, εn] × {εn}) ≥ C6

n3
.

Using the FKG inequality yet again and the comparison between boundary conditions,
we find

φdobr
Rn (0↔ (0,10εn) in [−2εn,2εn] × [0,10εn]) ≥ C7

n100
.

Now,

φdobr
Rn (0↔ 3εn in S10εn) ≥ C8

n200

since we can combined the events

• 0↔ (0,10εn) in [−2εn,2εn] × [0,10εn],

• εn↔ (εn,10εn) in [2εn,4εn] × [0,10εn],

• the two previous vertical paths are connected in [−2εn,4εn] × [0,10εn]

in order to create a path from 0 to 3εn. Note that the third event has probability
larger than 1/2 conditionally on the other two (use duality and crossings in squares with
free/wired/free/wired boundary conditions). Now, since 10ε < 1/2, we are in the same
position as in (5.18) and the result follows.
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0 3εn

10εn

Figure 5.7: Construction of paths to create an arc in the second case of the proof.

Probability of connection for φ0
psd,q

Conditionally on 0 ↔ ∂[−εn, εn] × [0, εn], the
configuration outside in Cn ∖ [−εn, εn]2 is stochastically dominated by wired boundary
conditions on {n}× [n,2n] ∪ ∂[−εn, εn]2 and free elsewhere. Therefore, the probability of
having a vertical dual crossing in [εn,11εn] × [0,2n] and [−11εn,−εn] × [0,2n] is larger
than (C3/nc)2 (simply wired the arcs {εn}×[0,2n] and {−εn}×[0,2n]). Yet, conditionally
on all these events, the two vertical dual crossings are dual connected in [−11εn,11εn] ×
[εn,12εn] with probability larger than 1/2 since the boundary conditions on this square
are dominated by wired on the top and bottom and free elsewhere. Now if An denotes the
event that [−εn, εn]2 is disconnected from the wired arc by a dual crossed path outside
of [−εn, εn]2, we find

φdobr
Cn

(0↔ ∂[−εn, εn] × [0, εn] , An) ≥ φdobr
Cn

(An ∣ 0↔ ∂[−εn, εn] × [0, εn])
⋅ φdobr

Cn
(0↔ ∂[−εn, εn] × [0, εn])

≥ C2C2
3

2n2c+1
.

In order to conclude, the comparison between boundary conditions implies

φ0
psd,q

(0↔ ∂[−εn, εn]2) ≥ φ0
Cn

(0↔ ∂[−εn, εn] × [0, εn])
≥ φdobr

Cn
(0↔ ∂[−εn, εn] × [0, εn] ∣ An)

≥ φdobr
Cn

(0↔ ∂[−εn, εn] × [0, εn] , An) ≥ C5

n2c+1
.

◻
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2.3 Infinite clusters in universal covers when q > 4

We now prove Theorem 5.3.

Proof of Theorem 5.3 Fix q > 4, p = psd and drop them from the notation. The fact
that a cluster exists with probability 0 or 1 is due to the fact that it is a translational
invariant event with respect to the vectors {(0,0, n), n ∈ Z}.

Recall that in this case iσ̃ is real and thus the winding term is positive. Fix θ and
n > 0, (5.10) implies that

∑
x∈∂Uθ,n

eiσ̃Θ(x)φ0
Uθ,n

(0↔ x) ≤ cq.

In fact, the same reasoning can be applied for m < n to the domain Vθ,m,n corresponding
to the domain Uθ,n with an additional rectangle of size (m,n) at the ’end’. We thus obtain

∑
x∈∂Vθ,m,n

eiσ̃Θ(x)φ0
Vθ,m,n

(0↔ x) ≤ cq,

which gives, defining Vθ,m,∞ as the union of Vθ,m,n for every n,

∑
x∈∂Vθ,m,∞

eiσ̃Θ(x)φ0
Vθ,m,∞(0↔ x) ≤ cq,

which implies
∑

x∈∂θ,m
φ0
Vθ,m,∞(0↔ x) ≤ C1e

−∣σ̃∣θ,

where ∂θ,m is the set of boundary points x ∈ Vθ,m,∞ with θ(x) ≥ θ. Now, assume that
(0,0, r) and 0 are connected by an open path in U. It implies that there exists θ > 2πr,
m > 0 and a point y ∈ ∂θ,m such that 0 and y are connected in Vθ,m,∞. Using comparison
between boundary conditions, we deduce

φ0
U(0↔ (0,0, r)) ≤ ∑

θ>2πr,m>0

∑
x∈∂θ,m

φ0
Vθ,m,∞(0↔ x) ≤ C2e

−2π∣σ̃∣r.

The Borel-Cantelli lemma implies that there is a finite number of couples (r, s) with
r < 0 and s > 0 such that (0,0, r) and (0,0, s) are connected. In particular, it implies that
there exists an infinite cluster in the dual, which is our claim. ◻

2.4 The case q = 4

When q = 4, Smirnov’s parafermionic observable becomes simply

F̃ (e) = φa,bG,p,4(e ∈ γ).

Proposition 5.8 then boils down to the fact that γ enters and exists every vertex the same
number of times. Yet this is an easy implication of the fact that γ is a curve. In particular,
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the relations are the same for every p and do not characterize the phase transition. The
reason for this loss of information is that we are not looking at the right observable.
Somehow, the observable becomes degenerated when q → 4 (in particular because the
winding term becomes 1), and one should look at an expansion of the observable in
powers of σ̃. When expanding the observable, the second term is

G(e) ∶= φa,bG,p[Wγ(e, eb)eiWγ(e,eb)1e∈γ].

Proposition 5.13. Fix q = 4 and p = psd(4) = 2/3. Consider a medial vertex v in G◇∖∂G◇.
Index the two edges pointing toward v by N and S, and the other twos by E and W in
the obvious way. Then,

G(N) −G(S) = i [G(E) −G(W )]. (5.20)

Proof Consider the parafermionic observable Fq in G◇ for the random-cluster model
with parameters q and psd(q). Proposition 5.8 implies

Fq(N) − Fq(S) = i [Fq(E) − Fq(W )]. (5.21)

Expanding in σ − 1 the winding term in Fq, we obtain:

Fq(e) = φa,bG,p,q([1 − σ̃Wγ(e, eb) +O(σ̃2)]eiWγ(e,eb)1e∈γ).

Coming back to (5.21), we deduce

φa,bG,p,q(eiWγ(N,eb)1N∈γ) − φa,bG,p,q(eiWγ(S,eb)1S∈γ)
− i (φa,bG,p,q(eiWγ(E,eb)1E∈γ) − φa,bG,p,q(eiWγ(W,eb)1W ∈γ)) + O((σ − 1)2)
= (σ − 1) (φa,bG,p,q(Wγ(N,eb)eiWγ(N,eb)1N∈γ) − φa,bG,p,q(Wγ(S, eb)eiWγ(S,eb)1S∈γ)
− i (φa,bG,p,q(Wγ(E, eb)eiWγ(E,eb)1E∈γ) − φa,bG,p,q(Wγ(W,eb)eiWγ(W,eb)1W ∈γ)))

Now, the left hand side of the equality can be rewritten as

φa,bG,p,q(N ∈ γ) + φa,bG,p,q(S ∈ γ) − φa,bG,p,q(W ∈ γ) − φa,bG,p,q(E ∈ γ) + O((σ − 1)2).

Since γ is a curve from ea to eb, the first four terms cancel each other, and we obtain

φa,bG,p,q(Wγ(N,eb)eiWγ(N,eb)1N∈γ) − φa,bG,p,q(Wγ(S, eb)eiWγ(S,eb)1S∈γ)
= i (φa,bG,p,q(Wγ(W,eb)eiWγ(W,eb)1W ∈γ) − φa,bG,p,q(Wγ(E, eb)eiWγ(E,eb)1E∈γ))) + O(σ − 1).

By letting q go to 4 from below (in this case σ converges to 1), the result follows readily.
◻

Corollary 5.14. There exists C > 0 such that for every n and θ, there exists δx ∶ ∂Uθ,n →
[0,C] satisfying

∑
x∈∂Uθ,n

δxφ
0
Uθ,n

(0↔ x) = 2

π
.
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Proof The proof of Proposition 5.11 can be adapted to this context with minor changes.
◻

Proposition 5.15. Fix q = 4 and p = psd(4) = 2/3. There exists c > 0 such that

φ0
psd,4

(0↔ x) ≥ 1

∣x∣c
.

Proof The reasoning is almost the same as in the case q < 4. First note that the
probability to cross a rectangle with wired boundary conditions does not go to 0 as was
proved in Theorem 9.1. Therefore,

φ1
psd,4

(0↔ ∂[−n,n]2 in [−n,n] × [0, n]) ≥ C1

n

for some constant C1 > 0.
Now, consider the domain U2πn2,n. From Corollary 5.14, there exists x ∈ ∂U2πn2,n such

that
φ0
U2πn2,n

(0↔ x) ≥ C1

∣∂U2πn2,n∣
= C2

n3
.

Moreover, x satisfies ∣θ(x)∣ ≤ n3/2 since for x,

φ0
U2πn2,n

(0↔ x) ≤ (1 − φ0
U2πn2,n

(0 ⋆↔ ∂[−n,n]2 in [−n,n] × [0, n]))θ(x)/2π.

Let us translate and rotate Uθ,n in such a way that x ∈ {n} × [−n,n]. We find

φ0
U2πn2,n

(x↔ {n/2} × [−n,n]) ≥ φ0
U2πn2,n

(0↔ x) ≥ C2

n3
.

The end of the proof is the same as in the q < 4 case. ◻

3 An alternative proof that pc(q) = psd(q) for q ≥ 4

When q > 4, interestingly, the spin variable becomes non-real, therefore it does not have
an immediate physical interpretation. However, this allows us to write better estimates
even in the absence of exact holomorphicity and relate our observables to the connectivity
properties of the model. For p ≠ psd we prove that observables behave like massive har-
monic functions and decay exponentially fast with respect to the distance to the boundary
of the domain. Translated into connectivity properties, this implies the sharpness of the
phase transition at psd. In this section, Theorem 5.4 is proved, as well as the following
statement:

Theorem 5.16. Let q > 4. For every p < pc, there exist 0 < c,C < ∞ such that

φp,q(0↔ a) ≤ Ce−c∣a∣

for any a ∈ Z2.
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3.1 A representation formula for the observable

This section deals with the observable F . More precisely, the sum of F̃ over a set A ⊂ E◇ is
bounded in terms of the sum over the boundary edges of A. Let (G,a, b) be a Dobrushin
domain. For a set A of edges of E◇, ∂eA denotes the set of edges of E◇ ∖ A sharing a
vertex with an edge of A (also called the external boundary of the set).

Proposition 5.17. For any x ≠ 1 and q ≠ 4, there exists C1 = C1(p, q) < ∞ such that for
any set of edges A ⊂ E◇ not containing any edge adjacent to a vertex of ∂vV◇, there exists
a function δ ∶ ∂eA→ [−C1,C1] such that

(1 − cos(2α))∑
e∈A

F̃ (e) = ∑
e∈∂eA

δeF̃ (e).

Proof Recall that eiα(x) ≠ 1 since x ≠ 1 and q ≠ 4. Sum (5.7) over all vertices adjacent to
edges of A, and divide by (1−eiα(x)). It provides a weighted sum of F̃ (e) (with coefficients
denoted by c(e)) identical to zero:

∑
e∈A

c(e)F̃ (e) + ∑
e∈∂A

c(e)F̃ (e) = 0.

For an edge e ∈ A, F̃ (e) will appear in two identities, corresponding to its endpoints.
Since e is oriented away from one of its ends and towards the other one, the coefficients
will be 1 and −eiα(x). Thus F̃ (e) for e ∈ A will enter the sum with a coefficient c(e) =
(1 − eiα(x))/(1 − eiα(x)) = 1.

For an edge e ∈ ∂eA, F̃ (e) appears in one identity, corresponding to its endpoint
belonging to A. The coefficient is 1 or −eiα(x), depending on the orientation of e with
respect to this endpoint. Thus F̃ (e) enters the sum with a coefficient c(e) equal to
either 1/(1− eiα(x)) or −eiα(x)/(1− eiα(x)). The proposition follows immediately by setting
αe ∶= −c(e) and C1 ∶= max{1, ∣eiα(x)∣}/∣1 − eiα(x)∣. ◻

3.2 Proof of Theorem 5.4

The main step of the proof is to show that, whenever p < psd, there is a very low probability
of having vertical crossings of an extremely large rectangle. This statement is sufficient
to prove Theorem 5.4, as was already seen in the previous chapter.

For L ≥ 0, consider an infinite horizontal strip SL = Z× J0, LK together with its medial
lattice. We define two families of sets, the former ones being subsets of the strip and the
latter of the set E◇ of edges of its medial graph. More precisely, write e ∼ a if the edge
e ∈ E◇ is adjacent to the site a ∈ L. For every n ≥ 0, define the following (possibly empty)
sets, as depicted in Figure 5.8:

R(m,n) ∶= J0,mK × Jn,L − nK, R◇(m,n) ∶= {e ∈ E◇ ∶ ∃a ∈ R(m,n), e ∼ a},
R−(m,n) ∶= J0,mK × J0, n − 1K, R−

◇(m,n) ∶= {e ∈ E◇ ∶ ∃a ∈ R−(m,n), e ∼ a},
R+(m,n) ∶= J0,mK × JL − n + 1, LK, R+

◇(m,n) ∶= {e ∈ E◇ ∶ ∃a ∈ R+(m,n), e ∼ a}.
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−∞ ∞

iL+ Z

Z

L

n

n

R+(m,n)

R(m,n)

R−(m,n)

SL

event A

event B

0 m

Figure 5.8: Definition of the different rectangles and events A and B.

Recall that in a Dobrushin domain, γ denotes the exploration path, i.e. the interface
between the open cluster connected to the wired arc and the dual open cluster connected
to the free arc. The following lemma bounds the probability that the exploration path
passes through the rectangle R(m,n):

Lemma 5.18. Let q > 4 and p ≠ psd, then there exist positive constants c2 = c2(p, q) and
C2 = C2(p, q) such that for any n < L/2 and m ≥ C2,

φ∞,−∞SL,p,q(γ ∩R◇(m,n) ≠ ∅) ≤ C2me−c2n.

Proof Consider the observable F̃ defined in the strip SL. Recall that in our setting x ≠ 1
and F̃ is non-negative. Set c2 ∶= − log (2C1/(2C1 + 1)) and C2 ∶= max{4C1,8 exp(∣σ∣2π)}
where C1 is defined in Proposition 5.17.

Fix m ≥ C2 and consider some n < L/2. Denote

Un ∶= ∑
e∈R◇(m,n)

F̃ (e).

Proposition 5.17 along with the non-negativity of F̃ implies the following estimate:

Un = ∑
e∈∂eR◇(m,n)

δeF̃ (e) ≤ C1 ∑
e∈∂eR◇(m,n)

F̃ (e). (5.22)

Divide the boundary ∂eR◇(m,n) into four parts: the bottom Abot, the top Atop and
both sides Aleft and Aright.

On the one hand, since F̃ is invariant under horizontal translations, the sums over the
left and right sides are the same as over any vertical cross-section of R◇(m,n) and we
conclude that

∑
e∈Aleft∪Aright

F̃ (e) = 2

m
Un. (5.23)
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On the other hand, the top and the bottom are contained inside Un−1 ∖Un, and therefore

∑
e∈Atop∪Abottom

F̃ (e) ≤ Un−1 −Un. (5.24)

Combining Equations (5.22), (5.23) and (5.24) and using the inequality m ≥ C2 ≥ 4C1,
we obtain that

Un ≤
2C1

m
Un +C1(Un−1 −Un) ≤ (1

2
−C1)Un +C1Un−1,

hence
Un ≤

2C1

2C1 + 1
Un−1 = e−c2Un−1. (5.25)

Take now n = 0, Atop and Abottom are thus at a distance one to the boundary of
the strip: an interface arriving there must have a winding bounded by ±2π. Thus for
e ∈ Atop ∪Abottom we have

F̃ (e) = φ∞,−∞SL,p,q[e
−iσ̃W (e)

1e∈γ] ≤ e∣σ̃∣2πφ∞,−∞SL,p,q(e ∈ γ) ≤ e∣σ̃∣2π

where the last equality is due to Lemma 5.9. Summing this over all 4m edges in the top
and bottom sides,

∑
e∈Atop∪Abottom

F̃ (e) ≤ 4me∣σ̃∣2π ≤ 1

2
C2m. (5.26)

Combining (5.22), (5.23) and (5.26) for n = 0 we deduce that

U0 ≤
2C1

m
U0 +

1

2
C2m ≤ 1

2
U0 +

1

2
C2m,

therefore
U0 ≤ C2m. (5.27)

(5.27) along with the iterated (5.25) imply

Un ≤ U0e−c2n ≤ C2me−c2n. (5.28)

Similar reasoning applies to

F̂ (e) ∶= φ∞,−∞SL,p,q(e
−iσ̃Wγ(e,eb)1e∈γ),

yielding the same inequality for

Vn ∶= ∑
e∈R◇(m,n)

F̂ (e).

Combining the two inequalities with (5.29), we obtain

φ∞,−∞SL,p,q(γ ∩R◇(m,n) ≠ ∅) ≤ ∑
e∈R◇(m,n)

φ∞,−∞SL,p,q(e ∈ γ)

≤ 1

2
∑

e∈R◇(m,n)
(F̃ (e) + F̂ (e)) ≤ 1

2
(Un + Vn) ≤ C2me−c2n,
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where we used the fact that

F̃ (e) + F̂ (e) = 2φa,bG,p,q[cos(σ̃Wγ(ea, e))1e∈γ] ≥ 2φa,bG,p,q(e ∈ γ) (5.29)

(recall that σ̃ is purely imaginary). ◻

For a rectangle R, define the event Ch(R) (resp. Cv(R)) to be the existence of an
open path from the left-hand to the right-hand side (resp. from the top to the bottom)
of R. Similarly, we define C⋆v (R) and C⋆h(R) in terms of the dual open paths through
the rectangle R shifted by 1

2 +
i
2 , so that they belong to the dual lattice. In the next

lemma, probabilities of such events for rectangles of aspect ratio 1/3 whenever p < psd are
bounded (duality provides estimates for p > psd as well). Recall that φp,q is the unique
infinite-volume measure.

Lemma 5.19. Let q > 4 and p < psd, there exist 0 < c3,C3 < ∞ such that for every m > 0,

φp,q(Cv(J0,3mK × J0,mK)) ≤ C3e−c3
√
m a.s..

This result is not surprising when looking at typical (not formerly proved) subcritical
behaviors. Indeed, the probability for two points to be connected by an open path in the
subcritical phase should decay exponentially fast with respect to the distance between
them. It implies that the probability for large rectangles to be crossed from bottom to
top is extremely low.

Proof Throughout the proof, the side lengths of rectangles involved are implicitly
rounded up (for instance,

√
n will actually mean ⌈

√
n ⌉ in that context).

Fix p < psd and take m large enough satisfying

C2me−c2
√
m < 1

3
.

We will work with L > 2n, n =
√
m and the following events, depicted in Figure 5.8:

A = Cv(R−(m,
√
m)), B = C⋆v (R+(m,

√
m)).

Recall that the exploration path is an interface between the open cluster connected to the
(wired) bottom side and the dual open cluster connected to the (free) top side. Therefore,
if both A and B occur, the exploration path is forced to pass through R◇(m,

√
m), thus

Lemma 5.18 implies the estimate

φ∞,−∞SL,p,q(A ∩B) ≤ C2me−c2
√
m < 1

3
. (5.30)

Consider the symmetry of the strip exchanging its sides and add 1+i
2 so that the lattice

is mapped to its dual. Note that it preserves Dobrushin boundary conditions, e.g. the
wired boundary conditions on the bottom part are sent to the dual wired (= free) boundary
conditions on the top part. Therefore, by duality, the random-cluster measure φ∞,−∞SL,p,q with
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parameters p⋆(p, q) and q gets mapped to the random-cluster measure on the dual strip
with the same boundary conditions and parameters p and q. This symmetry also maps
the event A to the event B, so that

φ∞,−∞SL,p,q (B) = φ∞,−∞SL,p⋆,q (A) ≥ φ∞,−∞SL,p,q (A) ,

since A is an increasing event and p⋆(p, q) > p (since p < psd).
Hence (let us return to the fixed parameters p and q), event A has smaller probability

than B, and (5.30) implies

2φ∞,−∞SL,p,q(A) − 1 ≤ φ∞,−∞SL,p,q(A) + φ∞,−∞SL,p,q(B) − 1 ≤ φ∞,−∞SL,p,q(A ∩B) < 1

3
,

concluding that

φ∞,−∞SL,p,q(Cv(R
−(m,

√
m))) = φ∞,−∞SL,p,q(A) < 2

3
.

Letting L go to infinity, the measure φ∞,−∞SL,p,q converges to the random-cluster measure
φp,q in the upper-half plane with wired boundary conditions on Z. Therefore, for m large
enough, the probability of the event Cv(R−(m,

√
m)) given that the bonds of Z are open

is bounded from above by 2/3.
Since these boundary conditions stochastically dominate all the others and A is an

increasing event, (3.10) implies that the probability of A is always smaller than 2/3,
uniformly with respect to the boundary conditions on Z – in other words, uniformly on
what happens below the rectangle. Consider m large enough and divide the rectangle
J0,3mK × J0,mK into rectangles Ri (where i = 1⋯

√
m/3) with height

√
3m and width 3m.

Let Ai be the event that Ri is crossed vertically. Notice that for every i, Ai is a translate
of the event A. If there is a vertical crossing of J0,3mK×J0,mK, there must exist a vertical
crossing for each of these

√
m/3 rectangles so that

φp,q(Cv(J0,3mK × J0,mK)) ≤ φp,q
⎛
⎝

√
m/3

⋂
i=1

Ai
⎞
⎠
=

√
m/3

∏
i=1

φp,q(Ai∣Aj, j < i).

Estimating the conditional probabilities of events Ai one by one, using the domain Markov
property and the uniform bound on boundary conditions, the claim follows. ◻

Proof of Theorem 5.4 Let p < psd. Lemma 5.19 implies that for n ≥ 1,

φp,q(0↔ Bcn) ≤ 4C3e−c3
√
n. (5.31)

In particular, there is no infinite cluster almost surely and pc ≥ psd.
In addition to this, an easy application of Borel-Cantelli Lemma implies that there is

almost surely finitely many open circuits surrounding the origin. Hence, there is almost
surely a dual infinite cluster which gives p⋆ ≥ p⋆c . Since it is true for any p < psd, psd ≥ p⋆c ,
or equivalently pc ≤ psd. ◻
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Proof of Theorem 5.16 The rate of decay of the one arm event given in (5.31) is
strong enough to harness Theorems (5.64) and (5.66) of [Gri06] (see also the argument
in the previous chapter). These theorems prove that the probability decays exponentially
fast. ◻
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Part II

The Ising and FK-Ising models
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Chapter 6

Two-dimensional Ising model

Abstract: This chapter depicts general facts on the planar Ising model which are some-
times hard to find in the literature. One very important section is the section dealing with
the low and high temperature expansions along with the definition of the spin fermionic
observable.

1 Definition of the Ising model

1.1 Definition on the square lattice

The (spin) Ising model can be defined on any graph. However, we will once more restrict
ourselves to the square lattice. Let G be a finite subgraph of L, and b ∈ {−1,+1}∂G. The
Ising model with boundary conditions b is a random assignment σ ∈ {−1,1}G of spins
σx ∈ {−1,+1} (or simply −/+) to vertices of G such that σx = bx on ∂G, where σx denotes
the spin at site x.

The Hamiltonian of the model is defined by

Hb
G(σ) ∶= −∑

x∼y
σxσy.

where the summation is over all pairs of neighboring sites x, y in G. The partition function
of the model is

Zb
β,G = ∑

σ∈{−1,1}G∶ σ=b on ∂G
exp [−βHb

G(σ)] , (6.1)

where β is the inverse temperature of the model. The Ising measure is simply a Boltzman
measure with hamiltonian Hb

G. More precisely, the probability of a configuration σ is
equal to

µbβ,G(σ) = 1

Zb
β,G

exp [−βHb
G(σ)] . (6.2)

123
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1.2 Special boundary conditions

similarly to the random-cluster case, several boundary conditions will be of particular
importance in our study:

• all plus (resp. all minus) boundary conditions: the measure with all + (resp. all −)
boundary conditions is denoted by µ+β,G (resp. µ−β,G),

• free boundary conditions: the measure without any boundary conditions is called
the measure with free boundary conditions and is denoted by µfβ,G,

• Dobrushin boundary conditions: assume that ∂G is a self-avoiding polygon in L,
and let a and b be two sites of ∂G. Orienting ∂G counterclockwise defines two
oriented boundary arcs ∂ab and ∂ba; the Dobrushin boundary conditions are defined
to be − on ∂ab and + on ∂ba. We will refer to those arcs as the arc minus and
the arc plus respectively. The measure associated to these boundary conditions is
denoted by µa,bβ,G. Note that the Dobrushin boundary conditions possess a useful
property: they force the existence of a macroscopic interface in the model between
the − cluster connected to ∂ab and the + cluster connected to ∂ba.

2 General properties

2.1 DLR condition

Similarly to the random-cluster case, the Ising model satisfies a strong form of domain
Markov property. In words, the Ising measure conditioned on the configuration outside
of a set V is equal to the Ising measure with random boundary conditions on the exterior
boundary ∂eV , i.e. the set of sites outside of V connected by an edge to a site in V .
In particular, the Ising measure only keeps memory of the nearest neighbors (which is
in some sense even stronger than the domain Markov property for the random-cluster
models).

Proposition 6.1. Let V ⊂ V ′ two finite sets of vertices of Z2. Let σ be a spin-configuration
on V ′ ∖ V . Then

µbβ( ⋅∣V ∣ σ ) = µ
σ∂eV
β ( ⋅ ).

2.2 Positive association of the Ising model

An event A is increasing if it is stable by switching of minuses to pluses. A typical example
is the existence of a path of pluses between two sets of the space.

Theorem 6.2 (FKG inequality). Let G be a finite graph, b be boundary conditions and
β > 0. For any two increasing events A,B,

µbβ,G(A ∩B) ≥ µbβ,G(A)µbβ,G(B).
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Proof We use the FKG lattice condition (3.5) once again. Let σ a configuration and
e, f two sites. The partial ordering is the usual ordering of {−,+}V , set σef (respectively
σef , σef and σfe ) to be the configuration agreeing with σ away from e and f , and with
(σe, σf) = (+,+) (resp. (−,−), (+,−) and (−,+)). The criterion (3.5) translates into the
following claim to prove

H(σef) +H(σef) ≤H(σfe ) +H(σef), (6.3)

When e and f are not adjacent, the two sides of (6.3) are equal. When e and f are
adjacent, we see that the left-hand term of (6.3) corresponds to configurations with σe = σf
and f agreeing, while the right-hand term corresponds to configurations with σe ≠ σf . In
particular, the left-hand side is indeed smaller than the right-hand one. ◻

Theorem 6.3. Let G be a finite graph and β > 0. For boundary conditions b1 ≤ b2 and
an increasing event A,

µb1β,G(A) ≤ µb2β,G(A). (6.4)

Proof The proof follows the same lines as the previous proof of positive association. ◻

Like in the random-cluster model, we say that µb2β,G stochastically dominates µb1β,G. Note
that the + boundary conditions are the largest ones in the sense of stochastic ordering,
while − are the smallest.

Remark 6.4. There are however some differences between the Ising and the random-
cluster models. On the one hand, there does not exist any increasing coupling between
Ising measures at different temperatures. On the other hand, other correlation inequalities
are available. Even though it is not used in this document, let us mention one of them:
the Griffith-Kelly-Sherman inequality [Gri67, KS68]. For any graph G, any β > 0 and
any two sets A,B of vertices of G,

µ+β,G[σA] ≥ 0,

µ+β,G[σAσB] ≥ µ+β,G[σA]µ+β,G[σB],

where σA = ∏v∈A σv. These inequalities can be used to proved that the derivative with
respect to β of µ+β,G[σ0] is positive.

3 FK-Ising model and Edwards-Sokal coupling
The Ising model can be coupled to the random-cluster model with cluster-weight q = 2
[ES88]. For this reason, the q = 2 random-cluster model will be called FK-Ising. We now
present this coupling, called the Edwards-Sokal coupling, along with some consequences
for the Ising model.
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Let G be a finite graph and let ω be a configuration of open and closed edges on G.
A spin configuration σ can be constructed on the graph G by assigning independently
to each cluster of ω a + or − spin with probability 1/2 (more precisely all the sites of a
cluster receive the same spin).

Proposition 6.5. Let p ∈ (0,1) and G a finite graph. If the configuration ω is dis-
tributed according to a random-cluster measure with parameters (p,2) and free boundary
conditions, then the spin configuration σ is distributed according to an Ising measure with
inverse temperature β = −1

2 ln(1 − p) and free boundary conditions.

Proof Consider a finite graph G, let p ∈ (0,1). Consider a measure P on pairs (ω,σ),
where ω is a random-cluster configuration with free boundary conditions and σ is the
corresponding random spin configuration, constructed as explained above. Then, for
(ω,σ), we have:

P [(ω,σ)] = 1

Z0
p,2,G

po(ω)(1 − p)c(ω)2k(ω) ⋅ 2−k(ω) = 1

Z0
p,2,G

po(ω)(1 − p)c(ω).

Now, we construct another measure P̃ on pairs of percolation configurations and spin
configurations as follows. Let σ̃ be a spin configuration distributed according to an Ising
model with inverse temperature β satisfying e−2β = 1 − p and free boundary conditions.
We deduce ω̃ from σ̃ by closing all edges between neighboring sites with different spins,
and by independently opening with probability p edges between neighboring sites with
same spins. Then, for any (ω̃, σ̃),

P̃ [(ω̃, σ̃)] = e
−2βr(σ̃)po(ω̃)(1 − p)a−o(ω̃)−r(σ̃)

Zf
β,p

= p
o(ω̃)(1 − p)c(ω̃)

Zf
β,p

where a is the number of edges of G and r(σ̃) the number of edges between sites with
different spins.

Note that the two previous measures are in fact defined on the same set of ’compatible’
pairs of configurations: if σ has been obtained from ω, then ω can be obtained from σ via
the second procedure described above, and the same is true in the reverse direction for ω̃
and σ̃. Therefore, P = P̃ and the marginals of P are the random-cluster with parameters
(p,2) and the Ising model at inverse temperature β, which is the claim. ◻

The coupling gives a randomized procedure to obtain a spin-Ising configuration from
an FK-Ising configuration (it suffices to assign random spins). The proof of Proposition 6.5
provides a randomized procedure to obtain an FK-Ising configuration from a spin-Ising
configuration.

If one considers wired boundary conditions for the random-cluster, the Edwards-Sokal
coupling provides us with an Ising configuration with + boundary conditions (or −, the two
cases being symmetric). We omit the details, since the generalization is straightforward.
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An important consequence of the Edwards-Sokal coupling is the relation between Ising
correlations and random-cluster connectivity properties. Indeed, two sites which are con-
nected in the random-cluster configuration must have the same spin, while sites which
are not have independent spins. This implies

Proposition 6.6. For p ∈ (0,1), G a finite graph and β = −1
2 ln(1 − p),

µfβ,G[σxσy] = φ0
p,2,G(x↔ y),

µ+β,G[σx] = φ1
p,2,G(x↔ ∂G).

4 Infinite-volume measures and phase transition

4.1 Definition of infinite-volume measures

Theorem 6.3 allows us to define infinite-volume measures as follows. Consider the nested
sequence of boxes Λn = [−n,n]2. For any N > 0 and any increasing event A depending
only on edges in ΛN , the sequence (µ+β,Λn(A))n≥N is decreasing. Indeed, any configuration
of spins in ∂Λn being smaller than all +, the restriction of µ+β,Λn+1

to Λn is stochastically
dominated by µ+β,Λn . One can then define a limit, denoted by µ+β(A), which does not
depend on N . In this way, µ+β is defined for increasing events depending on a finite
number of sites. It can be further extended into a probability measure on the σ-algebra
spanned by cylindrical events (events measurable in terms of a finite number of spins). The
resulting measure µ+β is called the infinite-volume Ising model with + boundary conditions.

Observe that, similarly to the random-cluster model, one could construct (a priori)
different infinite-volume measures, for instance with − boundary conditions (the corre-
sponding measure is denoted by µ−β). If infinite-volume measures are defined from a prop-
erty of compatibility with finite volume measures, then µ+β and µ−β are extremal among
infinite-volume measures of parameter β. In particular, if µ+β = µ−β, there exists a unique
infinite volume measure.

4.2 Phase transition

The Ising model in infinite-volume exhibits a phase transition at some critical inverse
temperature βc, above which a spontaneous magnetization appears.

Theorem 6.7. There exists βc ∈ (0,∞) such that:

• for any β < βc, µ+β[σ0] = 0,

• for any β > βc, µ+β[σ0] > 0.

Furthermore, βc = 1
2 log(1 +

√
2).
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Proof Proposition 6.6 immediately implies that βc = −1
2 ln[1 − pc(2)] by passing to the

infinite-volume. Then, Theorem 4.1 concludes the proof. ◻

The proof of the existence of the phase transition on general graphs harnesses the
Edwards-Sokal only. Without the help of the FK-Ising model, one can use the GKS
inequality (see Remark 6.4) to show directly that µ+β[σ0] is increasing and thus deduce
the existence of βc. Let us mention that the inverse critical temperature was identified
(without proof) by Kramers and Wannier [KW41a, KW41b], using the duality between
low and high temperature expansions of the Ising model that we present in the next
section. Its first rigorous derivation is due to Yang [Yan52]. He uses the exact formula for
the (infinite-volume) partition function to compute the spontaneous magnetization of the
model (it was previously computed non-rigorously by Onsager). This quantity provides
one criterion for localizing the critical point. The first probabilistic computation of the
critical inverse temperature is due to Aizenman, Barsky and Fernández [ABF87]. This
manuscript contains two alternative proofs of this result, the one mentioned earlier, which
harnesses Chapter 4, and the other presented in Chapter 8.

4.3 Classification of Gibbs measures

Infinite-volume measures for the Ising models are typicalGibbs measures (see Section 2.3.2.
of [VEFS93] for details on Gibbs measures). Their classification is thus an important task.
While the question is difficult in high-dimension, it is understood in dimension two.

Proposition 6.8. When β < βc, there is a unique infinite-volume measure.

Proof It is sufficient to prove that µ+β = µ−β. Note that we already know µ+β ≥ µ−β. Define
nA = 1

2(1+σA), where σA = ∏x∈A σx. Since ∑x∈A nx −nA is increasing, the FKG inequality
implies

µ+β(∑
x∈A

nx − nA) ≥ µ−β(∑
x∈A

nx − nA)

which becomes
∑
x∈A

µ+β(nx) − µ−β(nx) ≥ µ+β(nA) − µ−β(nA).

Since β < βc, we have µ+β(σ0) = µ−β(σ0) = 0, we find µ+β(nA) = µ−β(nA) for any finite set
A. Yet, the space of functions nA spans all measurable functions, so that µ+β and µ−β
coincide. ◻

The classification when β > βc is more interesting. The space of infinite-volume mea-
sures is a simplex.

Theorem 6.9 (Aizenman,Higushi [Aiz80, Hig81], recent proof in [CV10]). Fix β > βc.
The only two extremal Gibbs measures are µ+β and µ−β.
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This result is no longer true in higher dimensions: non translational-invariant Gibbs
measures can be constructed using 3D Dobrushin domains [Dob72]. For instance, one
can consider boxes with + boundary conditions on the upper half-space and − boundary
conditions on the lower half-space. These boundary conditions imply the existence of a
surface between + and −. In dimensions 3 and higher and at very high β, this surface
does not fluctuate much and it is possible to prove that the infinite measure constructed
by nested sequences of such boxes is not translationally invariant in the vertical direction.

The classification at criticality is in general much more difficult. For the Ising model,
this is not the case and it turns out that there exists a unique infinite-volume measure at
criticality. Since this fact plays a role in the proof of conformal invariance, we now sketch
an elementary proof due to W. Werner (the complete proof can be found in [Wer09b]).

Proposition 6.10. There exists a unique infinite-volume FK-Ising measure with param-
eter pc and there is almost surely no infinite cluster under this measure. Correspondingly,
there exists a unique infinite-volume spin Ising measure at βc.

Proof As described above, it is sufficient to prove that φ0
psd,2

= φ1
psd,2

. First note that
there is no infinite cluster for φ0

psd,2
thanks to Proposition 3.18. Via the Edwards-Sokal

coupling, the infinite-volume Ising measure with free boundary conditions, denoted by µfβc ,
can be constructed by coloring clusters of the measure φ0

psd,2
. Since there is no infinite

cluster, this measure is obviously symmetric by global exchange of +/−. In particular, the
argument of Proposition 3.18 can be applied to prove that there are neither + nor − infinite
clusters. Therefore, fixing a box, there exists a + star-connected circuit surrounding the
box with probability one (two vertices x and y are said to be star-connected if y is one of
the eight closest neighbors to x).

One can then argue that the configuration inside the box stochastically dominates
the Ising configuration for the infinite-volume measure with + boundary conditions (the
circuit of spin + behaves like + boundary conditions). Thus, µfβc restricted to the box (in
fact to any box) stochastically dominates µ+βc . It implies that µfβc ≥ µ

+
βc
. Since the other

inequality is obvious, µfβc and µ
+
βc

are equal.
Via Edwards-Sokal’s coupling again, φ0

psd,2
= φ1

psd,2
and there is no infinite cluster at

criticality. Moreover, µ−βc = µ
f
βc
= µ+βc and there is a unique infinite-volume Ising measure

at criticality. ◻

5 High and low temperature expansions and Kramers-
Wannier duality

5.1 The low temperature expansion

The low temperature expansion of the Ising model is a graphical representation on the dual
lattice. Fix a spin configuration σ for the Ising model on G with + boundary conditions.
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The collection of contours of a spin configuration σ is the set of interfaces (edges of the
dual graph) separating + and − clusters. In a collection of contours, an even number
of dual edges automatically emanates from each dual vertex. Reciprocally, any family of
dual edges with an even number of edges emanating from each dual vertex is the collection
of contours of exactly one spin configuration (since we fix + boundary conditions).

The interesting feature of the low temperature expansion is that properties of the
Ising model can be restated in terms of this graphical representation. We only give the
example of the partition function on G but other quantities can be computed similarly.
Let EG⋆ be the set of possible collections of contours, and let ∣ω∣ be the number of edges
of a collection of contours ω, then

Z+
β,G = eβ# edges in G⋆

∑
ω∈EG⋆

(e−2β)∣ω∣ . (6.5)

5.2 High temperature expansion

The high temperature expansion of the Ising model is a graphical representation on the
primal lattice itself. It is not a geometric representation since one cannot map a spin
configuration σ to a subset of configurations in the graphical representation, but a rather
convenient way to represent correlations between spins using statistics of contours. It is
based on the following identity:

eβσxσy = cosh(β) + σxσy sinh(β) = cosh(β) [1 + tanh(β)σxσy] (6.6)

Proposition 6.11. Let G be a finite graph and a, b be two sites of G. At inverse tem-
perature β > 0,

Zf
β,G = 2# vertices G cosh(β)# edges in G ∑

ω∈EG
tanh(β)∣ω∣ (6.7)

µfβ,G[σaσb] =
∑ω∈EG(a,b) tanh(β)∣ω∣

∑ω∈EG tanh(β)∣ω∣
, (6.8)

where EG (resp. EG(a, b)) is the set of families of edges of G such that an even number of
edges emanates from each vertex (resp. except at a and b, where an odd number of edges
emanates).

The notation EG coincides with the definition EG⋆ in the low temperature expansion
for the dual lattice.
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Proof Let us start with the partition function (6.7). Let E be the set of edges of G.
We know

Zf
β,G = ∑

σ
∏

[xy]∈E
eβσxσy

= cosh(β)# edges in G∑
σ
∏

[xy]∈E
[1 + tanh(β)σxσy]

= cosh(β)# edges in G∑
σ
∑
ω⊂E

tanh(β)∣ω∣ ∏
e=[xy]∈ω

σxσy

= cosh(β)# edges in G ∑
ω⊂E

tanh(β)∣ω∣∑
σ

∏
e=[xy]∈ω

σxσy

where we used (6.6) in the second equality. Notice that∑σ∏e=[xy]∈ω σxσy equals 2# vertices G

if ω is in EG, and 0 otherwise, hence proving (6.7).
Fix a, b ∈ G. By definition,

µfβ,G[σaσb] = ∑σ σaσbe
−βH(σ)

∑σ e
−βH(σ) = ∑σ σaσbe

−βH(σ)

Zf
β,G

. (6.9)

The second identity boils down to proving that the right hand terms of (6.8) and (6.9)
are equal, i.e.

∑
σ

σaσbe
−βH(σ) = 2# vertices G cosh(β)# edges in G ∑

ω∈EG(a,b)
tanh(β)∣ω∣.

The first lines of the computation for the partition function are the same, and we end up
with:

∑
σ

σaσbe
−βH(σ) = cosh(β)# edges in G ∑

ω⊂E
tanh(β)∣ω∣∑

σ

σaσb ∏
e=[xy]∈ω

σxσy

= 2# vertices G cosh(β)# edges in G ∑
ω∈EG(a,b)

tanh(β)∣ω∣

since ∑σ σaσb∏e=[xy]∈ω σxσy equals 2# vertices G if ω ∈ EG(a, b), and 0 otherwise. ◻

The set EG is the set of collections of loops on G when forgetting the way we draw
loops (since some elements of EG, like a ’figure in eight’, can be decomposed into loops
in several ways), while EG(a, b) is the set of collections of loops on G together with one
curve from 0 to a.

Let us mention that the high-temperature expansion can be extended to other Ising
models. For instance, the partition function of the Ising model on (G,a, b) with free
boundary conditions conditioned on the event that a and b have the same spin is given
by

Za,b
β,G = 2# vertices G cosh(β)# edges in G ∑

ω∈EG(a,b)
tanh(β)∣ω∣. (6.10)
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Figure 6.1: The possible collections of contours for + boundary conditions in the low-
temperature expansion do not contain edges between boundary sites of G. Therefore,
they correspond to collections of contours in EG⋆ , which are exactly the collection of
contours involved in the high-temperature expansion of the Ising model on G⋆ with free
boundary conditions.

5.3 Two applications: Kramers-Wannier duality and Peierls’s ar-
gument

Proposition 6.12 (Kramers-Wannier duality). Let β > 0 and define β⋆ ∈ (0,∞) such
that tanh(β⋆) = e−2β, then for every graph G,

2 # vertices G⋆
cosh(β⋆) # edges in G⋆

Z+
β,G = (eβ)# edges in G∗

Zf
β⋆,G⋆ . (6.11)

Proof When writing the contour of connected components for Ising with + boundary
conditions, the only edges of L⋆ used are those of G⋆. Indeed, edges between boundary
sites cannot be present since boundary spins are +. Thus, the right and left hand side terms
of (6.11) both correspond to the sum over EG⋆ of (e−2β)∣ω∣ or equivalently of tanh(β⋆)∣ω∣,
implying the equality (see Fig. 6.1). ◻

We are now in a position to expose Kramers-Wannier argumentation. Physicists expect
the partition function to exhibit only one singularity, localized at the critical point. If
β⋆c ≠ βc, there would be at least two singularities, at βc and β⋆c , thanks to the previous
relation between partitions functions at these two temperatures. Thus, βc should be equal
to β⋆c , which implies βc = 1

2 ln(1+
√

2). Of course, the assumption that there exists a unique
singularity is hard to justify.

For completeness, let us mention Peierls’s argument, which rigorously proves that
βc ∈ (0,∞). It harnesses the low and high temperature expansions and is of great historical
significance. Interestingly, this argument has been generalized to many models, including
the random-cluster model. In particular, the (omitted) proof that the critical value of
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the random-cluster model pc(q) is not equal to 0 or 1 (Theorem 3.16) follows a similar
argument.

Proposition 6.13 (Peierls argument [Pei36]). The critical inverse temperature βc on the
square lattice is strictly positive and finite.

Proof Let us prove that βc is finite. We wish to estimate µ+β,G[σ0] when β is very large.
Since

µ+β,G[σ0] = 2µ+β,G[σ0 = 1] − 1,

it is sufficient to show that µ+β,G[σ0 = −1] < 1/2 uniformly in the graph G. The observation
is that {σ0 = −1} is included in the event that there exists a circuit in the low-temperature
expansion surrounding 0. Thus,

µ+β,G[σ0 = −1] ≤
∑ω∈EG⋆ ∶γ surrounding 0 e

−2β∣ω∣

∑ω∈EG⋆ e
−2β∣ω∣

≤
∑γ surrounding 0 e

−2β∣γ∣∑ω∈EG⋆∖γ e
−2β∣ω∣

∑ω∈EG⋆ e
−2β∣ω∣

≤ ∑
γ surrounding 0

e−2β∣γ∣ ≤
∞
∑
n=1

n4ne−2βn < 1/2

for β large enough. In the second line, we used the fact that

∑
ω∈EG⋆∖γ

e−2β∣ω∣ ≤ ∑
ω∈EG⋆

e−2β∣ω∣

and in the third the fact that the number of paths of length n surrounding the origin is
smaller than n4n.

The inequality 0 < βc can be obtained using the high-temperature expansion instead
of the low-temperature. ◻

5.4 Fermionic observable in Dobrushin domains

Let (Ω, a, b) be a simply connected domain with two marked points on the boundary. Let
Ω◇
δ be the medial graph of Ωδ composed of all the vertices of L◇

δ bordering a black face
associated to Ωδ, see Fig 6.3. This definition is non-standard since we include medial
vertices not associated to edges of Ωδ. Let aδ and bδ be two vertices of ∂Ω◇

δ close to a and
b. We call the triplet (Ω◇

δ , aδ, bδ) a spin-Dobrushin domain.
Let E(aδ, zδ) = EΩδ(aδ, zδ) be the set of collections of contours on Ωδ composed of loops

and one interface starting at aδ and finishing at zδ. Recall that there is an ambiguity in
the way loops are drawn. In order to solve this issue, every ω ∈ EΩδ(aδ, zδ) is associated
to a unique family of loops with one interface by forcing every loop and interface to take



CHAPTER 6. TWO-DIMENSIONAL ISING MODEL 134

bδ

aδ zδ

Figure 6.2: An example of a collection of contours in E(aδ, zδ) on the lattice Ω◇.

a turn to the left whenever there is an ambiguity1. The unique interface from aδ to zδ is
called γ = γ(ω).

The winding WΓ(z, z′) of a curve Γ between two sites z and z′ of the medial graph
is the total (signed) rotation (in radians) that the curve makes from z to z′. With these
notations, we can define the spin-Ising fermionic observable.

Definition 6.14. On a spin Dobrushin domain (Ω◇
δ , aδ, bδ), the spin-Ising fermionic ob-

servable at zδ ∈ Ω◇
δ is defined by

FΩδ,aδ,bδ(zδ) =
∑ω∈E(aδ,zδ) e

− 1
2
iWγ(ω)(aδ,zδ)(

√
2 − 1)∣ω∣

∑ω∈E(aδ,bδ) e
− 1

2
iWγ(ω)(aδ,bδ)(

√
2 − 1)∣ω∣

.

The complex modulus of the denominator of the fermionic observable is connected
to the partition function of a conditioned critical Ising model. Indeed, fix bδ ∈ ∂Ω◇

δ .
Even though E(aδ, bδ) is not exactly a high-temperature expansion (since there are two
half-edges starting from aδ and bδ respectively), it is in bijection with the set E(a, b).
Therefore, (6.10) can be used to relate the denominator of the fermionic observable to the
partition function of the Ising model on the primal graph with free boundary conditions
conditioned on the fact that a and b have the same spin.

The weights of edges are critical (since
√

2 − 1 = e−2βc). Therefore, the Kramers-
Wannier duality has a enlightning interpretation here. The high-temperature expansion

1This arbitrary choice is physically irrelevant. We could have chosen any other rule.
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can be thought of as the low-temperature expansion of an Ising model on the dual graph,
where the dual graph is constructed by adding one layer of dual vertices around ∂G,
see Fig. 6.2. Now, the existence of an interface between aδ and bδ is equivalent to the
existence of an interface between pluses and minuses in this new Ising model. Therefore,
it corresponds to a model with Dobrushin boundary conditions on the dual graph. This
fact is not surprising since the dual boundary conditions of the free boundary conditions
conditioned on σa = σb are the Dobrushin ones. More importantly, it suggests a connection
between the fermionic observable and the interface in Dobrushin domains.

Let us mention that the numerator of the observable has also an interpretation using
high-temperature expansions. In fact, it can be shown that it corresponds to the high-
temperature expansion of the partition function of an Ising model with a disorder operator
at zδ. More precisely, this operator introduces a monodromy at zδ. Every time one turns
around zδ, the spins are reversed. Equivalently, it boils down to reverse the correlation
constants along an arbitrary simple curve from zδ to the boundary of the domain.

bδ

aδ

Figure 6.3: A high temperature expansion of an Ising model on the primal lattice together
with the corresponding configuration on the dual lattice. The constraint that aδ is con-
nected to bδ corresponds to the partition function of the Ising model with +/− boundary
conditions on the domain.
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6 Potts models and random-cluster models
The Edwards-Sokal coupling is not specific to the Ising model. More generally, the
random-cluster with integer parameter q ≥ 2 can be coupled with the Potts model. The
Potts model with q colors is a random q-coloring of a finite graph G. Let us restrict to
the free boundary conditions case. The energy of a configuration σ is given by

Hq,G(σ)f ∶= −2∑
x∼y

1σx=σy

and the probability at inverse temperature β by

e−βH
f
q,G(σ)

∑σ̃ e
−βHf

q,G(σ̃)
,

where the summation is over any q-coloring of G.
Let q ≥ 2 and letG be a finite graph. Assume a configuration ω of open and closed edges

on G is given. One can deduce a q-coloring σ of the graph G by assigning independently
to each cluster of ω a color among the q colors, each with probability 1/q.
Proposition 6.15. Let p ∈ (0,1) and G a finite graph. If the configuration ω is dis-
tributed according to a random-cluster measure with parameters (p, q) and free boundary
conditions, then the coloring σ is distributed according to a Potts measure with inverse
temperature β = −1

2 ln(1 − p) and free boundary conditions.

Proof The proof of the Edwards-Sokal coupling works mutatis mutandis in this case.
◻

The coupling has many important implications. For instance, it allows us to sam-
ple efficiently Potts configurations via algorithms on the random-cluster model such as
Swendsen-Wang [SW87] (see also Section 8 of [Gri06] and references therein). As before,
we also obtain a dictionary between properties of Potts models and their random-cluster
representations. Let us recall that one of the principal motivations for geometric or graph-
ical representations is the obtention of additional correlations inequalities. They can take
different forms depending on the model under study. In our case, random-cluster measures
verify the FKG inequality while Potts models do not. In fact, there is no straightforward
notion of increasing events for Potts models and the equivalent of the spin-Ising FKG
inequality does not exist. This is one (among many others) reason which prevents math-
ematicians and physicists from understanding the Potts model in a satisfying fashion.

Potts models also exhibit a phase transition at an inverse temperature βc(q). Below
this critical inverse temperature, there is a unique Gibbs measure, while above this inverse
temperature, there are multiple Gibbs measures. Theorem 4.1 has the following important
corollary:

Theorem 6.16. For q ≥ 2, the critical inverse temperature of the q-color Potts model is
βc(q) = 1

2 log(1 +√
q). In addition, correlations decays exponentially fast when β < βc and

the surface tension is strictly positive when β > βc.



Chapter 7

Conformal invariance of the FK-Ising
and Ising models

Abstract: This section is devoted to the proof of conformal invariance of the FK-Ising
and Ising models. These two results are due to Smirnov and Chelkak-Smirnov. Proofs
are included for self-containedness and since techniques invoked in them are crucial in the
next chapters. The proofs are adapted from lecture notes written by the author and S.
Smirnov for the Clay Probability Summer School in Buzios, 2010 [DCS11].

There are many different ways to define conformal invariance of a model. A geometric
definition of conformal invariance could be that interfaces in the model are conformally
invariant. Alternatively, conformal invariance can also refer to the fact that relevant ob-
servables of the model are conformally covariant in the scaling limit. More precisely, that
a family of observables in discrete domains converge in the scaling-limit to a conformally
covariant family of functions.

Definition 7.1. A family of functions FΩ ∶ Ω → C indexed by simply-connected domains
(sometimes with marked points on the boundary) is conformally covariant if there exists
α > 0 such that for any domain Ω and any conformal map ψ ∶ Ω → C (i.e. holomorphic
and one-to-one),

FΩ(z) = ψ′(z)α ⋅ Fψ(Ω)(ψ(z)) for every z ∈ Ω.

If α = 0, the family is said to be conformally invariant.

Note that an archetype of a conformally covariant family of functions is the solution
to boundary problems such as Dirichlet or Riemann problems.

A family of observables for random-cluster models were introduced in Chapter 5. In
fact, these observables are weakly discrete-holomorphic and it is reasonable to expect
that their scaling limits are holomorphic. The boundary conditions can be determined
and correspond to discrete Riemann-Hilbert boundary problems. It provides a good hint

137
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that the scaling-limit of the observable is conformally covariant. Unfortunately, weakly
discrete-holomorphic functions are not determined by their boundary conditions and it
is not possible at the moment to prove that parafermionic observables converge in the
scaling limit to a conformally covariant family of functions.

When q = 2 (the case of FK-Ising), the observable satisfies specific additional integra-
bility properties that allow us to compute it very explicitly. Shortly, the complex argument
of the edge-observable is determined since the spin σ equals 1/2 and the winding at an
edge takes values in a set of the form W0 + 2πZ. This additional information allowed
Smirnov to prove that the observables are s-holomorphic and converge to a conformally
covariant family of functions.

In this chapter, discrete Dobrushin domains are discretizations of simply connected
domains Ω with two marked points a and b on the boundary. Furthermore, we assume bδ
is the south-east corner of the black face associated to b.

Theorem 7.2 (Conformal invariance of FK-Ising, Smirnov [Smi10a]). Let (Ω, a, b) be a
simply connected domain with two marked points on its boundary. Let Fδ be the vertex
fermionic observable in (Ω◇

δ , aδ, bδ) defined by

Fδ(v) = 1

2
∑
e∼v
Fδ(e), (7.1)

where e ∼ v means that v is an endpoint of e. We have

1√
2δ
Fδ(⋅) →

√
φ′(⋅) when δ → 0 (7.2)

uniformly on any compact subset of Ω, where φ is any conformal map from Ω to the strip
R × (0,1) mapping a to −∞ and b to ∞1.

The Ising model is also conformally invariant in this sense: the conformally covariant
observable is the fermionic observable introduced in Chapter 6. We also assume Dobrushin
domains are approximation of continuous ones, and that bδ is the south-east corner of the
black face associated to b.

Theorem 7.3 (Conformal invariance of the Ising model, Chelkak-Smirnov [CS09]). Let
(Ω, a, b) be a simply connected domain with two marked points on its boundary, the bound-
ary is assumed to be smooth in a neighborhood of b. Let Fδ be the fermionic spin observable
in (Ωδ, aδ, bδ), then

Fδ(⋅) →

¿
ÁÁÀ ψ′(⋅)

ψ′(b)
when δ → 0 (7.3)

uniformly on every compact subset of Ω, where ψ is any conformal map from Ω to the
upper half-plane H, mapping a to ∞ and b to 0.

1The strip is two-ended: −∞ (resp. ∞) is the end on the left (resp. on the right).
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Before diving into the proof, let us mention that conformal invariance of these observ-
ables is sufficient to prove a much stronger form of conformal invariance, namely conformal
invariance of interfaces. This discussion is deferred to Chapter 11.

The proofs of conformal invariance of the FK-Ising (due to Smirnov) and Ising (due to
Chelkak-Smirnov) are presented in Sections 1 and 2 respectively. The arguments involved
in this proof will be useful in the next chapters. Let us mention that conformal invariance
of discrete models is known in a very few other cases (namely random-walks via Lévy’s
theorem, loop-erased random walks [LSW04a], dimers [Ken00], site-percolation on the
triangular lattice [Smi01] and uniform-spaning trees [LSW04a]).

1 Convergence of the FK fermionic observable
In this section, fix a simply connected domain (Ω, a, b) with two points on the boundary.
For δ > 0, always consider a discrete FK Dobrushin domain (Ω◇

δ , aδ, bδ) and the critical
FK-Ising model with Dobrushin boundary conditions on it. Since the domain is fixed, set
Fδ = FΩ◇

δ
,aδ,bδ,psd for the FK fermionic observable.

The proof of convergence is in three steps:

• First, prove the s-holomorphicity of the observable.

• Second, prove the convergence of the function Hδ naturally associated to the s-
holomorphic functions Fδ/

√
2δ (see Section 4 of Chapter 2).

• Third, prove that Fδ/
√

2δ converges to
√
φ′.

1.1 s-holomorphicity of the (vertex) fermionic observable for FK-
Ising.

The two next lemmata deal with the edge fermionic observable. They are the key steps
of the proof of the s-holomorphicity of the vertex fermionic observable.

Lemma 7.4. For an edge e ∈ Ω◇
δ , Fδ(e) belongs to `(e).

Proof The winding at an edge e can only take its value in the set W + 2πZ where W is
the winding at e of an arbitrary interface passing through e. Therefore, the winding weight
involved in the definition of Fδ(e) is always proportional to eiW /2 with a real coefficient,
ergo Fδ(e) is proportional to eiW /2. In any FK Dobrushin domain, bδ is the south-east
corner and the last edge is thus going to the right. Therefore eiW /2 belongs to `(e) for
any e and so does Fδ(e). ◻

Even though the proof is finished, we make a short parenthesis: the definition of
s-holomorphicity is not rotationally invariant, nor is the definition of FK Dobrushin do-
mains, since the medial edge pointing to bδ has to be oriented south-east. The latter
condition has been introduced in such a way that this lemma holds true. Even though
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this condition seems arbitrary, it has no influence on the convergence result, meaning that
one could perform a (slightly modified) proof with another orientation.

Proposition 5.8 implies the following result:

Lemma 7.5. Consider a medial vertex v in Ω◇
δ ∖ ∂Ω◇

δ . We have

Fδ(N) + Fδ(S) = Fδ(E) + Fδ(W )

where N , E, S and W are the adjacent edges indexed in clockwise order.

Proof Since σ = 1/2, F is the complex conjugate of F̃ and the lemma follows from
(5.7). ◻

We are now in a position to prove s-holomorphicity

Proposition 7.6. The vertex fermionic observable Fδ is s-holomorphic.

Recall that the FK fermionic observable is defined on medial edges as well as on medial
vertices. Convergence of the observable means convergence of the vertex observable. The
edge observable is just a very convenient tool in the proof.

Proof The previous lemma and the definition of the vertex fermionic observable imply

Fδ(v) ∶= 1

2
∑
e∼v
Fδ(e) = Fδ(N) + Fδ(S) = Fδ(E) + Fδ(W ).

Using Lemma 7.4, Fδ(N) and Fδ(S) are orthogonal, so that Fδ(N) is the projection of
Fδ(v) on `(N) (and similarly for other edges). Therefore, for a medial edge e = [xy],
Fδ(e) is the projection of Fδ(x) and Fδ(y) with respect to `(e), which proves that the
vertex fermionic observable is s-holomorphic. ◻

The function Fδ/
√

2δ is preholomorphic for every δ > 0. Moreover, Lemma 5.9 identi-
fies the boundary conditions of Fδ/

√
2δ (its argument is determined) so that this function

solves a discrete Riemann-Hilbert boundary value problem. These problems are signifi-
cantly harder to handle than the Dirichlet problems. Therefore, it is more convenient to
work with a discrete analogue of Im (∫

z[Fδ(z)/
√

2δ]2dz), which should solve an approxi-
mate Dirichlet problem.

1.2 Convergence of (Hδ)δ>0.

Since the FK fermionic observable Fδ/
√

2δ is s-holomorphic, Theorem 2.18 defines a
function Hδ.
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B

B′

W

e

e′

∂ba

Figure 7.1: Two adjacent sites B and B′ on ∂ba together with the notations used in the
proof of Lemma 7.8.

Corollary 7.7. Let A be the black face (vertex of Ωδ) bordering aδ, see Fig. 5.1. There
exists a unique function Hδ ∶ Ωδ ∪Ω⋆

δ → R such that

Hδ(A) = 1 and

Hδ(B) −Hδ(W ) = ∣P`(e)[Fδ(x)]∣
2 = ∣P`(e)[Fδ(y)]∣

2
(7.4)

for the edge e = [xy] of Ω◇
δ bordered by a black face B ∈ Ωδ and a white face W ∈ Ω⋆

δ .
Moreover, its restriction H● to Ωδ is subharmonic and its restriction H○

δ to Ω⋆
δ is super-

harmonic.

Let us start with two lemmata addressing the question of boundary conditions for Hδ.

Lemma 7.8. The function H●
δ is equal to 1 on the arc ∂ba, H○

δ is equal to 0 on the arc
∂⋆ab.

Proof We first prove that H●
δ is constant on ∂ba. Let B and B′ be two adjacent consec-

utive sites of ∂ba. They are both adjacent to the same dual vertex W ∈ Ω⋆
δ , see Fig. 7.1.

Let e (resp. e′) be the edge of the medial lattice betweenW and B (resp. B′). We deduce

H●
δ (B) −H●

δ (B′) = ∣Fδ(e)∣2 − ∣Fδ(e′)∣2 = 0 (7.5)

The second equality is due to ∣Fδ(e)∣ = φaδ,bδΩ◇
δ
,psd

(W ⋆↔ ∂⋆ab) (Lemma 5.9). Hence, H●
δ is

constant along the arc. Since H●
δ (A) = 1, the result follows readily.

Similarly, H○
δ is constant on the arc ∂⋆ab. Moreover, the dual white face A⋆ ∈ ∂⋆ab

bordering aδ (see Fig. 5.1) satisfies

H○
δ (A⋆) = H●

δ (A) − ∣Fδ(ea)∣2 = 1 − 1 = 0 (7.6)

(ea necessarily belongs to γ). Therefore H○
δ = 0 on ∂⋆ab. ◻
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Lemma 7.9. The function H●
δ converges to 0 on the arc ∂ab uniformly away from a and

b, H○
δ converges to 1 on the arc ∂⋆ba uniformly away from a and b.

Proof Once again, we prove the result for H●
δ , the same reasoning then holds for H○

δ .
Let B be a site of ∂ab at distance r of ∂ba (and therefore at graph distance r/δ of ∂ba in
Ωδ). Let W be an adjacent site of B on ∂⋆ab. Lemma 7.8 implies H○

δ (W ) = 0. From the
definition of Hδ, we find

H●
δ (B) = H○

δ (W ) + ∣P`(e)[Fδ(e)]∣
2 = ∣P`(e)[Fδ(e)]∣

2 = φaδ,bδΩδ,psd
(e ∈ γ)2.

Note that e ∈ γ if and only if B is connected to the ’wired arc’ ∂ba. Therefore, φaδ,bδΩδ,psd
(e ∈ γ)

is equal to the probability that there exists an open path fromB to ∂ba. Since the boundary
conditions on ∂ab are free, the comparison between boundary conditions shows that the
latter probability is smaller than the probability that there exists a path from B to ∂Uδ
in the box Uδ = (B + [−r, r]2) ∩Lδ with wired boundary conditions. Therefore,

H●
δ (B) = φaδ,bδΩδ,psd

(e ∈ γ)2 ≤ φ1
Uδ,psd

(B ↔ ∂Uδ)2
.

Proposition 6.10 implies that the right hand side converges to 0 (there is no infinite cluster
for φ1

psd,2
), which gives a uniform bound for B away from a and b. ◻

The two previous lemmata assert that the boundary conditions for H●
δ and H○

δ are
roughly 0 on the arc ∂ab and 1 on the arc ∂ba. Moreover, H●

δ and H○
δ are almost harmonic.

This should imply that (Hδ)δ>0 converges to the solution of the Dirichlet problem, which
is the subject of the next proposition.

Proposition 7.10. Let (Ω, a, b) be a simply connected domain with two points on the
boundary, then (Hδ)δ>0 converges to Im(φ) uniformly on any compact subsets of Ω when
δ goes to 0, where φ is any conformal map from Ω to T = R × (0,1) sending a to −∞ and
b to ∞.

Before starting, remark that Im(φ) is the solution of the Dirichlet problem on (Ω, a, b)
with boundary conditions 1 on ∂ba and 0 on ∂ab.

Proof From Corollary 7.7, H●
δ is subharmonic, let h●δ be the preharmonic function with

same boundary conditions as H●
δ on ∂Ωδ. Note that H●

δ ≤ h●δ. Similarly, h○δ is defined to
be the preharmonic function with same boundary conditions as H○

δ on ∂Ω⋆
δ . If K ⊂ Ω is

fixed, where K is compact, let bδ ∈Kδ and wδ ∈K⋆
δ any neighbor of bδ, we have

h○δ(wδ) ≤ H○
δ (wδ) ≤ H●

δ (bδ) ≤ h●δ(bδ). (7.7)

Using Lemmata 7.8 and 7.9, boundary conditions for H●
δ (and therefore h●δ) are uniformly

converging to 0 on ∂ab and 1 on ∂ba away from a and b. Moreover, ∣h●δ ∣ is bounded
by 1 everywhere. This is sufficient to apply Theorem 2.8: h●δ converges to Im(φ) on any
compact subset of Ω when δ goes to 0. The same reasoning applies to h○δ. The convergence
for H●

δ and H○
δ follows easily since they are sandwiched between h●δ and h

○
δ. ◻
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1.3 Convergence of FK fermionic observables (Fδ/
√

2δ)δ>0.

This section contains the proof of Theorem 7.2. The strategy is straightforward:
(Fδ/

√
2δ)δ>0 is proved to be a precompact family for the uniform convergence on compact

subsets of Ω. Then, the possible sub-sequential limits are identified using Hδ.

Proof of Theorem 7.2 First assume that the precompactness of the family (Fδ/
√

2δ)δ>0

has been proved. Let (Fδn/
√

2δn)n∈N be a convergent subsequence and denote its limit
by f . Note that f is holomorphic as limit of preholomorphic functions. For two points
x, y ∈ Ω, we have:

Hδn(y) −Hδn(x) =
1

2
Im(∫

y

x

1

δn
F 2
δn
(z)dz)

(for simplicity, also denote the closest points of x, y in Ωδn by x, y). On the one hand, the
convergence of (Fδn/

√
2δn)n∈N being uniform on any compact subset of Ω, the right hand

side converges to Im (∫
y

x f(z)2dz). On the other hand, the left hand side converges to
Im(φ(y)−φ(x)). Since both quantities are holomorphic functions of y, there exists C ∈ R
such that φ(y) − φ(x) = C + ∫

y

x f(z)2dz for every x, y ∈ Ω. Therefore f equals
√
φ′. Since

this is true for any convergent subsequence, the result follows.
Therefore, the proof boils down to the precompactness of (Fδ/

√
2δ)δ>0. We will use

the second criterion in Proposition 2.6. Note that it is sufficient to prove this result for
squares Q ⊂ Ω such that a bigger square 9Q (with same center) is contained in Ω.

Fix δ > 0. When jumping diagonally over a medial vertex v, the function Hδ changes
by Re(F 2

δ (v)) or Im(F 2
δ (v)) depending on the direction, so that

δ2 ∑
v∈Q◇

δ

∣Fδ(v)/
√

2δ∣2 = δ ∑
x∈Qδ

∣∇H●
δ (x)∣ + δ ∑

x∈Q⋆
δ

∣∇H○
δ (x)∣ (7.8)

where ∇H●
δ (x) = (H●

δ (x + δ) −H●
δ (x),H●

δ (x + iδ) −H●
δ (x)), and ∇H○

δ is defined similarly
for H○

δ . It follows that it is enough to prove uniform boundedness of the right hand side
in (7.8). We only treat the sum involving H●

δ , the other sum can be handled similarly.
Write H●

δ = Sδ +Rδ where Sδ is an harmonic function with same boundary conditions
on ∂9Qδ as H●

δ . Note that Rδ ≤ 0 is automatically subharmonic. In order to prove that
the sum of ∣∇H●

δ ∣ on Qδ is bounded by C/δ, we deal separately with ∣∇Sδ ∣ and ∣∇Rδ ∣.
First,

∑
x∈Qδ

∣∇Sδ(x)∣ ≤ C1

δ2
⋅C2δ ( sup

x∈∂Qδ
∣Sδ(x)∣) ≤ C3

δ
( sup
x∈9Qδ

∣H●
δ (x)∣) ≤ C4

δ
,

where in the first inequality we used Proposition 2.5 and the maximum principle for Sδ,
and the second the fact that Sδ and H●

δ share the same boundary conditions on 9Qδ. The
last inequality comes from the fact that H●

δ converges, hence remains bounded uniformly
in δ.

Second, recall that G9Qδ(⋅, y) is the Green function in 9Qδ with singularity at y. Since
Rδ equals 0 on the boundary, Proposition 2.9 implies

Rδ(x) = ∑
y∈9Qδ

∆Rδ(y)G9Qδ(x, y), (7.9)
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thus giving

∇Rδ(x) = ∑
y∈9Qδ

∆Rδ(y)∇xG9Qδ(x, y)

Therefore,

∑
x∈Qδ

∣∇Rδ(x)∣ = ∑
x∈Qδ

∣ ∑
y∈9Qδ

∆Rδ(y)∇xG9Qδ(x, y)∣

≤ ∑
y∈9Qδ

∆Rδ(y) ∑
x∈Qδ

∣∇xG9Qδ(x, y)∣

≤ ∑
y∈9Qδ

∆Rδ(y) C5δ ∑
x∈Qδ

G9Qδ(x, y)

= C5δ ∑
x∈Qδ

∑
y∈9Qδ

∆Rδ(y)G9Qδ(x, y)

= C5δ ∑
x∈Qδ

Rδ(x) = C6/δ

The second line uses the fact that ∆Rδ ≥ 0, the third Proposition 2.10, the fifth Proposition
2.9 again, and the last one the fact that Qδ contains of order 1/δ2 sites and the fact that
Rδ is bounded uniformly in δ (since Hδ and Sδ are).

Thus, δ∑x∈Qδ ∣∇H●
δ ∣ is uniformly bounded. Since the same result holds for H○

δ ,
(Fδ/

√
2δ)δ>0 is precompact on Q (and more generally on any compact subset of Ω) and

the proof is completed. ◻

2 Convergence of the spin fermionic observable
We now turn to the proof of convergence for the spin fermionic observable. Fix a simply
connected domain (Ω, a, b) with two points on the boundary. For δ > 0, always consider
the spin fermionic observable on the discrete spin Dobrushin domain (Ω◇

δ , aδ, bδ). Since
the domain is fixed, we set Fδ = FΩ◇

δ
,aδ,bδ . We follow the same three steps as before,

beginning with the s-holomorphicity. The other two steps are only sketched, since they
are more technical than in the FK-Ising case, see [CS09].

Proposition 7.11. For δ > 0, Fδ is s-holomorphic on Ω◇
δ .

Proof Let x, y two adjacent medial vertices connected by the edge e = [xy]. Let v be
the vertex of Ωδ bordering the (medial) edge e. As before, set xω (resp. yω) for the
contribution of ω to Fδ(x) (resp. Fδ(y)). We wish to prove that

∑
ω

P`(e)(xω) = ∑
ω

P`(e)(yω). (7.10)

Note that the curve γ(ω) finishes at xω or at yω so that ω cannot contribute to Fδ(x)
and Fδ(y) at the same time. Thus, it is sufficient to partition the set of configurations
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Figure 7.2: The different possible cases in the proof of Proposition 7.11: ω is depicted at
the top, and ω′ at the bottom.

into pairs of configurations (ω,ω′), one contributing to y, the other one to x, such that
P`(e)(xω) = P`(e)(yω′).

Without loss of generality, assume that e is pointing south-east, thus `(e) = R (other
cases can be done similarly). First note that

xω = 1

Z
e−i

1
2
[Wγ(ω)(aδ,xδ)−Wγ′(aδ,bδ)](

√
2 − 1)∣ω∣,

where γ(ω) is the interface in the configuration ω, γ′ is any curve from aδ to bδ (recall
that the Wγ′(aδ, bδ) does not depend on γ′), and Z is a normalizing real number not
depending on the configuration. There are six types of pairs that one can create, see
Fig. 7.2 depicting the four main cases. Case 1 corresponds to the case where the interface
reaches x or y and then extends by one step to reach the other vertex. In Case 2, γ
reaches v before x and y, and makes an additional step to x or y. In Case 3, γ reaches x
or y and sees a loop preventing it from being extended to the other vertex (in contrast to
Case 1). In Case 4, γ reaches x or y, then goes away from v and comes back to the other
vertex. Recall that the curve must always go to the left: in cases 1(a), 1(b), and 2 there
can be a loop or even the past of γ passing through v. However, this does not change the
computation.

We obtain the following table for xω and yω′ (we always express yω′ in terms of xω).
Moreover, one can compute the argument modulo π of contributions xω since the orien-
tation of e is known. When upon projecting on R, the result follows.
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configuration Case 1(a) Case 1(b) Case 2 Case 3(a) Case 3(b) Case 4
xω xω xω xω xω xω xω

yω′ (
√

2 − 1)eiπ/4xω eiπ/4√
2−1

xω e−iπ/4xω e3iπ/4xω e3iπ/4xω e−5iπ/4xω

arg. xω mod π 5π/8 π/8 π/8 5π/8 5π/8 5π/8

◻

Proof of Theorem 7.3. The proof is roughly sketched in the following, we refer to
[CS09] for a complete proof.

Since Fδ is s-harmonic, one can define the observable Hδ as in Theorem 2.18, with the
requirement that it is equal to 0 on the white face adjacent to b. Then, H○

δ is constant
equal to 0 on the boundary as in the FK-Ising case. Note that Hδ should not converge to
0, even if boundary conditions are 0 away from a. Firstly, H○

δ is superharmonic and not
harmonic, even though it is expected to be almost harmonic (away from a, H●

δ and H○
δ

are close), it will not be true near a. Actually, Hδ should not remain bounded around a.
The main difference compared to the previous section is indeed the unboundedness of

Hδ near aδ which prevents us from the immediate use of Proposition 2.6. It is actually
possible to prove that away from a, Hδ remains bounded, see [CS09]. This uses more
sophisticated tools, among which the ’boundary modification trick’ (see Chapter 9 for a
quick description in the FK-Ising case [DCHN10], and [CS09] for the Ising original case).
As before, boundedness implies precompactness (and thus boundedness) of (Fδ)δ>0 away
from a via Proposition 2.6. Since Hδ can be expressed in terms of Fδ, it is easy to deduce
that Hδ is also precompact.

Now consider a convergent subsequence (fδn ,Hδn) converging to (f,H). One can check
that H is equal to 0 on ∂Ω ∖ {a}. Moreover, the fact that H○

δ equals 0 on the boundary
and is superharmonic implies that H○

δ is larger or equal to 0 everywhere, implying H ≥ 0
in Ω. This property of harmonic functions in a domain almost determines them. There is
only a one parameter family of positive harmonic functions equal to 0 on the boundary.
These functions are exactly the imaginary part of conformal maps from Ω to the upper
half-plane H mapping a to ∞. We can further assume that b is mapped to 0, since we are
interested only in the imaginary part of these functions.

Fix one conformal map ψ from Ω to H, mapping a to ∞ and b to 0. There exists λ > 0
such that H = λImψ. As in the case of the FK-Ising, one can prove that Im (∫

z
f 2) = H,

implying that f 2 = λψ′. Since f(b) = 1 (it is obvious from the definition that Fδ(bδ) = 1),
λ equals 1

ψ′(b) . In conclusion, f(z) =
√
ψ′(z)/ψ′(b) for every z ∈ Ω.

Note that some regularity hypothesis on the boundary near b are needed to ensure
that the sequence (fδn ,Hδn) also converges near b. This is the reason for assuming that
the boundary near b is smooth. We also mention that there is no normalization here. The
normalization ’from the point of view of b’ was already present in the definition of the
observable. ◻



Chapter 8

The fermionic observable away from
the critical point

Abstract: The FK fermionic observable (case q = 2) is studied away from the self-
dual point. An alternative derivation of the fact that the self-dual and critical points
coincide is obtained, which implies that the critical inverse temperature of the Ising model
equals 1

2 log(1+
√

2). Moreover, the correlation length of the model is related to the large
deviation behavior of a certain massive random walk (thus confirming an observation by
Messikh [Mes06]), which allows us to compute it explicitly. This chapter is inspired by
the article Smirnov’s fermionic observable away from the critical point [BDC11], written
with Vincent Beffara and published in Annals of probabilities.

The problem of identifying the critical value of the Ising model is more than fifty years
old. The reader is referred to Chapter 6 for details. Summarizing, Kramers and Wannier
identified (without proof) the critical temperature where a phase transition occurs, sep-
arating an ordered from a disordered phase, using planar duality [KW41a, KW41b]. In
1944, Kaufman and Onsager [KO50] computed the free energy of the model, paving the
way to an analytic derivation of its critical temperature. In 1987, Aizenman, Barsky and
Fernández [ABF87] found a computation of the critical temperature based on differential
inequalities. Recently, a determination of the critical value of the FK-Ising model provides
yet another proof of this result, see Chapter 4. All of these strategies are quite involved,
and the first goal of this chapter is to propose an alternative method, relying only on
Smirnov’s fermionic observable:

Theorem 8.1. The critical inverse temperature of the Ising model on the square lattice
Z2 is equal to

βc =
1

2
ln (1 +

√
2) .

Beyond the determination of the critical inverse temperature, physicists and mathe-
maticians are interested in estimates for the correlation between two spins, µβ[σ(a)σ(b)].

147
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McCoy and Wu [MW73] derived a closed formula for the two-point function, and an
asymptotic analysis shows that it decays exponentially fast when β < βc. In addition to
this, it was noticed by Messikh [Mes06] that the rate of decay is connected to large devi-
ations estimates for the simple random walk. This chapter presents a direct derivation of
this link, which provides a quick proof of the following theorem:

Theorem 8.2. Let β < βc and let µβ denote the (unique) infinite-volume Ising measure
at inverse temperature β; fix a = (a1, a2) ∈ L. Then,

lim
n→∞

− 1

n
ln (µβ[σ(0)σ(na)]) = a1arcsinh sa1 + a2arcsinh sa2,

where s solves the equation
√

1 + (sa1)2 +
√

1 + (sa2)2 = sinh 2β + sinh−1 2β.

Instead of working with the Ising model, it is once again more convenient to deal
with its random-cluster representation. The determination of βc being equivalent to the
determination of the critical point pc for the FK-Ising, we aim for the latter.

The idea of the argument is the following. Below the self-dual point, the observable
can be defined but discrete holomorphicity fails and the observable decays exponentially
fast in the distance to the wired boundary. Along the free boundary, the modulus of the
observable can be written exactly as a connection probability, so in the p < psd regime
the two-point function is exponentially small as well, and that implies that the system is
in the subcritical regime and that a dual cluster exists. These two properties show that
p ≤ pc ≤ p⋆ and Theorem 8.1 follows.

In fact, the rate of exponential decay (and therefore Theorem 8.2) can be derived
by comparing the observable to the Green function of a massive random walk (Proposi-
tion 8.7); the key ingredient is the observation that the observable is massive harmonic
in the bulk for p < psd. The correspondence between the two-point function of the Ising
model and that of the massive random walk was previously noticed by Messikh [Mes06].

Section 1 contains the proof of Theorem 8.1: it is shown that the observable decays
exponentially fast. Section 2 is devoted to a refinement of estimates on the observable,
which leads to the proof of Theorem 8.2.

In this chapter, rotate the lattice by an angle pi/4 and fix q = 2 and drop it
from the notations.

1 Proof of Theorem 8.1
The proof consists of three steps:

• We first prove using Proposition 5.8 and Lemma 7.4 that the observable decays
exponentially fast when p < psd in a well chosen Dobrushin domain (namely a strip
with free boundary conditions on the top and wired boundary conditions on the
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bottom). Lemma 5.9 then implies that the probability that a point on the top of
the strip is connected to the bottom decays exponentially fast in the height of the
strip.

• We derive exponential decay of the connectivity function for the infinite-volume
measure with free boundary conditions from the first part.

• Finally, we show that exponential decay implies that the random-cluster model is
subcritical when p < psd, and that its dual is supercritical. This last step concludes
the proof of Theorem 8.1 and is classical.

In the proof, points are identified with their complex coordinates.

Step 1: Exponential decay in the strip. Let p < psd and consider the random-cluster
model on the strip S` of height ` > 0 with wired boundary conditions on the bottom and
free boundary conditions on the top. Define ek and ek+1 to be the north-west-pointing
sides of the diamonds associated to the points ik and i(k + 1), respectively. Label some
of the edges around these two diamonds as x, x′, x′′, y and y′ as shown in Figure 8.1.

a = (a1, a2)

ek

ek+1 y

x x′
y′

(0, k + 1)

(0, k)

exploredv1

v2

x′′

Z

Γ

area

Figure 8.1: Left: The labelling of edges around ek used in Step 1. Right: A dual circuit
surrounding an open path in the box [−a2, a2]2. Conditioning on to the most exterior
such circuit gives no information on the state of the edges inside it.

Proposition 5.8 and Lemma 7.4 have a very important consequence: around a vertex v,
the value of the observable on one edge can be expressed in terms of its values on only two
other edges. This can be done by seeing the relation given by Proposition 5.8 as a linear
relation between four vectors in the plane R2, and applying an orthogonal projection to
a line orthogonal to one of them (which can be chosen using Lemma 7.4). One then gets
a linear relation between three real numbers, but using Lemma 7.4 “in reverse” shows
that this is enough to determine any of the corresponding three (complex) values of the
observable given the other two.

For instance, (5.6) can be projected around v1 orthogonally to F (y), so that a relation
is obtained between projections of F (x), F (x′) and F (ek+1). Moreover, the complex
argument (modulo π) of F is known (Lemma 7.4) for each edge so that the relation between
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projections can be written as a relation between F (x), F (x′) and F (ek+1) themselves.
This leads to

e−iπ/4F (x) = cos(π/4 − α)F (ek+1) − cos(π/4 + α)e−iπ/2F (x′). (8.1)

Applying the same reasoning around v2, we obtain

e−iπ/4F (x) = cos(π/4 + α)F (ek) − cos(π/4 − α)e−iπ/2F (x′′). (8.2)

The translation invariance implies

F (x′) = F (x′′). (8.3)

Moreover, symmetry with respect to the imaginary axis implies that

F (x) = eiπ/4F (x′) = e−iπ/4F (x′). (8.4)

Indeed, if for a configuration ω, x belongs to γ and the winding is equal to W , in the
reflected configuration ω′, x′ belongs to γ(ω′) and the winding is equal to π/2 −W .

Plugging (8.3) and (8.4) into (8.1) and (8.2) leads to

F (ek+1) = e−iπ/4 1 + cos(π/4 + α)
cos(π/4 − α)

F (x) = [1 + cos(π/4 + α)] cos(π/4 + α)
[1 + cos(π/4 − α)] cos(π/4 − α)

F (ek).

Remember that α(p) > 0 since p < psd, so that the multiplicative constant is less than 1.
Using Lemma 5.9 and the previous equality inductively, there exists c1 = c1(p) < 1 such
that, for every ` > 0,

φ∞,−∞S`,p [i`↔ Z] = ∣F (e`)∣ = c`1∣F (e1)∣ ≤ c`1,

where φ∞,−∞S`,p is the random cluster measure on the strip Z×[0, `] with edge-weight p, free
boundary conditions on the top and wired boundary conditions on the bottom. The last
inequality is due to the fact that the observable has complex modulus less than 1.

Step 2: Exponential decay for φ0
p when p < psd. Fix again p < psd. Let N ∈ N and

recall that φ0
p,N ∶= φ0

p,2,[−N,N]2 converges to the infinite-volume measure with free boundary
conditions φ0

p when N goes to infinity.
Consider a configuration in the box [−N,N]2, and let Amax be the site of the cluster

of the origin which maximizes the `∞-norm max{∣x1∣, ∣x2∣} (it could be equal to N). If
there is more than one such site, Amax is defined to be the greatest one in lexicographical
order. Assume that Amax equals a = a1 + ia2 with a2 ≥ ∣a1∣ (the other cases can be treated
the same way by symmetry, using the rotationally invariance of the lattice).

By definition, if Amax equals a, a is connected to 0 in [−a2, a2]2. In addition to this,
because of our choice of the free boundary conditions, there exists a dual circuit starting



CHAPTER 8. FERMIONIC OBSERVABLE AWAY FROM CRITICALITY 151

from a+ i/2 in the dual of [−a2, a2]2 (which is the same as L∗ ∩ [−a2 − 1/2, a2 + 1/2]2) and
surrounding both a and 0. Let Γ be the outermost such dual circuit: we get

φ0
p,N(Amax = a) = ∑

γ

φ0
p,N(a↔ 0∣Γ = γ)φ0

p,N(Γ = γ), (8.5)

where the sum is over contours γ in the dual of [−a2, a2]2 that surround both a and 0.
The event {Γ = γ} is measurable in terms of edges outside or on γ. In addition,

conditioning on this event implies that the edges of γ are dual-open. Therefore, from
the domain Markov property, the conditional distribution of the configuration inside γ is
a random-cluster model with free boundary conditions. Comparison between boundary
conditions implies that the probability of {a ↔ 0} conditionally on {Γ = γ} is smaller
than the probability of {a↔ 0} in the strip Sa2 with free boundary conditions on the top
and wired boundary conditions on the bottom. Hence, for any such γ,

φ0
p,N(a↔ 0∣Γ = γ) ≤ φ∞,−∞Sa2 ,p

(a↔ 0) = φ∞,−∞Sa2 ,p
(a↔ Z) ≤ ca2

1 = c∣a∣/21

(observe that for the second measure, Z is wired, so that {a↔ 0} and {a↔ Z} have the
same probability). Plugging this into (8.5),

φ0
p,N(Amax = a) ≤ ∑

γ

c
∣a∣/2
1 φ0

p,N(Γ = γ) ≤ c∣a∣/21 .

Fix n ≤ N . Since c1 < 1, the previous inequality implies there exist two constants
0 < c2,C2 < ∞ such that

φ0
p,N(0↔ Z2 ∖ [−n,n]2) ≤ ∑

a∈[−N,N]2∖[−n,n]2
φ0
p,N(Amax = a) ≤ ∑

a∉[−n,n]2
c
∣a∣/2
1 ≤ C2e−c2n.

Since the estimate is uniform in N , we deduce that

φ0
p(0↔ Z2 ∖ [−n,n]2) ≤ C2e−c2n. (8.6)

Step 3: Exploiting exponential decay. The inequality pc ≥ psd follows from (8.6)
since exponential decay prevents the existence of an infinite cluster for φ0

p when p < psd.
The reasoning to prove pc ≤ psd is standard. Let An be the event that the point (n,0)

is in an open circuit which surrounds the origin. Notice that this event is included in
the event that the point (n,0) is in a cluster of radius larger than n. For p < psd, (8.6)
implies that the probability of An decays exponentially fast. The Borel-Cantelli lemma
shows that there is almost surely only a finite number of values of n such that An occurs.
In other words, there is only a finite number of open circuits surrounding the origin,
which enforces the existence of an infinite dual cluster. It means that the dual model is
supercritical whenever p < psd. Equivalently, the primal model is supercritical whenever
p > psd, which implies pc ≤ psd.
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2 Proof of Theorem 8.2
In this section, the correlation length is computed in all directions. In [Mes06], Messikh
noticed that this correlation length was connected to large deviations for random walks
and asked whether there exists a direct proof of the correspondence. Indeed, large devia-
tions results are easy to obtain for random walks, so that one could deduce Theorem 8.2
easily. In the following, we exhibit what we believe to be the first direct proof of this
result.

An equivalent way to deal with large deviations of the simple random walk is to study
the massive Green function Gm, defined in the bulk as

Gm(x, y) ∶= Ex[∑
n≥0

mn
1Xn=y],

where Ex is the law of a simple random walk starting at x.
The correlation length of the two-dimensional Ising model is the same as the correlation

length for its random-cluster representation so that we will state the result in terms of the
random-cluster. The parameters p and α = α(p) are used without revealing the connection
with β in the notation.

Proposition 8.3. For p < psd and any a ∈ L,

− lim
n→∞

1

n
logφ0

p(0↔ na) = − lim
n→∞

1

n
logGm(0, na) (8.7)

where m = cos[2α(p)] — the value of α(p) is given by (5.5).

In [Mes06], the statement involves Laplace transforms yet it can be translated it into
the previous terms. Moreover, the mass is expressed in terms of β, but it is elementary
to compute it in terms of α. Theorem 8.2 follows from this proposition by first relating
the two-point functions of the Ising and q = 2 random-cluster models as was mentioned
earlier, and then deriving the asymptotics of the massive Green function explicitly — the
details can be found for instance in the proof of Proposition 8 in [Mes06].

Before delving into the actual proof, here is a short outline of the strategy. Exponential
decay in the strip was already shown: it was an essentially one-dimensional computation.
We now aim to refine it into a two-dimensional version for correlations between two points
0 and a in the bulk, and once again the observable is used to estimate them. The basic
step, namely obtaining local linear relations between the values of the observable, is the
same, although it is complicated by the lack of translation invariance. The point is that
the observable is massive harmonic when p ≠ psd (see Lemma 8.4 below). Since Gm(⋅, ⋅) is
massive harmonic in both variables away from the diagonal x = y, it is possible to compare
both quantities.

The main problem is that we are interested in correlations in the bulk. The observable
can be defined directly in the bulk (see below) but it provides only a lower bound on the
correlations. In order to obtain an upper bound, we have to introduce an “artificial”
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domain (that will be T (a) below), which needs two features: the observable in it can be
well estimated, and at the same time correlations inside it have comparable probabilities
to correlations in the bulk. For the second one, it is equivalent to impose that the Wulff
shape centered at 0 and having a on its boundary is contained in the domain in the
neighborhood of a; from convexity, it is then natural to construct T (a) as the whole plane
minus two wedges, one with vertex at 0 and the other with vertex at a.

The proof is rather technical since one needs to deal with the behavior of the observable
on the boundary of the domains. This was also an issue in Smirnov’s proof. At criticality,
the difficulty was overcome by working with the discrete primitiveH of F 2. Unfortunately,
there is no nice equivalent of H to work with away from criticality. The solution is to use
a representation of F in terms of a massive random walk. This representation extends to
the boundary and allows us to control the behavior of F everywhere.

Proof Let p < psd. Without loss of generality, consider a = (a1, a2) ∈ L satisfying
a2 ≥ a1 ≥ 0. In the proof, a site u ∈ L is identified with the unique side eu of the associated
black diamond which points north-west. In other words F (u) and {u ∈ γ} should be
understood as F (eu) and {eu ∈ γ} — notice that this differs from the notation used in
[Smi10a].

The lower bound. Consider the observable F in the bulk defined as follows: for every
edge e not equal to e0,

F (e) ∶= φ0
p (e

i
2
Wγ(e,e0)1e∈γ) , (8.8)

where γ is the unique loop passing through e0. Note that this definition is justified by
the fact that p is subcritical, and that it immediately implies that

φ0
p(0↔ a) ≥ ∣F (a)∣. (8.9)

Note that F is not well defined at e0. Indeed, e0 can be thought of as the start of the
loop γ or its end. In other words, F is multi-valued at e0, with value 1 or -1.

Proposition 5.8 can be extended to this context following a very similar proof, but
taking into account that F is multi-valued at e0. More precisely, let e0 = xy. Around any
vertex v ∉ {x, y} the relation in Proposition 5.8 still holds; besides,

⎧⎪⎪⎨⎪⎪⎩

F (SE) + 1 = eiα(p) [F (SW ) + F (NE)] if v = y
F (SW ) + F (NE) = eiα(p) [−1 + F (SE)] if v = x

where the NE (resp. SE, SW ) is the edge at v pointing to the north-east (resp. south-
east, south-west). In other words, the statement of Proposition 5.8 still formally holds if
the convention becomes F (e0) = 1 when considering the relation around x, and F (e0) = −1
when considering the relation around y.

One can see that Lemma 7.4 is still valid. In fact, the two lemmas imply that F is
massive harmonic:
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Lemma 8.4. Let p < psd and consider the observable F in the bulk. For any site X not
equal to 0, we have

∆αF (X) ∶= cos 2α

4
[F (W ) + F (S) + F (E) + F (N)] − F (X) = 0,

where W , S, E and N are the four neighbors of X.

Proof Consider a site X inside the domain and recall that X is indentified with the
corresponding edge of the medial lattice pointing north-west. Index the edges around X
in the same way as in Case 1 of Figure 8.2. By considering the six equations corresponding
to vertices that end one of the edges x1, . . . , x6 (being careful to identify the edges A, B,
C and D correctly for each of the vertices), the following linear system can be obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (X) + F (y1) = eiα [F (x1) + F (x6)]
F (y2) + F (x1) = eiα [F (x2) + F (W )]
F (S) + F (x2) = eiα [F (y3) + F (x3)]
F (x3) + F (x4) = eiα [F (y4) + F (X)]
F (E) + F (x5) = eiα [F (x4) + F (y5)]
F (x6) + F (y6) = eiα [F (x5) + F (N)]

case 1 case 2 case 3 case 4 argument of F

R

eiπ/4R

e−iπ/4R

iR
X

N

E

S

W x1
x2 x3

x4

x5x6y1

y2
y3

y4

y5

y6

W x1 X x4 E

y4x3
Sy3

x2y2

N

x6y1
X

S

x3x2

x1W

y2
y3

N

X EW

x6y1
x1
x2 x3

Sy3

y4

x4

Figure 8.2: Indexation of the edges around vertices in the different cases.

Recall that by definition, F (X) is real. For an edge e, denote by f(e) the projection
of F (e) on the line directed by its argument (R, eiπ/4R, iR and e−iπ/4R). By projecting
orthogonally to the F (yi), i = 1 . . .6, the system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(X) = cos(π/4 + α)f(x1) + cos(π/4 − α)f(x6) (1)
f(x1) = cos(π/4 + α)f(x2) + cos(π/4 − α)f(W ) (2)
f(x3) = cos(π/4 − α)f(S) + − cos(π/4 + α)f(x2) (3)
f(X) = cos(π/4 + α)f(x3) + cos(π/4 − α)f(x4) (4)
f(x4) = cos(π/4 + α)f(E) + cos(π/4 − α)f(x5) (5)
f(x6) = − cos(π/4 − α)f(x5) + cos(π/4 + α)f(N) (6)

By adding (2) to (3), (5) to (6) and (1) to (4), we find

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x3) + f(x1) = cos(π/4 − α)[f(W ) + f(S)] (7)
f(x6) + f(x4) = cos(π/4 + α)[f(E) + f(N)] (8)

2f(X) = cos(π/4 + α)[f(x3) + f(x1)] + cos(π/4 − α)[f(x6) + f(x4)] (9)



CHAPTER 8. FERMIONIC OBSERVABLE AWAY FROM CRITICALITY 155

Plugging (7) and (8) into (9) leads to

2f(X) = cos(π/4 + α) cos(π/4 − α)[f(W ) + f(S) + f(E) + f(N)].

The edges X, . . . , N are pointing in the same direction so the previous equality becomes
an equality with F in place of f (use Lemma 7.4). A simple trigonometric identity then
leads to the claim. ◻

Define the Markov process with generator ∆α, which one can see either as a branching
process or as the random walk of a massive particle. We choose the latter interpretation
and write this process (Xn,mn) where Xn is a random walk with jump probabilities
defined in terms of ∆α — the proportionality between jump probabilities is the same as
the proportionality between coefficients — and mn is the mass associated to this random
walk. The law of the random walk starting at x is denoted Px. Note that the mass of the
walk decays by a factor cos 2α at each step.

Denote by τ the hitting time of 0. The last lemma translates into the following formula
for any a and any t,

F (a) = Ea[F (Xt∧τ)mt∧τ ]. (8.10)
The sequence (F (Xt)mt)t≤τ is obviously uniformly integrable, so that (8.10) can be im-
proved to

F (a) = Ea[F (Xτ)mτ ]. (8.11)
Equations (8.9), (8.11) together with Lemma 8.5 below give

φ0
p(0↔ a) ≥ c

∣a∣
Gcos 2α(0, a),

which implies the lower bound.

Lemma 8.5. There exists c > 0 such that, for every a in the upper-right quadrant,

∣Ea[F (Xτ)mτ ]∣ ≥
c

∣a∣
Gcos 2α(0, a).

Proof Recall that F (Xτ) is equal to 1 or -1 depending on the last step the walk takes
before reaching 0. Let us rewrite Ea[F (Xτ)mτ ] as

Ea[mτ 1{Xτ−1=W or S}] −Ea[mτ 1{Xτ−1=N or E}].

Now, let ∆α be the line y = −x, and let T be the time of the last visit of ∆α by the walk
before time τ (set T = ∞ if it does not exist). On the event that Xτ−1 =W or S, this time
is finite, and reflecting the part of the path between T and τ across ∆α produces a path
from a to 0 with Xτ−1 = E or N . This transformation is one-to-one, so summing over all
paths, we obtain

Ea[mτ 1{Xτ−1=W or S}] −Ea[mτ 1{Xτ−1=N or E}] = −Ea[mτ 1{Xτ−1=N or E}1{T=∞}]

which in turn is equal to −Ea[mτ1{T=∞}]. General arguments of large deviation theory
imply that Ea[mτ1{T=∞}] ≥ c

∣a∣Gcos 2α(0, a) for some universal constant c. ◻
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L+(w)

L−

w

0

wired arc L− of T (w)

free arc of T (w)

case 1: interior of T (w)

case 2: horizontal part of L+(w)

case 3: vertical part of L+(w)

case 4: site w X

N

E

S

W

Figure 8.3: The set T (w). The different cases listed in the definition of the Laplacian are
pictured.

The upper bound. Assume that 0 is connected to a in the bulk. We first show how to
reduce the problem to estimations of correlations for points on the boundary of a domain.

For every u = u1 + iu2 and v = v1 + iv2 two sites of L, write u ≺ v if u1 < v1 and u2 < v2.
This relation is a partial ordering of L. Consider the following sets

L+(u) = {x ∈ L ∶ u ≺ x} and L− = {x ∈ L ∶ x ≺ 0};

and
T (u) = L ∖ (L+(u) ∪L−).

In the following, L+(u) and L− will denote the interior boundaries of T (u) near L+(u)
and L− respectively, see Figure 8.3. The measure with wired boundary conditions on L−

and free boundary conditions on L+(u) is denoted φT (u).
Assume that a is connected to 0 in the bulk. By conditioning on w which maximizes

the partial ≻-ordering in the cluster of 0 (it is the same reasoning as in Section 3), we
obtain the following:

φ0
p(a↔ 0) ≤ ∑

w≻a
φT (w)(w↔ L−) ≤ C3∣a∣ max

w≻a,∣w∣≤c3∣a∣
φT (w)(w↔ L−) (8.12)

for c3,C3 large enough. The existence of c3 is given by the fact that the two-point function
decays exponentially fast: a priori estimates on the correlation length show that the
maximum above cannot be reached at any w which is much further away from the origin
than a, and even that the sum of the corresponding probabilities is actually of a smaller
order than the remaining terms. Summarizing, it is sufficient to estimate the probability
of the right-hand side of (8.12).

Observe that w is on the free arc of T (w), so that, harnessing Lemma 5.9, we find

φT (w)(w↔ L−) = ∣F (w)∣, (8.13)
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where F is the observable in the infinite Dobrushin domain T (w) (the winding is fixed in
such a way that it equals 0 at ew). Now, similarly to Lemma 8.4, F satisfies local relations
in the domain T (w):

Lemma 8.6. The observable F satisfies ∆αF = 0 for every site not on the wired arc,
where the massive Laplacian ∆α on T (w) is defined by the following relations: for all
g ∶ T (w) ↦ R, (g +∆αg)(X) is equal to:

cos 2α

4
[g(W ) + g(S) + g(E) + g(N)] inside the domain;

cos 2α

2(1 + cos(π/4 − α))
[g(W ) + g(S)] + cos(π/4 + α)

1 + cos(π/4 − α)
g(E) on the horizontal part of L+(w);

cos 2α

2(1 + cos(π/4 − α))
[g(W ) + g(S)] + cos(π/4 + α)

1 + cos(π/4 − α)
g(N) on the vertical part of L+(w);

cos 2α

4
[g(W ) + g(S)] + cos(π/4 − α)

2
[g(E) + g(N)] at w,

with N , E, S and W being the four neighbors of X.

Proof When the site is inside the domain, the proof is the same as in Lemma 8.4. For
boundary sites, a similar computation can be done. For instance, consider Case 2 in
Fig. 8.2. Equations (3) and (7) in the proof of Lemma 8.4 are preserved. Furthermore,
Lemma 5.9 implies that

f(X) = f(x1) = φT (w)(X ↔ L−)
and similarly f(x4) = f(E) (where f is still as defined in the proof of Lemma 8.4).
Plugging all these equations together, we obtain the second equality. The other cases are
handled similarly. ◻

Now, we aim to use a representation with massive random walks similar to the proof
of the lower bound. One technical point is the fact that the mass at w is larger than 1.
This could a priori prevent (F (Xt)mt)t from being uniformly integrable. Therefore, the
behavior at w needs to be treated separately. Denote by τ1 the hitting time (for t > 0)
of w, and by τ the hitting time of L−. Since the masses are smaller than 1, excepted at
w, (F (Xt)mt)t≤τ∧τ1 is uniformly integrable and we can applying the stopping theorem to
obtain:

F (w) = Ew[F (Xτ∧τ1)mτ∧τ1] = Ew[F (Xτ1)mτ11τ1<τ ] +Ew[F (Xτ)mτ1τ<τ1].

Since Xτ1 = w, the previous formula can be rewritten as

F (w) = Ew[F (Xτ)mτ1τ<τ1]
1 −Ew(mτ11τ1<τ)

. (8.14)

When w goes to infinity in a prescribed direction, [1 − Ew(mτ11τ1<τ)] converges to
the analytic function h ∶ [0,1] → R, p ↦ 1 − Ew(mτ1) (since the function is translation-
invariant). The function h is not equal to 0 when p = 0, implying that it is equal to 0 for
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a discrete set P of points. In particular, for p ∉ P, the first term in the right hand side
stays bounded when w goes to infinity. Denoted by C4 = C4(p) such a bound. Recalling
that ∣F ∣ ≤ 1 and that the mass is smaller than 1 except at w, (8.14) becomes

∣F (w)∣ ≤ C4∣Ew[F (Xτ)mτ1τ<τ1]∣ ≤ Ew[mτ1τ<τ1] (8.15)
≤ C4 ∑

w≺x
Ex[(cos 2α)τ1τ<τ11{(Xt) avoids L+(w)}] ≤ C4 ∑

w≺x
Gcos 2α(0, x) (8.16)

where the last inequality is due to the release of the conditioning on avoiding L+(w).
Finally, it only remains to bound the right hand side. From (8.16), we deduce

∣F (w)∣ ≤ C5∣w∣Gcos 2α(0,w) (8.17)

where the existence of C5 is due to the exponential decay of Gcos 2α(⋅, ⋅) and the fact that
Gcos 2α(0, x) ≤ Gcos 2α(0,w) whenever w ≺ x. We deduce from (8.12), (8.13) and (8.17)
that

φp(0↔ a) ≤ C3C5∣a∣2 max
w≻a,∣w∣∞≤c5∣a∣∞

Gm(0,w) ≤ C6∣a∣2Gm(0, a). (8.18)

Taking the logarithm, the claim is obtained for all p < psd not in the discrete set P . The
result follows for every p using the fact that the correlation length is increasing in p. ◻



Chapter 9

Connection probabilities and RSW-type
bounds for the two-dimensional
FK-Ising and Ising models

Abstract: This chapter is devoted to bounds on crossing probabilities in the criti-
cal FK-Ising model. These bounds are uniform in the size of the rectangles and in the
boundary conditions, they are analogues for the FK-Ising model to the celebrated Russo-
Seymour-Welsh bounds for percolation [Rus78, SW78]. The chapter is inspired by the
article Connection probabilities and RSW-type bounds for the two-dimensional FK-Ising
model [DCHN10], written with Clément Hongler and Pierre Nolin, and published in Com-
munications in Pure and Applied mathematics.

Consider rectangles R of the form [0, n]×[0,m] for n,m > 0, and translations of them.
The event that there exists a vertical crossing in R, i.e. an open path from the bottom
side [0, n] × {0} to the top side [0, n] × {m}, is denoted by Cv(R). Our main result is the
following:

Theorem 9.1 (RSW-type crossing bounds). Let 0 < β1 < β2. There exist two constants
0 < c− ≤ c+ < 1 (depending only on β1 and β2) such that for any rectangle R with side
lengths n and m ∈ [β1n,β2n] ( i.e. with aspect ratio bounded away from 0 and ∞ by β1

and β2), one has
c− ≤ φξpsd,2,R

(Cv(R)) ≤ c+

for any boundary conditions ξ, where φξpsd,2,R
denotes the random-cluster measure on R

with parameters (p, q) = (psd,2) and boundary conditions ξ.

Our proof relies mostly on Smirnov’s observable. More precisely, it is based on precise
estimates on connection probabilities for boundary vertices, they allow us to use a second-
moment method on the number of pairs of connected sites. In order to do that, the

159
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fermionic observable is used to reveal some harmonicity on the discrete level, which enables
us to express macroscopic quantities such as connection probabilities in terms of discrete
harmonic measures. We would like to stress that our argument remains completely in a
discrete setting, using essentially elementary combinatorial tools: in particular, it does
not make use of continuum limits [Smi10b].

Crossing bounds turned out to be instrumental in the study of the percolation model
at and near its phase transition – for instance to derive Kesten’s scaling relations [Kes87],
that link the main macroscopic observables, such as the density of the infinite cluster
and the characteristic length. These bounds are also useful in the study of variations of
percolation, in particular for models exhibiting a self-organized critical behavior. Theorem
9.1 is then of particular interest in the study of the FK-Ising model at and near criticality
(see Chapter 12 as well).

Theorem 9.1 also appears to be useful in enabling to transfer properties of the scaling
limit objects back to the discrete models. It is therefore expected to be helpful to prove the
existence of critical exponents, in particular of the arm exponents. Connections between
discrete models and their continuum counterparts usually involve decorrelation of different
scales, and thus use spatial independence between regions which are far enough from each
other. In the random cluster model, one usually addresses the lack of spatial independence
by successive conditionings, using repeatedly the spatial (or domain) Markov property of
random-cluster models. For this reason, proving bounds that are uniform in the boundary
conditions seems to be important. An example of application of this technique is given
in Subsection 3.1.

This theorem allows us to derive easily several noteworthy results. Among the con-
sequences, let us mention power law bounds for magnetization at criticality for the Ising
model, first established by Onsager in [Ons44], tightness results for the interfaces coming
from the Aizenman-Burchard technology, and the value 1/2 of the one-arm half-plane
exponent – which describes both the asymptotic probability of large-distance connections
starting from a boundary point for the FK-Ising model, and the decay of boundary mag-
netization in the Ising model. Moreover, Theorem 9.1 is used in [LS10] to establish a
polynomial upper bound for the mixing time of the Glauber dynamics at criticality, and
in [CN07], such crossing bounds allowed the authors to construct sub-sequential scaling
limits for the spin field of the critical Ising model.

We would also like to mention that other proofs of Russo-Seymour-Welsh-type bounds
have already been proposed. In [CS09], Chelkak and Smirnov give a direct and elegant
argument to explicitly compute certain crossing probabilities in the scaling limit, but their
argument only applies for some specific boundary conditions (alternatively wired and free
on the four sides). In [CN07], Camia and Newman also propose to obtain RSW as a
corollary of a recently announced result [CS09]: the convergence of the full collection of
interfaces for the Ising model to the conformal loop ensemble CLE(3). The interpretation
of CLE(3) in terms of the Brownian loop soup [Wer03] is also used. However, to the
author’s knowledge, the proofs of these two results are quite involved, and moreover,
the reasoning proposed only applies for the infinite-volume measure. In these two cases,
uniformity with respect to the boundary conditions is not addressed, and there does



CHAPTER 9. RSW-TYPE BOUNDS FOR THE 2D FK-ISING MODEL 161

not seem to be an easy argument to avoid this difficulty. While weaker forms might be
sufficient for some applications, it seems however that this stronger form is needed in
many important cases, and that it considerably shortens several existing arguments.

Another application of Theorem 9.1 is crossing formulæ for the critical Ising model.
Denote by Ãn,m the event that there exists a circuit of pluses surrounding Λn in Λm.

Theorem 9.2 (circuits in annuli). There exists a constant c > 0 such that for all n,

µ−βc,An/2,4n(Ãn,2n) ≥ c.

It is a good point to mention a related result. The high-temperature Ising model on
the triangular lattice is expected to have the same scaling limit as critical site-percolation
on the triangular lattice. The reason is that correlation between sites decays exponen-
tially fast, and each site has probability 1/2 to be either + or −. For instance, the
infinite temperature limit is exactly site-percolation. This observation makes the model
extremely interesting, since it provides a (possibly tractable) model for which universal-
ity in the temperature T > Tc holds. Unfortunately, the mathematical understanding of
high-temperature Ising models remains fairly basic. We now prove, using techniques of
Chapter 4, that RSW-types estimates hold true for high-temperature Ising models on the
triangular lattice. This result should be useful in order to prove conformal invariance of
this regime as well.

Theorem 9.3. Let α > 1 and β < βc. There exist c = c(α) > 0 and K = K(α) > 0 such
that for every n > 0,

µξ
β,RKαn,n

(Ch(Rαn,n)) ≥ c (9.1)

uniformly in the boundary condition ξ, where, in the coordinate system (1, eiπ/3),

Rαn,n ∶= [0, αn] × [0, n]
RK
αn,n ∶= [−K logn,αn +K logn] × [−K logn,n +K logn],

and Ch is the existence of a path of adjacent pluses rossing the rectangle horizontally.

We mention that a slight modification of this result is proved (using different tech-
niques) in [HTZ10].

The chapter is organized as follows. In Section 1, the observable is compared to certain
harmonic measures, for which estimates can be proved. These estimates are central in
the proof of Theorem 9.1, which is performed in Section 2. Section 3 is devoted to several
consequences. Section 4 contains the proof of Theorems 9.2 and 9.3.

Since p = psd(2) and q = 2 are fixed in this chapter, they are dropped from the
notation. For technical considerations, all graphs are rotated by an π/4-angle
in this chapter.
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1 Comparison to harmonic measures
In this section, we obtain a comparison result for the boundary values of the fermionic
observable F introduced in terms of discrete harmonic measures. It will be used to obtain
all the quantitative estimates on the observable that are needed for the proof of Theorem
9.1.

1.1 Comparison principle

As in the previous chapters, let (Ω, a, b) be a discrete Dobrushin domain, with free bound-
ary conditions on the arc ∂ab, and wired boundary conditions on the other arc ∂ba. Set
F for the fermionic observable in this domain and H the imaginary part of the discrete
primitive of F 2 (like in previous chapter). Recall that H● and H○ are the restrictions of
H to black and white faces respectively.

For our estimates, the medial graph of our discrete domain is extended by adding two
extra layers of faces: one layer of white faces adjacent to the black faces of the wired arc,
and one layer of black faces adjacent to the white faces of the dual free arc. This extended
domain is denoted by Ω̄◇.

Remark 9.4. Note that a small technicality arises when adding a new layer of faces:
some of these additional faces can overlap faces that were already here. For instance, if
the domain has a slit, the free and the wired arc are adjacent along this slit, and the extra
layer on the wired arc (resp. on the dual free arc) overlaps the dual free arc (resp. the
wired arc). As will be seen, H● is equal to 1 on the wired arc, and to 0 on the additional
layer along the dual free arc. One should thus remember in the following that the added
faces are considered as different from the original ones – it will always be clear from the
context which faces are considered.

For any given black face B, let us define (XB
●t)t≥0 to be the continuous-time random

walk on the black faces of Ω̄◇ starting at B, that jumps with rate 1 on adjacent black
faces, except for the black faces on the extra layer of black faces adjacent to the dual
free arc onto which it jumps with rate ρ ∶= 2/(

√
2 + 1). Similarly, let (XW

○t )t≥0 denote
the continuous-time random walk on the white faces of Ω̄◇ starting at a white face W
that jumps with rate 1 on adjacent white faces, except for the white faces on the extra
layer of white faces adjacent to the wired arc onto which it jumps with the same rate
ρ = 2/(

√
2 + 1) as previously.

For a black face B, let HM●(B) denote the probability that the random walk XB
●t hits

the wired arc from b to a before hitting the extra layer adjacent to the free arc. Similarly,
for W a white face, we denote by HM○(W ) the probability that the random walk XW

○t
hits the additional layer adjacent to the wired arc before hitting the free arc. Note that
there is no extra difficulty in defining these quantities for infinite discrete domains as well.

With these notations, we obtain the following result:

Proposition 9.5 (uniform comparability). Let (Ω, a, b) be a discrete Dobrushin domain,
and let e be a medial edge of ∂ab (thus adjacent to the free arc). Let B = B(e) be the black
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e1 e2

e3e4

v

B

BS

BN

BEBW

Figure 9.1: Extend Ω◇ by adding two extra layers of medial faces, and extend the functions
H● and H○ there. Here is represented the extension along the dual free arc.

face bordered by e, and W = W (e) be a white face adjacent to B that does not belong to
the dual free arc. Then we have

√
HM○(W ) ≤ ∣F (e)∣ ≤

√
HM●(B). (9.2)

Proof By (7.4) and the lines following (7.4), we have ∣F (e)∣2 = H(B) and H(W ) =
∣F (e)∣2 − ∣F (e′)∣2 ≤ ∣F (e)∣2, where e′ is the medial edge between B and W : it is therefore
sufficient to show that H(B) ≤ HM●(B) and H(W ) ≥ HM○(W ). We only prove that
H(B) ≤HM●(B), since the other case can be handled in the same way.

For this, we use a variation of a trick introduced in [CS09] and extend the function H
to the extra layer of black faces – added as explained above – by setting H to be equal
to 0 there. It is then sufficient to show that the restriction H● of H to the black faces of
Ω̄◇ is subharmonic for the Laplacian that is the generator of the random walk X●, since it
has the same boundary values as HM● (which is harmonic for this Laplacian). Inside the
domain, subharmonicity is given by Corollary 7.7, since there the Laplacian of X● is the
usual discrete Laplacian (associated with it is just a simple random walk). The only case
to check is when a face involved in the computation of the Laplacian belongs to one of
the extra layers. For the sake of simplicity, we study the case when only one face belongs
to these extra layers.

Denote by BW , BN , BE and BS the black faces adjacent to B, and assume that BS is
on the extra layer (see Figure 9.1). The discrete Laplacian of X● at face B is denoted by
∆●. We claim that

∆●H●(B) = 2 +
√

2

6 + 5
√

2
[H●(BW ) +H●(BN) +H●(BE)] +

2
√

2

6 + 5
√

2
H●(BS) −H●(B) ≥ 0. (9.3)

For that, let us denote by e1, e2, e3, e4 the four medial edges at the bottom vertex v between
B and BS, in clockwise order, with e1 and e2 along B, and e3 and e4 along BS (see Figure
9.1) – note that e3 and e4 are not edges of Ω◇, but of L◇.
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Extend F to e3 and e4 by requiring F (e3) and F (e1) to be orthogonal, as well as F (e4)
and F (e2), and F (e1)+F (e3) = F (e2)+F (e4) to hold true. This defines these two values
uniquely: indeed, as noted before, F (e2) = e−iπ/4F (e1) on the boundary (since Wγ(ea, e1)
and Wγ(ea, e2) are fixed, with Wγ(ea, e2) = Wγ(ea, e1) + π/2, and the curve cannot go
through one of these edges without going through the other one), which implies, after a
small calculation, that

∣F (e3)∣2 = ∣( tan
π

8
)eiπ/4F (e2)∣

2

= 2 −
√

2

2 +
√

2
∣F (e2)∣2 =

2 −
√

2

2 +
√

2
H●(B).

If H̃● denotes the function defined by H̃● =H● on B, BW , BN and BE, and by

H̃●(BS) = ∣F (e3)∣2 =
2 −

√
2

2 +
√

2
H●(B), (9.4)

then H̃● satisfies the same relation (7.4) (definition of H) for e3 and e4, as inside the do-
main. Since the fermionic observable F verifies the same local equations, the computation
performed in Proposition 2.19, Corollary 7.7 applies at B (with H̃ instead of H), and we
deduce

∆H̃●(B) = 1

4
[H̃●(BW ) + H̃●(BN) + H̃●(BE) + H̃●(BS)] − H̃●(B) ≥ 0. (9.5)

Using the definition of H̃●, this inequality can be rewritten as

1

4
[H●(BW ) +H●(BN) +H●(BE)] −

6 + 5
√

2

4(2 +
√

2)
H●(B) ≥ 0. (9.6)

Now using that H●(BS) = 0, the claim (9.3) follows. ◻

1.2 Estimates on harmonic measures

In the previous subsection, a comparison principle between the values of H near the
boundary is given, and the harmonic measures associated with two (almost simple) ran-
dom walks, on the two lattices composed of the black faces and of the white faces re-
spectively. In this subsection, we provide estimates for these two harmonic measures in
different domains needed for the proof of Theorem 9.1. We start with giving a lower
bound which is useful in the proof of the 1-point estimate.

Lemma 9.6. For β > 0 and n ≥ 0, let Rβ
n be

Rβ
n = [−βn,βn] × [0,2n].

Then there exists c1(β) > 0 such that for any n ≥ 1,

HM○(Wx) ≥
c1(β)
n2

(9.7)

in the Dobrushin domain (Rβ
n, u, u) (see Figure 9.2), for all x = (x1,0) and u = (u1,2n)

such that ∣x1∣, ∣u1∣ ≤ βn/2 ( i.e. far enough from the corners), Wx being any of the two
white faces that are adjacent to x and not on the dual free arc.
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x
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0Z

Rβ
n

2βn

2n

βn/2

Figure 9.2: Estimate of Lemma 9.6: the dashed line corresponds to the dual free arc.

Proof This proposition follows from standard results on simple random walks (gambler’s
ruin type estimates). For the sake of conciseness, a detailed proof is not provided. ◻

In the remaining part of this section, consider only Dobrushin domains (Ω, a, b) that
contain the origin on the free arc, and are subsets of the medial lattice H◇, where H =
{(x1, x2) ∈ Z2, x2 ≥ 0} denotes the upper half plane – in this case, Ω is said to be a
Dobrushin H-domain. For the following estimates on harmonic measures, the Dobrushin
domains that are considered can also be infinite. We are interested in the harmonic
measure of the wired arc seen from a given point: without loss of generality, this point is
assumed to be the origin. Let B0 be the corresponding black face of the medial lattice,
and W0 be an adjacent white face which is not on the free arc.

We first prove a lower bound on the harmonic measure. For that, introduce, for k ∈ Z
and n ≥ 0, the segments

ln(k) = {k} × [0, n] (= {(k, j) ∶ 0 ≤ j ≤ n}).

Lemma 9.7. There exists a constant c2 > 0 such that for any Dobrushin H-domain
(Ω, a, b), we have

HM○(W0) ≥
c2

k
, (9.8)

provided that, in Ω, the segment lk(−k) disconnects from the origin the intersection of the
free arc with the upper half-plane (see Figure 9.3).

Proof The arc lk(−k) disconnects the origin from the part of the free arc that lies in
the upper half-plane, let us thus consider the connected component of Ω ∖ lk(−k) that
contains the origin. In this new domain Ω0, if boundary conditions along lk(−k) are
free, the harmonic measure of the wired arc is smaller than the harmonic measure of the
wired arc in the original domain Ω. On the other hand, the harmonic measure of the
wired arc in Ω0 is larger than the harmonic measure of the wired arc in the slit domain
(H ∖ lk(−k), (−k, k),∞), which has respectively wired and free boundary conditions to
the left and to the right of (−k, k) (see Figure 9.3). Estimating this harmonic measure is
straightforward, using the same arguments as before. ◻
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Figure 9.3: The two domains involved in the proof of Lemma 9.7.

Upper bounds on the harmonic measures are now derived. Estimates of two different
types will be needed. The first one takes into account the distance between the origin and
the wired arc, while the second one requires the existence of a segment ln(k) disconnecting
the wired arc from the origin (still inside the domain).

Lemma 9.8. There exist constants c3, c4 > 0 such that for any Dobrushin H-domain
(Ω, a, b),

• if d1(0) denotes the graph distance between the origin and the wired arc,

HM●(B0) ≤ c3
1

d1(0)
, (9.9)

• and if the segment ln(k) disconnects the wired arc from the origin inside Ω,

HM●(B0) ≤ c4
n

∣k∣2
. (9.10)

Proof Let us first consider item (9.9). For d = d1(0), define the Dobrushin domain
(Bd, (−d,0), (d,0)), where Bd is the set of sites in H at a graph distance at most d from
the origin (see Figure 9.4). The harmonic measure of the wired arc in (Ω, a, b) is smaller
than the harmonic measure of the wired arc in this new domain Bd, and, as before, this
harmonic measure is easy to estimate.

Let us now turn to item (9.10). Since ln(k) disconnects the wired arc from the origin,
the harmonic measure of the wired arc is smaller than the harmonic measure of ln(k)
inside Ω, and this harmonic measure is smaller than it is in the domain H ∖ ln(k) with
wired boundary conditions on the left side of ln(k) – right side if k < 0 (see Figure 9.4).
Once again, the estimates are easy to perform in this domain. ◻

2 Proof of Theorem 9.1
We now prove our result, Theorem 9.1. The main step is to prove the uniform lower
bound for rectangles of bounded aspect ratio with free boundary conditions. We then use
monotonicity to compare boundary conditions and obtain the desired result. In the case
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Figure 9.4: The two different upper bounds (9.9) and (9.10) of Lemma 9.8.

of free boundary conditions, the proof relies on a second moment estimate on the number
N of pairs of vertices (x,u), on the top and bottom sides of the rectangle respectively,
that are connected by an open path.

The organization of this section follows the second-moment estimate strategy. In
Proposition 9.10, we first prove a lower bound on the probability of a connection from a
given site on the bottom side of a rectangle to a given site on the top side. This estimate
gives a lower bound on the expectation of N . Then, Proposition 9.11 provides an upper
bound on the probability that two points on the bottom side of a rectangle are connected
to the top side. This proposition is the core of the proof, and it provides the right bound
for the second moment of N . It allows us to conclude the section by using the second
moment estimate method, thus proving Theorem 9.1.

In this section, two main tools will be used: the domain Markov property, and proba-
bility estimates for connections between the wired arc and sites on the free arc. We first
explain how the previous estimates on harmonic measures can be used to derive estimates
on connection probabilities. The following lemma is instrumental in this approach.

Lemma 9.9. Let (Ω, a, b) be a Dobrushin domain. For any site x on the free arc of Ω,
we have √

HM○(Wx) ≤ φa,bΩ (x↔ wired arc) ≤
√
HM●(Bx), (9.11)

where Bx is the black face corresponding to x, and Wx is any closest white face that is
not on the free arc.

Proof Since x is on the free boundary of Ω, there exists a white face on the free arc of
Ω◇ which is adjacent to Bx: denote by e the edge between these faces. As noted before,
since the edge e is along the free arc, the winding Wγ(ea, e) of the exploration path γ at
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e is constant, and depends only on the direction of e. This implies that

φa,bΩ (e ∈ γ) = ∣F (e)∣.

In addition, e belongs to γ if and only if x is connected to the wired arc, which implies
that ∣F (e)∣ is exactly equal to φa,bΩ (x↔ wired arc). Proposition 9.5 thus implies the claim.
◻

With this lemma at our disposal, the different estimates can be proved. Throughout
the proof, the notation ci(β) will be used for constants that depend neither on n nor on
sites x, y or on boundary conditions. When they do not depend on β, they are denoted
by ci (it is the case for the upper bounds). Recall the definition of Rβ

n:

Rβ
n = [−βn,βn] × [0,2n]. (9.12)

Let ∂+Rβ
n (resp. ∂−Rβ

n) be the top side [−βn,βn]×{2n} (resp. bottom side [−βn,βn]×{0})
of the rectangle Rβ

n. We begin with a lower bound on connection probabilities.

Proposition 9.10 (connection probability for one point on the bottom side). Let β > 0,
there exists a constant c(β) > 0 such that for any n ≥ 1,

φ0

Rβn
(x↔ u) ≥ c(β)

n
(9.13)

for all x = (x1,0) ∈ ∂−Rβ
n, u = (u1,2n) ∈ ∂+Rβ

n, satisfying ∣x1∣, ∣u1∣ ≤ βn/2.

Proof The probability that x and u are connected in the rectangle with free boundary
conditions can be written as the probability that x is connected to the wired arc in
(Rβ

n, u, u) (where the wired arc consists of a single vertex). The previous lemma, together
with the estimate of Lemma 9.6, concludes the proof. ◻

We now study the probability that two boundary points on the bottom edge of Rβ
n

are connected to the top edge, with boundary conditions wired on the top side and free
on the other sides.

Proposition 9.11 (connection probability for two points on the bottom side). There
exists a constant c > 0 (uniform in β,n) such that for any rectangle Rβ

n and any two
points x, y on the bottom side ∂−Rβ

n,

φan,bn
Rβn

(x, y↔ wired arc) ≤ c√
∣x − y∣n

, (9.14)

where an and bn denote respectively the top-left and top-right corners of the rectangle Rβ
n.

The proof is based on the following lemma, which is a strong form of the so-called
half-plane one-arm probability estimate (see Subsection 3.1 for a further discussion of this
result). For x on the bottom side of Rβ

n and k ≥ 1, denote by Bk(x) the box centered at
x with diameter k for the graph distance. The require lemma can be stated:
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γ(T ) = z + (−r, r)
∂Bk

z

Figure 9.5: The Dobrushin domain (Rβ
n, cn, dn), together with the exploration path up to

time T .

Lemma 9.12. There exists a constant c5 > 0 (uniform in n, β and the choice of x) such
that for all k ≥ 0,

φan,bn
Rβn

(Bk(x) ↔ wired arc) ≤ c5

√
k

n
. (9.15)

Proof Consider n, k, β > 0, and the box Rβ
n with one point x ∈ ∂−Rβ

n. (9.15)) becomes
trivial if k ≥ n, so we can assume that k ≤ n. For any choice of β′ ≥ β, the monotonicity
between boundary conditions implies that the probability that Bk(x) is connected to the
wired arc ∂+Rβ

n in (Rβ
n, an, bn) is smaller than the probability that Bk(x) is connected to

the wired arc in the Dobrushin domain (Rβ′
n , cn, dn), where cn and dn are the bottom-left

and bottom-right corners of Rβ′
n . From now on, replace β by β + 1, and consider the new

domain (Rβ
n, cn, dn). Notice that Bk is then included in Rβ

n and that the right-most site
of Bk is at a distance at least n from the wired arc.

Let T denote the hitting time – for the exploration path naturally parametrized by
the number of steps – of the set of medial edges bordering (the black faces corresponding
to) the sites of Bk(x); set T = ∞ if the exploration path never reaches this set, so that Bk
is connected to the wired arc if and only if T < ∞.

Let z be the right-most site of the box Bk(x). Consider now the event {z ↔ wired arc}.
By conditioning on the curve up to time T (and on the event {Bk(x) ↔ wired arc}), we
obtain

φcn,dn
Rβn

(z ↔ wired arc) = φcn,dn
Rβn

[IT<∞ ⋅ φcn,dn
Rβn

(z ↔ wired arc ∣ γ[0, T ])]

= φcn,dn
Rβn

[IT<∞ ⋅ φγ(T ),dn
Rβn∖γ[0,T ]

(z ↔ wired arc)],

where the second inequality used the domain Markov property and the fact that it is
sufficient for z to be connected to the wired arc in the new domain (since it is then
automatically connected to the wired arc of the original domain).

On the one hand, since z is at a distance at least n from the wired arc (thanks to the
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Figure 9.6: This picture presents the different steps in the proof of Proposition 9.11: we
first (1) condition on γ[0, Tx] and use the uniform estimate (9.9) of Lemma 9.8, then (2)
condition on γ[0, Tk+1] and use the estimate (9.10) of Lemma 9.8, in order to (3) conclude
with Lemma 9.12.

new choice of β), Lemma 9.9 can be combined with Item (9.9) of Lemma 9.8 to obtain

φcn,dn
Rβn

(z ↔ wired arc) ≤ c3√
n
.

On the other hand, if γ(T ) can be written as γ(T ) = z + (−r, r), with 0 ≤ r ≤ k, then
the arc z + lr(−r) disconnects the free arc from z in the domain Rβ

n ∖ γ[0, T ], while if
γ(T ) = z +(−r,2k− r), with k+1 ≤ r ≤ 2k, then the arc z + lr(−r) still disconnects the free
arc from z. Using once again Lemma 9.9, this time with Lemma 9.7, we obtain that a.s.

φ
γ(T ),dn
Rβn∖γ[0,T ]

(z ↔ wired arc) ≥ c4√
r
≥ c4√

2k
.

This estimate being uniform in the realization of γ[0, T ], we obtain

c4√
2k
φcn,dn
Rβn

(T < ∞) ≤ φcn,dn
Rβn

(z ↔ wired arc) ≤ c3√
n
,

which implies the desired claim (9.15)). ◻

Proof of Proposition 9.11 Let us take two sites x and y on ∂−Rβ
n. As in the previous

proof, the larger the β, the larger the corresponding probability, β can thus be chosen in
such a way that there are no boundary effects. In order to prove the estimate, we express
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the event considered in terms of the exploration path γ. If x and y are connected to the
wired arc, γ must go through two boundary edges which are adjacent to x and y, which
are denoted by ex and ey. Notice that ex has to be discovered by γ before ey is.

Now, define Tx to be the hitting time of ex, and Tk to be the hitting time of the
set of medial edges bordering (the black faces associated with) the sites of B2k(y), for
k ≤ k0 = ⌊log2 ∣x − y∣⌋ – where ⌊⋅⌋ is the integer part of a real number. If the exploration
path does not cross this ball before hitting ex, set Tk = ∞. With these definitions, the
probability that ex and ey are both on γ can be expressed as

φan,bn
Rβn

(x, y↔ wired arc) = φan,bn
Rβn

(ex, ey ∈ γ) (9.16)

=
k0

∑
k=0

φan,bn
Rβn

(ey ∈ γ, Tx < ∞, Tk+1 < Tk = ∞) (9.17)

=
k0

∑
k=0

φan,bn
Rβn

[ITk+1<Tk=∞ ⋅ ITx<∞ ⋅ φan,bn
Rβn

(ey ∈ γ ∣γ[0, Tx])], (9.18)

where the third equality is obtained by conditioning on the exploration path up to time
Tx. Recall that ey belongs to γ if and only if y is connected to the wired arc. Moreover,
if {Tk = ∞}, y is at a distance at least 2k from the wired arc in Rβ

n ∖ γ[0, Tx]. Hence, the
domain Markov property, item (9.9) of Lemma 9.8 and Lemma 9.9 give that, on {Tk = ∞},

φan,bn
Rβn

(ey ∈ γ ∣γ[0, Tx]) = φx,bn
Rβn∖γ[0,Tx]

(y↔ wired arc) ≤ c3√
2k

a.s.

By plugging this uniform estimate into (9.18), and removing the condition on Tk = ∞, we
obtain

φan,bn
Rβn

(ex, ey ∈ γ) ≤
k0

∑
k=0

c3√
2k

φan,bn
Rβn

[ITk+1<∞ ⋅ φan,bn
Rβn

(Tx < ∞ ∣γ[0, Tk+1])],

where we conditioned on the path up to time Tk+1. Now, ex belongs to γ if and only if
x is connected to the wired arc. Assuming {Tk+1 < ∞}, the vertical segment connecting
γ(Tk+1) to Z – of length at most 2k+1 – disconnects the wired arc from x in the domain
Rβ
n ∖ γ[0, Tk+1]. For k + 1 < k0, this vertical segment is at distance at least 1

2 ∣x − y∣ from
x. Applying the domain Markov property and item (9.10) of Lemma 9.8, we deduce that,
for k + 1 < k0, on {Tk+1 < ∞},

φan,bn
Rβn

(ex ∈ γ ∣γ[0, Tk+1]) = φγ(Tk+1),bn
Rβn∖γ[0,Tk+1]

(x↔ wired arc) ≤ 2c4

√
2k+1

∣x − y∣ a.s..
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Making use of this uniform bound, we obtain

φan,bn
Rβn

(x, y↔ wired arc)

≤ 2c3c4

k0−2

∑
k=0

√
2k+1

√
2k∣x − y∣

φan,bn
Rβn

(Tk+1 < ∞) + 2c3

φan,bn
Rβn

(Tx < ∞)
√

2k0−1

≤
√

2c3c4c5

∣x − y∣
√
n

k0−2

∑
k=0

√
2k + 2c3c5√

n2k0−1

≤ c√
n∣x − y∣

,

using also Lemma 9.12 (twice) for the second inequality. ◻

We are now in a position to prove our result.

Proof of Theorem 9.1 Let β > 0, n > 0, and also Rβ
n defined as previously.

Step 1: lower bound for free boundary conditions. Let Nn be the number of
connected pairs (x,u), with x ∈ ∂−Rβ

n, and u ∈ ∂+Rβ
n. The expected value of this quantity

is equal to
φ0

Rβn
[Nn] = ∑

u∈∂+Rβn
x∈∂−Rβn

φ0

Rβn
(x↔ u).

Proposition 9.10 directly provides the following lower bound on the expectation by sum-
ming over the (βn)2 pairs of points (x,u) far enough from the corners, i.e. satisfying the
condition of the proposition:

φ0

Rβn
[Nn] ≥ c6(β)n

for some c6(β) > 0.
On the other hand, if x and u (resp. y and v) are pair-wise connected, then they

are also connected to the horizontal line Z × {n} which is (vertically) at the middle of
Rβ
n. Moreover, the domain Markov property implies that the probability – in Rβ

n with
free boundary conditions – that x and y are connected to this line is smaller than the
probability of this event in the rectangle of half height with wired boundary conditions
on the top side. In the following, assume without loss of generality that n is even and set
m = n/2, so that the previous rectangle is R2β

m , and define am and bm as before. Using the
FKG inequality, and also the symmetry of the lattice, we get

φ0

Rβn
(x↔ u, y↔ v) ≤ φam,bm

R2β
m

(x, y↔ wired arc) φam,bm
R2β
m

(ū, v̄↔ wired arc),

where ū and v̄ are the projections on the real axis of u and v. Summing the bound
provided by Proposition 9.11 on all sites x, y ∈ ∂−Rβ

n and u, v ∈ ∂+Rβ
n, we obtain

φ0

Rβn
[N2

n] ≤ c7m
2 ≤ c7n

2
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for some constant c7 > 0. Now, by the Cauchy-Schwarz inequality,

φ0

Rβn
(Cv(Rβ

n)) = φ0

Rβn
(Nn > 0) = φ0

Rβn
[(INn>0)2] ≥

φ0

Rβn
[Nn]2

φ0

Rβn
[N2

n]
≥ c6(β)2/c7,

since φ0

Rβn
[Nn] = φ0

Rβn
[NnINn>0]. We have thus reached the claim.

Step 2: lower and upper bounds for general boundary conditions. Using the
ordering between boundary conditions, the lower bound that was previously proved for
free boundary conditions actually implies the lower bound for any boundary conditions ξ.

For the upper bound, consider a rectangle R with dimensions n×m withm ∈ [β1n,β2n]
and with boundary conditions ξ. Using once again (3.11)), it is sufficient to address the
case of wired boundary conditions, and in this case, the probability that there exists a
dual crossing from the left side to the right side is at least c− = c−(1/β2,1/β1), since the
dual model has free boundary conditions. We deduce, using the self-duality property, that

φξR(Cv(R)) ≤ 1 − φ1
R(C∗h(R)) = 1 − φ0

R∗(Ch(R∗)) ≤ 1 − c−, (9.19)

where the notation C∗h is used for the existence of a horizontal dual crossing, and R∗ is as
usual the dual graph of R (note that the invariance by π/2-rotations was implicitly used).
This concludes the proof of Theorem 9.1.

◻

3 Consequences for the FK-Ising and the (spin) Ising
models

In this section gathers several implications of the previous theorem. We would like to
emphasize the fact that uniformity on boundary conditions is crucial for all these appli-
cations, and Theorem 4.4 would not suffice in these case.

3.1 Critical exponents for the FK-Ising and the Ising models

Power-law decay of the magnetization at criticality

Let us start with stating an easy consequence of Theorem 9.1. Consider the box Λn =
[−n,n]2, its boundary being denoted as usual by ∂Λn. Let us also introduce the annulus
Am,n = Λn ∖ Λm of radii m < n centered on the origin, and denote the event that there
exists an open circuit surrounding Λm in this annulus by C(Am,n).

Corollary 9.13 (circuits in annuli). For every β < 1, there exists a constant cβ > 0 such
that for all n and m, with m ≤ βn,

φ0
Am,n(C(Am,n)) ≥ cβ.
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Proof This follows from Theorem 9.1 applied in the four rectangles RB = [−n,n] ×
[−n,−m], RL = [−n,−m] × [−n,n], RT = [−n,n] × [m,n] and RR = [m,n] × [−n,n].
Indeed, if there exists a crossing in each of these rectangles in the “hard” direction, one
can construct from them a circuit in Sm,n.

Now, consider any of these rectangles, RB for instance. Its aspect ratio is bounded by
2/(1−β), so that Theorem 9.1 implies that there is a horizontal crossing with probability
at least

φ0
RB

(CH(RB)) ≥ c > 0.

Combined with the FKG inequality, this allows us to conclude: the desired probability is
at least cβ = c4 > 0. ◻

Proposition 9.14 (power-law decay of the magnetization). For p = psd, there exists a
unique infinite-volume FK-Ising measure. For this measure, there is almost surely no
infinite open cluster. Moreover, there exist constants α, c > 0 such that for all n ≥ 0,

φpsd,2(0↔ ∂Λn) ≤
c

nα
. (9.20)

This result also applies to the Ising model: the magnetization at the origin decays at
least as a power law.

Remark 9.15. It is known from Onsager’s work that the connection probability follows
a power law as n → ∞, described by the one-arm plane exponent α1 = 1/8. It should be
possible to prove the existence and the value of this exponent using conformal invariance,
as well as the arm exponents for a larger number of arms. More precisely, one would need
to consider the probability of crossing an annulus a certain (fixed) number of times in the
scaling limit, and analyze the asymptotic behavior of this probability as the modulus tends
to ∞. Theorem 9.1 then implies the so-called quasi-multiplicativity property, which allows
one to deduce, using concentric annuli, the existence and the value of the arm exponents
for the discrete model.

Proof First note that it is classical that the non-existence of infinite clusters implies the
uniqueness of the infinite-volume measure: it is thus sufficient to prove (9.20)). Consider
the annuli An = A2n,2n+1 for n ≥ 1, and C∗(An) the event that there is a dual circuit in A∗

n.
Corollary 9.13 implies the existence of a constant c > 0 such that

φ1
An(C

∗(An)) ≥ c

for all n ≥ 1. By successive conditionings, we then obtain

φ(0↔ ∂Λ2N ) ≤
N−1

∏
n=0

φ1
An((C

∗(An))c) ≤ (1 − c)N ,

and the desired result follows. ◻
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n-point functions for the FK-Ising and the Ising models

Since the work of Onsager [Ons44], it is known that for the Ising model at criticality, the
magnetization at the middle of a square of side length 2m with (+) boundary conditions
decays like m−1/8. It is then tempting to say that the correlation of two spins at distance
m in the plane (in the infinite-volume limit, say) decays likem−1/4, and this is indeed what
happens. To the knowledge of the authors, there is no straightforward generalization of
Onsager’s work that allows us to derive this without difficult computations. However, this
result can be made rigorous very easily with the help of Theorem 9.1. Here, the result is
given for two-point correlation functions only, but exponents for n-spin correlations, for
instance, can be obtained using exactly the same method.

Let us first use Theorem 9.1 to interpret Onsager’s result in terms of the random-
cluster representation.

Lemma 9.16. Let Λm be the square [−m,m]2 with arbitrary boundary conditions ξ. Then
there exist two constants c1 and c2 (independent of m and ξ) such that

c1m
−1/8 ≤ φξΛm(0↔ ∂Λm) ≤ c2m

−1/8.

Proof This is a consequence of Onsager’s result for wired boundary conditions (since
it is derived in terms of the Ising model with (+) boundary conditions), which provides
the upper bound by monotonicity. Using Theorem 9.1, a lower bound independent of the
boundary conditions can be obtained by enforcing the existence of a circuit in the annulus
Am/2,m, and using the FKG inequality. For that, we just need to lower the constant, using
monotonicity: the connection probability conditionally on the fact that there is a wired
annulus around the origin is indeed larger than the connection probability with wired
boundary conditions on ∂Λm. ◻

The result for two-point correlation functions in the infinite-volume Ising model can
now be stated.

Proposition 9.17. Consider the Ising model µβc on Z2 at critical temperature. There
exist two positive constants C1 and C2 such that

C1∣x − y∣−1/4 ≤ µβc[σxσy] ≤ C2∣x − y∣−1/4,

where for any x, y ∈ Z2, σx and σy denote the spins at x and y.

Proof The 2-spin correlation µβc[σxσy] can be expressed, in the corresponding random-
cluster representation, as the probability of the event {x↔ y}. Let now m be the integer
part of ∣x−y∣/4. The upper bound is easy and does not rely on Theorem 9.1: the event that
x is connected to y implies that x is connected to x+∂Λm and that y is connected to y+∂Λm.
Using the domain Markov property, these two events are independent conditionally on
the boundaries of the boxes being open: together with the previous lemma, this provides
the upper bound.
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Let us turn now to the lower bound. We can enforce the existence of a connected “8”
in

[(x +Λ2m+2) ∪ (y +Λ2m+2)] ∖ [(x +Λm) ∪ (y +Λm)]

that surrounds both x and y and separates them: this costs only a positive constant α,
independent of m, using Theorem 9.1 in well-chosen rectangles and the FKG inequality.
Using once again the FKG inequality, we get that

φpsd,2(x↔ y) ≥ αφpsd,2(x↔ x + ∂Λ2m+2) ⋅ φpsd,2(y↔ y + ∂Λ2m+2),

and combined with the previous lemma, this yields the desired result. ◻

Recently, Chelkak and Izyurov [CI11] introduced a modification of the fermionic ob-
servable which permits an explicit computation of the scaling limit of two-point functions
in a finite domain. It appears that they are indeed conformally invariant. Chelkak, Hon-
gler and Izyourov also announced a computation of the n-point functions using the same
observable.

Half-plane one-arm exponent for the FK-Ising model and boundary magneti-
zation for the Ising model

As a by-product of our proofs, in particular of the estimates of Section 1, one can also
obtain the value of the critical exponent for the boundary magnetization in the Ising
model, near a free boundary arc (assuming it is smooth), and the corresponding one-arm
half-plane exponent for the FK-Ising model.

Let us first consider the one-point magnetization µa,bΩ [σx] for the Ising model at criti-
cality in a discrete domain (Ω, a, b) with free boundary conditions on the counterclockwise
arc (ab), and (+) boundary conditions on the other arc (ba).

Proposition 9.18. There exist positive constants c1 and c2 such that for any discrete
domain (Ω, a, b) with a = (−n,0) and b = (n,0) (n ≥ 0), containing the rectangle Rn =
[−n,n] × [0, n] and such that its boundary contains the lower arc [−n,n] × {0}, we have

c1n
−1/2 ≤ µa,bΩ [σ0] ≤ c2n

−1/2,

uniformly in n.

Proof The magnetization at the origin can be expressed, in the corresponding random-
cluster representation, as the probability that the origin is connected to the wired coun-
terclockwise arc (ba). By Lemma 9.9, this probability can be compared to the harmonic
measures HM○ and HM●, for which estimates similar to the estimates in Lemmas 9.7
and 9.8 hold. ◻

This result can be equivalently stated for the one-arm half-plane probability for
random-cluster models:
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Proposition 9.19. Consider the rectangle Rn = [−n,n] × [0, n]. There exist positive
constants c1 and c2 such that for any boundary conditions ξ such that the bottom side
∂−Rn is free, one has

c1n
−1/2 ≤ φξRn(0↔ ∂+Rn) ≤ c2n

−1/2,

uniformly over all n.

Proof The upper bound can be obtained using monotonicity and the previous propo-
sition, since (+) boundary conditions in the Ising model correspond to wired boundary
conditions in the corresponding random-cluster representation. For the lower bound, by
Theorem 9.1 and the FKG inequality, we can enforce the existence of a crossing in the
half-annulus Rn ∖ Rn/2 that disconnects 0 from ∂Rn ∖ ∂−Rn to the price of a constant
independent of ξ. Using monotonicity and FKG, the probability that 0 is connected by
an open path to this crossing (conditionally on its existence) is larger than the probability
that 0 is connected to the boundary with wired boundary conditions on ∂Rn∖∂−Rn, with-
out conditioning. Hence, the lower bound of the previous proposition gives the desired
result. ◻

Remark 9.20. Note that contrary to the power laws established using the SLE technology,
there are no potential logarithmic corrections here – as is the case with the “universal” arm
exponents for percolation (corresponding to 2 and 3 arms in the half-plane, and 5 arms in
the plane). Furthermore, one can follow the same standard reasoning as for percolation,
based on the RSW lower bound, to prove that the two- and three-arm half-plane exponents,
with alternating “types” (primal or dual), have values 1 and 2 respectively, see Chapter 10.

3.2 Spatial mixing at criticality

Theorem 9.1 also provides estimates on spatial mixing for both the FK-Ising and the Ising
models. In the following proposition, an example of decorrelation between events for the
FK-Ising model is given.

Proposition 9.21. There exist c,α > 0 such that for any k ≤ n,

∣φpsd,2(A ∩B) − φpsd,2(A)φpsd,2(B)∣ ≤ c(k
n
)
α

φpsd,2(A)φpsd,2(B) (9.21)

for any event A (resp. B) depending only on the edges in the box Sk (resp. outside Bn).

Proof First, it is sufficient to prove

∣φξpsd,2,Λn(A) − φ1
psd,2,Λn

(A)∣ ≤ c(k
n
)
α

φξpsd,2,Λn(A)

for any boundary conditions ξ and any event A depending on edges in Λk.
Claim: There exists a coupling P on configurations (ωξ, ω1) with the following prop-

erties:
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• ωξ (resp. ω1) has law φξpsd,2,Λn (resp. φ1
psd,2,Λn

).

• if ω1 contains a closed circuit in Λn ∖ Λk, let Γ be the exterior most such circuit.
Then Γ is also closed in ωξ and ω1 and ωξ coincide inside Γ.

Proof of the claim Consider uniform random variables Ue for every edge e and
index the edges in an arbitrary way. Sample both configurations based on the same ran-
dom variables Ue from the exterior, meaning that after k steps, consider the edge with
one end-point connected to the boundary of Λn by an open path which has the smallest
index. If there are no such edges, pick the edge with smallest index (this will happen
only if you discover a closed circuit). This edge is declared open if Ue is smaller than
the conditional probability to be open knowing the boundary conditions and the already
determined edges. Note that ω1 is larger than ωξ by comparison between boundary con-
ditions. Therefore, any closed circuit in ω1 will also be closed in ωξ. The configurations
inside a closed circuit of ω1 coincide since they have been constructed from the same uni-
form random variables, with the same free boundary conditions in the restricted domain.

◻
Now, since A depends only on the edges in Λk, we can prove that conditionally on A,

there exists a dual circuit in φ1
psd,2,Λn

with probability 1 − c(k/n)α. Let E be this event.
We deduce

φξpsd,2,Λn(A) ≥ φξpsd,2,Λn(A ∩E)
= P (ωξ ∈ A ∩E)
≥ P (ω1 ∈ A ∩E)
= φ1

psd,2,Λn
(A ∩E)

≥ (1 − c(k/n)α)φ1
psd,2,Λn

(A)

where in the third line, we used the fact that if ω1 belongs to E, then ωξ belongs to E
and both configurations coincide in Λk. In particular, if ω1 ∈ A then ωξ ∈ A.

Similarly, there exists a coupling P̃ on configurations (ωξ, ω1) with the following prop-
erties:

• ωξ (resp. ω1) has law φξpsd,2,Λn (resp. φ1
psd,2,Λn

).

• if ωξ contains an open circuit in Λn ∖ Λk, let Γ̃ be the exterior most such circuit.
Then Γ̃ is also open in ω1 and ω1 and ωξ coincide inside Γ̃.

If F denotes the event that there is an open circuit in Λn ∖Λk, we find

φ1
psd,2,Λn

(A) ≥ φ1
psd,2,Λn

(A ∩ F )
= P̃ (ω1 ∈ A ∩ F )
≥ P̃ (ωξ ∈ A ∩ F )
= φξpsd,2,Λn(A ∩ F )
≥ (1 − c(k/n)α)φξpsd,2,Λn(A)
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where once again, we used in the third line that if ωξ ∈ F , then ω1 ∈ F , and both
configurations coincide on Λk so that ωξ ∈ A implies that ω1 ∈ A. We also used the fact
that conditionally on A, there is an open circuit in Λn ∖Λk with probability 1 − c(k/n)α.
◻

More generally, Theorem 9.1 would lead to ratio mixing properties, with an explicit
polynomial estimate. Away from criticality, estimates of this type can be established
by using the rate of spatial decay for the influence of a single site. At criticality, the
correlation between distant events does not boil down to correlations between points and
a finer argument must be found. Crossing-probability estimates which are uniform in
boundary conditions are perfectly suited for these problems.

3.3 Polynomial bounds on mixing-time

Recently, Lubetzky and Sly [LS10] used spatial mixing properties of the Ising model in
order to derive an important conjecture on the mixing time of the Glauber dynamics of
the Ising model at criticality:

Theorem 9.22 (Lubetzky and Sly [LS10]). There exists α > 0 such that the mixing time
of the Glauber dynamics on a n×n box is bounded by nα for every n > 0 and every boundary
conditions.

As a key step, they harness Theorem 9.1 in order to prove a suitable analogue of
Proposition 9.21. Together with tools from the analysis of Markov chains, the spatial
mixing property provides polynomial upper bounds on the inverse spectral gap of the
Glauber dynamics (and also on the total variation mixing time).

4 Russo-Seymour-Welsh for the Ising model
Proof of Theorem 9.2 We consider the Edward-Sokal coupling. The boundary con-
ditions related to the − boundary conditions are wired.

Events An,2n, A⋆
n/2,n, and A

⋆
2n,4n occur simultaneously with probability larger than c3

2

using Corollary 9.13. Now, the occurrence of these three events guarantee the existence
of at least one circuit in Ãn,2n not connected to the boundary. Therefore, the random
coloring of the clusters gives pluses to this circuit with probability 1/2. All together, we
find that

µ−βc,An/2,4n(C(Ãn,2n)) ≥ c
3
2/2.

◻
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Proof of Theorem 9.3 This proof follows the same lines as the one of Theorem 4.4,
therefore we only sketch it now. Let us first fix α = 1. Exponential decay of correlation
for subcritical random-cluster model implies (via the Edward-Sokal coupling)

∣µξ
β,RKn,n

(A) − µφ
β,RKn,n

(A)∣ ≤ cne−εK lognµβ,RKn,n(A) (9.22)

for some ε small enough and for any event A depending only on sites inside Rn. Therefore,
using the usual symmetry arguments, we obtain

µξ
β,RKn

(Ch(Rn)) ≥ c

for every boundary condition ξ, where c = c(1) is small enough and K large enough.
Now, fix α = 3/2. Running along the lines of the proof of Proposition 4.8, the event

A has also a probability bounded away from 0 uniformly in n. Now, the construction of
the domain G0(Γ1,Γ2) can be adapted (one must be careful about the geometry specific
to the triangular lattice, but a simple modification yields the result). Observing the
boundary conditions on G0(Γ1,Γ2), two arcs are already +, and the others are in the worse
case −. Therefore, there is a crossing of pluses between the two + arcs with probability
larger than 1/2, using the comparison between boundary conditions and the fact that
pluses and minuses have the same law (this replaces duality). In conclusion, the proof of
Proposition 4.8 works mutatis mutandis, and Theorem 9.3 follows. ◻



Chapter 10

Crossing probabilities in topological
rectangles

Abstract: We consider the FK-Ising model in two dimension at criticality. We obtain
RSW-type crossing probabilities bounds in arbitrary topological rectangles, uniform with
respect to the boundary conditions, generalizing results of Chapter 9 and [CS09]. Our
result relies on new discrete complex analysis techniques, introduced in [Che11].

We detail some applications, in particular the computation of so-called universal expo-
nents and crossing bounds for the classical Ising model. It is based on the article Crossing
probabilities in topological rectangles for the planar FK-Ising model, written with Dmitri
Chelkak and Clément Hongler [CDCH11a].

Given a topological rectangle (Ω, a, b, c, d) (i.e. a bounded simply connected subdomain
of Z2 with four marked boundary points) and boundary conditions ξ, denote by φξΩ the
critical FK-Ising probability measure on Ω with boundary conditions ξ and by (ab) ↔ (cd)
the event that there is a crossing between the arcs (ab) and (cd), i.e. that (ab) and (cd)
are connected in the FK configuration.

Let us denote by `Ω [(ab) , (cd)] the discrete extremal length between (ab) and (cd)
in Ω with unit conductances (see Section 1 for a precise definition). Informally speak-
ing, `Ω [(ab) , (cd)] measures the distance between (ab) and (cd) from a random walk or
electrical resistance point of view.

Our main result is a bound for FK-Ising crossing probabilities in terms of discrete
extremal length only:

Theorem 10.1. Let M > 0. There exists δ ∈ (0, 1
2
) such that

δ ≤ φξΩ [(ab) ↔ (cd)] ≤ 1 − δ

for any boundary conditions ξ and for any topological rectangle (Ω, a, b, c, d) with

`Ω [(ab) , (cd)] ∈ [ 1

M
,M] .

181
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Such crossing probabilities bounds, uniform with respect to the boundary conditions,
have been obtained in a (straight) rectangle in Theorem 9.1; asymptotic exact compu-
tations of crossing probability in arbitrary domains with specific boundary conditions
have been derived in [CS09, Theorem 6.1]. In this paper, the crossing bounds hold in
general topological rectangles with general boundary conditions, and are independent of
the local geometry of the boundary. Roughly speaking, the result is a generalization of
Theorem 9.1 to possibly “rough” discrete domains; this is for instance needed in order
to deal with domains generated by random interfaces (which usually have fractal scaling
limits).

As in [DCHN10], our result relies on discrete complex analysis: to connect the FK-
Ising model with discrete complex analysis objects, we use the discrete analytic observable
for the FK-Ising model introduced by Smirnov [Smi10a] and crossing probability repre-
sentation (in terms of harmonic measure) introduced by Chelkak and Smirnov [CS09]. To
obtain the desired estimate, we adapt these results and use the new harmonic measure
techniques developed by Chelkak in [Che11].

Crossing probabilities estimates play a very important role in rigorous statistical me-
chanics, in particular for percolation models. They constitute the key argument enabling
the use of the following techniques:

• Spatial decorrelation: probabilities of certain events in disjoint ’well separated’ sets
can be factorized at the expense of uniformly controlled constants. The main in-
gredients to do so are the spatial Markov property of the model and the crossing
probabilities.

• Regularity estimates and precompactness: the crossing probabilities are instrumen-
tal to pass to the scaling limit, by obtaining a priori regularity estimates on the
discrete random curves arising in the model.

• Discretization of continuous results: thanks to uniform estimates, one can connect
the discrete models (at finite scales) to their continuous limits, and transfer results
from the latter to the former.

While the RSW bounds given by Theorem 9.1 already allow for a number of interesting
applications of these techniques (see for instance [CN09, LS10, CGN10, GP]), the stronger
version of the RSW-type estimates provided by Theorem 10.1 increases the scope of
applications. In particular, we get the following consequences:

• Arm exponents: thanks to crossing probabilities, the (microscopic) arm exponents
for the FK-Ising model can be related to the (macroscopic) SLE arms exponents,
which in turn can be computed using stochastic calculus techniques. The micro-
scopic arm exponents are crucial to understand the fine structure of the phase tran-
sition of percolation [Kes87, Nol08], as well as as for interface regularity [AB99] and
noise sensitivity [GP] questions. In Section 3 below, a number of results concerning
the microscopic arm exponents are obtained (notably the universal arm exponents).
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• Crossing probabilities for the spin Ising model: their conformal invariance was in-
vestigated numerically in [LPSA94]. Theorem 10.1 allows us to get RSW bounds for
the critical Ising model with certain boundary conditions (that imply non-triviality
of those in [LPSA94]). Such crossing probabilities can be used to understand the
spin-Ising interfaces, in particular in presence of free boundary conditions. See
Corollary 10.22 below.

• Coupling of discrete and continuous interfaces: it is useful to couple the critical FK-
Ising interfaces and their scaling limit SLE(16/3), in such a way that they are close
to each other and that whenever the SLE(16/3) interface hits the boundary of the
domain, so does the discrete interface with high probability. Such couplings are in
particular useful in order to obtain the full scaling limit of discrete interfaces[CN06,
KS10].

1 Discrete complex analysis
In the section, we introduce the discrete harmonic measures and random walk partition
functions that will be used in this chapter. A number of their properties are provided,
namely factorization properties and uniform comparability results, obtained in [Che11].
Finally, we relate certain elementary critical FK-Ising model probabilities to discrete har-
monic measure, notably using the fermionic observable (see [CS09] for details on how to use
fermionic observables to obtain bound on crossing probabilities with free/wired/free/wired
boundary conditions). These results will be brought together in the next section to prove
Theorem 10.1.

In the rest of this paper, for two real-valued functions f, g (generally defined on discrete
domains), we will use the notation f <⌢ g if there exists a constant c > 0 such that f ≤ cg
and f ≍ g if there exists two constants c1, c2 > 0 such that c1f ≤ g ≤ c2f .

1.1 Graph

For a planar graph G, we denote by E (G) the set of its edges. Most of the time G will
be identified with the set of its vertices, which we will also call sites. For any two vertices
x, y ∈ G, we write x ∼ y if they are adjacent and we denote by xy ∈ E (G) the edge between
them.

In this paper, we will consider finite connected and simply connected graphs that are
made of the union of faces of the square grid Z2 (vertices are points of Z2 and vertices at
distance 1 are linked by an edge). We will call these discrete domains.

For a discrete domain Ω, we denote by ∂Ω ⊂ Ω its boundary (when we view Ω a domain
consisting of the union of its faces); most of the time, we will identify ∂Ω with the set of
its vertices, called the boundary vertices. We denote by Int (Ω) the interior of the graph,
defined as Ω ∖ ∂Ω. We denote by ∂extE (Ω) the set of external edges of Ω, defined as the
set of edges of E (Z2) ∖ E (Ω) incident to a vertex of Ω, counted with multiplicity : if an
edge of E (Z2) ∖ E (Ω) is incident to two vertices of Ω, it appears as two distinct elements
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x

y

(xy)ext

(xy)e

Ω

∂Ω

Figure 10.1: A domain Ω with two points x and y on its boundary. The set (xy) and
(xy)ext are depicted. The edge e appears twice in Eext.

of ∂extE (Ω). We identify the edges of ∂extE (Ω) with the set ∂extΩ of external boundary
vertices, they are the formal endpoints in Z2 ∖Ω of the edges of ∂E (Ω).

For two points x, y ∈ ∂Ω, we denote by (xy) ⊂ ∂Ω the counterclockwise arc of ∂Ω from
x to y (including x and y); as usual we identify (xy) with the set of the vertices located
on it; we will frequently identify x ∈ ∂Ω with the arc (xx); we denote by (xy)ext the set of
vertices of ∂extΩ adjacent to (xy). We call a discrete domain Ω with four marked vertices
a, b, c, d ∈ ∂Ω in counterclockwise order a topological rectangle.

We denote by (Z2)∗ the dual of Z2: the vertices of (Z2)∗ are the (centers) of the faces
of Z2 and vertices at distance 1 are linked by an edge. Given a discrete domain Ω, the
dual domain Ω∗ is the induced subgraph of (Z2)∗ whose vertices are the faces Ω. We
denote by ∂Ω∗ the set of vertices of Ω∗ corresponding to faces of Ω sharing an edge with
∂Ω. We denote by ∂extΩ∗ the set of external dual vertices, corresponding to the faces of
Z2 ∖Ω adjacent to ∂Ω, with multiplicity: it is in bijection with the edges of ∂Ω.

1.2 Laplacians, harmonic measures and random walks

Let Ω be a discrete domain, with boundary vertices ∂Ω and external boundary vertices
∂extΩ. Consider a collection of nonnegative conductances C = (ce)e defined on the set
of the edges E and the set of external boundary edges ∂extE (Ω); we call the conduc-
tances on E (Ω) the bulk conductances and the conductances on ∂extE (Ω) the boundary
conductances. In this paper, the bulk conductances are always assumed to be 1.

With this set of conductances is associated a Laplacian ∆C defined (for a function
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f ∶ Ω ∪ ∂extΩ→ R) by:

∆Cf (x) ∶= 1

λx
∑
y∼x

cxy (f (y) − f (x)) ∀x ∈ Ω

λx ∶= ∑
y∼x

cxy

In this paper, the collection of conductances that we will consider are equal to 1 on the
edges of Ω, and less or equal than 1 on the boundary edges.

For x, y ∈ Ω, we denote by ZΩ;C [x, y] the partition function of the random walks (RW)
ω in Ω with conductances C from x to y, absorbed by ∂extΩ. The possible realizations
are the sequences ω1, . . . , ωn of vertices such that ω is adjacent to ω for each i, ω1 = x,
ω2,...,n−1 ∈ Ω ∖ {y} and ωn = y. The partition function is defined by

ZΩ;C [x, y] ∶= ∑
ω∶x→y

length(ω)−1

∏
k=1

cωkωk+1

λωk
= P{RW with generator ∆C starting from x hits y before ∂extΩ}

When the context is clear, we will omit the set of conductances C in the subscripts.
Let (cd) ⊂ ∂Ω be a boundary arc. We define for x ∈ Ω

ZΩ [x, (cd)] ∶= ∑
y∈(cd)

ZΩ [x, y]

= P{RW with generator ∆C starting from x hits (cd) before ∂extΩ} .

It is easy to check that x↦ ZΩ [x, (cd)] is a ∆C-harmonic function on Ω∖ (cd) which has
boundary conditions 1 on (cd) and boundary conditions 0 on ∂extΩ.

If (ab) , (cd) ⊂ ∂Ω are boundary arcs, we define

ZΩ [(ab) , (cd)] ∶= ∑
x∈(ab)

ZΩ [x, (cd)] .

Given a discrete domain Ω, we define in the same manner partition functions of random
walks on Ω∗, taking ∂Ω∗ and ∂extΩ∗ instead of ∂Ω and ∂extΩ (again, we assume that the
bulk conductances are all 1).

1.3 Discrete extremal length

A very useful tool when dealing with discrete harmonic measures in topological rectangle
is a discrete version of the extremal length. It measures the distance, from the discrete
harmonic measures point of view, between two arcs of a domain, in a particularly robust
manner. In this paper, we will mostly use it to compare partition functions of random
walks on Ω and on the dual graph Ω∗.

Consider a topological rectangle (Ω, a, b, c, d) and a collection of conductances C (bulk
conductances are always 1). Denote by CDN

(Ω,a,b,c,d) the set of conductances C, except that
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the conductances to the edges incident to a vertex of (bc) ∪ (da) are set to 0: in other
words, the Laplacian ∆CDN

(Ω,a,b,c,d)
is the generator of the random walk generated by ∆C

reflected by the arcs (bc) and (da) (more precisely: reflected by the edges of ∂E (Ω)
incident to (bc) ∪ (da)).

Following [Che11], we define the extremal length `Ω;C [(ab) , (cd)] by

`Ω;C [(ab) , (cd)] ∶= (ZΩ;CDN
(Ω,a,b,c,d)

[(ab) , (cd)])
−1
.

When no set of conductances is specified, like in Theorem 10.1, all conductances are set
to 1.

The discrete extremal length is particularly powerful because of its robustness: the
discrete extremal lengths on a discrete domain with different boundary conductances are
uniformly comparable. Also, the discrete extremal length on a rectangle and its dual are
comparable (note that such a general result would not be true for partition functions of
random walks with purely Dirichlet boundary conditions):

Theorem 10.2 ([Che11]). Let µ > 1. Let (Ω, a, b, c, d) be a topological rectangle and
consider a set of conductances C on Ω with boundary conductances in [ 1

µ , µ]. Let Ω∗ be
the dual to Ω∗ and let C∗ be a set of conductances on Ω∗ with boundary conductances in
[ 1
µ , µ]. Then we have

`Ω;C [(ab) , (cd)] ≍ `Ω∗;C∗ [(ab)∗ , (bc)∗] ,

where the constants in ≍ depend on µ only.

When the extremal length is of order 1 (like in the statement of Theorem 10.1), then
so are the partition functions of random walks with Dirichlet boundary conditions:

Theorem 10.3 ([Che11]). LetM > 1 and µ > 1. For any topological rectangle (Ω, a, b, c, d)
and any set of conductances C with boundary conductances in [ 1

µ , µ], if

1

M
≤ `Ω;C [(ab) , (cd)] ≤M

then
`Ω;C [(bc) , (da)] ≍ 1, ZΩ;C [(ab) , (cd)] ≍ 1, ZΩ;C [(bc) , (da)] ≍ 1,

where the constants in ≍ depend on M and µ only.

Remark 10.4. It is actually proven in [Che11] that we have

`Ω;C [(ab) (bc)] `Ω;C [(bc) , (da)] ≍ 1,

uniformly over all topological rectangles.
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1.4 Factorization results

In this section, we review the main results of [Che11] concerning factorization properties
of discrete harmonic measure. While in the continuum such results are rather easy to
derive (for instance using explicit expressions and conformal invariance), it requires a
much more delicate analysis to obtain them (up to uniform constants) on the discrete
level.

In this subsection, we assume that all the bulk conductances 1 and that all the bound-
ary conductances are in [ 1

µ , µ] for some µ ≥ 1.

Theorem 10.5 ([Che11]). For any discrete domain Ω and any boundary points a, b, c ∈
∂Ω, we have

ZΩ [a, (bc)] ≍ (ZΩ [a, b]ZΩ [a, c]
ZΩ [b, c]

)
1
2

,

where the constants in ≍ depend on µ only.

The following estimate will also be needed. It involves a discrete version of the cross-
ratio (the left-hand side of 10.1):

Theorem 10.6 ([Che11]). LetM > 0. Then for any (Ω, a, b, c, d) with `Ω [(ab) , (cd)] ≤M ,
we have ¿

ÁÁÀZΩ [a, d]ZΩ [b, c]
ZΩ [a, b]ZΩ [c, d]

≍ ZΩ [(ab) , (cd)] , (10.1)

where the constants in ≍ depend on M and µ only.

1.5 Separators

A crucial concept in the following study is the notion of separators: they will indeed allow
us to perform some efficient surgery of the discrete domains.

Informally speaking, separators are discrete curves that separate domain in two pieces,
in a “good” manner from harmonic measure point of view: the product of partition func-
tions of random walks in the two pieces is of the same order as the partition function of
random walks in the original domain.

In this subsection, we assume again that all the bulk conductances on the discrete
domains are 1 and that all the boundary conductances are in [ 1

µ , µ] for some µ ≥ 1. If
(Ω, a, b, c, d) is a topological rectangle, a separating curve between (ab) and (cd) is a
simple discrete curve Γ in Ω separating (ab) from (cd); we denote by ΩΓ,(ab) and ΩΓ,(cd)
the connected components of Ω ∖ Γ containing (ab) and (cd) respectively.

Theorem 10.7 ([Che11]). Let M > 1. Take a topological rectangle (Ω, a, b, c, d) such that
ZΩ [(ab) , (cd)] ≤ M . For any k ∈ [ Z

M ,
M
Z
], there exists a separating curve Γ ⊂ Ω between

(ab) and (cd) such that we have

ZΩΓ,(ab) [(ab) ,Γ] ⋅ZΩΓ,(cd) [Γ, (cd)] ≍ ZΩ [(ab) , (cd)] , (10.2)
ZΩΓ,(cd) [Γ, (cd)] ≍ k ⋅ZΩΓ,(ab) [(ab) ,Γ] ,
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where the constants in ≍ depend on M and µ only.

We will call separator a separating curve satisfying 10.2. Let us give a corollary that
will be particularly useful for us:

Corollary 10.8. Let M > 1. Then there exists ε ∈ (0,1) (depending on M only) such that
for any topological rectangle (Ω, a, b, c, d) with Z ∶= ZΩ [(ab) , (cd)] ≤M and any κ ∈ [Z

ε , ε]
there exists a separating curve Γ ⊂ Ω between (ab) and (cd) with

ZΩΓ,(ab) [(ab) ,Γ] ⋅ZΩΓ,(cd) [Γ, (cd)] ≍ ZΩ [(ab) , (cd)] ,
ZΩ [Γ, (cd)] ∈ [εκ, κ] ,

where the constant in ≍ depends on M and µ only.

Proof By Theorem 10.7, there exists C1,C2,C3,C4 > 0 such that for any k ∈ [ Z
M ,

M
Z
] we

have

C1Z ≤ ZΩ [(ab) ,Γ] ⋅ZΩ [Γ, (cd)] ≤ C2Z and C3k ≤
ZΩ [Γ, (cd)]
ZΩ [(ab) ,Γ]

≤ C4k.

Hence, we obtain √
C1C3kZ ≤ ZΩ [Γ, (cd)] ≤

√
C2C4kZ.

Take ε ∶= min{
√
C1C3/(C2C4),

√
C2C4/M}. If κ ∈ [Z

ε , ε], we can choose k ∶= κ2

C2C4Z
∈

[ Z
M ,

M
Z
] in Theorem 10.7 to get the result. ◻

We will also need the following corollary, which says that we can split a topological
rectangle in “fair” shares:

Corollary 10.9. Let M > 1. For any topological rectangle (Ω, a, b, c, d) with M−1 ≤
`Ω [(ab) , (cd)] ≤M , there exists separating curve Γ ⊂ Ω between (ab) and (cd) such that
we have

`Ω(ab) [(ab) ,Γ] ≍ `Ω(cd) [(cd) ,Γ] ≍ `Ω [(ab) , (cd)] ,

where the constants in ≍ depend on M only.

Proof By Theorem 10.3, we have that ZΩ [(ab) , (cd)] ≍ 1 (where the constant depends
on M only). Applying Theorem 10.7 with k = 1, we obtain a simple curve Γ separating
(ab) from (cd) with

ZΩ(ab) [(ab) , (xy)] ≍ ZΩ(cd) [(xy) , (cd)] ≍ ZΩ [(ab) , (cd)] ,

where the constants in ≍ depend on M only. Applying once more Theorem 10.3, we get
the result. ◻
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1.6 From FK-Ising model to discrete harmonic measure

In this section, we relate critical FK-Ising crossing probabilities with free/wired/free/wired
boundary conditions to discrete harmonic measures. The main tool consists of the
fermionic observable. It has been used in [CS09] in order to obtain the scaling limit
of FK-Ising crossing probabilities under free/wired/free/wired boundary conditions.

The probability that two arcs wired arcs are connected (with free boundary conditions
elsewhere) can be bounded by above in terms of discrete harmonic measure.

Let C○ denote the set of unit conductances on the edges of Ω∗
δ and let Z○ be the

corresponding random walk partition function. Let C● be the set of conductances on Ωδ,
where each bulk edge has conductance 1, the boundary edges incident to (bc)∪ (da) have
conductance 1 and the boundary edges incident to (ab) ∪ (cd) have conductance 2√

2+1
.

Proposition 10.10. For any M > 0, for any (Ω, a, b, c, d) topological rectangle with
ZΩ [(ab) , (cd)] ≤M , we have

φ
(ab),(cd)
Ω [(ab) ↔ (cd)] <⌢

√
ZΩ [(ab) , (cd)],

where the constant in <⌢ depends on M only.

The proof is given below. It follows the ideas of the proof of [CS09, Theorem 6.1],
where the above crossing probability is computed in the scaling limit.

Let us recall that when we degenerate the arc (ab) to a singleton, we find the upper
bound of Proposition 9.5

Corollary 10.11. With the notation of Proposition 10.10, we have

φ
(cd)
Ω [a↔ (cd)] <⌢

√
ZΩ [a, (cd)],

where the constant in <⌢ is universal.

If we also degenerate the arc (cd) to a singleton, we have the following double-sided
harmonic measure estimate for the probability that two boundary vertices are connected
with free boundary conditions.

Consider a discrete domain Ω and its dual Ω∗. Let C∗ be the set of unit conductances
on Ω∗. Let C be the set of conductances on Ω, where each bulk edge has conductance 1
and each boundary edge has conductance 2√

2+1
.

Proposition 10.12. Let Ω be a discrete domain. For any two sites a, b ∈ ∂Ω, we have
√
ZΩ∗;C∗ [a∗, b∗] <⌢ φ0

Ω (a↔ b) <⌢
√
ZΩ;C [a, b],

for any a∗ ∈ ∂Ω∗ at distance
√

2
2 from a and b∗ at distance

√
2

2 from b. The constants in
<⌢ are universal.

This proposition is a restatement in new notations of Proposition 9.5 when the wired
arc is degenerated to a singleton.
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Proof of Proposition 10.10 Fix a domain (Ω, a, b, c, d) and consider the critical FK-
Ising model with boundary conditions (ab) , (cd) (i.e wired/free/wired/free) on it. In
[CS09, Proof of Theorem 6.1], two discrete holomorphic observables F1 and F2 for this
model are introduced, and it is shown that there exists a unique linear combination of F
of F1, F2 and a unique κ ∈ R such that a discrete version H of Imm (∫ F 2) satisfies the
following boundary conditions:

H = 0 on (da) ,H = 1 on (cd) andH = κ on (ab)ext ∪ (bc)ext .

This discrete function H is ∆C-subharmonic on Ω∖((ab) ∪ (cd)). The constant κ is shown
to be in one-to-one correspondence with φ(ab),(cd)

Ω [(ab) ↔ (cd)]; from [CS09, Formula 6.6],
we get in particular that √

κ ≍ φ(ab),(cd)
Ω [(ab) ↔ (cd)] , (10.3)

where the constants are universal.
Let cin be a vertex of Int (Ω) adjacent to c. By the construction of H (see [CS09, Proof

of Theorem 6.6]), we have that H (cin) ≥ H (c). If we now consider the function H − κ,
we obtain the following estimate in terms of the discrete harmonic measure

0 ≤H (cin) − κ ≤ (1 − κ)ZΩ [a, (cd)] − κZΩ [a, (bc)] ,

which leads to
κ ≤ ZΩ [a, (cd)]

ZΩ [a, (bc)]
.

Using the factorization result for the harmonic measure (Proposition 10.5), we get

κ <⌢
ZΩ [a, (cd)]
ZΩ [a, (bc)]

≍

¿
ÁÁÀZΩ [a, c]ZΩ [a, d]ZΩ [b, c]

ZΩ [a, b]ZΩ [a, c]ZΩ [c, d]
=

¿
ÁÁÀZΩ [a, d]ZΩ [b, c]

ZΩ [a, b]ZΩ [c, d]
.

Using the assumption ZΩ [(ab) , (cd)] ≤M , we get by Theorem 10.6 that

κ <⌢

¿
ÁÁÀZΩ [a, d]ZΩ [b, c]

ZΩ [a, b]ZΩ [c, d]
≍ ZΩ [(ab) , (cd)] .

Hence, (10.3) implies

φ
(ab),(cd)
Ω [(ab) ↔ (cd)] ≍

√
κ <⌢

√
ZΩ [(ab) , (cd)].

◻
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2 Proof of Theorem 10.1
In this section, we will be considering partition functions of random walks on a topological
rectangles, and will omit the dependence on the domain in the notation when the context
is clear. Given two boundary arcs Γ1,Γ2 ⊂ ∂Ω, we will denote Z●[Γ1,Γ2] the partition
function function of random walks on Ω as previously defined, with unit conductances
everywhere, except on the external edges incident to Γ1 ∪Γ2, where the conductances are
set to 2√

2+1
.

Lemma 10.13. Let M > 1. For any (Ω, a, b, c, d) with Z●[(ab), (cd)] ≤M , we have

φ(cd)(a↔ (cd), b↔ (cd)) <⌢

¿
ÁÁÀZ●[a, (cd)]Z●[b, (cd)]

Z●[(ab), (cd)]
,

where the constant in <⌢ depends only on M .

Proof Constants in ≍ and <⌢ are depending only on M . Note that Z●[a, (cd)] ≤
Z●[(ab), (cd)] ≤ M . Fix ε = ε(M) ∈ (0,1) as given by Corollary 10.8. Then we have
two cases:

Case 1: Z●[a, (cd)] > ε
3Z●[(ab), (cd)] or Z●[b, (cd)] >

ε
3Z●[(ab), (cd)].

Suppose we are in the first case (the other case is symmetric). Then Corollary 10.11
implies

φ
(cd)
Ω (a, b↔ (cd)) ≤ φ

(cd)
Ω (b↔ (cd)) ≤

√
Z●[b, (cd)]

<⌢

¿
ÁÁÀZ●[a, (cd)]Z●[b, (cd)]

Z●[(ab), (cd)]
.

Case 2: Z●[a, (cd)] ≤ ε
3Z●[(ab), (cd)] and Z●[b, (cd)] ≤

ε
3Z●[(ab), (cd)].

By Corollary 10.8 (setting κ ∶= 1
3Z● [(ab) , (cd)]), there exists a separator Γa between

a and (cd) such that

Z●[(ab), (cd)] ≤ Z●[Γa, (cd)] ≤ 1

3
Z●[(ab), (cd)]. (10.4)

Denote by Ωa the connected component of Ω ∖ Γa containing a.
Similarly, there exists a separator Γb of b and (cd) such that

Z●[(ab), (cd)] <⌢ Z●[Γb, (cd)] ≤ 1

3
Z●[(ab), (cd)]. (10.5)

Denote by Ωb the connected component of Ω ∖ Γb containing b.



CHAPTER 10. CROSSINGS IN TOPOLOGICAL RECTANGLES 192

Note that the two separators do not intersect: Ωa ∩ Ωb = ∅. Otherwise, their union
would separate the whole arc (ab) from (cd), which is contradictory since

Z●[Γa ∪ Γb, (cd)] ≤ Z●[Γa, (cd)] +Z●[Γb, (cd)] ≤ 2/3 ⋅Z●[(ab), (cd)].

We are thus facing the following topological picture: the two arcs Γa and Γb are not
intersecting and are separating a, b and (cd). Wiring the arc Γa and Γb, we find:

φ
(cd)
Ω [a, b↔ (cd)] ≤ φΓa

Ωa
[a↔ Γa]φΓb

Ωb
[b↔ Γb]φ(cd),Γa∪Γb

Ω∖(Ωa∪Ωb)
[Γa ∪ Γb↔ (cd)].

Let us deal with the first term on the right-side. Using Corollary 10.11 and the fact that
Γa is a separator between a and (cd), we obtain

φΓa
Ωa

[a↔ Γa] ≤
√
Z●[a,Γa] ≍

¿
ÁÁÀ Z●[a, (cd)]

Z●[Γa, (cd)]
<⌢

¿
ÁÁÀ Z●[a, (cd)]

Z●[(ab), (cd)]
,

where in the last inequality we used (10.4). Similarly:

φΓb
Ωb

[b↔ Γb] <⌢

¿
ÁÁÀ Z●[b, (cd)]

Z●[(ab), (cd)]

For the last term, we get

φ
(cd),Γa∪Γb
Ω∖(Ωa∪Ωb)

[Γa ∪ Γb↔ (cd)] ≤ φ
(cd),Γa∪Γb∪(ab)
Ω∖(Ωa∪Ωb)

[Γa ∪ Γb ∪ (ab) ↔ (cd)]

≤
√
Z●[Γa ∪ Γb ∪ (ab), (cd)]

≤
√

2Z●[(ab), (cd)]

where in the second inequality we used Proposition 10.10 and in the third, (10.4) and
(10.5). Putting everything together we find

φ
(cd)
Ω [a, b↔ (cd)] <⌢

¿
ÁÁÀZ●[a, (cd)]Z●[b, (cd)]

Z●[(ab), (cd)]
.

◻

Thanks to the two-point function estimate given by Lemma 10.13, we can now prove
Theorem 10.1, which relies mostly on a second-moment estimate.

Proof of Theorem 10.1 Let M > 1. Once again, constants in ≍, <⌢ and >⌢ depend
only on M > 0. Fix a domain (Ω, a, b, c, d) with Z = Z●[(ab), (cd)] ∈ [M−1,M] (Z● is as
defined before Lemma 10.13).

Using the monotonicity with respect to the boundary conditions, in order to get a
lower bound for the crossing probabilities that is uniform with respect to the boundary
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conditions, it is enough to get such a bound for free boundary conditions. Similarly, it is
sufficient to get it in the case of fully wired boundary conditions in order to get an upper
bound on crossing probabilities.

Using the self-duality of the model, we see that obtaining an upper bound for the
probability of a crossing (ab) ↔ (cd) on Ω (with wired boundary conditions) is equivalent
to obtaining a lower bound for the probability of a crossing (bc)∗↔ (da)∗ for the critical
FK-Ising model on Ω∗ (with free boundary condition). It is hence enough to bound from
below the probability φ0

Ω∗[(bc)∗ ↔ (da)∗] of a dual crossing from (bc)∗ to (da)∗ (by a
constant depending on M only). The extremal length `Ω;1[(ab)∗, (cd)∗] is of the same
order as `Ω;1[(ab), (cd)] by Theorems 10.2 and 10.3, so it is enough to prove the lower
bound of Theorem 10.1.

So, we only need to prove a lower bound for crossing probabilities with free boundary
conditions. As mentioned earlier, the proof consists of a second-moment estimate on the
random variable

N ∶= ∑
u∈(ab), v∈(cd)

φ0
Ω[u↔ v] Iu↔v. (10.6)

Step 1: First moment of N .
Let us start with estimating the first moment:

φ0
Ω[N] = ∑

u∈(ab), v∈(cd)
φ0

Ω[u↔ v]2 >⌢ ∑
w∈(ab)∗,t∈(cd)∗

ZΩ∗;1(w↔ t)

= ZΩ∗;1[(ab)∗ , (cd)∗] ≍ Z●[(ab), (cd)],

Note that in order to obtain the first inequality, we used Proposition 10.12. For the last
one, we used the comparability of harmonic measures for neighboring dual vertices.

Step 2: Second moment of N .
Corollary 10.9 applied in (Ω, a, b, c, d) gives a separator Γ ⊂ Ω between (ab) and (cd)

splitting Ω in two parts of comparable sizes (in terms of harmonic measure):

Z●[(ab),Γ] ≍ Z●[Γ, (cd)] ≍ Z●[(ab), (cd)] ≍ 1. (10.7)

We find:

φ0
Ω[N2] = ∑

u,v∈(ab), u′,v′∈(cd)
φ0

Ω[u↔ v]φ0
Ω[u′↔ v′]φ0

Ω[u↔ v, u′↔ v′]

≤ ∑
u,v∈(ab), u′,v′∈(cd)

φ0
Ω[u↔ Γ]φ0

Ω[u′↔ Γ]φ0
Ω[v↔ Γ]φ0

Ω[v′↔ Γ]φ0
Ω[u,u′↔ Γ, v, v′↔ Γ].

Let Ω1 and Ω2 be the connected components of Ω∖Γ containing (ab), and (cd) respectively.
Wiring the arc Γ, the right-hand side factorizes into the product of two terms

SΩ1 = ∑
u,v∈(ab)

φΓ
Ω1

[u↔ Γ]φΓ
Ω1

[v↔ Γ]φΓ
Ω1

[u, v↔ Γ],

SΩ2 = ∑
u′,v′∈(cd)

φΓ
Ω2

[u′↔ Γ]φΓ
Ω2

[v′↔ Γ]φΓ
Ω1

[u′, v′↔ Γ].
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Assume for a moment that we possess the bounds

SΩ1
<⌢ Z●[(ab),Γ]3/2 and SΩ2

<⌢ Z●[Γ, (cd)]3/2. (10.8)

They imply, thanks to the definition of separators,

φ0
Ω[N2] ≤ (Z●[(ab),Γ] ⋅Z●[Γ, (cd)])

3/2 <⌢ Z●[(ab), (cd)]3/2. (10.9)

Step 3: Proof of the two estimates in (10.8).
We only show the first one, since the second one is the same. Using Lemma 10.13 and

Corollary 10.11, we find

SΩ1 = ∑
u,v∈(ab)

φΓ
Ω1

[u↔ Γ]φΓ
Ω1

[v↔ Γ]φΓ
Ω1

[u, v↔ Γ]

<⌢ ∑
u,v∈(ab)

Z●(u,Γ)Z●(v,Γ)√
Z●[(uv),Γ]

Note that for any sequence of positive real numbers (un)n≥0, and α > 0, a comparison
between series and integral implies

n

∑
k=1

uk (
k

∑
j=1

uj)
α−1

≤ 1

α
(
n

∑
k=1

uk)
α

. (10.10)

Say that u ≺ v if u and v are found in this order when going along the arc (ab) in the
counterclockwise order. In our case, (10.10) implies that,

∑
u,v∈(ab)

Z●[u,Γ]Z●[v,Γ]√
Z●[(uv),Γ]

≤ 2 ∑
u≺v∈(ab)

Z●[u,Γ]Z●[v,Γ]√
Z●[(uv),Γ]

= 2 ∑
v∈(ab)

Z●[v,Γ] ∑
u∈(av)

Z●[u,Γ]√
Z●[(uv),Γ]

≤ ∑
v∈(ab)

Z●[v,Γ]
√
Z●[(av),Γ]

≤ ∑
v∈(ab)

Z●[u,Γ]
√
Z●[(ab),Γ]

≤ Z●[(ab),Γ] 3
2 ,

thus giving (10.8).

Step 4: Lower bound for crossing probabilities.
By the Cauchy-Schwarz inequality,

φ0
Ω((ab) ↔ (cd)) = φ0

Ω(N > 0) = φ0
Ω[(IN>0)2] ≥

φ0
Ω[N]2

φ0
Ω[N2]

>⌢
Z●[(ab), (cd)]2

Z●[(ab), (cd)]3/2 ,

where we used the two first steps. Now, by Theorem 10.3, we get that both the numerator
and the denominator are of order 1. Our bound depends on M only. ◻
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3 Arm exponents
In this section φ denotes the unique infinite-volume measure at q = 2, p = pc(2). Define
Λn(x) ∶= x + [−n,n]2 and Λn = Λn(0). Also set Sn,N(x) = ΛN(x) ∖ Λn(x) and Sn,N =
Sn,N(0).

Fix a sequence σ of "open" o or "closed" c. We say that a path is o-connected if it
is connected and c-connected if it is dual connected. Fix σ = σ1..σj. For n < N , define
Aσ(n,N) to be the event that there are j disjoint paths from ∂Λn to ∂ΛN with are σi-
connected, for i ≤ j where the paths are indexed in counter-clockwise order. We set Aσ(N)
to be Aσ(k,N) where k is the smallest possible integer such that the event is non-empty.
For instance, Ao(n,N) is the one-arm event corresponding to the existence of a crossing
from the inner to the outer boundary of ΛN ∖Λn.

A classical use of Theorem 10.1 implies that there exists βσ and β′σ such that

(n/N)βσ ≤ φ[Aσ(n,N)] ≤ (n/N)β′σ .

It is therefore natural to predict that there exists a critical exponent ασ ∈ (0,∞) such that

φ[Aσ(n,N)] = (n/N)−ασ+o(1),

where o(1) is a quantity converging to 0 as n/N goes to 0. The quantity ασ is called an
arm-exponent.

Before starting, note that an important consequence of Proposition 9.21 is the fol-
lowing: the probability of arms does not really depend on the boundary conditions. In
particular,

φ(Aσ(n,N) ∣ FZ2∖Λ2N
) ≍ φ(Aσ(n,N)) a.s. (10.11)

uniformly in n, N , where FΩ is the σ-algebra generated by edges in Ω.

3.1 Quasi-multiplicativity

The following proposition is crucial in the understanding of arm-exponents:

Theorem 10.14 (Quasi-multiplicativity). Fix a sequence σ. For every n1 < n2 < n3, we
have

φ[Aσ(n1, n3)] ≍ φ[Aσ(n1, n2)] ⋅ φ[Aσ(n2, n3)].

Define Λn(x) ∶= x + [−n,n]2 and Λn = Λn(0). Also set Sn,N(x) = ΛN(x) ∖Λn(x) and
Sn,N = Sn,N(0).

Let us define the notion of well-separated arms. In words, well-separated arms extend
slightly outside the boxes and their ends are at macroscopic distance of each others, see
Fig. 10.2. More precisely, for δ > 0, j arms γ1, . . . , γj paths with end-points xk = γk ∩∂Λn,
yk = γk ∩ ∂ΛN are said to be well-separated if

• points yk are at distance larger than 2δN from each others.
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∂Λn

∂ΛN ∂ΛN

∂Λn

y1

x1

y2

x2

y3

x3x4

x5

y5 y4

Figure 10.2: On the left, the five-arm event Aocooc(n,N). On the right, the event
Asepocooc(n,N) with well-separated arms. Note that these arms are not at macroscopic
distance of each others inside the domain, but only at their end-points.

• points xk are at distance larger than 2δn from each others.

• For every k, yk is σk-connected to distance δN of Sn,N in ΛδN(yk),

• For every k, xk is σk-connected to distance δn of Sn,N in Λδn(xk).

Let Asep;δσ (n,N) = Asepσ (n,N) be the event that Aσ(n,N) holds true and there exist
arms realizing Aσ(n,N) which are δ well-separated. The previous definition has several
convenient properties.

Proposition 10.15. Fix δ < 1 small enough. For every n1 ≤ n2 ≤ n3

2 ,

φ[Asepσ (n1, n3)] >⌢ φ(Asepσ (n1, n2)] ⋅ φ[Asepσ (2n2, n3)].

This proposition has the following easy consequence. Fix p ∈ (0,1) and δ < 1 small
enough. There exists α = α(δ) > 0 such that for every n1 ≤ n2 ≤ n3,

φ[Asepσ (n1, n2)] <⌢ (n3

n2

)
α

⋅ φ[Asepσ (n1, n3)] (10.12)

φ[Asepσ (n2, n3)] <⌢ (n2

n1

)
α

⋅ φ[Asepσ (n1, n3)]. (10.13)

To prove this inequalities, it suffices to see that φ[Asepσ (2n,N)] is also bounded from below
by a power of (n/N). This is an easy consequence of Theorem 10.1.
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Proof We have

φ[Asepσ (n1, n2) ∩Asepσ (2n2, n3)] = φ[Asepσ (n1, n2)∣Asepσ (2n2, n3)] ⋅ φ[Asepσ (2n2, n3)]
>⌢ φ[Asepσ (n1, n2)] ⋅ φ[Asepσ (2n2, n3)]

thanks to (10.11) and it suffices to prove that φ[Asepσ (n1, n2)∩Asepσ (2n2, n3)] and φ[Asepσ (n1, n3)]
are comparable. To do so, condition on Asepσ (n1, n2) ∩Asepσ (2n2, n3) and construct j dis-
joint tubes of width ε = ε(δ) connecting (yk +Λδn2) ∖Λn2 to (yk +Λ2δn2) ∩Λ2n2 for every
k ≤ j. It is simple to show that this is topologically possible when δ is small enough. Via
Theorem 10.1, the σk-paths connecting xk to ∂Λ2δn2(xk) ∩Λn2 , and yk to ∂Λδn2(yk) ∖Λn2

can be connected by a σk-path with positive probability c = c(δ, p0). Therefore,

φ(Asepσ (n1, n3)) ≥ cφ[Asepσ (n1, n2) ∩Asepσ (2n2, n3)],

thus concluding the proof. ◻

Our main objective is now the following result:

Proposition 10.16. Fix σ. For every n < N ,

φ[Asepσ (n,N)] ≍ φ[Aσ(n,N)].

Indeed, if Asepσ (n,N) and Aσ(n,N) have uniformly comparable probabilities, Theo-
rem 10.14 follows from the previous statement, as we can see in the following proof:

Proof of Theorem 10.14 We have for n1 ≤ n2 ≤ n3:

φ[Aσ(n1, n3)] ≤ φ[Aσ(n1, n2)∣Aσ(2n2, n3)] ⋅ φ[Aσ(2n2, n3)]
≍ φ[Aσ(n1, n2)] ⋅ φ[Aσ(2n2, n3)]
≍ φ[Asepσ (n1, n2)] ⋅ φ[Asepσ (2n2, n3)]
<⌢ φ[Asepσ (n1, n2)] ⋅ φ[Asepσ (n2, n3)]

≤ φ[Aσ(n1, n2)] ⋅ φ[Aσ(n2, n3)],

where in the second line we used (10.11), in the third, Proposition 10.16, and in the fourth,
(10.13). Now,

φ[Aσ(n1, n3)] ≍ φ[Asepσ (n1, n3)]
>⌢ φ[Asepσ (n1, n2)] ⋅ φ[Asepσ (2n2, n3)]

≍ φ[Aσ(n1, n2)] ⋅ φ[Aσ(2n2, n3)]
≥ φ[Aσ(n1, n2)] ⋅ φ[Aσ(n2, n3)],

where in the first and third lines, we used Proposition 10.16, in the second Proposi-
tion 10.15, and in the last, Aσ(n2, n3) ⊂ Aσ(2n2, n3). ◻

Therefore, we only need to prove Proposition 10.16. Let us start with the following
two lemmas:
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Lemma 10.17. For any ε > 0, there exists T > 0 such that for every n > 0

φξSn,2n(∃ T disjoint crossings of Sn,2n) ≤ ε

uniformly in boundary conditions ξ.

Proof It is sufficient to show that for ε > 0, there exists T > 0 such that the probability
of T disjoint vertical crossings of [0,4n] × [0, n] is bounded by ε uniformly in n and the
boundary conditions. In fact, we only need to prove that conditionally on the existence
of k crossings, the existence of another crossing is bounded from above by some constant
c < 1.

In order to prove this statement, condition on the k-th left-most crossing γk. Assume
without loss of generality that γk is a dual crossing. Construct a subdomain of [0,4n] ×
[0, n] by considering the connected component of [0,4n]×[0, n]∖γk containing {4n}×[0, n].
The configuration in Ω is a random-cluster configuration with boundary conditions ξ
on the outside and free elsewhere (i.e. on the arc bordering the dual arc γk). Now,
Theorem 10.1 implies that Ω is crossed from left to right by a primal and a dual crossing
with probability bounded from below by a universal constant. Indeed, cut the domain Ω
into two domains Ω1 = Ω ∩ [0,4n] × [0, n/2] and Ω2 = Ω ∩ [0,4n] × [n/2, n] and assume Ω1

is horizontally crossed and Ω2 is horizontally dual crossed). This prevents the existence
of an additional vertical crossing or dual crossing, therefore implying the claim. ◻

The previous proof harnesses Theorem 10.1 in a crucial way, the left boundary of Ω
being possibly very rough, previous results on crossing estimates would not have been
strong enough.

Lemma 10.18. For any ε > 0, there exists δ > 0 such that for every 2n ≤ N ,

φξSn/2,2N ( any set of crossings of Sn,N can be made well separated ) ≥ 1 − ε

uniformly in boundary conditions ξ.

Proof Fix n and the boundary conditions ξ.
Consider T large enough so that there exist more than T disjoint crossings of Sn,2n

with probability less than ε.
Fix δ > 0 such that in any subdomain of the annulus Sδr,r, ∂Λδr is not connected or

dual connected to ∂Λr with probability 1−ε/T , uniformly in the domain and the boundary
conditions on Sδr,r. This fact can be proved easily using Theorem 10.1.

We can assume with probability 1− 8ε that no crossing ends at distance less than δN
of a corner of Sn,N . It is thus sufficient to work with vertical crossings in the rectangle
[−N,N] × [n,N].

Now, condition on the left-crossing γ1 of [−N,N] × [n,N] and set y to be the ending
point of γ1 on the top. As before, construct the domain Ω to be the connected component
of {N}× [n,N] in [−N,N] × [n,N] ∖ γ1. We can assume with probability 1− ε/T that no
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γ

Ω

y
y′

Figure 10.3: The construction of open and closed paths extending the crossing and pre-
venting other crossings of finishing close to the path.

vertical crossing will land at distance δN of y by ensuring that Ω ∩ Sδ2N,δN(y) contains
open and dual-open circuits. Moreover, Theorem 10.1 allows us to construct a path P in
Λδ2N(y)∖([−N,N]×[n,N]∖Ω) connecting γ1 to the top of Λδ2N(y) with probability c > 0.
This construction costed cε/T and γ1 is guaranteed to be isolated from other crossings.
Iterating the construction T times, we find the result.

The same reasoning applies to the interior side and we obtain the result. ◻

Proof of Proposition 10.16 The lower bound φ[Asepσ (n,N)] ≤ φ[Aσ(n,N)] is straight-
forward. Let us prove the upper bound for S2n,2N , first with only the separation on the
exterior. Define Asep/extσ (2n,2k) to be the event Aσ(2n,2k) with separation on the exterior
only. Let Bk be the event that crossings in S2k−1,2k can be made separated. Lemma 10.18
ensures that φ(Bc

k) ≤ ε. Note that Aσ(2n,2k) ∩Bk ⊂ Asep/extσ (2n,2k). We thus have

φ[Aσ(2n,2N)] ≤
N−1

∑
k=n

φ[Aσ(2n,2k),Bk,B
c
k+1, ..,B

c
N−1]

≤
N−1

∑
k=n

φ[Aσ(2n,2k),Bk,B
c
k+2,B

c
k+4, ..]

Since annuli are separated by macroscopic areas, we can use (10.11) repeatedly to find

φ(Aσ(2n,2N)) ≤
N−1

∑
k=n

φ[Aσ(2n,2k),Bk]Cφ(Bk+2)Cφ(Bk+4)..

≤
N−1

∑
k=n

φ[Asep/extσ (2n,2k)] (Cε)(N−n)/2

<⌢ (
N−1

∑
k=n

(2N−n)α(Cε)(N−n)/2)φ[Asep/extσ (2n,2N)]

where we used (10.12) in the third line. Choosing ε small enough, we obtain δ such that

φ[Aσ(2n,2N)] <⌢ φ[Asep/extσ (2n,2N)]
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∂ΛN

Figure 10.4: Only one site per rectangle can satisfy the following topological picture.

One can then obtain the separation on the interior in the same way. Now, fix n < N
arbitrary. define s, r by the formulæ 2s−1 < n ≤ 2s and 2r ≤ N < 2r+1. We have

φ[Aσ(n,N)] ≤ φ[Aσ(2s,2r)] ≍ φ[Asepσ (2s,2r)] ≍ φ[Asepσ (n,N)]

using (10.12) and (10.13) a last time. ◻

We mention a classical corollary of the comparison between well-separated arms and
usual arms: one can choose a landing sequence I = (Ik)k≤j of disjoint areas of size δ on
the boundary of the square Q = [−1,1]2, found in counter-clockwise order following ∂Q.

Let AIσ(n,N) be the event that there exist arms from the interior to the exterior of
Sn,N , and such that γk ends on NIk.

Corollary 10.19. Fix j > 0. For any choice of I, σ, n < N , we have

φ[AIσ(n,N)] ≍ φ[Aσ(n,N)].

3.2 Universal exponents

Theorem 10.20. For every 0 < k < n ≤ Lp,

φ[Aocooc(k,n)] ≍ (k/n)2
, φ[AHPoc (k,n)] ≍ k/n, φ[AHPoco (k,n)] ≍ (k/n)2

.

where AHPσ (n,N) is the existence of j paths in [−N,N] × [0,N] ∖ [−n,n] × [0, n] form
[−n,n] × [0, n] to ([−N,N] × [0,N])c.
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Proof We treat the first case only, since the others are similar and actually technically
easier. We only need to look at the case k = 1 via quasi-multiplicativity.

Let us first prove the lower bound. Fix n < Lp. Consider the following construction:
assume there exist a horizontal crossing of [−n,n] × [−n/4,0] and a dual horizontal cross-
ing of [−n,n] × [0, n/4]. This happens with probability bounded from below by c > 0
not depending on n. By conditioning on the lowest interface Γ between an open and
a closed crossing of [−n,n] × [−n/4, n/4], the configuration above it is a random-cluster
configuration with free boundary conditions. Let Ω be the connected component of Λn∖Γ
containing [−n,n] × {n}. Assume that [−n/4,0] × [−n,n] ∩Ω is dual crossed horizontally,
and that [0, n/4] × [−n,n] ∩ Ω is crossed horizontally. The probability of this event is
once again bounded from below uniformly in n, thanks to Theorem 10.1. Note that we
need a strong form of crossing probabilities in order to guarantee the existence of the last
crossing since the boundary of Ω can be very rough.

Summarizing, all these events occur with probability larger than c′ > 0. Moreover,
the existence of all these crossings implies the existence of a site in Λn/4 with five arms
emanating from it. The union bound implies

(n/4)2φ[Aocooc(n/4)] ≥ c′.

In order to prove an upper bound for φ[Aocooc(n)], recall that it suffices to show it for
well-separated arms for which we choose landing sequences. Consider the event described
in Fig. 10.4. Topologically, no two sites in Λn can satisfy this event simultaneously, which
implies the claim. ◻

This result has an interesting corollary:

Corollary 10.21. Fix p ∈ (0,1). There exists α > 0 such that for every 0 < k < n ≤ Lp,

φ[Aocococ(k,n)] <⌢ (k/n)2+α

φ[Aococ(k,n)] >⌢ (k/n)2−α.

The ’six-arm’ event will be important for convergence to SLE. The ’four-arm event’ is
important for the existence of pivotal sites (see Chapter 12).

Proof Fix n < N , we have

φ(Aocococ(n,N)) ≍ φ(Aocococ(n,N),no arm finishing at the bottom).

Conditioning on five arms (starting the exploration from the bottom for instance), it can
be shown that

φ(Aocococ(n,N),no arm finishing at the bottom) ≤ φ0(Ac(n,N))φ(Aococc(n,N)).

The result follows from Theorem 10.20 and the fact that Theorem 10.1 implies

φ0(Ac(n,N)) ≤ (n/N)α

for some α > 0. The same proof works with ococc replacing ocococ. ◻



CHAPTER 10. CROSSINGS IN TOPOLOGICAL RECTANGLES 202

4 Other applications

4.1 Spin-Ising crossing probabilities

Thanks to the Edwards-Sokal coupling, we can couple the FK-Ising and the spin-Ising
model, and derive from Theorem 10.1 crossing probabilities bounds for the spin Ising
model.

While it is impossible to obtain crossing probabilities for the critical spin-Ising that
would be uniform with respect to the boundary conditions (the probability of crossing of
+ spins with − boundary conditions everywhere tends to 0 in the scaling limit, as can be
seen using SLE techniques), it is possible to get nontrivial bounds that allow to deal with
spin-Ising interfaces, notably in presence of free boundary conditions (which is the setup
considered in [LPSA94].

Corollary 10.22. Let M > 1. Then there exists δ ∈ (0, 1
2
) such that the following holds:

Let (Ω, a, b, c, d) be a topological rectangle with 1
M ≤ `Ω [(ab) , (cd)] ≤M . Consider the

critical Ising model on (Ω, a, b, c, d) with free boundary conditions on (ab) ∪ (cd) and +
boundary conditions on (bc) ∪ (da). Then we have

δ ≤ P [There is a crossing of − spins (ab) ↔ (cd)] ≤ 1 − δ.

Remark 10.23. By monotonicity of the spin-Ising model with respect to the boundary
conditions, this result implies that the probabilities of − crossings in topological rectangles
with free boundary conditions (the setup considered in [LPSA94]) are also bounded away
from below. By self-duality (for topological reason there cannot be both a − crossing between
(ab) and (cd) and a + crossing between (bc) and (da)) and symmetry between − and +
spins, such crossing probabilities are also bounded from above.

Proof of Corollary 10.22 Let us show a lower bound only (the upper bound can be
obtained by self-duality arguments).

The Edwards-Sokal coupling enables us to couple this Ising model with an FK-Ising
model with boundary conditions (bc) ∪ (da) (the sites on (bc) ∪ (da) are wired, and
the sites on (ab) ∪ (cd) are free). Use Corollary 10.9 to split Ω into three “fair shares”
(Ω1, a, xa, xb, b), (Ω2, xb, xa, xc, xd) and (Ω3, c, d, xd, xc), with

`Ω1 [(axa) , (xbb)] ≍ `Ω2 [(xbxa) , (xcxd)] ≍ `Ω3 [(cd) , (xdxc)] ≍ 1

(the constants depend on M only). By Theorem 10.1 there exists α > 0 such that with
probability at least α, there is no FK crossing (axa) ↔ (xbb) in Ω1, with probability at
least α there is no FK crossing (cd) ↔ (xdxc), with probability at least α there is an
FK-Ising crossing (xbxa) ↔ (xdxc). So, with probability at least α3, we can ensure that
there is an FK-Ising crossing (ab) ↔ (cd) in Ω, that does not touch (bc)∪(da). Sampling
a spin-Ising configuration from the FK-Ising model, we get that with probability at least
1
2α

3, there is an FK-Ising crossing will take sign − (since it is not connected to (bc)∪(da)),
hence a − spin crossing (ab) ↔ (cd). ◻



Chapter 11

Convergence to chordal SLE(3) and
chordal SLE(16/3)

Abstract: This chapter presents a proof of convergence of interfaces for FK-Ising and
Ising to the chordal Schramm-Loewner Evolutions of parameters κ = 16/3 and 3 respec-
tively. It is inspired of the article Convergence of Ising interfaces to Schramm’s SLEs,
written with D. Chelkak, C. Hongler, A. Kemppainen and S. Smirnov [CDCH+11b]. Let us
mention that the proof of convergence to SLE16/3 was first published in [Kem09, Smi10b].
Section 4 sketches an alternative proof of the main technical step in [Kem09, Smi10b] based
on the previous chapter and Section 7 is a new result.

There are many different ways of defining conformal invariance. In Chapter 7, a model
was said to be conformally invariant if there exists a family of conformally covariant
’relevant observables’ in the scaling limit. Following Aizenman’s suggestion to look at
interfaces, we show that FK-Ising and Ising interfaces are conformally invariant. For both
models, the Dobrushin boundary conditions allow us to isolate a single interface (in the
Ising case, between +1 and −1, and in the FK-Ising, between open and dual-open clusters)
and we thus restrict ourselves to this context. Our aim is to prove that these interfaces,
in the scaling limit, form a family of conformally invariant curves in the following sense:

Definition 11.1. A family of random continuous curve γ(Ω,a,b) defined on simply con-
nected domains Ω with two marked points a and b on the boundary is conformally invariant
if for any (Ω, a, b) and any conformal map1 ψ ∶ Ω→ C,

ψ ○ γ(Ω,a,b) has the same law as γ(ψ(Ω),ψ(a),ψ(b)).

In 1999, Schramm proposed a natural candidate for the possible conformally invariant
families of non-intersecting curves. He noticed that interfaces of models further satisfy
the domain Markov property (see Definition 11.6) which, together with the assumption of

1conformal means holomorphic and one-to-one.

203
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conformal invariance, determine the possible family of curves. In [Sch00], he introduced
the Schramm-Loewner Evolution – SLE in short. The SLE(κ), for κ > 0 is a (random)
Loewner chain with driving process

√
κBt, where Bt is a standard Brownian motion. Such

a definition is note completely straightforward.
The fact that SLEs can be ’encoded’ via Brownian motions paves the way to the use

of standard techniques such as stochastic calculus in order to study the properties of the
model. Consequently, SLEs are now fairly well understood: path properties have been
derived in [RS05], their Hausdorff dimension can be computed [Bef04, Bef08a], etc... In
addition to this, several critical exponents can be related to properties of the interfaces,
and thus be computed using SLE. Therefore, proving convergence of interfaces of a model
of statistical physics towards an SLE leads to a deep understanding of the phase transi-
tion. We refer to [Law05, Wer40, Wer05] for complete expositions on Schramm-Loewner
Evolutions and related conformally invariant processes.

One of the first and most fundamental model for which convergence to SLE is known
is site percolation on the triangular lattice [Smi01, Smi05, CN07] (it converges to SLE(6)).
The convergence result enables us to compute of several exponents such as polychromatic
arm-exponents [LSW01b, LSW01a], the monochromatic one-arm exponent [LSW02], the
exponent β of the infinite-cluster density θ(p) (the polychromatic four-arm exponent and
the one-arm exponent can be related, via Kesten scaling relations [Kes87] to the exponent
for θ(p), see Chapter 12 for further details), etc... In [LSW04a], loop-erased random
walks were shown to converge to SLE(2). In [SS05], an ad-hoc model, called the harmonic
explorer, was shown to converge to SLE(4).

The FK-Ising and Ising models are conformally invariant in the sense that they possess
conformally covariant families of observables. As mentioned earlier, this a priori weaker
result should in fact be sufficient to prove conformal invariance of interfaces. The goal of
this section is to explain this step.

Convergence of random parametrized curves (say with time-parameter in [0,1]) is in
the sense of the weak topology inherited from the following distance on curves:

d(γ1, γ2) = inf
φ

sup
u∈[0,1]

∣γ1(u) − γ2(φ(u))∣, (11.1)

where the infimum is taken over all reparametrizations (i.e. strictly increasing continuous
functions φ∶ [0,1] → [0,1] with φ(0) = 0 and φ(1) = 1).

Let us begin with the FK-Ising model.

Theorem 11.2 (Smirnov-Kemppainen [Smi10b, Kem09]). Let Ω be a simply connected
domain with two marked points a, b on the boundary. Let γδ be the interface of the critical
FK-Ising with Dobrushin boundary conditions on (Ωδ, aδ, bδ). Then the law of γδ converges
weakly, as δ → 0, to the chordal Schramm-Loewner Evolution with κ = 16/3, for the
topology associated to the curve distance.

A similar statement holds for the spin-Ising model, with a different value of κ:

Theorem 11.3. Let (Ω, a, b) be a simply connected domain with two marked points on
the boundary. Let γδ be the interface of the critical Ising model with Dobrushin boundary
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conditions on the Dobrushin domain (Ωδ, aδ, bδ). Then (γδ)δ>0 converges weakly, as δ →
0, to the (chordal) Schramm-Loewner Evolution with parameter κ = 3 for the topology
associated to the curve distance.

The strategy to prove that a family of parametrized curves converges to SLE(κ) follows
three steps:

• First, prove that the family of curves is tight.

• Then, show that any sub-sequential limit is a time-changed Loewner chain with a
continuous driving process.

• Finally, show that the only possible driving process for the sub-sequential limits is√
κBt where Bt is a standard Brownian motion.

The main step is the third one. In order to identify the Brownian motion as being the
only possible driving process for the curve, we find computable martingales expressed in
terms of the limiting curve. In our case, these martingales will be the limits of fermionic
observables. The fact that these (explicit) functions are martingales allows us to deduce
martingale properties of the driving process. More precisely, we aim to use Lévy’s theorem:
a continuous real-valued process X such that Xt and X2

t −at are martingales is necessarily√
aBt.
The chapter is organized as follows. The first section is a crash course on SLE. The

second one deals with precompactness of FK-Ising interfaces. The third one presents a
criterion to prove that these sub-sequential limits are Loewner chains. The fourth one
contains the proof that FK-Ising interfaces converge to SLE(16/3). The fifth one contains
the convergence result of Ising interfaces. The sixth section explains the first step of the
program for general random-cluster models with cluster-weight q ≥ 1.

1 Crash course on Schramm-Loewner Evolution
We do not aim for completeness (see [Law05, Wer40, Wer05] for details). We simply
introduce notions needed in the next sections. Recall that a domain is a simply connected
open set not equal to C.

Set H to be the upper half-plane. Fix a compact set K ⊂ H such that H = H ∖K is
still simply connected. For such a domain H, Riemann’s mapping theorem guarantees
the existence of a conformal map from H onto H. Moreover, there is a priori three real
degrees of freedom in the choice of the conformal map, so that it is possible to fix its
asymptotic when z goes to ∞. Let g be the unique conformal map from H onto H such
that

g(z) ∶= z + C
z
+O ( 1

z2
) .

The proof of the existence of this map is not completely obvious and requires the reflexion
principle. The constant C is called the h-capacity of H. It acts like a capacity: it is
increasing in the domain and the h-capacity of λK is λ2 times the h-capacity of K.
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There is a natural way to parametrized continuous curves γ ∶ R+ → H with γ(0) = 0
and with γ going to ∞ when t → ∞. For every s, let Hs be the connected component of
H ∖ γ[0, s] containing ∞. We denote by Ks the hull created by γ[0, s], i.e. the compact
set H∖Hs. From the previous paragraph, Ks has a certain h-capacity Cs. The continuity
of the curve guarantees that Cs grows continuously, so that it is possible to parametrize
the curve in such a way that Cs = 2t at time t. This parametrization is called the
h-capacity parametrization. Note that in general, the previous operation is not a proper
reparametrization, since any part of the curve hidden from∞ will not make the h-capacity
grow, and thus will be mapped to the same point for the new curve.

From now on, assume the curve is parametrized vian h-capacity. In particular, the
curve can be encoded2 via the family of conformal maps gt from Ht to H, such that

gt(z) ∶= z + 2t

z
+O ( 1

z2
) .

Under mild conditions, the infinitesimal evolution of the family (gt) can be studied and
it implies the existence of a continuous real valued process Wt such that for every t and
z ∈Ht,

∂tgt(z) ∶= 2

gt(z) −Wt

.

The process Wt is called the driving process. This equation can be derived for general
growing hulls, the typical required hypothesis in order to do so is the following ’local
growth’ condition:

Local Growth Condition: for any t ≥ 0 and for any ε, there exists δ > 0 such that for
any s ≤ t, the diameter of gs(Ks+δ ∖Ks) is smaller than ε, where Ks = H ∖Hs is the hull
created by γs.

It is important to notice that the procedure is revertible. If a continuous function
Wt is given, it is possible to reconstruct the hull Kt as the set of points z for which the
previous differential equation already blew up.

We are now in a position to define Schramm-Loewner Evolutions:

Definition 11.4 (SLE in the upper half-plane). The chordal Schramm-Loewner Evolution
in H with parameter κ > 0 is the (random) Loewner chain with (random) driving process
Wt ∶=

√
κBt, where Bt is a standard Brownian motion.

Loewner chains in other domains are easy to define via conformal mapping.

Definition 11.5 (SLE in general domains). Fix a domain Ω with two points on the
boundary a and b and assume it has a nice boundary (for instance a Jordan curve). The
chordal Schramm-Loewner Evolution with parameter κ > 0 in (Ω, a, b) is the image of the
Schramm-Loewner Evolution in the upper half-plane by a conformal map from (H,0,∞)
onto (Ω, a, b).

2In fact only the hull associated to the curve can be encoded via conformal maps.
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To conclude this paragraph, let us mention the fact that these curves are natural
scaling limits for interfaces of conformally invariant models. In order to explain this fact,
let us introduce the notion of domain Markov property for a family of random growing
curves.

Definition 11.6. A family of random continuous curves γ(Ω,a,b) (parametrized vian h-
capacity) in simply connected domains is said to satisfy the domain Markov property if
for every (Ω, a, b), and every t > 0, the law of the curve γ[t,∞) conditionally on γ[0, t] is
the same as the law of γ(Ωt,γt,b), where Ωt is the connected component of Ω∖γt containing
b.

Discrete interfaces in models of statistical physics naturally satisfy this property, and
therefore their limit also do. Schramm proved the following result in [Sch00], which in
some way justify SLEs as natural candidates for limits of interfaces.

Theorem 11.7 (Schramm, [Sch00]). Every family of Loewner chains γ(Ω,a,b) which

• is conformally invariant,

• satisfies the domain Markov property,

• satisfies that γ(H,0,∞) is scale invariant,

is a chordal Schramm-Loewner Evolution with parameter κ ∈ [0,∞).

2 Tightness of interfaces for FK-Ising
In this section, the following theorem is proved:

Theorem 11.8. Fix a domain (Ω, a, b), the family (γδ)δ>0 of random interfaces for critical
FK-Ising in (Ω, a, b) is tight for the topology associated to the curve distance.

The question of tightness for curves in the plane has been studied in the groundbreak-
ing paper [AB99]. In that paper, it is proved that a sufficient condition for tightness is
the absence, at every scale, of annuli crossed back and forth an unbounded number of
times.

More precisely, for x ∈ Ω and r < R, let Sr,R(x) = (x + [−R,R]2) ∖ (x + [−r, r]2) and
define Ak(x; r,R) to be the event that there exist k crossing of the curve γδ between outer
and inner boundaries of Sr,R(x).
Theorem 11.9 (Aizenman-Burchard [AB99]). Let Ω be a simply connected domain and
let a and b be two marked points on its boundary. Denote by Pδ the law of a random curve
γ̃δ on Ωδ from aδ to bδ. If there exist k ∈ N, Ck < ∞ and ∆k > 2 such that for all δ < r < R
and x ∈ Ω,

Pδ(Ak(x; r,R)) ≤ Ck(
r

R
)

∆k

,

then the family of curves (γ̃δ) is tight.

We now show how to exploit this theorem in order to prove Theorem 11.8. The main
tool is Corollary 9.13 (which follows from Theorem 9.1).
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Proof of Theorem 11.8 Fix x ∈ Ω, δ < r < R and recall that the lattice has mesh size
δ. Let k to be fixed later. We first prove that

φaδ,bδΩδ,psd,2
(A2k(x; r,2r)) ≤ ck (11.2)

for some constant c < 1 uniform in x, k, r, δ and the configuration outside of Sr,2r(x).
If A2k(x; r,2r) holds, then there are (at least) k open paths, alternating with k dual

paths, connecting the inner boundary of the annulus to its outer boundary. Since the paths
are alternating, one can deduce that there are k open crossings, each one being surrounded
by closed crossings. Hence, using successive conditionings and the comparison between
boundary conditions, the probability for each crossing is smaller than the probability that
there is a crossing in the annulus with wired boundary conditions (since these boundary
conditions maximize the probability of the event). We obtain

φaδ,bδΩδ,psd
(A2k(x; r,2r)) ≤ [φ1

Sr,2r(x),psd,2(Sr,2r is crossed))]
k
.

Using Corollary 9.13, φ1
Sr,2r(x),psd,2

(Sr,2r is crossed) ≤ 1 − c2 < 1, and (11.2) follows.
One can further fix k large enough so that ck < 1

8 . Now, one can decompose the annulus
Sr,R(x) into roughly ln2(R/r) annuli of the form Sr,2r(x), so that for the previous k,

φaδ,bδΩδ,psd,2
(A2k(x; r,R)) ≤ ( r

R
)

3

. (11.3)

Hence, Theorem 11.9 implies that the family (γδ) is tight. ◻

3 sub-sequential limits of FK-Ising interfaces are Loewner
chains

In the previous paragraph, traces of interfaces in Dobrushin domains were shown to be
tight. We would now like to parametrize any sub-sequential limit curve as a Loewner
chain, i.e. via its h-capacity. In this case, we say that the curve is a time-changed
Loewner chain.

Theorem 11.10. Any sub-sequential limit of the family (γδ)δ>0 of FK-Ising interfaces is
a time-changed Loewner chain.

As emphasized in the first section of this chapter, not every continuous curve is a
time-changed Loewner chain, therefore an additional argument is needed, especially since
the limiting curve of FK interfaces is fractal-like and has many double points. A general
characterization for a parametrized non-selfcrossing curve in (Ω, a, b) to be a time-changed
Loewner chain is the following:

• its h-capacity must be continuous,



CHAPTER 11. CONVERGENCE TO SLE(3) AND SLE(16/3) 209

b

Sr,R

a

b

a

b

Figure 11.1: Left: An example of a fjord. Seen from b, the h-capacity (roughly speaking,
the size) of the hull does not grow much while the curve is in the fjord. The event involves
six alternating open and closed crossings of the annulus. Right: Conditionally on the
beginning of the curve, the crossing of the annulus is unforced on the left, while it is forced
on the right.

• its h-capacity must be strictly increasing

• the curve grows locally seen from infinity in the following sense: for any t ≥ 0 and
for any ε, there exists δ > 0 such that for any s ≤ t, the diameter of gs(Ks+δ ∖Ks) is
smaller than ε, where Ks = H ∖Hs is the hull created by γ[0, s].

The first condition is automatically satisfied by continuous curves. The third one follows
from the other twos when the curve is continuous, so that the only condition to check is
the second one. This condition can be understood as being the fact that the tip of the
curve is visible from b at every time. In other words, the family of hulls created by the
curve (i.e. the complement of the connected component of Ω∖ γt containing b) is strictly
increasing. This is the case if the curve does not enter long fjords created by its past at
every scale, see Fig. 11.1.

In the case of FK interfaces, this corresponds to so-called six-arm events, and it boils
down to proving that ∆6 > 2. We already proved this result in 10, and we show at the end
of this subsection how it indeed implies that scaling limits are Loewner chains. Before
that, we present a more general criterion characterizing Loewner chains.

Recently, Kemppainen and Smirnov [KS10] proved a ’structural theorem’ characteriz-
ing random continuous curves that can be parametrized as Loewner chains. We describe
it now.

For a family of parametrized curves (γδ)δ>0, define Condition (⋆):
Condition (⋆): There exist C > 1 and ∆ > 0 such that for any 0 < δ < r < R/C, for

any stopping time τ and for any annulus Sr,R(x) not containing γτ , the probability that
γδ crosses the annulus Sr,R(x) (from the outside to the inside) after time τ while it is
not forced to enter Sr,R(x) again is smaller than C(r/R)∆, see Fig. 11.1.

Roughly speaking, the previous condition is a uniform bound on unforced crossings.
Note that it is necessary to assume that the crossing is unforced.
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Theorem 11.11. If a family of curves (γδ) satisfies Condition (⋆), then it is tight for
the topology associated to the curve distance. Moreover, any sub-sequential limit γ is a
time-changed Loewner chain and γ is the trace of the family of hulls generated by γ.

Tightness is almost obvious, since Condition (⋆) implies the hypothesis in Aizenman-
Burchard’s theorem. The hard part is the proof that Condition (⋆) guarantees that the
h-capacity of sub-sequential limits is strictly increasing and that they create Loewner
chains. The reader is referred to [KS10] for a proof of this statement.

Proof of Theorem 11.10 Corollary 9.13 implies Condition (⋆) without difficulty. ◻

4 sub-sequential limits of FK-Ising interfaces are Loewner
chains (alternative proof)

Let us now sketch another way of proving Theorem 11.10. It does not require Theo-
rem 11.11 and it harnesses Theorem 10.1 only. More precisely, we will be using Theo-
rem 10.1 and two of its corollaries: the 6-arm exponent in the plane is greater than 2 and
the three arm exponent on the boundary is equal to 2. We refer to [Wer07] for additional
details on this method.

We need to prove that the h-capacity is strictly increasing. Let us consider the dis-
crete explorations directly in the upper half-plane, and already parametrized by their
h-capacity. The idea is to proceed in three steps. Let σδ(z) (resp. σ(z)) be the time at
which z is disconnected from infinity by the discrete curve γδ (resp. the continuous curve
γ).

Step 1: simultaneously for every z, σδ(z) converges to σ(z) almost
surely. This is due to the fact that if one point z does not satisfy this property, the
discrete model has to possess six arms of alternative colors (or three arms on the boundary
of alternative colors). Yet, the six arm event has exponent larger than 2 and does not
happen anywhere in the domain with probability going to 1.

Step 2: for any u < u′, there exists v ∈ (u,u′) such that γ(v) ∉ γ[0, u] ∪ ∂H.
Fix a dense family of points on γ[0, u] ∪ ∂H. Each of these points does not belong
to the curve γ[0,∞] almost surely, thanks to Theorem 10.1. Therefore, none of these
points belongs to γ[0,∞] almost surely. This implies that γ[u,u′] cannot be included in
γ[0, u] ∪ ∂H.

Step 3: for every rational u < u′, Ku ≠K ′
u. Recall that Ku is the hull created by

γ[0, u]. It is thus sufficient to prove that there exists v ∈ (u,u′) such that γ(v) ∉Ku ∪∂H.
We already know from the second step that there exists γ(v) ∉ γ[0, u] ∪ ∂H. Thus γ(v)
is in one of the connected components of H ∖ γ[0, u]. Assume it is not in the unbounded
one. The first step implies that

σδ[γ(v)] ≤
v + σ[γ(v)]

2
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with probability going to 1. It immediately implies that σδ[γδ(v)] < v for δ small enough,
which is impossible since discrete curves γδ do not have triple points.

5 Convergence of FK-Ising interfaces to SLE(16/3)
The FK fermionic observable is now proved to be a martingale for the discrete curves and
to identify the driving process of any sub-sequential limit of FK-Ising interfaces.

Lemma 11.12. Let δ > 0. The FK fermionic observable M δ
n(z) = FΩδ∖γ[0,n],γn,bδ(z) is a

martingale with respect to (Fn) where Fn is the σ-algebra generated by the FK interface
γ[0, n].

Proof For a Dobrushin domain (Ω◇
δ , aδ, bδ), the slit domain created by “removing” the

first n steps of the exploration path is again a Dobrushin domain. Conditionally on γ[0, n],
the law of the FK-Ising model in this new domain is exactly φγn,bδ

Ω◇
δ
∖γ[0,n]. This observation

implies that M δ
n(z) is the random variable 1z∈γδe

1
2
iWγδ

(z,b) conditionally on Fn, therefore
it is automatically a martingale. ◻

Proposition 11.13. Any sub-sequential limit of (γδ)δ>0 which is a Loewner chain is the
(chordal) Schramm-Loewner Evolution with parameter κ = 16/3.

Proof Consider a sub-sequential limit γ in the domain (Ω, a, b) which is a Loewner
chain. Let φ be a map from (Ω, a, b) to (H,0,∞). Our goal is to prove that γ̃ = φ(γ) is a
chordal SLE(16/3) in the upper half-plane.

Since γ is assumed to be a Loewner chain, γ̃ is a growing hull from 0 to∞ parametrized
by its h-capacity. Let Wt be its continuous driving process. Also define gt to be the
conformal map from H ∖ γ̃[0, t] to H such that gt(z) = z + 2t/z +O(1/z2) when z goes to
∞.

Fix z′ ∈ Ω. For δ > 0, recall that M δ
n(z′) is a martingale for γδ. Since the martingale

is bounded, M δ
τt(z′) is a martingale with respect to Fτt , where τt is the first time at

which φ(γδ) has an h-capacity larger than t. Since the convergence is uniform, Mt(z′) ∶=
limδ→0M δ

τt(z′) is a martingale with respect to Gt, where Gt is the σ-algebra generated by
the curve γ̃ up to the first time its h-capacity exceeds t. By definition, this time is t, and
Gt is the σ-algebra generated by γ̃[0, t].

Recall thatMt(z′) is related to φ(z′) via the conformal map fromH∖γ̃[0, t] to R×(0,1),
normalized to send γ̃t to −∞ and ∞ to ∞. This last map is exactly 1

π ln(gt −Wt). Setting
z = φ(z′), we obtain that

√
πM z

t ∶=
√
πMt(z′) =

√
[ln(gt(z) −Wt)]′ =

¿
ÁÁÀ g′t(z)

gt(z) −Wt

(11.4)
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is a martingale. Recall that, when z goes to infinity,

gt(z) = z + 2t

z
+O ( 1

z2
) and g′t(z) = 1 − 2t

z2
+O ( 1

z3
) (11.5)

For s ≤ t,

√
π ⋅E[M z

t ∣Gs] = E
⎡⎢⎢⎢⎢⎣

¿
ÁÁÀ 1 − 2t/z2 +O(1/z3)

z −Wt + 2t/z +O(1/z2)
∣ Gs

⎤⎥⎥⎥⎥⎦
= 1√

z
E [1 + 1

2
Wt/z +

1

8
(3W 2

t − 16t) /z2 +O (1/z3) ∣ Gs]

= 1√
z
(1 + 1

2
E[Wt∣Gs]/z +

1

8
E[3W 2

t − 16t∣Gs]/z2 +O (1/z3)) .

Taking s = t yields

√
π ⋅M z

s = 1√
z
(1 + 1

2
Ws/z +

1

8
(3W 2

s − 16s)/z2 +O(1/z3)) .

Since E[M z
t ∣Gs] = M z

s , terms in the previous asymptotic development can be matched
together so that E[Wt∣Gs] = Ws and E[W 2

t − 16
3 t∣Gs] = W 2

s − 16
3 s. Since Wt is continuous,

Lévy’s theorem implies that Wt =
√

16
3 Bt where Bt is a standard Brownian motion.

In conclusion, γ is the image by φ−1 of the chordal Schramm-Loewner Evolution with
parameter κ = 16/3 in the upper half-plane. This is exactly the definition of the chordal
Schramm-Loewner Evolution with parameter κ = 16/3 in the domain (Ω, a, b). ◻

Proof of Theorem 11.2 By Theorem 11.8, the family of curves is tight. Using The-
orem 11.10, any sub-sequential limit is a time-changed Loewner chain. Consider such a
sub-sequential limit and parametrize it by its h-capacity. Proposition 11.13 then implies
that it is the Schramm-Loewner Evolution with parameter κ = 16/3. The possible limit
being unique, the claim is proved. ◻

6 Convergence to SLE(3) for spin Ising interfaces
The proof of Theorem 11.3 is very similar to the proof of Theorem 11.2, except that we
work with the spin Ising fermionic observable instead of the FK-Ising one.

First, let us mention a slight simplification compared to the FK-Ising case. Theo-
rem 9.2 implies tightness. Interestingly, it is not necessary to prove that possible scaling
limits are Loewner chains. Indeed, the only interest of Theorem 11.10 is to prove that
the h-capacity increases strictly. If one forgets about this condition, it is still possible to
describe the hull created by the interface. If one identifies it to be the same as SLE(3), it
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immediately implies that the interface hull is a simple curve, since SLE(3) is simple. As
a corollary, the interface itself converges to SLE(3). It is therefore sufficient to prove that
the driving process is the same as

√
3Bt.

The only point differing from the identification of the driving process in the FK-Ising
is the fact that the spin fermionic observable is a martingale for the curve. We prove this
fact now and leave the remainder of the proof as an exercise. Let γ be the interface in
the critical Ising model with Dobrushin boundary conditions.

Lemma 11.14. Let δ > 0, the spin fermionic observable M δ
n(z) = FΩ◇

δ
∖γ[0,n],γ(n),bδ(z) is

a martingale with respect to (Fn) where Fn is the σ-algebra generated by the exploration
process γ[0, n].

Proof It is sufficient to check that Fδ(z) has the martingale property when γ = γ(ω)
makes one step γ1. In this case F0 is the trivial σ-algebra, so that we wish to prove

µa,bβc,Ω [FΩ◇
δ
∖[aδγ1],γ1,bδ(z)] = FΩ◇

δ
,aδ,bδ(z). (11.6)

Write ZΩ◇
δ
,aδ,bδ (resp. ZΩ◇∖[aδx],x,bδ) for the partition function of the Ising model with

Dobrushin boundary conditions on (Ω◇
δ , aδ, bδ) (resp. (Ω◇∖[aδx], x, bδ)), i.e. ZΩ◇∖[aδx],x,bδ =

∑ω(
√

2 − 1)∣ω∣. Note that ZΩ◇∖[aδx],x,bδ is almost the denominator of FΩ◇
δ
∖[aδx],x,bδ(zδ). By

definition,

ZΩ◇
δ
,aδ,bδ µ

a,b
βc,Ω

(γ1 = x) = (
√

2 − 1)ZΩ◇∖[aδx],x,bδ

= (
√

2 − 1)ei 1
2
Wγ(x,bδ)

∑ω∈EΩ◇∖[aδx](x,zδ)
e−i

1
2
Wγ(x,zδ)(

√
2 − 1)∣ω∣

FΩ◇
δ
∖[aδx],x,bδ(zδ)

= ei 1
2
Wγ(aδ,bδ)

∑ω∈EΩ◇
δ
(aδ,zδ) e

−i 1
2
Wγ(aδ,zδ)(

√
2 − 1)∣ω∣1{γ1=x}

FΩ◇
δ
∖[aδx],x,bδ(zδ)

In the second equality, we used the fact that EΩ◇
δ
∖[aδx](x, zδ) is in bijection with configura-

tions of EΩ◇
δ
(aδ, zδ) such that γ1 = x (there is still a difference of weight of

√
2− 1 between

two associated configurations). Thus giving:

µa,bβc,Ω (γ1 = x)FΩ◇
δ
∖[aδx],x,bδ(zδ) =

∑ω∈E(aδ,zδ) e
−i 1

2
Wγ(aδ,zδ)(

√
2 − 1)∣ω∣1{γ1=x}

e−i
1
2
Wγ(aδ,bδ)ZΩ◇

δ
,aδ,bδ

.

The same holds for all possible first steps. Summing over all possibilities, we obtain the
expectation on one side of the equality and FΩ◇

δ
,aδ,bδ(zδ) on the other side, thus proving

(11.6). ◻
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7 Precompactness of interfaces in random-cluster mod-
els with q ≥ 1

This section is devoted to the first step of the program in the case of general random-
cluster models with q ≥ 1. Condition (⋆) seems difficult to prove for q ≠ 1,2 since we
do not possess crossing estimates which are valid uniformly in the boundary conditions.
Nevertheless, it is still possible, using arguments similar to those in chapter 4, to prove
the criterion of Theorem 11.9. We deduce the following result:

Theorem 11.15. Fix a domain (Ω, a, b), the family (γδ)δ>0 of random interfaces for the
critical random-cluster model in (Ω, a, b) with cluster weight q ≥ 1 is tight for the topology
associated to the curve distance.

Proof We fix q ≥ 1 and p = psd(q) and we drop them from the notations. We must
prove that there exists k > 0 such that, uniformly in x ∈ Ω, 0 < δ < r < R and boundary
conditions ξ,

φξΩδ(Ak(x; r,R)) ≤ Ck(
r

R
)

∆k

,

for some universal Ck and ∆k > 2. In order to do so, it is sufficient to show that for any
ε > 0, there exists k > 0 such that

φξSn,2n(Ak(0;n,2n)) ≤ ε

uniformly in n and ξ. Simplifying one more time, it is in fact sufficient (make a picture)
to show that for any ε > 0, there exists k > 0 such that

φξ[0,3n]×[0,n](∃k alternating closed/open vertical crossings) ≤ ε

uniformly in n and ξ. The final simplification is slightly more complicated. When condi-
tioning on the existence of l−1 alternating closed/open vertical paths, the event that there
exists an additional (say open) crossing takes place in a random domainDl ⊂ [0,3n]×[0, n]
with boundary conditions ξ on ∂Dl ∩ ∂[0,3n] × [0, n] and free boundary conditions else-
where3. In particular, the boundary conditions are dominated by wired boundary condi-
tions on ∂Dl∩∂[0,3n]×[0, n] and free elsewhere. Then, if k is large enough, we must find
some l < k for which ∂Dl ∩ ∂[0,3n] × [0, n] is very narrow (say smaller than 2n/k on each
side). Therefore, it is sufficient to prove that there exist c, ε > 0, such that the following
holds true for every n and every a, b two sites on the bottom side at distance εn of each
others, and c, d two points on the top side at distance εn of each other

φ
(ab),(cd)
[0,3n]×[0,n][(ab) ↔ (cd)] ≤ c < 1,

where boundary conditions (ab), (cd) are wired on (ab) and (cd) and free elsewhere.
3Since it boils down to conditioning on the right-most crossings on the left, and the left-most on the

right
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Note first that if (ab) and (cd) can be separated by a vertical line, the result is then
easy, since duality and symmetry imply that the previous probability is smaller than 1/2
(we leave this as an easy exercise). Therefore, one can assume that (ab) and (cd) cannot
be separated. Making the two intervals slightly bigger, we can even assume that they are
on top of each others.

At the end, the following result would be sufficient to imply the theorem: there exists
c < 1 such that uniformly in n,

φ
[0,n/4],[in,(i+1/4)n]
Z×[0,n] ([0, n/4] ↔ [in, (i + 1/4)n]) ≤ c < 1.

Let c(n) be the probability that [0, n/4] × [0, n] is dual-crossed horizontally.

Case 1: c(n) is smaller or equal to 1/2: The probability that [n/4, n/2] × [0, n]
and [−n/4,0]×[0, n] are dual crossed vertically is larger than 1− c(n) ≥ 1/2, using duality
and the comparison between boundary conditions. We deduce that with probability
1/22, [n/4, n/2] × [0, n] and [−n/4,0] × [0, n] are dual-crossed vertically simultaneously.
Conditionally on this event, boundary conditions in the area between the left-most dual
crossing of [−n/4,0]×[0, n] and the right-most crossing of [n/4, n/2]×[0, n] are dominated
by the free/wired/free/wired boundary conditions on [−n/2, n/2] × [0, n]. Therefore, the
area between the two vertical dual-crossings is dual-crossed horizontally with probability
larger than 1/2 using duality. Overall, we find that [0, n/4] and [in, (i + 1/4)n] are
disconnected with probability 1/8 and the claim is proved.

Case 2: c(n) is larger than 1/2: Define un in such a way that the probability to
dual-cross [0, un] × [0, n] horizontally equals 1/2. Note that un ≥ n/4 by definition.

Consider the event B that [0, un]×[0, n] is dual-crossed horizontally, and that [−un,0]×
[0, n] and [un,2un] × [0, n] are dual-crossed vertically. This event has probability larger
than 1/8 thanks to the FKG inequality and the definition of un (here again we used
duality and the comparison between boundary conditions).

Condition on the left most closed path crossing [−un,0]×[0, n] and the top most closed
path crossing [0, un]× [0, n]. Following the proof of Proposition 4.8, the construction of a
symmetric domain is then straightforward and we can say that with probability bounded
away from 0, see Fig. 11.2, these two closed paths are dual-connected. Now, condition
on the top/left-most connection between these two closed paths, and on the right-most
closed vertical crossing of [un,2un] × [0, n], one can once again construct a symmetric
domain and prove that these closed paths are connected with positive probability. At the
end, we constructed with positive probability a closed path from [−un,0] to [un,2un].
This path prevents the existence of a path between [0, n/4] and [in, (i + 1/4)n], which
concludes the proof. ◻
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0 n/4 un 2un−un

n

0

Figure 11.2: The two symmetric domains considered in the proof.



Chapter 12

Near-critical planar FK-Ising model

Abstract: We study the near-critical FK-Ising model. First, a determination of the
correlation length defined via crossing probabilities is provided. Second, a striking phe-
nomenon about the near-critical behavior of FK-Ising is highlighted, which is completely
missing from the case of standard percolation: in any monotone coupling of FK configu-
rations ωp (e.g., in the one introduced in [Gri95]), as one raises p near pc, the new edges
arrive in a fascinating self-organized way, so that the correlation length is not governed
anymore by the amount of pivotal edges at criticality. In particular, it is smaller than the
heat-bath dynamical correlation length determined in the forthcoming [GP].

We also include a discussion of near-critical and dynamical regimes for general random-
cluster models. For the heat-bath dynamics in critical random-cluster models, we conjec-
ture that there is a regime of q values where there exist macroscopic pivotals yet there
are no exceptional times. These are the first natural models that are expected to be
noise sensitive but not dynamically sensitive. This chapter is inspired by the article The
near-critical planar FK-Ising model, written with Christophe Garban and Gábor Pete.

Near-critical regime and correlation length. Beyond the understanding of the crit-
ical and non-critical phases (which was the subject of previous chapters), the principal
goal of statistical physics is to study the phase transition itself, and in particular the
behavior of macroscopic properties (for instance, the density of the infinite-cluster for
p > pc(q)) near the critical point. It is possible to relate the critical regime to these ther-
modynamical properties via the study of the so-called near-critical regime. This regime
was investigated in [Kes87] in the case of percolation. Many works followed afterward,
culminating in a rather good understanding of dynamical and near-critical phenomena in
standard percolation [SS10, GPS10a, NW09, GPS10b, GPS]. The goal of this chapter is
to discuss the near-critical regime in the random-cluster case, and more precisely in the
FK-Ising case.

The near-critical regime is the study of the random-cluster model of edge-parameter p
in the box of size L when (p,L) goes to (pc,∞). Note that, on the one hand, if p goes to

217
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pc very quickly the configuration in the box of size L will look critical. On the other hand,
if p goes to pc (from above) too slowly, the random-cluster model will look supercritical.
The typical scale L = L(p) separating these two regimes is called the correlation length
(or characteristic length). In rough terms, if p is slightly above pc(2) =

√
2/(1 +

√
2),

the correlation length L(p) is the scale below which things still look somewhat critical
and above which the infinite cluster starts being visible. In the subcritical regime, it
corresponds to the scale above which the fact that p is subcritical becomes apparent.

Definition of correlation length in the case of percolation (q = 1). The critical
regime is often characterized by the fact that crossing probabilities remain strictly between
0 and 1. Formally, consider rectangles R of the form [0, n] × [0,m] for n,m > 0, and
translations of them. We denote by Cv(R) the event that there exists a vertical crossing
in R, a path from the bottom side [0, n] × {0} to the top side [0, n] × {m} that consists
only of open edges. The celebrated Russo-Seymour-Welsh theorem shows that in the case
of critical percolation, crossing probabilities of rectangles of bounded aspect ratio remain
bounded away from 0 and 1. A natural way of describing the picture as being critical is
to check that crossing probabilities are neither near 0 nor near 1. Mathematically, it is
thus natural to define the correlation length for every p < pc = 1/2 and ε > 0 as

Lε(p) ∶= inf {n > 0 ∶ Pp(Cv([0, n]2)) ≤ ε} ,

and, when p > pc = 1/2, as Lε(p) ∶= Lε(1 − p), where 1 − p is the dual edge-weight. The
dependence on ε is not relevant, since it can be proved ([Kes87, Nol08]) that for any ε > 0,

L1/4(p) ≍ Lε(p) ,

where ≍ means that there exist constants 0 < Aε,Bε < ∞ such that

AεL1/4(p) ≤ Lε(p) ≤ BεL1/4(p) .

The correlation length was shown to behave like ∣p − pc(1)∣−4/3+o(1) in the case of
percolation [SW01].

Definition of the correlation length for FK-Ising (q = 2). The first result of this
chapter is the determination of the behavior of L(p) when p goes to pc for q = 2. Before
stating the main result, let us give a proper definition of correlation length in this setting.
Since the Russo-Seymour-Welsh theorem has been generalized to the FK-Ising case in
Chapter 9, it is natural to characterize the critical regime once again by the fact that
crossing probabilities remain strictly between 0 and 1. An important difference from the
q = 1 case is that one has to take into account the effect of boundary conditions:

Definition 12.1 (Correlation length). Fix q = 2 and ρ > 0. For any n ≥ 1, let Rn be the
rectangle [0, n] × [0, ρn].

If p < pc(2), for every ε > 0 and boundary condition ξ, define
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Lξρ,ε(p) ∶= inf {n > 0 ∶ φξp,2,Rn(Cv(Rn)) ≤ ε} .
If p > pc(2), define similarly

Lξρ,ε(p) ∶= inf {n > 0 ∶ φξp,2,Rn(Cv(Rn)) ≥ 1 − ε} .

Our main result on the correlation length can be stated as follows.

Theorem 12.2. Fix q = 2. For every ε, ρ > 0, there is a constant c = c(ε, ρ) such that

c
1

∣p − pc∣
≤ Lξρ,ε(p) ≤ c−1 1

∣p − pc∣
log

1

∣p − pc∣

for all p ≠ pc whatever the choice of the boundary condition ξ is.

Note that the left-hand side of the previous theorem has the following reformulation,
which we state as a theorem of its own (this result is interesting on its own since it provides
estimates on crossing probabilities which are uniform in boundary conditions away from
the critical point):

Theorem 12.3 (RSW-type crossing bounds). For λ > 0 and ρ > 0, there exist two con-
stants 0 < c− ≤ c+ < 1 such that for any rectangle R with side lengths n and m ∈ [1

ρn, ρn],
any p ∈ [pc − λ

n , pc +
λ
n] and any boundary condition ξ, one has

c− ≤ φξR,p,2(Cv(R)) ≤ c+ .

The main ingredient of the proof of the latter theorem (and the most interesting one)
is Smirnov’s fermionic observable. This observable is defined in Dobrushin domains (with
a free and a wired boundary arc), and is a key ingredient in the proof of conformal
invariance at criticality. Nevertheless, its importance goes much beyond that proof, in
particular because it can be related to connectivity properties of the FK-Ising model. We
study its properties away from the critical point, and estimate its behavior near the free
arc of Dobrushin domains. It implies estimates on the probability for sites of the free arc
to be connected to the wired arc. This in turn allows us to perform a second-moment
estimate on the number of connections between sites of the free arc and the wired arc,
therefore implying crossing probabilities in Dobrushin domains. All that remains is to get
rid of Dobrushin boundary conditions (which is not as simple as one might hope) in order
to obtain crossing probabilities with free boundary conditions.

In [CHI11], Chelkak, Hongler and Izyurov show that

φpc,q=2(0↔ ∂[−n,n]2) ≍ n−1/8 (12.1)

using conformal invariance techniques. Together with Theorem 12.2, this implies:

Theorem 12.4. Assuming (12.1), there exists a constant c > 0 such that if p > pc(2),

φp,2(0↔∞) ≥ c ( ∣p − pc∣
log 1/∣p − pc∣

)
1/8

.
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The result
⟨σ0⟩+β = φp,2(0↔∞) ≍ ∣β − βc∣1/8,

as β > βc tends to βc, goes back to Onsager [Ons44]. Nevertheless, the proof of Theo-
rem 12.4 is of some value, since the result of [CHI11] and the techniques in this chapter
extend to isoradial graphs (with additional work) while Onsager’s technology is restricted
to the square lattice.

The random-cluster model through its phase transition The previous way to look
at the near-critical regime may seem slightly artificial. It is more natural to study the
random-cluster model through its phase transition by constructing a monotone coupling of
random-cluster models with fixed cluster-weight q ≥ 1. Then, properties of the monotone
coupling (which can be thought of as a dynamics following the evolution of p between 0
and 1) near pc will describe the near-critical regime.

In the case of standard bond percolation (q = 1), such a monotone coupling simply
consists of i.i.d. Uniform[0,1] labels on the edges, and a percolation configuration ωp of
density p is the set of bonds with labels at most p. It is straightforward to interpret this
coupling as an asymmetric dynamical percolation: starting from critical percolation at
time zero, as time goes on, whenever the clock of a bond rings, we open that bond; we
can also run time backwards and close the bonds that ring. Now, the question is: in
this monotone coupling, how fast does the system enters the supercritical and subcritical
regimes as p changes near pc?

This near-critical window in percolation was studied by Kesten in [Kes87], then
by [BCKS01, Nol08, NW09, GPS10b, GPS]. It turns out that its size is governed by
the expected number of macroscopically pivotal edges, i.e. edges having four alternative
(dual-primal) open paths starting from them and going to macroscopic distance. In
Subsection 2.1, we will describe in more detail the mechanism governing this near-critical
window, but let us introduce roughly the main reasons for macroscopic pivotals to govern
the near-critical behavior. Let us set α4(n) to be the probability at criticality that an
edge has four alternative dual-primal open paths going to a distance n. Getting from ωpc
to ωpc+∆p in the box of size L, the system is moving out of stationarity, and roughly L2∣∆p∣
edges are switched from closed to open. If one assumes that the configuration still looks
critical at pc +∆p, then the probability of an edge being pivotal is roughly α4(L) during
the whole process and the number of pivotal edges which are switched between pc and
pc+∆p is roughly L2α4(L)∣∆p∣. Now, Kesten proved the following stability result: as long
as L2α4(L)∣∆p∣ = O(1), there are not much more pivotal points in ωp than at criticality,
hence, despite the monotonicity of the dynamics, changes do not speed up significantly
(compared to symmetric dynamical percolation), and the macroscopic geometry starts
changing significantly only at L2α4(L)∣∆p∣ ≍ 1. On the opposite, L2α4(L)∣∆p∣ ≫ 1 means
that we have really left the near-critical regime, i.e., the window of size L has become
well-connected since many closed pivotal points (they were preventing macroscopic open
paths) have switched to open.

Summarizing, the scale at which the critical regime becomes the supercritical regime
is given by L2α4(L)∣∆p∣ ≍ 1. The same reasoning can be applied for the subcritical regime.
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In particular, the correlation length is given (up to constants) by the relation

(Lε(p))
2
α4(Lε(p))∣p − pc∣ ≍ 1. (12.2)

In the previous equality, we did not specify ρ since it is irrelevant, see the discussion in
the previous paragraphs. The main principle we shall extract from this discussion can be
stated as follows:

Phenomenon 12.5. In percolation (q = 1), the near-critical behavior is governed by the
amount of pivotal points at criticality.

To our knowledge, it has been widely believed in the community that basically the
same mechanism should hold in the case of random-cluster models. Namely, once we
understand the geometry of the set of pivotal points, we may readily deduce information
on its near-critical behavior. In fact, this is not the case.

Let us consider the case of the FK-Ising. It has been shown in [Gar11] that the critical
FK-Ising probability αFK4 (n) for a site to be pivotal behaves like n−35/24+o(1) when n goes
to infinity. If pivotal points were governing the near-critical regime, the correlation length
should satisfy

(LFKε (p))2
α4(LFKε (p))∣p − pc∣ ≍ 1

which would give
LFKε (p) = ∣p − pc(2)∣−

24
13
+o(1) ≫ ∣p − pc(2)∣−1. (12.3)

This brings us to the following observation.

Phenomenon 12.6. The correlation length in FK-Ising is much smaller than what the
intuition coming from standard percolation (q = 1) would predict. In other words, as
one raises the parameter p, the supercritical regime appears “faster” than what would
be dictated simply by the amount of pivotal edges at criticality: new edges arrive in a
very non-uniform, self-organized manner. Pivotal edges are still an important aspect of
the mechanism that governs the near-critical behavior, yet, as we shall discuss more in
Sections 2 to 2.2, a striking self-organized near-criticality appears.

Let us mention possible explanations for this phenomenon. First, there is a basic
phenomenon in the FK(p, q) models for q ≥ 2 that is very relevant to the above discussion:
the difference between the average densities of edges for p = pc(q)+∆p and p = pc(q) is not
proportional to ∆p, but larger than that, with an exponent given by the so-called specific
heat of the model. (We will discuss this in more detail in Section 2.3.) A first guess could
be that the discrepancy in (12.3) is a result of the fact that ∆p is not the density of the
new edges arriving, and this should have been taken into account in the computation
using the pivotal exponent. Nevertheless, this is only partially right: the specific heat
exponent itself is not large enough to account for this discrepancy (in fact, for q = 2 it
equals 0). In fact, a self-organizational mechanism kicks in. In standard percolation, when
∆p ≪ 1, on the way from ωpc to ωpc+∆p new points arrive in a “Poissonian” way. This is
no longer the case with FK-Ising: the arriving edges tend to prefer “strategic” locations,
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i.e., edges which are pivotal at large scales. In other words, near pc, the arriving edges
depend in a very sensitive way on the current configuration. This subtle balance between
the current configuration and the conditional law of the arriving edges is representative
of a self-organized mechanism. In Sections 2 to 2.2, we will discuss the reasons for this
self-organed mechanism and the consequences of this observation. Besides some facts that
can be rigorously proved, most of the underlying self-organization scheme remains to be
understood.

Another point of view on the problem, which might explain the discrepancy, is the
fact that for q > 1 Russo’s formula has to be modified. The probability to be pivotal
must be replaced by the influence of an edge on the event that a box of size n is crossed.
This influence should then behave like n−ι(q) at criticality. Then, Kesten’s scaling relation
(2 − ξ4(q))ν(q) = 1, where ξ4(q) and ν(q) are the critical exponents of the pivotal events
and the correlation length respectively, coming from (12.2) is still valid with the critical
exponent ξ4(q) replaced by the exponent ι(q) governing the behavior of the influence.
This subtlety and the fact that ξ4(q) ≠ ι(q) seem to be new.

On the dynamical and near-critical behavior for other values of q. Finally, we
investigate what happens for other values of q. Since the mathematical understanding of
critical FK(q) models is very limited when q /∈ {0,1,2}, the study relies on predictions
from physics. We will mostly focus on the case q ∈ [1,4], where the FKG inequality
holds and the phase transition is conjectured to be continuous (i.e. there is a unique
infinite-olume measure at criticality, having no infinite cluster). It is therefore natural to
consider the near-critical regime. In this case yet again, pivotal points do not seem to
control the behavior of the near-critical regime. Critical exponents are indeed violating
Kesten’s relations.

We will also discuss briefly noise-sensitivity and dynamical sensitivity of random-
cluster models with q ∈ [1,4]. Indeed, the study of the near-critical regime of percolation
(especially in [GPS10b, GPS]) was conducted in parallel to the study of the dynamical
percolation. It is also possible to define dynamical critical random-cluster models and to
study the influence of pivotal edges on the existence of exceptional times (times for which
an infinite-cluster exists). As for the near-critical regime, the situation seems much more
complicated than the percolation one. In particular, the existence of pivotal edges is not
equivalent to the dynamical sensitivity of the model (it is expected to be equivalent to the
noise sensitivity though). We refer to this section for further details on these phenomena.

Random-cluster models with q > 4 are not as interesting as those with q ≤ 4. Indeed,
the phase transition is of first order and no near-critical regime exists. In addition, the
models are not expected to be noise-sensitive or dynamically sensitive. The last subsection
of this chapter is devoted to their study.

Organization of the chapter. The chapter is organized as follows. In the first section,
we prove Theorems 12.3 and 12.2.

In the second section, we study the self-organized phenomenon in detail. We start with
explaining why pivotal points are crucial in the understanding of the near-critical regime
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of percolation. Then, we present Grimmett’s monotone coupling, allowing to follow the
evolution of the random-cluster model through its phase transition. Finally we explain
how the self-organized phenomenon acts concretely.

The third section contains a discussion of other values of q.
The last one mentions the interesting case of dynamical random-cluster models.

1 Proofs of the main results on the correlation length
(Theorems 12.3, 12.2 and 12.4)

In this section, a point will be identified with its complex coordinate. We will be working
with the fermionic observable F . Recall from Chapter 8 that the observable satisfies the
following relations inside the domain:

Proposition 12.7. Let p ∈ (0,1) and X with four neighbors in G ∖ ∂G, we have

∆pF (eX) = 0, (12.4)

where the operator ∆p is defined by

∆pg(eX) ∶= cos[2α]
4

( ∑
Y ∼X

g(eY )) − g(eX). (12.5)

argument of F

e−iπ/4R

R

iR

eiπ/4RX E

S

W

N

EXW

N

Figure 12.1: Left: An edge inside the domain: it has four edges oriented the same way
at distance two. Right: An edge on the free arc with the associated indexation.

Observe that α(p) = 0 if and only if p = pc. In this case, the observable is discrete
harmonic inside the domain. As mentioned before, this is one of the main ingredients of
Smirnov’s proof of conformal invariance: when properly rescaled, the observable converges
to an harmonic map. Boundary conditions for F correspond to discretizations of the
Riemann-Hilbert problem. These boundary conditions are quite complicated to study at
a discrete level, and Smirnov used a discrete primitive H of the (imaginary part of) F 2

to handle them. The function H was then solving an approximated Dirichlet problem.
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In particular, the use of H made the estimation of F on the free arc possible. More
precisely, F was related to the square root of modified harmonic measures (see Proposi-
tion 9.5). This fact was crucial in the proof of Theorem 9.1. Omitting the details, let us
say that in ’Dobrushin domains’ (G,a, b), the probability at criticality for a site x on the
free arc to be connected to the wired arc (which is the modulus of the observable, thanks
to Lemma 5.9) is of the order of the square-root of the harmonic measure of the wired
arc seen from x. Equivalently, for a dual site u on the wired arc, the probability of being
dual-connected to the free arc is of order of the square-root of the harmonic measure of
the free arc seen from u.

We will be using this fact for two nice infinite Dobrushin domains:

• The infinite strip Sn = Z × [0, n] of height n. Denote by φ−∞,∞Sn,p
the random-cluster

measure with parameter p, free boundary conditions on the bottom and wired
boundary conditions on the top. The probability at criticality for a dual-site on
the top to be dual-connected to the free arc is of order 1/

√
n (since the harmonic

measure of the free arc is 1/n via the Gambler’s ruin).

• The upper half-planeH. Denote by φ0,∞
H,p the random-cluster measure with parameter

p, free boundary conditions on Z+ = {0,1,⋯} and wired boundary conditions on
Z− = {⋯,−2,−1,0}. The probability at criticality for the dual site adjacent to −n
to be dual-connected to the free arc is of order 1/

√
n for the same reason as for the

strip.

free arc

wired arc

0

H

site inside

e = NE
u

NWSW

SE

v

Figure 12.2: Left: The strip. Right: The upper half-plane. In this case, τ is the hitting
time of grey edges.

1.1 Integrability relations of the fermionic observable away from
criticality

Away from the critical point, the primitive H is not available anymore. Nevertheless, Fp
is massive harmonic inside the domain. In fact, Fp satisfies very explicit relations on the
free arc of the domain as well. Precisely, Lemma 8.6 shows that

∆pFp(eX) = cos 2α

2(1 + cos(π/4 − α))[Fp(eW ) +Fp(eN)] + cos(π/4 + α)
1 + cos(π/4 − α)Fp(eE) − Fp(eX) = 0
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for X on the free arc. When p = pc, the sum of the coefficients on the right equals 0, which
means that the observable has an interpretation in terms of reflected random-walks. This
relates to the discretization of the Riemann-Hilbert boundary problem. It provides an
alternative strategy to handle the scaling limit of the observable.

Away from criticality, we can also interpret these relations in terms of a random
process. Define the Markov process with generator ∆p, which one can interpret as the
random walk of a massive particle. We write this process (X(p)

n ,m
(p)
n ) where X(p)

n is
a random walk with jump probabilities defined in terms of ∆p — the proportionality
between jump probabilities is the same as the proportionality between coefficients — and
m

(p)
n is the mass associated to this random walk. The law of the random walk starting at

an edge x is denoted Pxp . In order to simplify the notation, we drop the dependency in p
in (X(p)

n ,m
(p)
n ) and simply write (Xn,mn). Note that the mass of the walk decays by a

factor cos 2α at each step inside the domain (on the free arc, it decays by some constant
that we do not explicit here).

Define τ to be the hitting time of the wired arc, more precisely, of set ∂ of medial
edges pointing north-east and having one end-point on the wired arc (the grey edges in
Fig. 12.2). The fact that ∆pFp = 0 for every edge x ∉ ∂ implies for any t ≥ 0

Fp(x) = Exp[Fp(Xt∧τ)mt∧τ ]. (12.6)

Since mp
τ ≤ 1, Fp(Xt∧τ)mt∧τ is uniformly integrable and (12.6) can be improved into

Fp(x) = Exp[Fp(Xτ)mτ ]. (12.7)

This will be the principal tool in our study.

Proposition 12.8. Let λ > 0. There exists C1 = C1(λ) such that for every n > 0 and
pc ≥ p > pc − λ

n ,

φ−∞,∞Sn,p
(0↔ in +Z) ≥ C1√

n
. (12.8)

There exists C2 = C2 > 0 such that for every n > 0 and p < pc − C2 logn
n ,

φ−∞,∞Sn,p
(0↔ in +Z) ≤ C2

n4
. (12.9)

Proof In both cases, we study the probability for a point on the free arc to be connected
to the wired arc. In particular, Lemma 5.9 implies that quantities on the left of (12.8)
and (12.9) are equal to ∣F (e0)∣ (or F (e0) in this case, since the winding is fixed on the
boundary). Moreover, (12.7) allows us to write

φ−∞,∞Sn,p
(0↔ in +Z) = F (e0) = E0

p[Fp(Xτ)mτ ]

Yet, recall that Fp(Xτ) = φ−∞,∞Sn,p
(Xτ

⋆↔ Z) by duality and Lemma 5.9 again. We deduce

φ−∞,∞Sn,p
(0↔ in +Z) = E0

p[φ
−∞,∞
Sn,p

(Xτ
⋆↔ Z)mτ ]

= φ−∞,∞Sn,p
(in ⋆↔ Z)E0

p[mτ ]
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Let us first deal with (12.8). Since p > pc− λ
n , mp is larger than 1−c(λ/n)2 for some c > 0.

We deduce that
Ex[mτ ] ≥ C

for some C = C(λ). In addition to this,

φ−∞,∞Sn,p
(in ⋆↔ Z) ≥ C√

n
,

where we used the estimate of the probability at criticality for a dual site of the wired arc
to be connected to the free arc, together with the fact that p < pc implies that the dual
model is supercritical. Plugging both inequalities together, we obtain (12.8).

Let us no turn to (12.9). When p < pc −C(logn)/n, we use the expansion of α near pc
and cos 2α ≤ 1 − c(logn)/n (for some constant c = c(C)) to deduce

φ−∞,∞Sn,p
(0↔ in +Z) ≤ E0

p[mτ ] ≤ E0
p[(1 − c2(logn)/n)τ ] ≈ nc

′

for c′ = c′(C). In order to conclude, c′ can be chosen larger than 4 by tuning C. ◻

The previous proof of (12.8) was based on a comparison with the estimates at criti-
cality: when p > pc −λ/n the connection probabilities are of the same order as the critical
ones. We push further this reasoning in the following proposition.

Proposition 12.9. For any λ > 0, there exists C3 = C3(λ) > 0 such that for every n > 0
and p > pc − λ

n ,

φ0,∞
H,p (n↔ Z−) ≥ C3√

n
. (12.10)

Let us first prove a straightforward yet technical result. It should be compared to
Lemma 5.9.

Lemma 12.10. Let u be a dual vertex adjacent to the wired arc of H,

Fp(eu) ≍ φ0,∞
H,p (u

⋆↔ Z+),

where eu is the edge pointing north-east and adjacent to u, and ≍ means that the ratio is
uniformly bounded away from 0 and ∞.

Proof If v is the vertex of the medial lattice on the left of u, the relation around v (5.6)
gives F (NW ) + F (SE) = eiα(F (NE) + F (SW )), where edges are indexed with respect
to the direction they are pointing to (see Fig. 12.2). Since we know the complex
argument modulo π of the observable, we can project the relation on e−iπ/4R. Then,
the argument modulo 2π of the observable at NW and SW is in fact determined, since
the winding on the boundary is deterministic (it equals −π/2 for NW , and −π for SW ).
Therefore, we find

eiπ/4F (NW ) − cos(π/4 − α)iF (SW ) = cos(π/4 + α) F (NE).
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Lemma 5.9 then implies

eiπ/4F (NW ) = ∣F (NW )∣ = φ0,∞
H,p (u

⋆↔ Z+)

iF (SW ) = ∣F (SW )∣ = φ0,∞
H,p (u − 1

⋆↔ Z+).

Using the fact that NE = eu, we deduce

cos(π/4 + α)F (eu) = φ0,∞
H,p (u

⋆↔ Z+) − cos(π/4 − α)φ0,∞
H,p (u − 1

⋆↔ Z+).

Now, φ0,∞
H,p (u − 1

⋆↔ Z+) ≤ φ0,∞
H,p (u

⋆↔ Z+) thanks to the comparison between boundary
conditions. We deduce

1 − cos(π/4 − α)
cos(π/4 + α)

φ0,∞
H,p (u

⋆↔ Z+) ≤ F (eu) ≤ 1

cos(π/4 + α)
φ0,∞
H,p (u

⋆↔ Z+)

which is the claim. ◻

We are now in a position to prove the proposition.

Proof of Proposition 12.9 Fix n > 0 and p ≥ pc− λ
n and denote the fermionic observable

in (H,0,∞) by Fp. Lemma 12.10 implies

Fp(n) = Enp [Fp(Xτ)mτ ] ≍ Enp [φ
0,∞
H,p (Xτ

⋆↔ Z+)mτ ].

We know that
φ0,∞
H,p (u

⋆↔ Z+) ≥ C3/
√

∣u∣,
thus implying

Fp(n) ≥ C4Enp [ φ
0,∞
H,p (Xτ

⋆↔ Z+) mτ ] ≥ C4C3 Enp [ mp
τ/

√
∣Xτ ∣] (12.11)

for two universal constants C3,C4 > 0. Therefore, it is sufficient to prove that ∣Xτ ∣ is not
larger than n and that mτ is larger than some constant ε > 0 with probability bounded
away from 0 uniformly in n. The second condition can be replaced by the fact that τ ≤ n2

for instance.
First, note that it is sufficient to prove that Xt exits [0,2n]×[0, n] through [0,2n]×{n}

in less than n2/2 steps with probability larger than some constant c > 0 not depending on
n. Indeed, the walk has then a uniformly positive probability to exit the domain in less
than 1

2n
2 steps, and that ∣Xτ ∣ ≤ n.

Consider (Xt)t≤n2/2 = (At,Bt)t≤n2/2 conditioned on the event that (Xt)t≤n2/2 visits the
free arc less than n times. The probability that the first coordinate is less than n for every
t ≤ n2/2 is bounded away from 0 uniformly in n (since the number of visits of (Xt) to 0 is
less than n, At can be compared to a symmetric random walk with a deterministic drift
of order rn for r < 1). Now, conditioned on the visits of (Xt) to the free arc, (At) and
(Bt) are independent. Thus, (Bt) is a reflected random walk at the origin conditioned on
the fact that it does not visit 0 more than n times. In time n2/2, it reaches height n with
probability bounded away from 0 uniformly in n. The claim follows. ◻
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1.2 Proof of Theorem 12.3

We first prove crossing probabilities in rectangles with specific boundary conditions. Then,
we use these crossings to construct crossings in arbitrary rectangles with free boundary
conditions.

Crossing in rectangles with Dobrushin boundary conditions. Let us first use
the estimates obtained in the previous section to prove crossing probabilities in the strip
and the half-plane. The proof follows a second moment argument.

Proposition 12.11. Fix λ > 0. There exists C6 = C6(λ) > 0 such that for every n > 0 and
every p > pc − λ

n ,
φ−∞,∞Sn,p

([−n,n] ↔ in +Z) ≥ C6

and
φ−∞,∞H,p ([3n,4n] ↔ Z−) ≥ C6.

−n n 3n 4n

in

Figure 12.3: The two crossing events of Proposition 12.11.

Proof We present the proof for Sn (a similar argument works for H). Let N be the
(random) number of sites on [−n,n] which are connected by an open path to in + Z.
Proposition 12.8 implies that

φ−∞,∞Sn,p
(N) = ∑

x∈[−n,n]
φ−∞,∞Sn,p

(x↔ in +Z) ≥ (2n + 1) C1√
n

≥ 2C1

√
n. (12.12)

Moreover,
φ−∞,∞Sn,p

(N2) ≤ φ−∞,∞Sn,pc
(N2).

The right hand side is a quantity at the critical point and was already studied in Chapter 9
(in fact, only very related quantities were studied, but the generalization is straightfor-
ward). In particular, it was proved in this chapter that

φ−∞,∞Sn,pc
(N2) ≤ C6n.

Cauchy-Schwarz thus implies that

φ−∞,∞Sn,p
([−n,n] ↔ in +Z) ≥ φ−∞,∞Sn,p

(N > 0) ≥ 2C2
1/C6

uniformly in n. ◻
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It is now easy to reduce crossing probabilities in the strip and the half-plane to crossing
probabilities in (possibly very large) rectangles. The idea is that a crossing cannot explore
too much of the strip or the half-plane, since there exist slightly supercritical dual crossings
preventing it.

Proposition 12.12. Fix λ > 0, there exist C7 > 0 and M > 0 such that for every n > 0
and pc > p > pc − λ

n ,
φ
(i+M)n,(i−M)n
[−Mn,Mn]×[0,n],p([−n,n] ↔ in +Z) ≥ C7

and
φ−Mn,0
[−Mn,Mn]×[0,Mn],p([3n,4n] ↔ Z−) ≥ C7.

Proof As before, we do it in the case of the strip. Fix M large enough so that at
criticality, the probability that there exists a vertical dual crossing with free boundary
conditions of [n,Mn]×[0, n] exceeds 1−C6/3 (use Theorem 9.1 to prove this fact). Then,
with probability C6/3, there will exist a crossing of [−n,n] to in+Z and two dual vertical
crossings in [n,Mn] × [0, n] and [−Mn,−n] × [0, n]. The domain Markov property and
the comparison between boundary conditions imply the result. ◻

Crossing in rectangles with free boundary conditions. A consequence of Propo-
sition 12.12 is the existence of crossings inside a box with free boundary conditions ev-
erywhere. Indeed, the previous result only deals a priori with domains where a part of
the boundary is already wired but this condition can be removed.

Proposition 12.13. Fix λ > 0. There exist C8,M > 0 such that for every n > 0 and
p > pc − λ

n ,
φ0
[−Mn,Mn]×[0,n],p([−Mn,Mn] × [0, n/2] is cross. vert.) ≥ C8.

Proof Fix M so that the Proposition 12.12 holds true. Let An be the event that
[−Mn,Mn] × [0, n/2] is crossed vertically. We have for every n > 0,

φ
(i+M)n,(i−M)n
[−Mn,Mn]×[0,n],p(An) ≥ C7.

Let Bn be the event that [−Mn,Mn] × [n/2, n] is dual crossed horizontally. Theorem 9.1
implies that

φ
(i+M)n,(i−M)n
[−Mn,Mn]×[0,n],p(Bn∣An) ≥ c

for some constant c > 0 uniform in n and p < pc. Now,

φ0
[−Mn,Mn]×[0,n],p(An) ≥ φ

(i+M)n,(i−M)n
[−Mn,Mn]×[0,n],p(An∣Bn)

≥ φ
(i+M)n,(i−M)n
[−Mn,Mn]×[0,n],p(An ∩Bn)

= φ
(i+M)n,(i−M)n
[−Mn,Mn]×[0,n],p(Bn∣An) ⋅ φ(i+M)n,(i−M)n

[−Mn,Mn]×[0,n],p(An)
≥ c ⋅C7.
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◻

We now prove that crossings of rectangles of any aspect ratio do exist.

Lemma 12.14. Fix λ > 0 and κ > 0, there exists C9 = C9(κ) > 0 such that for every n
and p > pc − λ

n ,

φ0
[−n,(κ+1)n]×[0,n],p([0, κn] × [0, n] is crossed horizontally) ≥ C9.

n

−n
Mεn

0 κn (κ+ 1)n

εkn ε(k + 1)n

event Bkevent A

Figure 12.4: The intersections of events A and Bk create a crossing of the rectangle
[−n,n] × [0, κn].

Proof Fix M =M(λ) as in Propositions 12.12 and 12.13. Let ε = 1/(2M)2. Let A be
the event that there exists a crossing from [−εn, εn] to iMεn + Z. Now, let Bk be the
event that there exists a path in Z×[0,Mεn] from [(k+1)εn, (k+2)εn] to [(k−1)εn, kεn].
We have

φ0
[−n,(κ+1)n]×[0,n],p([−n,n] × [0, κn] is crossed horizontally)

≥ φ0
[−n,(κ+1)n]×[0,n],p (A ∩

κ/ε−1

⋂
k=0

Bk)

= φ0
[−n,(κ+1)n]×[0,n],p(A)

κ/ε−1

∏
k=0

φ0
[−n,(κ+1)n]×[0,n],p(Bk∣A,Br, r < k).

Yet,
φ0
[−n,(κ+1)n]×[0,n],p(A) ≥ φ0

[−n,n]×[0,n/(2M)],p(A).
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Now, the event A in [−n,n]×[0, n/(2M)] correspond to the existence of a crossing from the
bottom to the middle, but with the additional constraint that it starts between [−εn, εn].
The union bound and the comparison between boundary conditions implies that

φ0
[−n,n]×[0,n/(2M)],p(A) ≥ εφ0

[−n,n]×[0,n/(2M)],p([−n,n] × [0, n/(4M)]) ≥ εC8.

Moreover, since 1/(4M) =Mε, we find

φ0
[−n,n]×[−n,(κ+1)n],p(Bk∣A,Br, r < k) ≥ φkεn,∞[(k−M)εn,(k+M)εn]×[0,Mεn],p(Bk) ≥ C7

using the comparison between boundary conditions and Proposition 12.12. Altogether,
we obtain that

φ0
[−n,(κ+1)n]×[0,n],p([−n,n] × [0, κn] is crossed horizontally) ≥ C8C

κ/ε
7 .

◻

0
n

ρn

εn

2εn

(ρ− ε)n

(ρ− 2ε)n

εn (1− ε)n

event B

event Abottom

event Atop

event Ctop

event Cbottom

Figure 12.5: The five events involved in the proof of Theorem 12.3.

Proof of Theorem 12.3 Fix ε < 1/(4M). Let Abottom and Atop be the events that
[εn, (1 − ε)n] × [ε,2εn] and [εn, (1 − ε)n] × [(ρ − 2ε)n, (ρ − ε)n] are crossed horizontally.
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Let B be the event that [εn, (1 − ε)n] × [εn, (ρ − ε)n] is crossed vertically. Let Cbottom
and Ctop be the events that [εn, (1 − ε)n] × [0,2εn] and [εn, (1 − ε)n] × [(ρ − 2ε)n, ρn]
are crossed vertically. By Lemma 12.14, the events Abottom, Atop and B have probability
bounded away from 0 uniformly in n. The FKG inequality implies that their intersection
also has this property. Now, conditionally on Abottom, Cbottom has probability larger than
the probability that there exists a crossing in [εn, (1−ε)n]×[0,2εn] with wired boundary
condition on the top and free boundary condition on the bottom. Proposition 12.12
implies that this probability is larger than C7 since (1 − 2ε)/(2ε) > 2M (the important
thing is that the rectangle is [εn, (1− ε)n]× [0,2εn] is wide enough). The same reasoning
can be applied to Ctop ergo the claim follows. ◻

1.3 Proofs of Theorems 12.2 and 12.4

Let us start with the following lemma:

Lemma 12.15. There exists C11 > 0 such that

φp(0↔ ∂[−n,n]2) ≤ C11n
−3 (12.13)

for every n large enough and every p ≤ pc −C11
logn
n .

Proof Equation 12.9 implies the existence of C10 > 0 such that

φ−∞,∞Sn,p
(0↔ in +Z) ≤ C10

n4

for p ≤ pc−C10
logn
n . The reasoning described in the proof of Theorem 8.1 applies here and

gives

φp(0↔ ∂[−n,n]2) ≤ C11

n3
.

which implies readily the claim. ◻

Proof of Theorem 12.2 Fix C11 > 0 as defined in Lemma 12.15. Theorem 12.3 implies
the lower bound trivially. For the upper bound, it suffices to show that for any κ > 0,

φ1
[−n,n]×[−κn,κn],p([−n,n] × [−κn,κn] is crossed horizontally) → 0

whenever (n, p) → (∞,0) with p ≤ pc −C11
logn
n . Fix ε > 0 and κ > 0.

Theorem 9.1 implies the existence of δ > 0 such that the probability that there exists
a crossing of [−n,−(1− 2δ)n] × [−κn,κn] with wired boundary conditions is smaller than
ε/3 for any p < psd and n > 0.

Define An to be the event that the annulus

Sn ∶= [−n,n] × [−κn,κn] ∖ [−(1 − δ)n, (1 − δn)] × [−(κ − δ)n, (κ − δ)n]
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contains a close circuit surrounding the inner box. Note that there exists η > 0 such that

φ1
p,Sn(An) ≥ η

thanks to Theorem 9.1 again. Now, let Bn be the event that [−(1− δ)n, (1− δ)n] × [−(κ−
δ)n, (κ − δ)n] contains a cluster of diameter δn. Since An is decreasing and Bn depends
only on edges inside [−(1 − δ)n, (1 − δ)n] × [−(κ − δ)n, (κ − δ)n], we obtain

φ1
p,[−n,n]×[−κn,κn](An∣Bn) ≥ φ1

p,Sn(An) ≥ η.

In particular,

ηφ1
p,[−n,n]×[−κn,κn](Bn) ≤ φ1

p,[−n,n]×[−κn,κn](Bn ∩An)
≤ φ1

p,[−n,n]×[−κn,κn](Bn∣An)
≤ φ0

p,[−n,n]×[−κn,κn](Bn).

Lemma 12.15 and the definition of C11 implies that

φ0
p,[−n,n]×[−κn,κn](Bn) Ð→ 0 when n→ 0. (12.14)

Therefore, φ1
p,[−n,n]×[−κn,κn](Bn) → 0.

In order to conclude, notice that if the rectangle is crossed horizontally, then [−n,−(1−
2δ)n]×[−κn,κn] or [(1−2δ)n,n]×[−κn,κn] are crossed horizontally, or Bn occurs. Since
the first two events have probability less than ε/3, and the last one has probability less
than ε for n large enough: it implies the claim readily. ◻

Let us now turn to the proof of Theorem 12.4. We have just proved that, for ρ > 0
and ε > 0, there exists c = c(ε, ρ) such that for any n ≥ c

pc−p log 1
pc−p ,

φ1
p,[0,n]×[0,ρn](Ch([0, n] × [0, ρn])) ≤ ε.

The next lemma asserts that crossing probabilities in fact converge to 0 very quickly as
soon as n is larger than the correlation length.

Lemma 12.16. For any p < pc, there exists L(p) such that

c

pc − p
≤ L(p) ≤ 1

c(pc − p)
log

1

pc − p

and
φ1
p,[0,2kL(p)]×[0,2k+1L(p)](Ch([0,2

kL(p)] × [0,2k+1L(p)])) ≤ e−2k

for any k ≥ 0.
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Proof For n > 0, let

un ∶= max{φ1
p,[0,n]×[0,2n](Ch([0, n] × [0,2n])) , φ1

p,[0,n]2(Ch([0, n]
2))} .

We are going to show that
u2n ≤ 25u2

n . (12.15)

First, cutting vertically the domain [0,2n]2 into two rectangles, together with com-
parison between boundary conditions, imply that

φ1
p,[0,2n]2(Ch([0,2n]

2)) ≤ φ1
p,[0,n]×[0,2n](Ch([0, n] × [0,2n]))

2

≤ u2
n . (12.16)

Second, cutting vertically the domain [0,2n]× [0,4n] into two, together with compar-
ison between boundary conditions again, imply that

φ1
p,[0,2n]×[0,4n](Ch([0,2n] × [0,4n])) ≤ φ1

p,[0,n]×[0,4n](Ch([0, n] × [0,4n]))
2

.

Now, consider the rectangles

R1 ∶= [0, n] × [0,2n]
R2 ∶= [0, n] × [n,3n]
R3 ∶= [0, n] × [2n,4n]
R4 ∶= [0, n] × [n,2n]
R5 ∶= [0, n] × [2n,3n]

These rectangles have the property that whenever [0, n] × [0,4n] is crossed horizontally,
at least one of the rectangles Ri is crossed (in the horizontal direction for R1, R2 and R3,
and vertically otherwise). We deduce, using the comparison between boundary conditions,
that

φ1
p,[0,n]×[0,4n](Ch([0, n] × [0,4n])) ≤ 5un ,

and hence
φ1
p,[0,2n]×[0,4n](Ch([0,2n] × [0,4n])) ≤ (5un)2 . (12.17)

Combining (12.16) and (12.17), we obtain (12.15). Iterating that, we easily obtain
that, for every k ≥ 0,

25u2kn ≤ (25un)2k
.

By Theorem 12.2, if p < pc and n ≥ c
pc−p log 1

pc−p , where c = max{c(1/100,2), c(1/100,1)},
then un satisfies

25un ≤ 1/ε .

Therefore, the lemma follows for L(p) = c
pc−p log 1

pc−p . ◻
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Proof of Theorem 12.4 Fix p > pc. Let

Rk ∶= [0, L(p)2k] × [−L(p), L(p)(2k+1 − 1)] if k is even,

and
Rk ∶= [0, L(p)2k+1] × [−L(p), L(p)(2k − 1)] if it is odd.

Define Ek to be the event that Rk is crossed in the ’long’ direction. The FKG inequality
implies that

φ0
p(0↔∞) ≥ φ0

p(0↔ {L(p)} × [−L(p), L(p)]) ⋅∏
k≥0

φ0
p(Ek)

≥ 1

4
φ0
p(0↔ ∂[−L(p), L(p)]2) ⋅∏

k≥0

(1 − e−2k)

≥ c (L(p))−1/8
,

where c > 0. We used Lemma 12.16 to get the second line, and the lower bound of
Theorem 12.2 and (12.1) to get the third inequality. ◻

2 Near-critical behavior: a fascinating self-organized
near-criticality emerges

As promised, we start the discussion with the near-critical regime in standard percolation.
Our goal here is to provide a self-contained explanation of the fact that the near-critical
correlation length and the behavior of the percolation probability θ(p) as p ↘ pc are
governed by the amount of pivotals at criticality. Then we explain why this picture must
be flawed in the case of random-cluster models.

2.1 Pivotal points govern the near-critical regime of percolation

Recall that the correlation length is defined as follows: fix some small ε > 0. For any n ≥ 1,
let Rn be the [0, n]×[0, n] square for bond percolation on Z2, and for any p = pc+∆p > pc,
define

Lε(p) = L(p) ∶= inf {n ≥ 1 s.t. Pp(Cv(Rn)) ≥ 1 − ε} ,

where Pp is the probability measure of bond-percolation with parameter p. Let us start
with explaining the fact that things look supercritical above L(p). For n ≥ L(p), the
probability to have a left-to-right crossing in the box [0, n]2 is larger than 1−ε by definition.
Russo-Seymour-Welsh theory implies that the probability to have a left-to-right crossing
in the rectangle [0,3n] × [0, n] is greater than 1 − g(ε), where g(ε) goes to 0 as ε →
0. Then, using well-known arguments, one can show that the “geometry” of ωp above
L(p) stochastically dominates a certain supercritical percolation model of parameter
1−φ(g(ε)), where φ(x) goes to 0 as x→ 0. In this sense, things indeed look supercritical
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above L(p). This step would have been simpler if one had worked directly with long
rectangles [0,3n] × [0, n] in the definition of L(p) instead of the symmetric Rn. However,
the symmetry of Rn will be relevant to the explanation of the following ”opposite” fact:
things look critical below L(p). We need to obtain RSW estimates for the dual percolation.
By planar duality, if n < L(p), then the probability to have a top-to-bottom dual crossing
in Rn is greater than ε. Russo-Seymour-Welsh theory then implies that the probability to
have a dual left-to-right crossing in [0,3n] × [0, n] is greater than ψ(ε) (where ψ(ε) → 0
when ε→ 0). This means that at scales smaller than L(p) we do have the uniform crossing
probabilities that make the configuration look critical.

Goal: How can one estimate L(p) as a function of ∣p − pc∣?

As explained in the introduction, it is quite simple to guess what L(p) should be.
Indeed, the quantity is naturally related to thermodynamical quantities of the model via
Kesten’s scaling relations:

Theorem 12.17 ([Kes87], see also [Wer07, Nol08] for modern expositions). For L(p) =
Lε(p), one always has

L(p)2α4(L(p)) ≍ 1

∣p − pc∣
, (12.18)

θ(p) ≍ α1(L(p)), (12.19)

where the constants in ≍ depend on ε > 0.

Let us sketch the proof now:

Proof Let us start with the first relation. In the following, let fn denote the indicator
function of the left-to-right crossing event in the domain Rn.

The intuition was already given in the introduction: for crossing events of scale n (i.e.,
for rectangles of diameter ≍ n), there are Θ(n2α4(n)) points on average which are pivotal
for the crossing event. Now, in the standard monotone coupling, from ωpc to ωp, each of
these pivotal points flips with probability of order ∣p − pc∣. Therefore, it is tempting to
believe that as far as n2α4(n)∣p − pc∣ ≪ 1, it is unlikely for the crossing event to change,
while once n2α4(n)∣p − pc∣ ≫ 1, many pivotal points are flipped and things should start
being highly connected.

A few things are a bit “fishy” in this intuition: one of them is that one might have
fn(ωp) = 1 and fn(ωpc) = 0 together with the fact that from ωpc to ωp, none of the initial
pivotal points for fn had been switched: the pivotal switch might happen at a point that
was not pivotal originally. On the way from ωpc to ωp, if one stayed at equilibrium as
it is the case for example in dynamical percolation, one would still be able to conclude
something based on such considerations, but one difficulty here is that as we follow the
monotone coupling, we leave the “critical regime”.

The nice idea from [Kes87] to overcome this near-critical bias is to apply Russo’s
formula simultaneously to the crossing event as well as to the four-arm event. Indeed,
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for the crossing event, one can check that as long as n ≤ L(p) = Lε(p),

d

dp
Ep[fn] = ∑

sites x
Pp[x is pivotal]

≍ n2αp4(n) . (12.20)

To go from the first line to the second one is in fact non-trivial: one needs to prove that
below the correlation length, the main contribution in Russo’s formula comes from bulk
points rather than boundary points. The technology involved here is quasi-multiplicativity
and separation of arms. One can prove these even if we are not at the critical point, since
as far as n ≤ L(p), one still has RSW estimates both for the primal and the dual model.

Now the key observation is the following one:

∣ d
dp
αp4(n)∣ ≤ ∑

x

Pp[x is pivotal for the 4-arm event] { using Russo’s
formula again

≤ O(1)αp4(n/3) ∑
∣x∣≥2n/3

Pp[x has the 4-arm event to distance n/3]

≤ O(1)αp4(n)n2αp4(n) . (12.21)

The second inequality uses quasi-multiplicativity along with a dyadic summation to show
that the main contribution arises from large-scale pivotal points. The third inequality
uses quasi-multiplicativity again.

The combination of (12.20) and (12.21) implies that for all n < L(p), the variation of
p ↦ log(αp4(n)) is controlled (up to constants which depend only on ε) by the variation
of p↦ Ep[fn] which is of course bounded. This implies that

αp4(n) ≍ α4(n) , (12.22)

where the constants involved in ≍ depend only on ε > 0.
Now integrating (12.20) and using (12.22), one can conclude about the correlation

length: for n ≤ L(p),

Ep[fn] −Epc[fn] ≍ ∫
p

pc
n2αu4(n)du

≍ ∣p − pc∣n2α4(n) .

In particular, for n = L(p), since Ep[fn] − Epc[fn] ≍ 1, we obtain our desired esti-
mate (12.18).

The near-critical stability of the four-arm probability (12.22) also follows from
[GPS]. The philosophy behind the previous argument is that, as far as few pivotal points
are touched, percolation remains “critical”. In particular, critical exponents remain un-
changed below L(p). We have seen this in (12.22) for the case of α4(n), but the same
argument works for the one-arm event α1(n): namely, for n < L(p),

αp1(n) ≍ α1(n) .
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This immediately implies the second scaling relation:

θ(p) ∶= Pp[0↔∞]

≍ Pp[0↔ ∂B(0, L(p))] { since above L(p), there
is a “dense” infinite cluster

= αp1(L(p))
≍ α1(L(p)) .

◻

The knowledge of critical arm-exponents ξ1(1) and ξ4(1) for site-percolation on the
triangular lattice T allows for an estimation of L(p) and θ(p):

LT(p) = (p − pc)−4/3+o(1)

θT(p) = (p − pc)5/36+o(1)

as p↘ pc = 1/2.
As we discussed at length in the introduction, the first scaling relation (12.18) does

not hold in the FK-Ising case (see Phenomenon 12.6 and (12.3)). Nevertheless, note
that the heuristic of the second scaling relation should be very general. Contrarily to the
first scaling relation, it gives the right prediction for the correlation length. Indeed, the
thermodynamical quantities L(p) and θ(p) have pendents in the FK-Ising case. Onsager’s
determination of the magnetization, together with the Edwards-Sokal coupling implies
that

θFK
Z2 (p) ∶= φp,2(0↔∞) ≍ ∣p − pc∣1/8 (12.23)

and
φpc,2(0↔ ∂[−n,n]2) ≍ n−1/8. (12.24)

From these two relations, the second scaling relation (which does not harness any pivotal
event) implies that the correlation length should behave like 1/∣p−pc∣ for FK-Ising, which
is the right prediction. Also note that (12.24) has been proved using conformal invari-
ance techniques in [CHI11]. It would be interesting to make sense of the second scaling
relation in the FK-Ising case in order to provide a derivation of the exponent 1/8 for the
magnetization which would be independent of Onsager’s computation.

Let us conclude this paragraph by mentioning another result proved in [Kes87]. The
correlation length is sometimes defined as the inverse rate of exponential decay of the
connectivity probabilities in subcritical:

1

L(p)
∶= lim

n→∞
− 1

n
logPp((0,0) ↔ (n,0)).

Kesten proved that this definition is coherent with the definition in terms of crossing
probabilities. Nonetheless, this correspondence is known only in the percolation case and



CHAPTER 12. NEAR-CRITICAL PLANAR FK-ISING MODEL 239

is not fully understood in the FK-Ising case. Furthermore, this definition is less tractable
when studying near-critical regimes. It is therefore useless to consider existing estimates
on the inverse rate of exponential for the FK-Ising model (see Chapter 8 e.g.) to prove
that the correlation length defined as before behaves like ∣p − pc∣−1.

2.2 The monotone increasing Markov process on cluster configu-
rations

We would now like to understand the behavior of random-cluster models when p varies
from 0 to 1. Let us first present a monotone coupling µ between random-cluster models
with fixed q ≥ 1, which was first considered by Grimmett in [Gri95]. This section is not
restricted to q = 2 and applies for any q ≥ 1.

It turns out that it is non-trivial to construct explicitly such a measure µ (note that on
the contrary the existence of abstract monotone couplings follows easily from a generalized
Strassen’s theorem). Instead of constructing explicitly a joint coupling µ, Grimmett
obtains this monotone coupling for a graph G = (V,E) as the invariant measure µ of a
natural Markov Process on the space Ω ∶= [0,1]E. This technique is usually employed to
simulate a single Gibbs measure and we propose to provide this example first.

Heat-bath dynamics Assume we wish to simulate the random-cluster measure φ0
G,p,q

on the graph G = (V,E). First note that the random-cluster model with parameters (p, q)
has the following property:

Property 12.18. For any edge e = [xy],

φ0
G,p,q(e is open ∣ ω on G ∖ {e}) = { p , if x ω←→ y in G ∖ {e}

p
p+(1−p)q , otherwise .

This “almost local” rule for the conditional law of an edge e knowing the external
environment enables us to consider the heat-bath dynamics:

Definition 12.19 (Heat-bath dynamics or Sweeny algorithm). Let G = (V,E) be
any finite graph. The random-cluster heat-bath dynamics on G is defined as follows: each
edge e ∈ E is updated at rate 1 (the exponential clocks being independent) and when a
clock rings at e, its status ω(e) is resampled according to the conditional law given in
Property 12.18.

It is straightforward to check that this dynamics has the following properties: it is a
reversible Markov chain with state space {0,1}E and its invariant measure is φ0

G,p,q. This
dynamics has been studied both for theoretical reasons (see [Gri95, Gri06]) and practical
ones (see [DGS07] for a good account of recent works). For instance, via the Edwards-
Sokal coupling, it turns out to provide a faster way than classical Glauber dynamics to
sample Ising models (at least in dimension d = 2). More sophisticated algorithms are
known for integer values of q (for example, the Swendsen-Wang algorithm), however the
above dynamics has the advantage that it works for all real values of q and is probably
more tractable for rigorous analysis.
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Grimmett’s dynamics and monotone coupling Let us go back to Grimmett’s
monotone coupling and briefly describe it (ee [Gri95, Gri06] for a detailed exposition). Let
G = (V,E) be a finite subgraph of Z2 and Ω be the space [0,1]E. Each Z ∈ Ω decomposes
into a monotone family of edge configurations (ωp)0≤p≤1 = (ωp(Z))0≤p≤1, where for each
p ∈ [0,1] and any e ∈ E:

ωp(Z)(e) ∶= 1Z(e)≤p .

The goal is to find a measure µ = µG on Ω in a such a way that all the “projections”
ωp(Z) with Z ∼ µ follow the random-cluster probability measure of parameters (p, q) on
{0,1}E with free boundary conditions. It is not hard to see what this Markov process
(Zt)t≥0 should be. Assume that for all p ∈ [0,1], the projection ωp(Zt) is also a Markov
process and that its invariant measure is φ0

G,p,q, then it is natural to expect ωp(Zt) to be
the heat-bath dynamics that we defined previously. Indeed, if (Zt)t≥0 is such that each
edge is updated at rate one (the exponential clocks on each edge being independent), this
means that simultaneously for all p ∈ [0,1], the law of the update at e needs to be
compatible with Property 12.18. For any e = ⟨x, y⟩ ∈ E, let De ⊂ {0,1}E be the event that
there is a path of open edges in E ∖{e} connecting x and y. For any e ∈ E and any Z ∈ Ω,
define

Te(Z) ∶= inf{p ∈ [0,1] s.t. ωp(Z) ∈ De} .

Assume one is running the dynamics and that at a time t the edge e rings. Let
Zt− be the current configuration (before the update). Let Ue be the random variable
corresponding to the new label at e knowing Zt−. In particular, we know the value of
T = Te(Zt−). Since p ≥ T is equivalent to ωp(Zt−) ∈ De, in order for Zt to match the
heat-bath dynamics on the projection ωp(Zt) for all p simultaneously, conditionally on
the value T = Te(Zt−), the update variable Ue must satisfy

P[Ue ≤ p] ∶= { p if p ≥ T
p

p+(1−p)q if p < T . (12.25)

Fortunately, q ≥ 1 implies that this is a valid distribution function, hence we can simply
define Ue to be a sample from this distribution. Note that Ue has an absolutely continuous
part plus a Dirac point mass (for q > 1) on T , namely [T − T

T+(1−T )q ]δT .

This discussion motivates the introduction of the Markov chain Zt on the state space
XΛ = [0,1]E(Λ) where labels on the edges are updated at rate one according to the above
conditional law (given by Ue, e ∈ E(Λ)). This is precisely the dynamics that was considered
by Grimmett in [Gri95] (see also [HJL02] where this dynamics was revisited).

Constructing an infinite-volume version of the previous dynamics is not straightfor-
ward. Nevertheless, one has the following asymptotic statement from [Gri95, Gri06] to
light the way.

Proposition 12.20 (Infinite Volume Limit [Gri95]). For each n ≥ 1, let Λn ∶= [−n,n]d.
Let ξ be some initial configuration in X ∶= [0,1]E(Z2). Consider the random-cluster heat-
bath dynamics ZΛn

t on Λn with free boundary conditions and which starts from the initial
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state ZΛn
0 ≡ ξ∣Λn. Then, as n → ∞, the process (ZΛn

t ) weakly converges to a Markov
process (Z free

t )t≥0 which starts from the initial configuration Z free
0 = ξ.

Furthermore, as t→∞, Z free
t weakly converges to an invariant measure µ on X.

If, in the limiting procedure, one uses wired boundary conditions instead, one obtains
at the limit a Markov process (Zwired

t )t≥0. The processes Zwired
t and Z free

t might possibly
have different transition kernels but they both have the same µ as the unique invariant
measure.

The underlying dynamics here is non-Fellerian, and the limiting Markov process in
the above theorem is derived from the monotonicity properties inherent to the dynam-
ics. In particular, the relationship between this Markov process and its formal generator
(we will not write it down explicitly here) would need to be investigated. This seems to
be a non-trivial task for the present dynamics. Therefore, we will not assume any ex-
plicit transition rule for the infinite-volume dynamics Z free

t (or Zwired
t ) and will restrict

ourselves to the “compact case”.

The Markov property of the monotone coupling Let us prove that Grimmett’s
coupling leads to a monotone increasing Markov process (as p varies) on the cluster
configurations, i.e., on the space {0,1}E. We will not rely on this Markovian property
later on, nevertheless, it provides a nice picture of the self-organization scheme near pc(q).
Namely, as one raises p near pc, new edges arrive in a complicated fashion, yet depending
only on the current configuration ωp.

Proposition 12.21. Let G = (V,E) be a finite subgraph of Z2. Let Z be sampled according
to µ. Then the monotone family of projections (ωp(Z))0≤p≤1, seen as a random process
in the “time” variable p, is a non-decreasing inhomogeneous Markov process on the
space {0,1}E.

Proof We wish to prove that conditioned on the projections (ωu(Z))0≤u≤p, the condi-
tional law of the higher configurations (ωu(Z))p≤u≤1 depends only on ωp(Z). To achieve
this, it is enough to prove the Lemma 12.22 below. Before stating the lemma, we in-
troduce some notations. For p ∈ [0,1], decompose the configuration Z into the triple
(ωp, Z≤p, Z>p) defined as

ωp = ωp(ZΛ); Z≤p =
⎧⎪⎪⎨⎪⎪⎩

Z if Z ≤ p
1 otherwise

; Z>p =
⎧⎪⎪⎨⎪⎪⎩

Z if Z > p
0 otherwise

.

Note that
ωp = ωp(Z≤p) = ωp(Z>p) , (12.26)

and that Z can be recovered from the triple (ωp, Z≤p, Z>p).

Lemma 12.22. Conditioned on the value of the first component ωp, the other two com-
ponents Z≤p and Z>p are conditionally independent.
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Proof of the lemma Fix p ∈ [0,1] and omit it from the notation ω = ωp to make
space for a time variable t.

We basically follow the construction of the measure µ as the limiting measure of the
Markov process Zt, except that we divide the randomness used along the Markov chain
into three components, the second and third being independent conditionally on the first
one. Namely, define a Markov process

(ωt, Z≤p
t , Z

>p
t )t≥0 ∈ {0,1}E(Λ) × [0,1]E(Λ) × [0,1]E(Λ),

where edges are updated at rate one, in such a way that the relations (12.26) between the
three coordinates hold for all t ≥ 0. To be consistent at t = 0, the process either from the
empty state (ω0, Z

≤p
0 , Z>p

0 ) ≡ (0,1,1) or the full state (1,0,0), where 0 and 1 denote the
vectors all 0 and all 1 respectively. Then, instead of sampling Ue directly, let us proceed
stepwise: first look whether ωt− satisfies De or not. If it does, then let ωt(e) ∶= 1 with
probability p. If ωt− ∉ De, then let ωt(e) ∶= 1 with probability p/(p + (1 − p)q). This is
exactly the heat-bath dynamics for φ0

G,p,q. Note that this part of the dynamics does not
useat the two components (Z≤p, Z>p).

Let us describe how to update the component Z≤p
t . If, after the update, ωt(e) equals

0, then we fix Z≤p
t (e) ∶= 1. otherwise (if ωt(e) = 1), we use the following variable:

T ≤p
e (Z≤p) ∶= inf{u ∈ [0, p] ∶ ωu(Z≤p) ∈ De} .

Note that T ≤p
e (Z≤p) = Te(Z) on the event Te(Z) ≤ p. Otherwise (i.e. ωp(Z) ∉ De), we

set T ≤p
e = p. In either case, it is important here that no information about the third

component Z>p has been used.
Next, recall the update random variable Ue from the previous subsection (see (12.25)).

It needed as an input the value of Te(Zt−). Let U≤pe be the same random variable here,
with input the value of T ≤p

e (Z≤p
t− ). Remembering that we are in the case ωt(e) = 1, update

the value of Z≤p
t as follows, independently of everything:

Z≤p
t (e) ∼ L[U≤pe ∣ U≤pe ≤ p] ,

where L stands for the law of the variable. We define (Z>p
t ) in the same fashion, using

U>pe . In particular, the evolutions of (Z≤p
t ) and (Z>p

t ) are sampled out of the evolution of
(ωt) plus some randomness in each case that are independent from each other, hence the
conditional independence of Z≤p and Z>p is satisfied.

To conclude the proof, one just has to notice that if one defines

Zt ∶= { Z≤p
t if ωt(e) = 1

Z>p
t else ,

then (Zt)t≥0 is exactly the Markov chain which was considered by Grimmett in [Gri95].
(This is not hard to check; an important feature here is that if Te > p, then the conditional
law L[Ue ∣ Ue ≤ p] does not depend on the exact value of Te, and a similar thing holds
for U>pe when Te ≤ p). In particular, from [Gri95], it converges to the unique invariant
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measure µΛ, which inherits its conditional independence property. This finishes the proof
of Lemma 12.22 and hence of Proposition 12.21. ◻

Proposition 12.23. This Markovian property extends to the infinite volume limit µ on
X = [0,1]E(Z2).

Indeed, the same procedure works, but one has to be a bit careful with the initial
state of our Markov chain: following [Gri95], with the slightly asymmetric projection
convention we have chosen, we need to start from the full state (ω0, Z

≤p
0 , Z>p

0 ) ≡ (1,0,0).
In the case q = 2, this is not very important since there is a unique infinite volume limit
for all values of p. However for larger values of q, these considerations do matter. We will
not enter in more detail here; see [Gri95, Gri06] for a detailed exposition on the infinite
volume limit of Z together with its projection ωp(Z).

2.3 Specific Heat of random-cluster model

The first non-trivial effect which occurs in the near-critical random-cluster model is the
fact that the derivative of the edge-intensity blows up around pc. This implies that edges
appear much faster in the monotone coupling near pc that it does for percolation. Let
us study the FK-Ising (q = 2) case. Define the edge-intensity function as follows: for all
p ∈ [0,1], let

I(p) ∶= φp,2(e is open) ,

where e is any edge of Z2. It is not hard to check that at the critical (and self-dual) point
pc(2) =

√
2

1+
√

2
, one has

I(pc) =
1

2
.

A relevant quantity to us is the derivative in p of the edge-density dI(p)/dp. It corre-
sponds to the average rate at which new edges appear in any possible monotone coupling
(ωp,2)p∈[0,1]. This quantity is linked to the so-called specific heat of the Ising model
which measures the variance of the total energy H(σ) in the Ising model1. The relation-
ship between these quantities is detailed in [GH]. From the results on the specific heat of
the Ising model known since [Ons44, FF69], one obtains in the infinite volume case that,
at p = pc,

d

dp
∣
p=pc
I(p) = ∞ .

More precisely, one can extract the following logarithmic behavior around pc:

d

dp
I(p) ∼ a log

1

∣p − pc∣
,

1Notably, the variance of the random variable H at a given inverse temperature β is also given by the
derivative of Eβ[H] in β.
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as p → pc. The finite-volume study of the specific heat ([Ons44, FF69]) leads to the
following estimate: let Tn be the torus Z2/nZ2 and let p↦ In(p) denote the edge-intensity
for random-cluster model on Tn, then

d

dp
∣
p=pc
In(p) ≍ logn .

The extension to planar domains Ωn ∶= 1
nZ2 ∩ Ω will be carried out in [GH], based on the

recent results from [Hon10] and [BdT10, BdT11].
In conclusion, these estimates show that in a window of size n, as one raises p near pc,

more edges will suddenly arrive. Nevertheless, the discrepancy is only logarithmic. It is
not sufficient to explain the error in the power law of the correlation length. The reason
for this matter is the existence of emerging clouds, which we discuss now.

2.4 Existence of emerging clouds

We are about to describe the main feature of the self-organized behavior that appears
in the monotone coupling of random-cluster models. We restrict ourselves to the finite
case, since the transition rule for the infinite volume Markov process (Zt)t≥0 has not been
established. Let then Λ be a finite box in Z2 (or a torus Z2/nZ2). In this subsection,
we fix q = 2. The following proposition gives the first hint of some “non-linear” behavior:

Proposition 12.24. For any N ≥ 1, let (ωp(ZΛ)p∈[0,1] be a monotone coupling in the box
Λ. The probability that clouds of at least N edges appear simultaneously in ωp(ZΛ) at
some p ∈ (0,1) converges to 1 when the size of the box Λ↗ Z2.

This proposition is very easy to prove, yet one already sees here that the monotone
Markovian coupling (ωΛ,p)0≤p≤1 has a nature that is very different from the q = 1 case.

Proof Let us consider the sets E1, E2 and E3 in Λ (which is assumed to be large enough)
as defined in Fig. 12.6.

Now let us sample Z0 = ZΛt = 0 according to the invariant measure µΛ, and let us run
the dynamics for a unit time. With positive probability, all edges in E are updated and
their labels at time 1 satisfy the following: all labels in E2 are smaller than 1/4, the edge
e0 = ⟨(0,0), (1,0)⟩ gets a label in (1/4,1/2), and all other labels in E1∪E3 are larger than
3/4. Under such circumstances, all edges e ∈ E1 ∖ {e0} are such that Te(Zt=1) = Z1(e0). It
could be that this situation evolves later on, but we have that, with positive probability,
none of the edges in E2 ∪ E3 ∪ {e0} are updated from time 1 to time 2. Knowing this,
again with positive probability, all edges in E1 are updated from time 1 to time 2 and all
of them take exactly the value u ∶= Z1(e0) (this is due to the Dirac mass δu in the law
Ue). Since we started at equilibrium, Zt=2 has the equilibrium law, and edges in E2 are all
open or all closed in the projections of Zt=2. This shows that with positive probability, at
least N edges appear simultaneously as one raises p.

Now, if Λ is getting very large, we can divide the box into a lattice of 2N × 2N
squares. Starting from ZΛ,0 ∼ µΛ, the above strategy works in each box independently
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E1 ∶=
n

⋃
l=0

{⟨(0, l), (1, l)⟩}

(horizontal inner edges)

E2 ∶=
n−1

⋃
l=0

{⟨(0, l), (0, l + 1)⟩, ⟨(1, l), (1, l + 1)⟩}

(vertical inner edges)

E3 ∶= {all edges neighboring E1 ∪E2} ∖ (E1 ∪E2)

1

e0

E 3E

E2

Figure 12.6: The definition of the sets E1, E2, E3 and the edge e0 ∈ E1.

of what happens in other boxes. Stated like that, it looks wrong, since obviously the
dynamics itself is not independent from one square to another, but all that is needed
in the above procedure is a positive lower bound on the probability that this “scenario”
happens. Using the structure of the dynamics, it is not hard to see that if y1, . . . , yK
denote the indicator functions of the events that the scenario happened in the squares
i ∈ {1, . . . ,K}, then there is an independent product of Bernoulli ε > 0 variables which
isstochastically dominated by our vector (y1, . . . , yK). In particular, the emergence of
clouds is somewhat ergodic in the plane.

By changing slightly the argument, one can show that there are such clouds for any
open interval of the variable p ∈ [0,1]. ◻

The above “naive” proof is not quantitative at all. Therefore, many natural questions
on these emerging clouds remain: how do they look, how large are they, how does their
law depend on the level p at which they appear? In particular, recovering the correlation
length from such geometric considerations appears to be quite a challenging program. We
shall discuss some of these questions in the next subsection.

An intuitive explanation for the clouds We end this subsection by a hand-waving
argument why these clouds of simultaneously opening edges appear and may play an
important role in the dynamics of any monotone coupling. Consider a monotone coupling
(ωp, ωp+∆p). Due to the factor q# clusters in the partition function, FK configurations ωp
tend to have as many clusters as possible. Without this factor, one would be in the case
of q = 1, i.e., standard percolation, and the edge intensity would be exactly p. With q = 2,
say, the random-cluster configuration tries to maximize the number of clusters, hence the
edge-intensity drops to a smaller value I(p) < p. In some sense, there is a fight between
entropy (under the product measure p# open edges(1−p)# closed edges, most configurations have
edge-intensity p) and energy (which would correspond here to − log(q# clusters)). When one
goes from p to p +∆p, new edges are added due to the entropy effect, but in such a way
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that not so many clusters will merge into a single one. A good strategy for adding many
edges without a significant increase in energy is the following storing mechanism. Say
we have two “neighboring” large clusters in ωp with closed edges going from one to the
other (these closed edges are then large-scale pivotal edges). Once we decide to open one
of them, it does not cost more energy to open a few others.

Now, we have just seen that the monotone coupling is Markovian in p: in particular,
the only way for this storing mechanism to actually happen is to have some values of p
where the system can simultaneously open several edges. This indeed can happen, due to
the atom in the update distribution, as shown in Lemma 12.24, and the construction there
was indeed a simple example of edges arriving simultaneously between two neighboring
large clusters (the two components of E2).

It is worth noticing that this heuristic explanation (based on entropy/energy consid-
erations plus the Markov property) hints that this “non-linear phenomenon” should be
much stronger near the critical point. Indeed, near pc(q = 2), there are many neighboring
large clusters (i.e., many large scale pivotal points), which makes the storing mechanism
more efficient. Away from criticality, this is not the case anymore. This intuition explains,
for example, why we observe a blow-up of the derivative of the edge-intensity near pc, and
why the emerging clouds are more important there.

2.5 Questions on the structure of emerging clouds

Finite volume case To start with, let us define properly the notion of cloud for a finite
graph G = (V,E). Given a sample Z = ZG ∈ [0,1]E from Grimmett’s monotone coupling
µΛ, for an edge e ∈ E, let Cloud(e) be the set of edges which appear simultaneously with
e:

Cloud(e) ∶= {f ∈ E(Λ) s.t. Z(f) = Z(e)} .

The previous subsection shows that there are non-trivial clouds with positive prob-
ability. Let us consider the case of G = Λn ∶= [−n,n]2 with free boundary conditions.
(Another natural choice would be to consider discrete tori Λn ∶= Z2/nZ2). We strongly
suspect the following behavior:

Question 12.25 (Macroscopic clouds near pc). For all n ≥ 1, with µΛn-probability at least
a universal constant c > 0, there is at least one macroscopic cloud in Λn, i.e., whose
diameter is larger than cn. Furthermore, with probability going to 1 as n →∞, the labels
of such macroscopic clouds concentrate around the critical value pc(q = 2).

To answer such a question, it is natural to run the dynamics at equilibrium (i.e.,
Zn

0 ∼ µΛn) for a short amount of time that is given precisely by the rescaling

τn ∶=
1

n2ξ4(2)
= n−13/24+o(1) .

Doing so, only finitely many macroscopic pivotal edges will be resampled, and it is easy to
convince ourselves that with positive probability at least two of them will pick the same



CHAPTER 12. NEAR-CRITICAL PLANAR FK-ISING MODEL 247

label thus creating a macroscopic cloud. This intuition is close to being rigorous, since we
have at our disposal a ’stability property’ from the forthcoming [GP] which suggests that
the “geometry” of Zn

t=τn could be recovered with high precision from Zn
0 plus the updates of

the initially macroscopically important edges (neglecting the “smaller” updates). However,
the stability result holds only for ωpc , not the entire coupling Z. Thus, a certain control
on the concentration of the labels around pc would be helpful not only for the second part
of Question 12.25.

The intuition that big clouds should appear only around the critical point can be
translated into the following conjecture:

Question 12.26 (Local clouds away from pc). For any δ > 0, emerging clouds with labels
outside of (pc − δ, pc + δ) are local in the sense that the largest such cloud in Λn should be
of logarithmic size.

A natural way to attack this question would be via a coupling argument. Namely,
prove that one has a coupling (Z≥pc+δ

Λn
, Z̃≥pc+δ

Λn
) (see the notation in Subsection 2.2) whose

marginals are µ≥pc+δΛn
, and whose coordinates are identical on a small neighborhood of the

origin, but with probability at least λk (with λ ∈ (0,1)) they are independent of each other
outside a box of size k (an exponential decay of correlations). Such a statement is doable
for the supercritical (or subcritical) random-cluster model measure φZ2,p,q, yet what makes
it harder here is the lack of a “DLR (spatial Markov) property” for our monotone coupling
µΛn .

Finally, it would be interesting to prove some quantitative results on the size of the
emerging clouds in the finite volume case (Λn). See [GH], where this question is further
discussed.

Infinite volume case We now move to the infinite-volume coupling where we basically
know nothing about the emerging clouds. At least, the clouds are well-defined objects,
since there is a unique limiting measure µZ2 of Grimmett’s monotone coupling and for
any e ∈ E(Z2), Cloud(e) can still be defined relatively to a sample Z from µZ2 . The first
embarrassing question is the following one:

Question 12.27. Prove that a.s. there exist non-trivial emerging clouds.

This does not follow directly from the existence of non-trivial clouds in the finite
volume case. Assuming the above question, the next natural question would be

Question 12.28. Is it the case that emerging clouds are a.s. finite ?

See [GH], where this question is discussed in more detail.

2.6 What about the influence of an edge?

Before moving on to the study of random-cluster models with other values of q, let us
mention a natural approach to a “geometric” understanding of near-critical random-cluster
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model. As a continuation of the work by Kesten on near-critical percolation [Kes87],
Russo’s formula should be replaced by a slightly different formula. We already presented
this fact in Chapter 4. Let us recall it now.

Fix an increasing event A. As in the case of percolation, the intuition suggests that
the derivative of φξG,p,q(A) with respect to p is mostly governed by the influence of one
single edge, switching from closed to open. The following definition is therefore natural
in this setting. The (conditional) influence on A of the edge e ∈ E, denoted by IpA(e), is
defined as

IpA(e) ∶= φ
ξ
G,p,q(A∣e is open) − φξG,p,q(A∣e is closed).

With this notations, we have the following formula:

Proposition 12.29 (See [Gri06]). Let q ≥ 1 and ε > 0; for any random-cluster measure
φξG,p,q with p ∈ [ε,1 − ε] and any increasing event A,

d

dp
φξG,p,q(A) ≍ ∑

e∈E
IpA(e),

where the constants in ≍ depend on q and ε only.

It is tempting to use this extension of Russo’s formula to see what our results on the
correlation length (Theorem 12.2) may imply on the influences IpA(e). To avoid boundary
issues, let us consider the case of the torus Tn ∶= Z2/nZ2, and let An be the event that
there is an open circuit with non-trivial homotopy in Tn. It is easy to check (by self-
duality) that φpc,2(An) ≤ 1/2. The results from Section 1 can easily be generalized to the
torus. In particular, there exists a constant λ > 0 such that if pn ∶= pc(2) + λ logn

n , then

φpn,2(An) ≥ 3/4 .

Using the above Proposition 12.29, this says that

∫
pc+λ logn

n

pc
(IpAn(ehor) + I

p
An

(ever))dp ≥ Ω(1) 1

n2
,

where ehor and ever are any horizontal and vertical edges in Tn. Since it is natural to
expect that on the interval [pc, pc + λ logn

n ], influences behave reasonably smoothly, the
following conjecture should hold.

Conjecture 12.30. For any n ≥ 1, λ > 0, p ∈ [pc − λ
n , pc +

λ
n] and any e ∈ Tn,

IpAn(e) ≥ c
1

n logn
,

where c = c(λ) is some positive constant.

In fact since it is reasonable to conjecture that in Theorem 12.2, one has actually
Lξρ,ε(p) ≍ ∣p − pc∣−1, one may strengthen the previous conjecture into the following one:
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Conjecture 12.31. For any n ≥ 1, λ > 0, p ∈ [pc − λ
n , pc +

λ
n] and any e ∈ Tn,

c
1

n
< IpAn(e) < c

−1 1

n
,

where c = c(λ) is some positive constant.

These conjectures are beyond reach with the techniques of the present paper.

3 Other values of q
As promised in the introduction, most of this section will rely on predictions from physics
to investigate what happens for general q ∈ [1,4].

3.1 Some useful critical exponents

Let us start with collecting several useful exponents.

• ξ1(q) denotes the one-arm exponent

• ξ4(q) denotes the four-arm exponent

• α = α(q) describes the behavior of the specific heat near pc(q). That is, CFKq(p) ≈
∣p − pc(q)∣α(q). We will come back to its interpretation in Subsection 3.2.

• β = β(q) describes the behavior of the “magnetization”: this can be interpreted as

φp,q(0↔∞) ≈ (p − pc(q))β(q) ,

as p→ pc(q)+.

• ν = ν(q) corresponds to the correlation length: LFKq(p) ≈ ∣p − pc(q)∣−ν(q).

• η = η(q) corresponds to the correlation function P
pc(q)[x↔ y] ≈ ∣x − y∣−η(q). In

particular, assuming RSW, this exponent is twice the one-arm exponent ξ1(q).

Let us summarize the physics predictions on these exponents in the following table.
The expressions are simplified using the term u = u(q) = 2

π arccos(
√
q

2 ) = 2 − 8
κ(q) .

Exponents predictions
u = u(q) 2

π arccos(
√
q

2 )
α = α(q) 2(1−2u)

3(1−u)
β = β(q) 1+u

12

ν = ν(q) 2−u
3(1−u)

η = η(q) 1−u2

2(2−u)

ξ1 = ξ1(q) 1−u2

4(2−u)
ξ4 = ξ4(q) 5

2 −
3
4u −

1
2−u
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Most of the previous critical exponents can be found, for example, in [Wu82], except
the four-arm or pivotal exponent which is more of a geometric nature. This latter ex-
ponent is computed in [Gar11] using SLEκ calculations and assuming the (conjectured)
correspondence

κ = κ(q) ∶= 4π

arccos(−
√
q

2 )
.

This SLE exponent was also derived by Wendelin Werner [Wer09a]. Assuming a proof of
conformal invariance for the critical random-cluster model with parameter q as well as
a proof of quasi-multiplicativity on the discrete level, this would say that

α
FKq
4 (n) = n−ξ4(q)+o(1) .

Such an estimate is of course far from reach at the moment, except for q = 1 (see [SW01])
and q = 2 (see [Gar11]), but in this section we will assume that it holds.

3.2 Near-critical behavior for q ∈ (1,4] and self-organized mono-
tone coupling

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
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Figure 12.7: The blue curve corresponds to what the correlation length exponent in the
critical random-cluster model with parameter q would be if the monotone coupling hap-
pened to be “Poissonian”. The red curve is a refinement of the blue one where the Specific
Heat is taken into account. Finally, the black curve represents the actual correlation
length exponent.

Let us consider the random-cluster model on Z2 with fixed cluster-weight q ∈ (1,4] (we
drop it for several notations). In this subsection, our goal is to illustrate that there is a
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strong self-organized mechanism within this monotone Markov process which goes beyond
the Specific Heat effect. To show this, we will take for granted the Specific Heat exponent
(which describes the critical blow up of the edge-intensity), and based on this, we will
estimate what would be the correlation length exponent if there was no self-organized
mechanism (i.e., if new edges simply arrived in a Poissonian way).

Let us first describe our setup: we will restrict ourselves to a finite but very large
window Λn ∶= [−n,n]2 with, say, wired boundary conditions. Now, starting from a critical
random-cluster configuration ωpc in Λn, we raise p = pc+∆p until macroscopic effects start
being non-negligible. If p0 is the value where we stop, we should thus obtain the relation
L(p0) ≍ n.

Now, the specific heat exponent α = α(q) has the following interpretation when q ≥ 2:

d

dp
IFKq(p) ≍ ( 1

∣p − pc(q)∣
)
α(q)

,

where IFKq(p) ∶= φZ2,p,q(e is open) is the random-cluster edge-intensity. From this result
(which is at the level of a prediction in the physics literature), it is reasonable to expect
that in the finite volume range, one has

d

dp
IFKq
n (p) ≍ nα(q) ,

as far as n <⌢ L(p) (where IFKq
n (p) denotes the edge-intensity in Λn with, say, wired

boundary conditions). This is known in the case q = 2 (where α(2) = 0 with logarithmic
blow-ups), where the finite-size behavior matches with the infinite volume one as we have
seen in Section 2.3 (see [FF69] for more precise results).

On the other hand, when q ∈ [1,2), the specific heat exponent α(q) ∈ [−2/3,0) in some
sense measures the second order variation of the partition function of random-cluster
model around (p, q) = (pc(q), q). In this case, there is no blow-up of the derivative of the
edge-intensity, and one has

d

dp
IFKq
n (p) ≍ 1 ,

as far as n <⌢ L(p). In particular, the specific heat exponent in our analysis will play a
role only for q ∈ [2,4].

Let us then start from a critical configuration ωpc in Λn (with wired conditions) and
let us raise p to the level p = pc + ∆p in such a way that one still has n <⌢ L(p). From
the above discussion, one expects that about n2 ∆pnα(q)∧1 new edges will arrive. If we
assume the absence of self-organization, i.e., if edges arrive more or less independently of
the current configuration (except possibly a local rate which would depend on whether
the endpoints of the edge are connected or not), then each of these arrivals should be
macroscopic pivotal flips with probability about n−ξ4(q) (we implicitly harnessed the fact
that the pivotal exponent does not vary below the critical length). Therefore, at n ≈ L(p),
we expect

n2 ∆pnα(q)∧1n−ξ4(q) ≈ 1 .
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Let LPoiss(p) denote the correlation length obtained via the above analysis. We find

LPoiss(p) ≈ ( 1

∣p − pc∣
)

1
2−ξ4(q)+α(q)∧1

,

which is represented as a function of q by the red curve in Figure 12.7 (the blue curve
represents the result of the same analysis when specific heat blow-ups are not taken into
account).

As one can see from Figure 12.7, the actual correlation length L(p) is much smaller
than LPoiss(p) when q ∈ (1,4], which reveals for all these random-cluster models non-trivial
self-organized schemes as p increases near pc(q).

4 Noise versus dynamical sensitivity in the heat-bath
dynamics

We end this paper with a slightly tangential discussion on the heat-bath dynamics for
the random-cluster models with q > 1. A rigorous treatment of the special case q = 2 will
be presented in [GP]. The purpose of the first subsection is to highlight the following
interesting phenomenon:

Phenomenon 12.32 (conjectural). There seem to exist “natural” critical two-dimensional
systems (i.e., scale-invariant and so on), which have the property that they have pivotal
points at all scales (hence are expected to be noise sensitive), but for which there are no
exceptional times of infinite clusters along the natural heat-bath dynamics (hence are not
dynamically sensitive).

The second subsection is a rigorous treatment of the case q > 25.72 (which should then
also hold for all q > 4 but is yet conjectural).

4.1 On the dynamical sensitivity of random-cluster models when
q ∈ (1,4]

The (conjectural) Phenomenon 12.32 is rather surprising since so far it was believed
that noise sensitivity and dynamical sensitivity (i.e. the existence of exceptional times
with an infinite cluster) were more or less equivalent. One can see this phenomenon as
another illustration of the fact that a good understanding of the structure of the set of
pivotal points is by far not enough to answer questions on noise sensitivity or dynamical
sensitivity. Recall that all the current proofs of noise sensitivity and dynamical sensitivity
for critical percolation (q = 1) rely on the Fourier Spectrum of percolation which is a
very different object compared to the pivotal points (see [GPS10a]). In fancier words,
the Fourier Spectrum of random-cluster models should still be concentrated on “high
frequencies” (once projected on a well-chosen orthogonal basis which would depend on
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Figure 12.8: The red curve represents the upper bound on the Hausdorff dimension of
exceptional times for random-cluster models, q ∈ [1,4] which is obtained heuristically in
this subsection. It highlights an interesting transition as the variable q increases. Note
that the red curve gives the correct bound of 31/36 for q = 1 (proved in [GPS10a]).

q). Nevertheless, it seems that when q gets closer to 4, the lower tail of these spectrums
would not be thin enough to allow exceptional times.

Let us now discuss the reasons for this phenomenon in greater detail. As for the
increasing coupling, an infinite-volume heat-bath dynamics on Z2 can be constructed for
every (p, q) with q ≥ 1. These dynamics are constructed as monotone limits of the wired
or free finite volume heat-bath dynamics and are unique as soon as the infinite-volume
measure is unique at (p, q). Fix q ∈ [1,4] and p = pc(q). In this case, the infinite-volume
measure is expected to be unique. Set (ωFKq

t )t≥0 to be the unique critical dynamics
obtained either from the free or the wired limit. The natural question raised by the
discussion of the percolation case is the following:

Question 12.33. For q ∈ (1,4], are there exceptional times t almost surely for which
there is an infinite cluster in ω

FKq
t ? If “yes” and if Eq denotes the random set of these

exceptional times, what is the (almost sure) Hausdorff dimension of Eq?

We conjecture the following property for which we will then give a heuristic proof
based on the above exponents from the physics literature.

Conjecture 12.34. Let
q∗ ∶= 4 cos2(π

4

√
14) ≈ 3.83
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• For q ∈ (q∗,4], FKq percolation is NOT dynamically sensitive.

• If q ∈ [1, q∗], one has a.s.

dim(Eq) ≤
1 − 8u(q) + 2u(q)2

3u(q)2 − 8u(q)
, (12.27)

where, as above u(q) ∶= 2
π arccos(

√
q

2 ) = 2 − 8
κ(q) .

This conjecture hints that there is a critical qc ∈ [1, q∗], above which there are no
exceptional times. It is natural to expect that q ↦ E[dim(Eq)] is continuous and thus
that qc > 1. It is quite possible that qc = q∗.
Heuristic explanation of the conjecture. Due to the complicated structure of the FKq

near-critical percolation highlighted in the previous section, one cannot easily dominate
the union of critical configurations ωFKq

t , where t spans an interval I of length ε > 0, by
a slightly supercritical FKq configuration. Instead, one can rely on a more artificial near-
critical version, where new edges are added to a critical random-cluster configuration in
a Poissonian way. The correlation length L̃(p) of this near-critical model can be derived
from the four-arm critical exponent as in the case q = 1 (this assumes RSW and the analog
of near-critical stability describe in Subsection 2.1). This gives

L̃(p) ≈ ( 1

∣p − pc(q)∣
)

1
2−ξ4(q) .

Below this correlation length, the artificial near-critical configuration has the same con-
nectivity properties as a critical random-cluster configuration. In particular, if our con-
figurations ωFKq

t , t ∈ I are dominated by a configuration ω̃pc+ε, one obtains

P[I ∩ Eq ≠ ∅] ≤ P[0
ωpc+ε←→ L̃(pc + ε)]

<⌢ P[0
ωpc←→ L̃(pc + ε)]

≈ L̃(pc + ε)−ξ1(q) ≈ ε
ξ1(q)

2−ξ4(q) .

Since one needs O(ε−1) intervals I to cover [0,1], a first moment argument implies that
a.s.

dimH(Eq) ≤ 1 − ξ1(q)
2 − ξ4(q)

.

Plugging in the expressions from Subsection 3.1 explains the second part of Conjec-
ture 12.34. For the first part, it is enough to solve the equation ξ1(q)

2−ξ4(q) = 1, so that above
its solution, the dimension would be “negative”, i.e., we expect the set Eq to be almost
surely empty. The solution of this equation is given by q∗.

Finally, let us mention that (12.27) will be made rigorous in the special case q = 2 in
the forthcoming paper [GP].
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4.2 Random-cluster models with q > 4

The purpose of this subsection is to briefly explain what occurs when q > 4. In this case,
the phase transition is expected to be first order. In particular, the correlation length
does not go to infinity when p goes to pc. Therefore, the previous discussion of the near-
critical regime does not make sense. We can still discuss a possible noise sensitivity. Yet,
exponential decay of correlation suggest that the model is not noise sensitive. As an
illustration, we exploit the known exponential decay estimates for PFKq ,free

pc(q) when q is large
enough (i.e., q > 25.72) in order to obtain the following result. Of course, the theorem is
expected to hold for all q > 4.

Theorem 12.35. When q is large enough, there are no exceptional times for the infinite
free boundary heat-bath dynamics on critical FKq configurations.

Proof The proof is based on [Gri06, Theorem 6.35] which states that in dimension d = 2,
and if q > 25.72, then at the critical point pc(q) = psd(d), one has for the free infinite
volume limit:

φ0
pc(q),q(0←→ ∂[−n,n]2) ≤ C exp(−c(q)n) ,

where c(q) > 0 is a positive constant which depends only on q > 25.72. By monotonicity,
this result implies that for the random-cluster measure on the finite box ΛN ∶= [−N,N]2

endowed with free boundary conditions, then for all radius n such that 2n ≤ N , one has

φ0
ΛN ,pc(q),q(x←→ ∂(x +Λn)) ≤ C exp(−c(q)n) ,

for all points x ∈ Λn. This in turn implies that for all x ∈ Λn, the probability to have a
four-arm event around x of radius n is bounded above by the same exponential bound
exp(−c(q)n).

Now, let us fix a large radius n≫ 1. Our goal is to find a small upper bound on

g(n) ∶= φ0
pc(q),q(∃t ∈ [0,1] s.t. 0

ωt←→ ∂Λn)

for the free boundary infinite-volume heat-bath dynamics on Z2. Since, as we discussed
earlier, this infinite volume limit is obtained as an increasing limit of finite volume heat-
bath dynamics and since the event under consideration is a cylinder event, one has

g(n) = lim
N→∞

φ0
ΛN ,pc(q),q(∃t ∈ [0,1] s.t. 0

ωt←→ ∂Λn) .

Using the random variable Xn = X(N)
n to denote the number of flips over the time

interval [0,1] for the event {0←→ ∂Λn}, one easily obtains

E[Xn] ≤ O(1)n2 sup
x∈Λn

φ0
ΛN ,pc(q),q(x←→ x + ∂(Λn/2))

≤ O(1)n2 exp(−c(q)n/2) .
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This in turn implies the bound

φ0
ΛN ,pc(q),q(∃t ∈ [0,1] s.t. 0

ωt←→ ∂Λn) ≤ O(1)n2 exp(−c(q)n/2) ,

which gives a uniform upper bound in N . In particular, g(n) ≤ O(1)n2 exp(−c(q)n/2)
and thus, taking n → ∞, one concludes that a.s. there are no exceptional times for the
critical free random-cluster measure on Z2 with q large enough. ◻



Part III

The O(n)-models and the self-avoiding
walk
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Chapter 13

The planar O(n)-model

Abstract: This chapter describes the classes of planar spin and loop O(n)-models.
These models were introduced in order to provide a unifying family for spin models1.

This short chapter is organized as follows. First, spin and loop O(n)-models are
defined, and the (conjectured) phase transition occurring in this models, called the
Berezinsky-Kosterlitz-Thouless phase transition, is described briefly. The second section
deals with the self-avoiding walk model. This model is introduced formally and a few
useful facts are reminded.

1 The family of O(n)-models

1.1 Spin O(n)-models

After the introduction of the Ising model by Lenz [Len20], and the conjecture by Ising that
no phase transition was occurring, many physicists tried to find natural generalizations
of the model exhibiting a phase transition. In [HK34], Heller and Kramers describe the
classical version of the celebrated quantum Heisenberg model where spins are vectors of
the three-dimensional sphere S3. Later, Stanley generalized this model by allowing spins
to be on the sphere Sn in dimension n [Sta68] (the model was studied in the case n = 2 in
[VL66]). We refer to [DG76] for a historic of the subject.

The spin O(n)-model can be defined on any graph. However, we restrict ourselves to
the hexagonal lattice H. Let G be a finite subgraph of H. The spin O(n)-model with
free boundary conditions is a random assignment σ ∈ SGn of spins σx ∈ Sn to vertices of G,
where σx denotes the spin at site x. The Hamiltonian of the model is defined by

Hf
G(σ) ∶= −∑

x∼y
⟨σx∣σy⟩ .

1In opposition to random-cluster models which are providing a unifying family of models for percolation
models.
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where the summation is over all pairs of neighboring sites x, y in G, and ⟨⋅∣⋅⟩ is the scalar
product in dimension n. The partition function of the model is

Zf
β,G ∶= ∫

σ∈SGn
dσ exp [−βHf

G(σ)] , (13.1)

where β is the inverse temperature of the model and dσ the tensor product of ∣G∣ mea-
sures kndx (dx is the Lebesgue measure on Sn), where kn is chosen in such a way that
∫ dσπi(σx)2 = 1 (πi is the projection on the i-th coordinate). When n = 1, we obtain
the Ising model. The case n = 2 is called the XY -model and the n = 3 is the (classical)
Heisenberg model.

1.2 Loop O(n)-models

This model, introduced in [DMNS81] on the hexagonal lattice, is a lattice gas of non-
intersecting loops. More precisely, consider configurations of non-intersecting simple loops
on a finite subgraph of the hexagonal lattice and introduce two parameters: a loop-weight
n ≥ 0 (in fact n ≥ −2) and an edge-weight x > 0, and ask the probability of a configuration
to be proportional to n# loopsx# edges.

Alternatively, an interface between two boundary points could be added: in this case
configurations are composed of non-intersecting simple loops and one self-avoiding inter-
face (avoiding all the loops) from a to b.

The O(0)-model with an interface is the self-avoiding walk from a to b, since no loop
is allowed. It is worth mentioning that a connection between the self-avoiding walk and
spin O(0)-model (which does not really make sense) was mentioned in [DG72]. In the
next paragraph, the loop O(1)-model will be related to the high-temperature expansion
of the Ising model on the hexagonal lattice.

1.3 Connection between spin and loop O(n)-models

In fact, loop O(n)-models were introduced as approximations of the high-temperature
expansion of the spin O(n)-models. Instead of the partition function in (13.1), consider
the simplified partition function

Z̃f
x,G ∶= ∫

σ∈SGn
dσ ∏

[ab]∈E[G]
(1 + x ⟨σa∣σb⟩ ). (13.2)

Strictly speaking, the partition functions Zf
β,G and Z̃f

β,G coincide only in the limit β
approaching 0 yet the two models are expected to belong to the same universality class.
In the Ising case, Zb

β,G is the integral of

∏
[ab]∈E[G]

(e
β + e−β

2
+ e

β − e−β
2

⟨σa∣σb⟩ ).

Thus, up to a universal multiplicative constant, it is equal to Z̃b
x,G for x ∶= eβ−e−β

eβ+e−β . In other
words, when n = 1, the previous replacement is not an approximation.
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As in the high temperature expansion of the Ising model, Z̃x,G can be expended in
powers of β.

Z̃f
x,G = ∫

σ∈SGn
dσ ∏

[ab]∈E[G]
(1 + x ⟨σa∣σb⟩ )

= ∑
σ
∑
γ⊂E

∏
e=[ab]∈γ

⟨σa∣σb⟩

= ∫
σ∈SGn

dσ ∑
γ⊂E[G]

x∣γ∣ ∏
[ab]∈γ

⟨σa∣σb⟩

= ∑
γ⊂E[G]

x∣γ∣∫
σ∈SGn

dσ ∏
[ab]∈γ

⟨σa∣σb⟩ .

Now, the integral equals 0 except if edges in γ form a collection of non-intersecting loops.
In the latter case, the weight equals n# loops. We thus obtain the loop O(n)-model.

1.4 Phase transition in planar O(n)-models

The planar spin O(1)-model being the Ising model, we already discussed its phase tran-
sition extensively. The phase transition in the spin O(n)-model when n ≥ 2 is very
different from the phase transition in random-cluster models. The case of the O(2)-
model is already interesting: the planar XY -model is never ordered at any temperature.
Nevertheless, there is a qualitative change of behavior in the model:

• At very low inverse-temperature, spin correlations decay exponentially fast in the
distance between the spins [MS77].

• At very high inverse-temperature, spin correlations decay as a power in the distance
between the spins [FS81].

Moreover, physics considerations suggest that there exists a critical inverse-temperature
βc separating the two phases: for β > βc, correlations decay as power laws while for
β < βc, they decay exponentially fast. A phase transition of the previous type is called a
Berezinsky-Kosterlitz-Thouless phase transition. This type of phase transition is named
after Berezinsky and Kosterlitz-Thouless who introduced it nonrigorously for the planar
XY -model in two independent papers [Ber72] and [KT73]. The main differences with
phase transitions previously described in this document are the following: there is no
ordered phase, no global symmetry is broken through the phase transition. Moreover, the
order of the phase transition is infinite (the free energy is infinitely differentiable but not
analytic at the transition).

Other values of n are very different: Polyakov conjectured in 1975 that no phase
transition occurs whenever n ≥ 3 [Pol75]. Polyakov’s conjecture is generally accepted,
even so it is not completely unanimous. We mention that the existence or absence of
phase transitions are still open mathematical questions of great interest.
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The loop O(n)-model exhibits a greater variety of critical behavior than the spin
O(n)-model. Similarly to the spin O(n)-models, some loop O(n)-models are expected to
have a Berezinsky-Kosterlitz-Thouless phase transition. In this case, the definition of the
phase transition corresponds to the existence of xc ∈ (0,∞) such that

• For x < xc, the probability of a and b being on the same loop decays exponentially
fast in the distance between a and b.

• For x > xc, the probability of a and b being on the same loop decays as a power in
the distance between a and b.

Unsurprisingly, the loop O(n)-models are expected to exhibit a Berezinsky-Kosterlitz-
Thouless phase transition if and only if n ∈ [−2,2] (no phase transition is predicted to
occur when n > 2). In this range, Bernard Nienhuis [Nie82, Nie84] proposed the following
conjecture, supported by physics arguments:

Conjecture 13.1. The critical value is given by xc(n) = 1/
√

2 +
√

2 − n.

The conjecture was rigorously established for two cases only. When n = 1, the critical
value is related to the critical temperature of the Ising model, since the O(1)-model is the
high-temperature expansion of the spin Ising model. In particular, an adaptation of the
argument in Chapter 8 implies the result. When n = 0, it will be proved in Chapter 14 that√

2 +
√

2 is the connective constant of the hexagonal lattice, so that xc(0) = 1/
√

2 +
√

2.
In this context, the model exhibits one critical behavior at xc(n) and another on the

interval (xc(n),+∞), both being conformally invariant: the interface should converge to
an SLE, see Chapter 17. Both regimes are critical yet different since the parameter κ
in the scaling limit is not the same. Another way to put it is to say that it corresponds
to ’dilute’ and ’dense’ phases (when in the limit the loops are simple and non-simple
correspondingly), see Fig. 17.2 in Chapter 17.

It would be of great interest to show that a phase transition indeed occurs at xc(n).
Unfortunately, no obvious monotonicity exists in the model, and the existence of a phase
transition itself remains a mystery. Even for large values of n (which should be easier), a
mathematical proof of the absence of phase transition is still missing (this corresponds to
the fact that spin O(n)-models are conjectured not to have a phase transition for n ≥ 3).

2 The O(0)-model: the self-avoiding walk
When taking the limit of n goes to 0 of the loop O(n) model with one interface, the
model contains one polymer and no loops. This is the self-avoiding walk on the hexagonal
lattice. As was mentioned in the introduction, self-avoiding walks were defined by Flory
in 1953 [Flo53], roughly thirty years before the loop O(n)-model. Forgetting about the
O(0)-model, it is possible to define self-avoiding walks on any transitive lattice.

First, let cn = cn(L) be the number of n-step self-avoiding walks starting at the origin
on a transitive lattice L. Denote by γn the set of such walks. It is in general elementary
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to provide exponential bounds on cn. Moreover, by looking at the first n steps of a n+m-
steps self-avoiding walk and the m last ones, every elements of γn+m can be mapped to one
element of (γn, γm) in a one-to-one fashion. Thus, cn+m ≤ cncm and Fekete’s subadditive
lemma implies that c1/n

n converges to a constant called the connective constant µ of the
lattice L.

Two natural classes of questions can be asked on self-avoiding walks: the combinatorial
and the geometrical ones. Honesty forces us to admit that neither of the two kinds of
questions is very well understood, and the number of results on self-avoiding walks is quite
restricted (at least in low dimensions). We refer to the last chapter for open questions
concerning self-avoiding walks.

One of the first questions coming to mind is can the bounds on cn be improved?
Namely, subadditivity implies cn ≥ µn, but what about the other bound? The best
currently available result is forty years old:

Theorem 13.2 (Hammersley-Welsh,[HW62]). For any transitive lattice L, there exists
c > 0 such that for every n,

µn ≤ cn ≤ ec
√
nµn.

In fact, this result has been improved by Kesten in dimension three and higher [Kes63b,
Kes64b].

Since it will be used in the following chapters, the argument is presented now (it is
extracted from the lecture notes [BDCGS11]) in the case of the hypercubic lattices.

For a self-avoiding walk γ, denote by γ1(i) the first spatial coordinate of γ(i).

Definition 13.3. An n-step bridge is an n-step self-avoiding walk γ such that for every
1 ≤ i ≤ n,

γ1(0) < γ1(i) ≤ γ1(n) (13.3)

An n-step half-space walk is an n-step self-avoiding walk γ such that for every 1 ≤ i ≤ n,

γ1(0) < γ1(i) (13.4)

Let bn (reps. hn) be the number of n-step bridges (resp. half-plane walks) with γ(0) = 0
for n > 1, and b0 = 1.

While (cn) is a submultiplicative sequence, the sequence (bn) is obviously supermulti-
plicative so that the connective constant µBridge for bridges can be defined by

µBridge = lim
n→∞

b
1/n
n = sup

n≥1
b

1/n
n .

Furthermore,
bn ≤ µnBridge ≤ µn. (13.5)

We will use the following result on integer partitions which dates back to 1917, due to
Hardy and Ramanujan [HR17].
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Theorem 13.4. For an integer A ≥ 1, let PD(A) denote the number of ways of writing
A = A1 +⋯ +Ak with A1 > ⋯ > Ak ≥ 1, for any k ≥ 1. Then

logPD(A) ∼ π (A
3
)

1/2

as A→∞.

Lemma 13.5. hn ≤ PD(n)bn for all n ≥ 1.

Proof Set n0 = 0 and inductively define

Ai+1 = max
j>ni

(−1)i(γ1(j) − γ1(ni))

and
ni+1 = max{j > ni ∶ (−1)i(γ1(j) − γ1(ni)) = Ai+1}.

In words, j = n1 maximises γ1(j), j = n2 minimises γ1(j) for j > n1, n3 maximises
γ1(j) for j > n2, and so on in an alternating pattern. In addition A1 = γ1(n1) − γ1(n0),
A2 = γ1(n1) − γ1(n2) and so on. Moreover, the ni are chosen to be the last times these
extrema are attained.

This procedure stops at some step K ≥ 1 when nK = n. Since the ni are chosen
maximal, it follows that Ai+1 < Ai. Note that K = 1 if and only if γ is a bridge, and in
that case A1 is the span of γ. Let hn[a1, . . . , ak] denote the number of n-step half-space
walks with K = k, Ai = ai for i = 1, . . . , k. We observe that

hn[a1, a2, a3, . . . , ak] ≤ hn[a1 + a2, a3, . . . , an]. (13.6)

To obtain this, reflect the part of the walk (γ(j))j≥n1 across the line γ1 = A1. Repeating
this inequality gives

hn[a1, . . . , ak] ≤ hn[a1 + . . . + ak] = bn,a1+⋯+ak .

where bn,A be the number of n-step bridges with γ1(n) − γ1(0) = A. So we can bound

hn = ∑
k≥1

∑
a1>⋯>ak>0

hn[a1, . . . , ak] ≤ ∑
k≥1

∑
a1>⋯>ak>0

bn,a1+...+ak =
n

∑
A=1

PD(A)bn,A.

Bounding PD(A) by PD(n), we obtain hn ≤ PD(n)
n

∑
A=1

bn,A = PD(n)bn as claimed. ◻

We can now prove an upper bound on the number of self-avoiding walks:
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Proof of Theorem 13.2 We first prove

cn ≤
n

∑
m=0

hn−mhm+1, (13.7)

using the decomposition defined as follows: given an n-step self-avoiding walk γ, let

x1 = min
0≤i≤n

γ1(i), m = max{i ∶ γ1(i) = x1}.

Write e1 for the unit vector in the first coordinate direction of Zd. Then (after translating
by γ(m)) the walk (γ(m), γ(m + 1), . . . , γ(n)) is an (n −m)-step half-space walk, and
(after translating by γ(m) − e1) the walk (γ(m) − e1, γ(m), γ(m− 1), . . . , γ(1), γ(0)) is an
(m + 1)-step half-space walk. This proves (13.7).

Next we apply Lemma 13.5 in (13.7) and the supermultiplicativity of self-avoiding
bridges to get

cn ≤
n

∑
m=0

PD(n −m)PD(m + 1)bn−mbm+1

≤ bn+1

n

∑
m=0

PD(n −m)PD(m + 1).

Fix B > B′ > π(2
3)1/2. By Theorem 13.4, there exists K > 0 such that PD(A) ≤

K exp (B′(A/2)1/2) and consequently

PD(n −m)PD(m + 1) ≤K2 exp

⎡⎢⎢⎢⎢⎣
B′ ⎛

⎝

√
n −m

2
+
√

m + 1

2

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

The bound x1/2 + y1/2 ≤ (2x + 2y)1/2 now gives

cn ≤ (n + 1)K2eB
′√n+1bn+1 ≤ eB

√
nbn+1

if n ≥ n0(B). By (13.5), the result follows. ◻

We mention the following corollary:

Corollary 13.6. For n ≥ n0(B),

bn ≥ cn−1e
−B

√
n−1 ≥ µn−1e−B

√
n−1.

In particular, b1/n
n → µ and so µBridge = µ.
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Chapter 14

The connective constant of the
honeycomb lattice equals

√
2 +

√
2

Abstract: We prove that the connective constant of the hexagonal lattice equals√
2 +

√
2 using a parafermionic observable in the O(0)-model. This chapter is inspired of

the paper The connective constant of the honeycomb lattice equals
√

2 +
√

2 with Stanislav
Smirnov to appear in Annals of Mathematics [DCS10]. We also compute the connective
constant of other two classical lattices.

Using Coulomb gas formalism, B. Nienhuis [Nie82, Nie84] proposed physical argu-
ments for µ to have the value

√
2 +

√
2. We rigorously prove this statement. While our

methods are different from those harnessed by Nienhuis, they are similarly motivated by
considerations of vertex operators in the O(n) model.

Theorem 14.1. For the hexagonal lattice,

µ =
√

2 +
√

2.

It will be convenient to consider walks between mid-edges of H, i.e. centers of edges
of H (the set of mid-edges will be called H). We will write γ ∶ a→ E if a walk γ starts at
a and ends at some mid-edge of E ⊂ H. In the case E = {b}, we simply write γ ∶ a → b.
The length `(γ) of the walk is the number of vertices belonging to γ.

We will work with the (increasing in x) sum

Z(x) = ∑
γ ∶ a→H

x`(γ) ∈ (0,+∞].

This sum does not depend on the choice of a. Establishing µ =
√

2 +
√

2 is equivalent to
showing that Z(x) = +∞ for x > 1/

√
2 +

√
2 and Z(x) < +∞ for x < 1/

√
2 +

√
2. To this

effect, we first restrict walks to bounded domains and weight them counting their winding.

267
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The vertex operator obtained leads to a parafermionic observable which is a generalization
of the spin fermionic observable. To simplify formulæ, below we set xc ∶= 1/

√
2 +

√
2 and

j = ei2π/3.
The chapter is organized as follows. In Section 1, the parafermionic observable is intro-

duced and its principal property is derived. Section 2 contains the proof of Theorem 14.1.
Section 3 presents conjectures on self-avoiding walks related to the parafermionic observ-
able. Section 4 computes the connective constant of other two notable planar lattices.

1 Parafermionic observable
A (hexagonal lattice) domain Ω ⊂ H is a union of all mid-edges emanating from a given
collection of vertices V (Ω) (see Fig. 14.1): a mid-edge z belongs to Ω if at least one
end-point of its associated edge is in Ω, it belongs to ∂Ω if only one of them is in Ω. We
further assume Ω to be simply connected, i.e. having a connected complement.

mid-edge

a

Ω

z

vertex Wγ(a, b) = 2π

Wγ(a, b) = 0

a

a
b

b

Figure 14.1: Left. A domain Ω whose mid-edges are pictured by small black squares.
Vertices of V (Ω) correspond to circles. Right. Winding of a curve γ.

Definition 14.2. The winding Wγ(a, b) of a self-avoiding walk γ between mid-edges a and
b (not necessarily the start and the end) is the total rotation of the direction in radians
when γ is traversed from a to b, see Fig. 14.1.

The parafermionic observable is defined as follows: for a ∈ ∂Ω, z ∈ Ω, set

F (z) = F (a, z, x, σ) = ∑
γ⊂Ω∶ a→z

e−iσWγ(a,z)x`(γ).

Lemma 14.3. If x = xc and σ = 5
8 , then F satisfies the following relation for every vertex

v ∈ V (Ω):
(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0, (14.1)

where p, q, r are the mid-edges of the three edges adjacent to v.
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Note that with σ = 5/8, the term e−iσWγ(a,z) gives a weight λ or λ̄ per left or right turn
of γ, where

λ = exp(−i
5

8
⋅ π

3
) = exp(−i

5π

24
).

Proof In this proof, we further assume that p, q and r are oriented counter-clockwise
around v. Note that (p − v)F (p) + (q − v)F (q) + (r − v)F (r) is a sum of contributions
c(γ) over all possible walks γ finishing at p, q or r. For instance, if the walk ends at the
mid-edge p, the contribution will be given by

c(γ) = (p − v)e−iσWγ(a,p)x
`(γ)
c .

One can partition the set of walks γ finishing at p, q or r into pairs and triplets of walks
in the following way, see Fig 14.2:

• If a walk γ1 visits all three mid-edges p, q, r, it means that the edges belonging to γ1

form a self-avoiding path plus (up to a half-edge) a self-avoiding loop from v to v.
One can associate to γ1 the walk passing through the same edges, but exploring the
loop from v to v in the other direction. Hence, walks visiting the three mid-edges
can be grouped in pairs.

• If a walk γ1 visits only one mid-edge, it can be associated to two walks γ2 and γ3

that visit exactly two mid-edges by prolonging the walk one step further (there are
two possible choices). The reverse is true: a walk visiting exactly two mid-edges is
naturally associated to a walk visiting only one mid-edge by erasing the last step.
Hence, walks visiting one or two mid-edges can be grouped in triplets.

If one can prove that the sum of contributions for each pair and each triplet vanishes,
then the total sum is zero.

Let γ1 and γ2 be two walks that are grouped as in the first case. Without loss of
generality, we assume that γ1 ends at q and γ2 ends at r. Note that γ1 and γ2 coincide
up to the mid-edge p since (γ1, γ2) are matched together. We deduce

`(γ1) = `(γ2) and {
Wγ1(a,q)=Wγ1(a,p)+Wγ1(p,q)=Wγ1(a,p)−

4π
3

Wγ2(a,r)=Wγ2(a,p)+Wγ2(p,r)=Wγ1(a,p)+
4π
3

.

In order to evaluate the winding of γ1 between p and q, we used the fact that a is on the
boundary and Ω is simply connected. Therefore,

c(γ1) + c(γ2) = (q − v)e−iσWγ1(a,q)x
`(γ1)
c + (r − v)ε−iσWγ2(a,r)x

`(γ2)
c

= (p − v)e−iσWγ1(a,p)x
`(γ1)
c (jλ̄4 + j̄λ4) = 0

where the last equality is due to the chosen value λ = exp(−i5π/24).
Let γ1, γ2, γ3 be three walks matched as in the second case. Without loss of generality,

we assume that γ1 ends at p and that γ2 and γ3 extend γ1 to q and r respectively. As
before, we easily find that
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`(γ2) = `(γ3) = `(γ1) + 1 and {
Wγ2(a,r)=Wγ2(a,p)+Wγ2(p,q)=Wγ1(a,p)−

π
3

Wγ3(a,r)=Wγ3(a,p)+Wγ3(p,r)=Wγ1(a,p)+
π
3

.

Following the same steps as above, we obtain

c(γ1) + c(γ2) + c(γ3) = (p − v)ε−iσWγ1(a,p)x
`(γ1)
c (1 + xcjλ̄ + xcj̄λ) = 0.

Here is the only place where we use the crucial fact that x−1
c =

√
2 +

√
2 = (2 cos π8 ).

The claim follows readily by summing over all pairs and triplets. ◻

γ1 γ2 γ1 γ2 γ3

Figure 14.2: Left: a pair of walks visiting the three mid-edges and matched together.
Right: a triplet of walks, one visiting one mid-edge, the other twos visiting two mid-edges,
which are matched together.

Remark 14.4. Coefficients above are three cube roots of unity multiplied by p − v, so
that the left-hand side can be seen as a discrete integral along an elementary contour on
the dual lattice. The fact that the integral of the parafermionic observable along discrete
contours vanishes is a glimpse of conformal invariance of the model, see Section 3.

2 Proof of Theorem 14.1
Counting argument in a strip domain. We consider a vertical strip domain ST
composed of T strips of hexagons, and its finite version ST,L cut at height L at an angle
of π/3, see Fig. 14.3. Namely, position a hexagonal lattice H of meshsize 1 in C so that
there exists a horizontal edge e with mid-edge a being 0. Then

V (ST ) = {z ∈ V (H) ∶ 0 ≤ Re(z) ≤ 3T + 1

2
},

V (ST,L) = {z ∈ V (ST ) ∶ ∣
√

3Im(z) −Re(z)∣ ≤ 3L}.
Denote by α the left boundary of ST , by β the right one. Symbols ε and ε̄ denote the top
and bottom boundaries of ST,L. Introduce the following positive quantities:

AxT,L ∶= ∑
γ⊂ST,L∶ a→α∖{a}

x`(γ),

Bx
T,L ∶= ∑

γ⊂ST,L∶ a→β
x`(γ),

Ex
T,L ∶= ∑

γ⊂ST,L∶ a→ε∪ε̄
x`(γ).
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ST,L

ε

ε̄

β

α

a

T cells

L cells

Figure 14.3: Domain ST,L and boundary parts α, β, ε and ε̄.

Lemma 14.5. When x = xc, we have

1 = cαAxcT,L +B
xc
T,L + cεE

xc
T,L, (14.2)

where cα = cos (3π
8
) and cε = cos (π4 ).

Proof Sum the relation (14.1) over all vertices in V (ST,L). Values at interior mid-edges
disappear and we arrive at

0 = −∑
z∈α
F (z) +∑

z∈β
F (z) + j∑

z∈ε
F (z) + j̄∑

z∈ε̄
F (z). (14.3)

Using the symmetry of the domain, we deduce F (z̄) = F̄ (z), where x̄ is the symmetric of
x with respect to the real axis. Observe that the winding of any self-avoiding walk from
a to the bottom part of α is −π while the winding to the top part is π. We conclude

∑
z∈α
F (z) = F (a) + ∑

z∈α∖{a}
F (z) = 1 + e−iσπ + eiσπ

2
AxT,L = 1 − cos(3π

8
) AxT,L = 1 − cαAxT,L.

Above, we have used the fact that the only walk from a to a is of length 0. Similarly, the
winding from a to any half-edge in β (resp. ε and ε̄) is 0 (resp. 2π

3 and −2π
3 ), therefore

∑
z∈β
F (z) = Bx

T,L and j∑
z∈ε
F (z) + j̄∑

z∈ε̄
F (z) = cos(π

4
) Ex

T,L = cεEx
T,L.

The lemma follows readily by plugging these three formulæ in (14.3). ◻
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Observe that sequences (AxT,L)L>0 and (Bx
T,L)L>0 are increasing in L and are bounded

for x ≤ xc thanks to (14.2) and the monotonicity in x. Thus they have limits

AxT = lim
L→∞

AxT,L = ∑
γ⊂ST ∶ a→α∖{a}

x`(γ),

Bx
T = lim

L→∞
Bx
T,L = ∑

γ⊂ST ∶ a→β
x`(γ).

When x = xc, via (14.2) again, we conclude that (Exc
T,L)L>0 decreases and converges to a

limit Exc
T = limL→∞E

xc
T,L. Then, (14.2) implies

1 = cαAxcT +Bxc
T + cεExc

T . (14.4)

Proof of Theorem 14.1 Let us first prove that Z(xc) = +∞, which implies µ ≥√
2 +

√
2. Suppose that for some T , Exc

T > 0. As noted before, Exc
T,L decreases in L

and
Z(xc) ≥ ∑

L>0

Exc
T,L ≥ ∑

L>0

Exc
T = +∞,

which completes the proof. Assume on the contrary that Exc
T = 0, then (14.4) simplifies

to
1 = cαAxcT +Bxc

T . (14.5)

Observe that walks entering into the count of AxcT+1 and not in AxcT have to visit some
vertex adjacent to the right edge of ST+1. Cutting such a walk at the first such point (and
adding half-edges to the two halves), we obtain two walks crossing ST+1 (these walks are
usually called bridges). We conclude that

AxcT+1 −A
xc
T ≤ xc (Bxc

T+1)
2
. (14.6)

Combining (14.5) for T and T + 1 with (14.6), we can write

0 = 1 − 1 = (cαAxcT+1 +B
xc
T+1) − (cαAxcT +Bxc

T )
= cα(AxcT+1 −A

xc
T ) +Bxc

T+1 −B
xc
T

≤ cαxc (Bxc
T+1)

2 +Bxc
T+1 −B

xc
T ,

so
cαxc (Bxc

T+1)
2 +Bxc

T+1 ≥ B
xc
T .

By induction, it is easy to check that

Bxc
T ≥ min[Bxc

1 ,1/(cαxc)]
T

for every T ≥ 1, implying
Z(xc) ≥ ∑

T>0

Bxc
T = +∞.
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This completes the proof of the inequality µ ≥ x−1
c =

√
2 +

√
2.

Let us turn to the other needed inequality µ ≤ x−1
c . A bridge of width T is a self-

avoiding walk in ST from one side to the opposite side, defined up to vertical translation.
The partition function of bridges of width T is Bx

T . Using (14.4), we can bound Bxc
T by

1. Noting that a bridge of width T has length at least T , we obtain for x < xc

Bx
T ≤ ( x

xc
)
T

Bxc
T ≤ ( x

xc
)
T

.

Thus, the series ∑T>0B
x
T converges and so does the product ∏T>0(1+Bx

T ). Let us assume
the following fact: any self-avoiding walk can be canonically decomposed into a sequence
of bridges of widths T−i < ⋯ < T−1 and T0 > ⋯ > Tj. Furthermore, if one fixes the
starting mid-edge and the first vertex visited, the decomposition uniquely determines the
walk. This decomposition was first introduced by Hammersley and Welsh in [HW62] (for
a modern treatment, see Section 3.1 of [MS93]). Applying the decomposition to walks
starting at a (the first visited vertex is 0 or -1), we conclude

Z(x) ≤ 2 ∑
T−i<⋯<T−1
Tj<⋯<T0

(
j

∏
k=−i

Bx
Tk

) = ∏
T>0

(1 +Bx
T )2 < ∞.

The factor 2 is due to the fact that there are two possibilities for the first vertex once we
fix the starting mid-edge. Therefore, Z(x) < +∞ whenever x < xc and µ ≤ x−1

c =
√

2 +
√

2.
To complete the proof of the theorem it only remains to prove that such a decomposition
into bridges does exist. Once again, this fact is well-known [MS93, HW62], we include
the proof nevertheless.

Figure 14.4: Left: Decomposition of a half-plane walk into four bridges with widths 8 >
3 > 1 > 0. The first bridge corresponds to the maximal bridge containing the origin. Note
that the decomposition contains one bridge of width 0. Right: The reverse procedure. If
the starting mid-edge and the first vertex are fixed, the decomposition is unambiguous.

First assume that γ̃ is a half-plane self-avoiding walk, meaning that the start of γ̃
has extremal real part: we prove by induction on the width T0 that the walk admits a
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canonical decomposition into bridges of widths T0 > ⋯ > Tj. Without loss of generality, we
assume that the start has minimal real part. Out of the vertices having the maximal real
part, choose the one visited last, say after n steps. The n first vertices of the walk form
a bridge γ̃1 of width T0, which is the first bridge of our decomposition when prolonged
to the mid-edge on the right of the last vertex. We forget about the (n + 1)-th vertex,
since there is no ambiguity in its position. The consequent steps form a half-plane walk
γ̃2 of width T1 < T0. Using the induction hypothesis, γ̃2 admits a decomposition into
bridges of widths T1 > ⋯ > Tj. The decomposition of γ̃ is created by adding γ̃1 before the
decomposition of γ̃2.

If the walk is a reverse half-plane self-avoiding walk, meaning that the end has extremal
real part, set the decomposition to be the decomposition of the reverse walk in the reverse
order. If γ is a self-avoiding walk in the plane, one can cut the trajectory into two
pieces γ1 and γ2: the vertices of γ up to the first vertex of maximal real part, and the
remaining vertices. The decomposition of γ is given by the decomposition of γ1 (with
widths T−i < ⋯ < T−1) plus the decomposition of γ2 (with widths T0 > ⋯ > Tj).

Once the starting mid-edge and the first vertex are given, it is easy to check that the
decomposition uniquely determines the walk by exhibiting the reverse procedure, see Fig.
14.4 for the case of half-plane walks. ◻

Remark 14.6. The proof provides bounds for the number of bridges from a to the right
side of the strip of width T , namely,

c/T ≤ Bxc
T ≤ 1.

In Sections 3.4.2 and 3.4.3 of [LSW04b], precise behaviors are conjectured for the number
of self-avoiding walks between two points on the boundary of a domain. It easily implies
the following estimate:

∑
γ⊂ST ∶0→T+iyT

x
`(γ)
c ≈ T −5/4H(0,1 + iy)5/4

where H is the boundary derivative of the Poisson kernel. Integrating with respect to
y, Bxc

T can be shown to decay as T −1/4 when T goes to infinity. Similar (conjectured)
asymptotics are available for walks in ST from 0 to iyT .

3 Conjectures
In [Nie82], Nienhuis predicted that there exists A > 0 such that

cn ∼ A nγ−1
√

2 +
√

2
n

(14.7)

where γ = 43/32. He also conjectured that the so-called mean-square displacement
⟨∣γ(n)∣2⟩ would satisfy

⟨∣γ(n)∣2⟩ = 1

cn
∑

γ n−step SAW
∣γ(n)∣2 ∼ B n2ν (14.8)
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where ν = 2/3 and B is a constant. Despite the precision of the predictions (14.7) and
(14.8), the best rigorously known bounds are very far from tight and almost 50 years old
(see [MS93] for a complete account). For this reason, the derivation of these exponents is
one of the most challenging problems in probability.

It was shown in [LSW04b] that γ and ν could be computed if the scaling limit of
self-avoiding walks was conformally invariant. More precisely, let Ω ≠ C be a simply
connected domain in the complex plane C with two points a and b on the boundary. For
δ > 0, consider the discrete approximation given by the largest finite domain Ωδ of δH
included in Ω, and aδ and bδ to be the vertices of Ωδ closest to a and b respectively. A
probability measure Px,δ is defined on the set of self-avoiding trajectories γ between aδ
and bδ that remain in Ωδ by assigning to γ a weight proportional to x`(γ). We obtain a
random curve denoted γδ. Conformal invariance of self-avoiding walks can be stated in
the following form:

Conjecture 14.7. Let Ω be a simply connected domain (not equal to C) with two distinct
points a, b on its boundary. For x = xc, the law of γδ in (Ωδ, aδ, bδ) converges when δ → 0
to the (chordal) Schramm-Loewner Evolution with parameter 8/3 in Ω from a to b.

A possible approach to proving Conjecture 14.7 might be the following. First, prove a
tightness result for self-avoiding walks. Then, by taking a subsequence, the discrete curves
γδ can be assumed to converge to a continuous one (in fact, the limiting object would
need to be a Loewner chain). The second step would consist in identifying the possible
limits. The parafermionic observable should play a crucial role in this step. Indeed, define
Fδ(⋅) = F (aδ, ⋅, xc,5/8) to be the parafermionic observable in the domain (Ωδ, aδ). If Fδ
converges when rescaled to an explicit function, one could use the martingale technique
introduced in [Smi10a] to verify that the only possible limit is SLE(8/3).

Regarding the convergence of Fδ, first recall that in the discrete setting contour in-
tegrals should be performed along dual edges. For H, the dual edges form a triangular
lattice, and Lemma 14.3 has the enlightening interpretation that the contour integral
vanishes along any elementary dual triangle. Any simply connected area enclosed by a
discrete closed dual contour is a union of elementary triangles, and hence the integral
along any discrete closed contour also vanishes. This is a discrete analogue of Morera’s
theorem. It implies that if the limit of Fδ (properly rescaled) exists and is continuous,
then it is automatically holomorphic. By studying the boundary conditions, it is even
possible to identify the limit. This leads to the following conjecture, which is based on
ideas in [Smi10a].

Conjecture 14.8. Let Ω be a simply connected domain (not equal to C), let z ∈ Ω, and
let a, b be two distinct points on the boundary of Ω. Assume that the boundary of Ω is
smooth near b. For δ > 0, let Fδ be the holomorphic observable in the domain (Ωδ, aδ)
approximating (Ω, a), and let zδ be the closest point in Ωδ to z. Then

lim
δ→0

Fδ(zδ)
Fδ(bδ)

= (φ
′(z)
φ′(b)

)
5/8

(14.9)
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where Φ is a conformal map from Ω to the upper half-plane mapping a to ∞ and b to 0.

The right-hand side of (14.9) is well-defined, since the conformal map φ is unique up to
multiplication by a real factor. Answering this conjecture would be a major step toward
Conjecture 14.7 and the derivation of critical exponents.

4 Connective constant of the 3.122 lattice
It is easy to deduce the connective constant of another lattice in an elementary way, as
was observed in [JG98]. Consider the lattice L obtained from the hexagonal lattice by
replacing every vertex by a triangle, see Fig. 14.5. This lattice is called the 3.122 lattice
in physics literature.

Figure 14.5: The 3.122 lattice L.

Theorem 14.9. Connective constants µ(L) is the positive root of

x3 −
√

2 +
√

2 x =
√

2 +
√

2.

In particular, it is algebraic of order 12, and can be computed explicitly (even though
we will not impose such a pain to the reader).

Proof Set GH for the partition function of self-avoiding walks starting from mid-edges
in the hexagonal lattice. Call a vertex v of a self-avoiding walk ω in L pivot if it is the
center of an edge not in a triangle. The sequence of pivots forms a self-avoiding walk
on the mid-edges of the hexagonal lattice. Moreover, the possibilities between two pivots
are limited: the part of the walk is either composed of two edges forming the geodesic
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between the two pivots, or it contains three edges, then the last two are using the other
twos edges of the triangle associated to the second pivot. Then, the partition function
GL of self-avoiding walks in L satisfies

GL(z) = GH(z2 + z3)

which implies that µ(L)−3 + µ(L)−2 = µ(H)−1. ◻
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Chapter 15

Supercritical self-avoiding walks are
space-filling

Abstract: Supercritical self-avoiding walks are proved to be space-filling on any lattice
with sufficient symmetries (in the following exposition, we restrict ourselves to Zd). This
chapter is inspired by the article The supercritical self-avoiding walk is space-filling written
with Gady Kozma and Ariel Yadin [DCKY11].

Let Ω be a (nice) simply connected domain in Rd with two points a, b on the boundary.
For δ > 0, recall that Ωδ ∶= Ω ∩ δL and aδ, bδ are the two sites of Ωδ closest to a and b
respectively. We further assume that Ωδ is connected (this is true for δ small enough if Ω
is sufficiently nice). We think of (Ωδ, aδ, bδ) as being an approximation of (Ω, a, b).

Definition 15.1. Let x > 0. On (Ωδ, aδ, bδ), define a probability measure on the finite set
of self-avoiding walks in Ωδ from aδ to bδ by the formula

P(Ωδ,aδ,bδ,x)(γ) = x∣γ∣

Z(Ωδ,aδ,bδ)(x)
(15.1)

where ∣γ∣ is the length of γ (i.e. the number of edges), and Z(Ωδ,aδ,bδ)(x) is a normaliz-
ing factor. A random curve γδ with law P(Ωδ,aδ,bδ,x) is called the self-avoiding walk with
parameter x in (Ωδ, aδ, bδ).

Z(Ωδ,aδ,bδ)(x) = ∑γ x
∣γ∣ (the sum is over all self-avoiding walks in Ωδ from aδ to bδ) is

sometimes called the partition functions (or generating function) of self-avoiding walks
from aδ to bδ in the domain Ωδ.

When the domain (Ω, a, b) is fixed, we are interested in the scaling limit of the family
(γδ), i.e. its geometric behavior when δ goes to 0. The qualitative behavior is expected
to differ drastically depending on the value of x. A phase transition occurs at the value
xc = 1/µ, where µ is the connective constant:

279
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bδ

aδ

Ωδ

Figure 15.1: A domain ∆ with two points a and b on the boundary (circle dots). The set
Ωδ with points aδ and bδ. An example of possible walk from aδ to bδ is presented. Note
that there are a finite number of them.

When x < 1/µ: γδ converges to a deterministic curve corresponding to the geodesic
between a and b in ∆. When rescaled, γδ has Gaussian fluctuation of order

√
δ around

the geodesic. We refer to [Iof98] for a deeper study of this regime.

When x = 1/µ: γδ should converge to a random simple curve. In dimensions five and
higher, it was proved in [HS91, HS92] (see also the book [MS93]) that the limit is a
Brownian motion from a to b conditioned to stay in the domain Ω. In fact, the literature
studies the self-avoiding walk in the whole plane, but the reasoning can be applied to
study self-avoiding walks in a domain. The behavior in dimension four should be the
same, yet the investigation is much more difficult (it is the so-called critical dimension),
see [BIS09] and references within. As mentioned before, in dimension two, the scaling
limit is conjectured to be SLE(8/3).Finally, dimension three remains a mystery, and no
clear candidate is known for the scaling limit of self-avoiding walks.

When x > 1/µ: γδ is expected to become space-filling in the following sense: for any
open set U ⊂ Ω,

P(Ωδ,aδ,bδ,x)[γδ ∩U = ∅] → 0

when δ goes to 0. On the one hand, let us mention that (γδ) is not predicted to have a
scaling limit when d ≥ 3. On the other hand, the scaling limit is expected [Smi06] to exist
in dimension two (it should be the Schramm-Loewner Evolution of parameter 8, which is
conformally invariant).

At a microscopic level, γδ cannot be space-filling. Nevertheless, one can quantify the
size of the biggest hole not visited by the walk. The subject of this paper is the proof of
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a result which quantifies how γδ becomes space filling. Here is the precise formulation.

Theorem 15.2. Let (Ω, a, b) be a bounded domain with two points on the boundary. For
every x > 1/µ, there exist ξ = ξ(x) > 0 and c = c(x) > 0 such that

P(Ωδ,aδ,bδ,x)[the biggest component of Ωδ ∖ Γξδ is larger than c log(1/δ) ] → 0

when δ → 0, where Γξδ is the set of sites in Ωδ at graph distance less than ξ of γδ.

The strategy of the proof is fairly natural. We first prove that in the supercritical
phase, one can construct self-avoiding polygons in a prescribed box. Then, we show that
the self-avoiding walk cannot leave holes that are too large, since adding polygons in the
big holes would decrease the energy (of course, one needs to be careful about the classical
energy/entropy competition). We present the proof only in the case d = 2, even though
the reasoning carries over to all dimensions without difficulty (see Remark 15.6). One can
also extend the result to other lattices with sufficient symmetry in a straightforward way
(for instance to the hexagonal lattice).

1 Self-avoiding polygons in a square
In this section, we think of a walk as being indexed by (discrete) time t from 0 to n.
For m > 0, let Pm be the set of self-avoiding polygons in [0,2m + 1]2 that touch the
middle of every face of the cube: more formally, such that the edges [(m,0), (m + 1,0)],
[(2m+1,m), (2m+1,m+1)], [(m,2m+1), (m+1,2m+1)] and [(0,m), (0,m+1)] belong to
the polygon, see Fig 15.4. For x > 0, let Zm(x) be the partition function (with parameter
x) of Pm, i.e.

Zm(x) = ∑
γ∈Pm

x∣γ∣.

Proposition 15.3. Let x > 1/µ, we have lim supm→∞Zm(x) = ∞.

It is classical that the number of self-avoiding walks with certain constraints grows with
the same exponential speed as the number of self-avoiding walks without constraints. For
instance, the number bn of self-avoiding bridges of length n, meaning self-avoiding walks
γ of length n such that Im(γ0) = mint∈[0,n] Im(γt) and Im(γn) = maxt∈[0,n] Im(γt) satisfies

e−c
√
nµn ≤ bn ≤ µn (15.2)

for every n [HW62] via Corollary 13.6.In the following, we need a class of walks with even
more restrictive constraints. A squared walk (of span k) is a self-avoiding walk such that
γ0 = (0,0), γn = (k, k) and γ ⊂ [0, k]2.

Lemma 15.4. There exists c > 0 such that the number an of squared walks of length n
satisfies

an ≥ µne−c
√
n.
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(0, 0)

(k, l)

γ1

γ2

γ3
γ4

γ̃0

γ̃1

γ̃2

γ̃3
γ̃4

m1

n1

m2

n2

p1
q1

p2

q2

Figure 15.2: The decomposition of a bridge into walks. One can construct a squared walk
in a rectangle by reflecting non-bold walks and then concatenate all the walks together.

Proof

Step 1: Self-avoiding walks in rectangles Let Λn be the set of self-avoiding bridges
of length n starting at the origin. Let Σn be the set of n-step self-avoiding walks for which
there exists (k, l) such that γ0 = (0,0), γn = (k, l) and γ ⊂ [0, k] × [0, l]. We construct a
map from Λn to Σn. Let x(v) and y(v) be the first and the second coordinates of the
vertex v.

Fix γ ∈ Λn and denote by m1 the first time at which x(γm1) = mint∈[0,n] x(γt), see
Fig. 15.2. Then, define n1 to be the first time at which x(γn1) = maxt∈[0,m1] x(γt). One
can then define recursively mk, nk, by the formulæ

mk = min{r ≤ nk−1 ∶ x(γr) = min
t∈[0,nk−1]

x(γt)}

nk = min{r ≤mk ∶ x(γr) = max
t∈[0,mk]

x(γt)}

We stop the induction the first time mk or nk equals 0. For convenience, if the first time is
nk, we add a further step mk+1 = 0. We are then in the possession of a sequence of integers
m1 > n1 > m2 > ..mr ≥ nr ≥ 0 and a sequence of walks γ2r−1 = γ[n1,m1], γ2r−2[m2, n1],..,
γ1 = γ[0,mr]. Note that the width of the walks γi is strictly increasing (see Fig. 15.2
again).

Similarly, let p1 be the last time at which x(γp1) = maxt∈[m1,n] x(γt) and q1 the last
time at which x(γq1) = mint∈[p1,n] x(γt). Then define recursively pk and qk by the following
formula

pk = max{r ≥ qk−1 ∶ x(γr) = max
t∈[qk−1,n]

x(γt)}

qk = max{r ≤ pk ∶ x(γr) = min
t∈[pk,n]

x(γt)}
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This procedure stops eventually and we obtain another sequence of walks γ̃0 = γ[m1, p1],
γ̃1 = γ[p1, q1], etc... This time, the width of the walks is strictly decreasing, see Fig. 15.2
one more time.

For a walk ω, we set σ(ω) to be its horizontal reflexion with respect to its starting
point. Let f(γ) be the concatenation of γ1, σ(γ2), γ3,.., σ(γr), γ̃0, σ(γ̃1), γ̃2 and so on.
This walk is contained in the rectangle with corners being its endpoints so that f maps
Ωn on Σn.

In order to estimate the cardinality of Σn, we remark that each element of Σn has a
limited number of possible pre-images under f . More precisely, the map which gives f(γ)
and the widths of the walks (γi) and (γ̃i) is one-to-one (the reverse procedure is easy to
identify). The number of possible widths for γi and γ̃i is the number of pairs of decreasing
sequences partitioning an integer l ≤ n. This number is bounded by ec

√
n (Theorem 13.4).

Therefore, the number of possible pre-images under f is bounded by ec
√
n. The cardinality

of Σn is thus larger than e−c
√
nbn ≥ e−2c

√
nµn.

eiπ/4R

(k, l)

(l, k)

(k + l, k + l)

γ2

γ1

σeiπ/4R(γ1)

Figure 15.3: This figure depicts the passage of two walks in the rectangle [0, k] × [0, l] to
a walk in the square [0, k + l]2.

Step 2: Self-avoiding walks in squares We have bounded from below the number
of n-steps self-avoiding walks ‘contained in a rectangle’. We now extend this bound to
the case of squares. There exist k, l ≤ n such that the number of elements of Σn with
(k, l) as an ending point is larger than e−2c

√
nµn/n2. By taking two arbitrary walks of

Σn ending at (k, l), one can construct a 2n-steps self-avoiding walk with γ0 = (0,0) and
γ2n = (k+ l, k+ l) contained in [0, k+ l]2 by reflecting orthogonally to eiπ/4R the first walk,
and then concatenating both, see Fig. 15.3. We deduce that a2n ≥ µ2ne−4c

√
n/n4. The

claim follows readily by choosing n large enough. ◻
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(0, 0) (2m+ 1, 0)

(2m+ 1, 2m+ 1)(0, 2m+ 1)

Figure 15.4: by concatenating four walks in squares of size m (plus four edges), one
obtains a loop in the square of size 2m + 1 going through the middle of the sides.

Proof of Proposition 15.3 Squared walks with length n were defined as walks between
corners of somem×m square, butm was not fixed. Fix nowm to be such that the number
of such walks is maximized (and then it is ≥ an/n where an is the total number of squared
walks). From any quadruplet (γ1, γ2, γ3, γ4) of such squared self-avoiding walks, one can
construct a self-avoiding polygon of Pm as follows (See Figure 15.4):

• translate γ1 and γ3 by (m + 1,0) and (0,m + 1) respectively,

• rotate γ2 and γ4 by an angle π/2, and then translate them by (m,0) and (2m +
1,m + 1) respectively,

• add the four edges [(m,0), (m + 1,0)], [(2m + 1,m), (2m + 1,m + 1)], [(m,2m +
1), (m + 1,2m + 1)] and [(0,m), (0,m + 1)].

Since each walk is contained in a square, one can easily check that we obtain a (4n+4)-
step polygon in Pm. Using Lemma 15.4, we obtain

Zm(x) ≥ x4n+4 (an
n

)
4

≥ (x
n+1µne−c

√
n

n
)

4

.

◻

2 Proof of Theorem 15.2
The strategy is the following. We first show that for some hole (namely it will be a union
of connected boxes of some size m), the probability that the self-avoiding walk gets close
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to it without intersecting it can be estimated in terms of Zm(x). This claim is the core of
the argument, and is presented in Proposition 15.5. Next, we show that choosing m large
enough (or equivalently Zm(x) large enough), the probability to avoid some connected
union of k boxes decays exponentially fast in k, thus implying the claim.

Let m > 0. A cardinal edge of a (square) box B of side length 2m + 1 is an edge of
the lattice in the middle of one of the sides of B. For m ∈ N, two boxes B and B′ of side
length 2m + 1 are said to be adjacent if they are disjoint and two of their cardinal edges
[xy] and [zt] are such that x ∼ z, y ∼ t (see Fig. 15.5). A family F of boxes is called
connected if every two boxes can be connected by a path of adjacent boxes in F .

Let δ > 0. Let F(Ωδ,m) be the set of connected families of boxes included in Ωδ. For
F ∈ F(Ωδ,m), let VF be the set of vertices in boxes of F , and let EF be the set of edges
with both end-points in VF . Let dist(., .) be the graph distance on Z2.

bδ

aδ

Ωδ
connected family F of boxes in F(Ωδ, 2)cardinal edges in ECF

Figure 15.5: A discrete domain with a connected component of adjacent boxes of size 5
(m = 2). Edges of EF lie in the gray area.

Proposition 15.5. Let (Ω, a, b) be a domain with two points on the boundary. Fix δ > 0
and m ∈ N. There exists C = C(x,m) < ∞ such that for every F ∈ F(Ωδ,m),

Pδ,x(0 < dist(γδ,VF ) < 4m + 4) ≤ CZm(x)−∣F ∣.

(recall that Pδ,x is our measure on self-avoiding walks with parameter x, on the dis-
cretized domain Ωδ)

Proof For F ∈ F(Ωδ,m), let ECF be the set of external cardinal edges of F i.e. all
cardinal edges in boxes of F which have neighbors outside of F . Let SF be the set of self-
avoiding polygons included in EF visiting all the edges in ECF . Let ZF (x) is the partition
function of polygons in SF . We have:

Claim: for F ∈ F(Ωδ,m), ZF (x) ≥ Zm(x)∣F ∣.
Proof Claim. We prove the result by induction on the cardinality of F ∈ F(Ωδ, ξ). If

the cardinality of F is 1, ZF (x) = Zm(x) by definition. Consider F0 ∈ F(Ωδ, ξ) and assume
the statement true for every F ∈ F(Ωδ, ξ) with ∣F ∣ < ∣F0∣. There exists a box B in F0
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such that F0 ∖ {B} is still connected. Therefore, for every couple (γ, γ′) ∈ S{B} × SF0∖{B},
one can associate a polygon in SF in a one-to-one fashion. Indeed, B is adjacent to a
box B′ ∈ F0 ∖ {B} so that one of the four cardinal edges (called [ab]) of B is adjacent to
a cardinal edge [cd] of B′. Note that [cd] belongs to ECF0∖{B}. Then, by changing the
edges [cd] and [ab] of γ and γ′ into the edges [ac] and [bd], one obtains a polygon in SF .
Furthermore, the construction is one-to-one and we deduce

ZF0(x) ≥ ZF0∖{B}(x)ZB(x) ≥ Z ∣F0∖{B}∣
m Zm(x) ≥ Zm(x)∣F0∣.

◻

Consider the set ΘF of walks not intersecting F yet going to distance 4m + 4 of it. Since
γ ∈ ΘF is at graph distance less than 4m + 4 of EF , it is at a distance less than 5m + 4
of some cardinal edge e ∈ ECF of a box in F . For each γ ∈ ΘF , consider a self-avoiding
polygon γ̃ = γ̃(γ) satisfying the three following properties:

• it contains e and is included in (Ωδ ∖ EF ) ∪ {e},

• it intersects γ at one or two adjacent edges only,

• it has length smaller than 100m.

One can easily check that such a polygon always exists, see Fig. 15.6.

bδ

aδ

Ωδ

Figure 15.6: The polygon γ̃1 is in gray. It overlaps the curve in one edge exactly, except
in the configuration depicted at the bottom, where we have no choice but overlapping the
walk on two edges.

Now, consider the application that associates to (γ1, γ2) ∈ ΘF × SF the symmetric
difference γ = f(γ1, γ2) of γ1, γ̃1 and γ2 (symmetric difference here meaning as sets of
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edges). Note that the object that we obtain is a self-avoiding walk, which can be verified
by noting that each vertex has degree 0 or 2 and that the set is connected. Further, its
length is equal to ∣γ1∣ + ∣γ̃1∣ + ∣γ2∣ − 1 or ∣γ1∣ + ∣γ̃1∣ + ∣γ2∣ − 2 (depending on the fact that γ1

and γ̃1 intersect at one or two adjacent edges). Moreover, the application is one-to-one so
that

ZΘF (x) ⋅ZF (x) = ( ∑
γ1∈ΘF

x∣γ1∣)( ∑
γ2∈SF

x∣γ2∣)

≤ max(1, x−100m) ∑
γ1∈ΘF ,γ2∈SF

x∣γ1∣+∣γ̃1∣+∣γ2∣

≤ max(1, x−100m)max(x,x2) ∑
γ1∈ΘF ,γ2∈SF

x∣f(γ1,γ2)∣

≤ max(x2, x−100m+1) ∑
γ∈f(ΘF×SF )

x∣γ∣

≤ max(x2, x−100m+1)Z(Ωδ,aδ,bδ)(x),

where in the second line we have used the fact that γ̃1 has length smaller than 100m, in
the third line the fact that ∣f(γ1, γ2)∣ equals ∣γ1∣ + ∣γ̃1∣ + ∣γ2∣ −1 or ∣γ1∣ + ∣γ̃1∣ + ∣γ2∣ −2, and in
the fourth the fact that f is one-to-one. Using the claim, the previous inequality implies

Pδ,x(0 < dist(γδ,VF ) < 4m + 4) = ZΘF (x)
Z(Ωδ,aδ,bδ)(x)

≤ C

ZF (x)
≤ C

Zm(x)∣F ∣ .

◻

Proof of Theorem 15.2 in dimension 2 Let x > 1/µ and (Ω, a, b) a domain with two
points on the boundary be from the statement of the theorem. Let An be the number
of connected subsets of Zd containing 0. It is well known that lim n

√
An is finite (see e.g.

Theorem 4.20 in [Gri99]). Let therefore λ = λ(d) satisfy An ≤ λn for all n. We now
apply Proposition 15.3 and get some m =m(x, d) such that Zm(x) > 2λ. With this m set
ξ = 4m + 4.

Let δ > 0 and consider the eventA(s) that there exists a set connected S of cardinality s
at distance larger than ξ of γδ. There must exist a maximal connected family of s/(2m+1)2

boxes of size 2m+1 covering S. Since the family of boxes is maximal, the distance between
the union of boxes and γδ is smaller or equal to ξ = 4m + 4. Proposition 15.5 implies

P(Ωδ,aδ,bδ,x)[A(s)] ≤ ∑
F ∈F(Ωδ,ξ)∶∣F ∣≥s

C(x,m) [Zm(x)]−∣F ∣
.

By the definition of λ, the number of families of connected boxes of size K in F(Ωδ, ξ)
is thus bounded by (C/δ2)λK (since up to translation they are connected subsets of a
normalized square lattice), where C = C(Ω) depends on the area of Ω. Therefore, for
c > 0,

P(Ωδ,aδ,bδ,x) [A(c log
1

δ
)] ≤ C(x,m)C(Ω)

δ2 ∑
i≥c(log 1

δ
)/ξ2

( λ

Zm(x)
)
i



CHAPTER 15. SUPERCRITICAL SAWS ARE SPACE-FILLING 288

so that the claim follows as soon as c is chosen large enough. ◻

Remark 15.6. Let us briefly describe what needs to be changed in higher dimensions.
The notion of cardinal edge must be extended: in the box [0,2m + 1]d, cardinal edges for
the face [0,2m1]d−1 × {0} are all the edges joining vertices in {m,m + 1}d−1 × {0} of the
form [(..,m + 1,m,m, ..,0), (..,m + 1,m + 1,m, ..,0)]. We only consider part of the edges
joining vertices in {m,m+ 1}d−1 ×{0} because we want to contain all these edges, without
forming a loop. Similarly cardinal edges can be defined for every face. It can be shown
that the number of polygons included in some box [0,2m+ 1]d and visiting all the cardinal
edges grows exponentially at the same speed as the number of self-avoiding walks. The
proofs then apply mutatis mutandis.

3 Questions
The supercritical phase exhibits an interesting behavior. We know that the curve be-
comes space-filling, yet we have very little additional information. For instance, a natural
question is to study the length of the curve. It is not difficult to show that the length is
of order 1/δ2, yet a sharper result would be interesting:

Question 15.7. For x > 1/µ, show that there exists θ(x) > 0 such that for every ε > 0
and every (Ω, a, b),

P(Ωδ,aδ,bδ,x)(∣ ∣γδ ∣ − θ(x) ⋅ ∣Ωδ ∣ ∣ > ε ∣Ωδ ∣) Ð→ 0 when δ → 0.

The quantity θ(x) would thus be an ’averaged density’ of the walk. Note that the
existence of θ(x) seems natural since the space-filling curve should look fairly similar in
different portions of the space.

Another challenge is to try to say something nontrivial on the critical phase. In other
words:

Question 15.8. When x = 1/µ, show that the sequence (γδ) does not converge to a
geodesic, and that it does not become space-filling.

Finally, we recall the conjecture made in [Smi06] concerning the two-dimensional limit
in supercritical phase.

Conjecture 15.9 (Smirnov). Let (Ω, a, b) be a simply connected domain of C and con-
sider approximations by the hexagonal lattice. The law of (γδ) converges to the chordal
Schramm-Loewner Evolution in (Ω, a, b)

• with parameter 8/3 if x = 1/µ,

• with parameter 8 if x > 1/µ.



Chapter 16

Bridge Decomposition of Restriction
Measures

Abstract: Motivated by Kesten’s bridge decomposition for two-dimensional self-avoiding
walks in the upper half plane, we show that the conjectured scaling limit of the half-plane
SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition.
This continuum decomposition turns out to entirely be a consequence of the restriction
property of SLE(8/3), and as a result can be generalized to the wider class of restriction
measures. Specifically we show that the restriction hulls with index less than one can be
decomposed into a Poisson Point Process of irreducible bridges in a way that is similar to
Itô’s excursion decomposition of a Brownian motion according to its zeros. This chapter
is inspired by the article Brigde decomposition of restriction measures written with Tom
Alberts and published in Journal of Statistical Physics [ADC10].

1 Introduction
One of the greatest successes of the Schramm-Loewner Evolution (SLE), and the broader
study of two-dimensional conformally invariant stochastic processes that it enabled, has
been the ability to describe the scaling limits of two-dimensional lattice models that arise
in statistical mechanics. One of the most important open problems in the field is to prove
that the scaling limit of the infinite self-avoiding walk in the upper half plane H is given
by SLE(8/3) [LSW04b]. It is known that if the scaling limit of half-plane SAWs exists
and is conformally invariant, then the scaling limit must be SLE(8/3). Both the existence
and conformal invariance are widely believed to be true, yet proofs remain elusive. Even
without formally establishing the scaling limit result, it is often still possible to indepen-
dently check that the various well-studied properties of half-plane SAWs carry over to the
SLE(8/3) process. The main results of this chapter should be seen in this context. In
[Kes63a] it is shown that half-plane SAWs admit what is called a bridge decomposition,
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which raised the question of finding a similar decomposition for SLE(8/3). In this chapter
we will show that an appropriately defined continuum decomposition does exist, and we
will describe some of its properties. A somewhat surprising aspect of the existence is
that it depends only on the fact that SLE(8/3) satisfies the restriction property, and not
on the fine details of the process itself. Specifically, the decomposition has no explicit
reliance on the Loewner equation. Using this fact we are able to extend the continuum
bridge decomposition beyond SLE(8/3) to a wider class of random sets whose laws are
given by the so-called restriction measures. These probability measures were introduced
and studied extensively in [LSW03], and they occupy an important position in the hier-
archy of two-dimensional conformally invariant processes. We will give a more detailed
description of restriction measures in Section 2, but we emphasize that the reader who is
uninterested in general restriction measures will lose nothing by focusing on SLE(8/3) as
the canonical one.

1.1 Motivation: Bridge Decomposition of SAWs

To motivate the continuum bridge decomposition, we first describe the corresponding
decomposition for half-plane SAWs. This is thoroughly described in [MS93], along with
many other interesting properties of the self-avoiding walk. In the discrete setting we
will work exclusively on the lattice Z+ iZ. Recall that an N -step self-avoiding walk ω on
Z + iZ is a sequence of lattice sites [ω(0), ω(1), . . . , ω(N)] satisfying ∣ω(j + 1) − ω(j)∣ = 1
and ω(i) ≠ ω(j) for i ≠ j. We will write ∣ω∣ = N to denote the length of ω. Given walks ω
and ω′ of length N and M (respectively), the concatenation of ω and ω′ is defined by

ω ⊕ ω′ = [ω(0), . . . , ω(N), ω′(1) + ω(N), . . . , ω′(M) + ω(N)] .

Letting cN denote the number of self-avoiding walks of length N , it is easy to see that

cN+M ≤ cNcM

since any SAW of length N +M can always be written as the concatenation of two SAWs
of length N and M . A standard submultiplicativity argument then proves the existence
of a constant µ > 0 such that

lim
N→∞

log cN
N

= logµ, (16.1)

or cN ≈ µN in the common shorthand. The exact value of µ is not known, nor is it
expected to be any special value, but numerically it has been shown that µ is close to
2.638 (see [MS93, Section 1.2]).

We will mostly deal with half-plane SAWs rooted at the origin, i.e. self-avoiding paths
ω such that ω(0) = 0 and Imω(j) > 0 for all j > 0. Let H denote the set of all such walks.
The most commonly used probability measure on H, and the one that we will consider
throughout, is the weak limit of the uniform measure on {ω ∈ H ∶ ∣ω∣ = N}, as N → ∞.
This limit is proven to exist in [MS93], and again in the appendix of [LSW04b]. The key
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element of both proofs is, in fact, the bridge decomposition of the walks in H, the study
of which was initiated by Kesten [Kes63a, Kes64a] and goes as follows. A bridge of length
N is a self-avoiding walk ω such that ∣ω∣ = N and

Imω(0) < Imω(j) ≤ Imω(N), 1 ≤ j ≤ N.

Note that the concatenation of any two bridges is still a bridge, but that not every bridge
is the concatenation of two shorter ones. A bridge with the latter property is said to be
irreducible, and such bridges are the basic building blocks of walks in H. Indeed, given
any ω ∈ H, one performs a bridge decomposition of ω by searching for the smallest time j
such that Imω(k) ≤ Imω(j) for k ≤ j and Imω(k) > Imω(j) for k > j. By the minimality
of j, the subpath [w(0),w(1), . . . ,w(j)] is an irreducible bridge, and the shifted subpath
[0,w(j + 1) −w(j), . . . ,w(k) −w(j), . . .] for k ≥ j is a new element of H on which we may
repeat this procedure. Iterating in this fashion produces the bridge decomposition of ω
into a sequence of irreducible bridges, and the decomposition is clearly unique1.

Much of the study of the infinite self-avoiding walk in the upper half plane therefore
reduces to the study of irreducible bridges. Let B be the set of all irreducible bridges
rooted at the origin, and λN be the number of length N elements of B. Using some
clever tricks involving generating functions, Kesten was able to prove what is now called
Kesten’s relation:

∑
N≥1

λNµ
−N = ∑

ω∈B
µ−∣ω∣ = 1, (16.2)

for the same µ as in (16.1) (for proofs see [Kes63a] or [MS93, Section 4.3]). Kesten’s
relation shows that P(ω) ∶= µ−∣ω∣ is a probability measure on B, and by concatenating to-
gether an independent sequence of irreducible bridges each sampled from P, a probability
measure is induced on H. In [MS93] and [LSW04b], the latter measure is shown to be the
only possible candidate for the weak limit of the uniform measure on {ω ∈ H ∶ ∣ω∣ = N},
and therefore the question of existence of this weak limit is immediately settled.

The bridge decomposition shows that infinite half-plane SAWs have a renewal structure
to them. At the end of each irreducible bridge the future path of the walk lies entirely in
the half-plane above the horizontal line where the bridge ended. The future path is again
a concatenation of a sequence of irreducible bridges, so that its law is the same as the
law of the original path and the future path is independent of the past. In this sense the
walk renews itself whenever it is at the end of an irreducible bridge, and it is appropriate
to call such times renewal times. Note that the renewal times are functions of the entire
half-plane SAW, since the algorithm for the bridge decomposition depends upon knowing
the entire walk.

1There is a minor technicality to point out here: if the walk oscillates infinitely often in the vertical
direction without approaching some limit (including infinity) the decomposition algorithm will terminate
after finitely many iterations and the remaining part of the walk will not be a bridge. However, we will
see in the next paragraph that this is a probability zero event under the standard measure on H, and
that the vertical component of the SAW always goes to infinity with probability one.
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Figure 16.1: A sample SLE(8/3) curve in the lighter colour, with the bridge points su-
perimposed in black. The bridge heights are plotted on the vertical axis. The SLE(8/3)
curve is generated by Tom Kennedy’s algorithm and freely available graphics program;
see [Ken07].

1.2 Statement of Results: The Continuum Bridge Decomposition

In the continuum we will show that an analogue of bridge times exists for the so-called
restriction hulls in H, and that these times are also renewal times. Using this renewal
structure, we proceed to decompose the restriction hulls into countably many continuum
irreducible bridges. This continuum decomposition most closely resembles the discrete
one in the case of SLE(8/3), but we will see that it also holds for more general restriction
hulls with parameter α < 1. We will give a more in-depth description of the restriction
hulls in Section 2, but provide a brief summary here.

Roughly speaking, a restriction hull is a stochastic process taking values in the space
of unbounded hulls in H. An unbounded hull is a closed, connected subset K ⊂ H such
that H/K consists of exactly two connected components. The unbounded hulls that we
will consider are closed, connected subsets of H that connect 0 and ∞, and intersect R
only at zero; moreover it will be possible to time parameterize them into a growing family
(Kt, t ≥ 0) of hulls (closed, connected subsets A of H such that H/A is simply connected
with exactly one connected component) with K∞ = K. This time parameterization is
provided by the well-known construction of restriction hulls that was originally laid out
in [LSW03] and [LW04]. Those chapters show that attaching the filled-in loops from a
realization of the Brownian Loop Soup to an independent SLE curve induces a restriction
law on unbounded hulls in H. By changing the κ parameter for the SLE and the intensity
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parameter for the loop soup (in a specific way) an entire family Pα of restriction measures
on unbounded hulls is created. Here α is a real parameter with α ≥ 5/8.

The definition of a continuum bridge is motivated by the algorithm for decomposing
half-plane SAWs into irreducible bridges, which essentially searches for horizontal lines
that separate the future path from the past.

Definition 16.1. Let K be a hull (unbounded or not).

• Call L > 0 a bridge height for K if the horizontal line y = L intersects K at exactly
one point, i.e. if K ∩ {y = L} is a singleton.

• If z ∈ H is such a singleton then we call it a bridge point. Let C be the set of bridge
points of K, and let D be the set of bridge heights (note that D = {Im z ∶ z ∈ C}).

• Let G be the set of bridge times at which the hull is at a bridge point, which can be
written as G ∶= {t ≥ 0 ∶Kt/Kt− ∩C ≠ ∅}.

• A continuum bridge is a segment of the bridge between two bridge times, i.e. if
s, t ∈ G with s < t then the hull Kt−/Ks− is a bridge. A continuum bridge is said
to be irreducible if it contains no bridge points (other than the starting and ending
points).

Note that bridge heights, points and times are all functions of the entire hull K. A
subset of K is, by itself, not enough to determine C,D or G. At any fixed time t ≥ 0 it is
possible to determine what are the bridge points of the hull Kt, but not which of those
are bridge points of the entire hull K∞ = K, since some of the bridge points of Kt may
ultimately be destroyed by the future hull as it grows.

There are two main steps behind the continuum bridge decomposition. The first is
to show that bridge points actually exist for hulls with α < 1, which is not a priori clear.
We do this by calculating the almost sure Hausdorff dimensions of C and D and showing
that they are strictly larger than zero (and in fact the same). Specifically we will show
the following:

Theorem 16.2. Suppose K has the law of Pα, then

1. the laws of C and D are scale invariant (i.e. rC ≡ C and rD ≡D for all r > 0),

2. C and D are almost surely perfect (i.e. closed and without isolated points),

3. the Hausdorff dimensions of both C and D are constant, Pα − a.s.,

4. dimHC = dimHD = max(2 − 2α,0), Pα − a.s.,

5. C and D are empty, Pα − a.s. if and only if α ≥ 1.
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The proof of Theorem 16.2 is taken up in Section 3, but we will mention here that the
key element is the restriction formula:

Pα (K ∩A = ∅) = φ′A(0)α, (16.3)

where A is a hull that does not contain zero, and φA is a conformal map from H/A to
H such that φA(z) ∼ z as z → ∞. Most of the proof of Theorem 16.2 is based on an
analysis of φ′A(0) for a specific choice of the hull A. The proof of part (5) builds upon the
α = 1 case, which is related to Brownian excursions, and uses the fact that the vertical
component of a Brownian excursion is a Bessel-3 process.

Given that bridge points exist for α < 1, the next step is to prove an analogue of the
renewal theory for half-plane SAWs. In Section 4 we show that the restriction hulls have
an extended Markov property with respect to the information gained by observing the
hull as it grows along with the global bridge points of K as they appear, and as a corollary
we show that the bridge times are actually renewal times for the hull process. In Section
5 we will use this Markov property and Theorem 16.2 to show the existence of a “local
time” for the time spent by a restriction hull at its bridge points, and the local time can
then be used to prove:

Theorem 16.3. There exists a local time λ supported on bridge heights such that θλ(Kλ∖
Kλ−) is a Poisson Point Process, where θt is an operator that shifts back to the origin the
part of the hull that comes after time t. Moreover, the local time is the inverse of a stable
subordinator of index 2 − 2α.

The general theory of Poisson Point Processes then implies the existence of a sigma-
finite measure να on continuum irreducible bridges that is the analogue of the measure P
on irreducible bridges for half-plane SAWs. In Section 5 we mention some basic properties
of this measure. We also show that the Poisson Point Process can be used to recover the
restriction hull, so that as in the discrete case, the irreducible bridges are the building
blocks of the restriction hull processes.

We should mention that most of these ideas are similar in spirit to the excursion
decomposition of a one-dimensional Brownian motion according to its zeros, as was first
described by Itô. In recent years, similar two-dimensional conformally invariant decompo-
sitions of this type have also been considered by Dubédat [Dub06] and Virág [Vir03]. They
provide decompositions of unbounded hulls arising from certain variants of SLE(κ, ρ) and
Brownian excursions, respectively, although their decompositions are at cutpoints rather
than bridge points (i.e. points that, if removed from the set, would disconnect it into two
pieces). Clearly bridge points are cutpoints but not vice versa, and there does not appear
to be any direct relationship between our decomposition and theirs. In one sense their
decompositions are more involved than ours, since their hulls refresh at cutpoints only
after conformally mapping away the past, whereas our hulls refresh at bridge points after
a simple shift of the future hull back to the origin. This difference is mostly cosmetic,
however, and in spirit all these decompositions are quite similar.

The chapter is organized as follows: in Section 2 we give the necessary background
on restriction measures and introduce some notation. Section 3 is devoted to proving the
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existence of bridge points and Theorem 16.2, while Section 4 proves an extended Markov
property and a refreshing property of the restriction hulls with respect to the filtration
generated by bridge points as they appear. Section 5 then uses these results to prove the
decomposition of Theorem 16.3. Finally, in Section 6 we present a series of open questions
that were raised by our work.

2 Restriction Measures
In this section we review the basic construction and properties of restriction measures. We
include no proofs but give references to the appropriate sources. For thorough overviews
of the subject see [Law05] or [LSW03, LW04]. The reader interested only in the bridge
decomposition for SLE(8/3), and not for general restriction measures, can entirely ignore
the presence of the loops in this section.

To begin with, consider a simply connected domain D in the complex plane C (other
than the whole plane itself) and two boundary points z,w ∈ ∂D. A chordal restriction
measure corresponding to the triple (D,z,w) is a probability measure P(D,z,w) on closed
subsets of D. The measures are supported on closed, connected subsets of K ⊂ D such
that K ∩ ∂D = {z,w} and D/K has exactly two components (for the triple (H,0,∞) we
call these sets unbounded hulls, for obvious reasons). The restriction measures satisfy the
following properties, which essentially characterize them uniquely:

• Restriction property: for all simply connected subsets D′ of D such that D/D′

is also simply connected and bounded away from z and w, the law of P(D,z,w),
conditioned on K ⊂D′, is P(D′,z,w),

• Conformal invariance: if f ∶ D → D′ is conformal and K has P(D,z,w) as its law,
then f(K) is distributed according to P(f(D),f(z),f(w)).

It turns out that for a given triple (D,z,w) there is only a one-parameter family of
such laws, indexed by a real number α. We denote the law by P(D,z,w)

α , and due to the
conformal invariance property it is enough to define the restriction measure for a single
triple (D,z,w). The canonical choice is (H,0,∞), and for shorthand we will write Pα for
P(H,0,∞)
α . In [LSW03] it is shown that these restriction measures exist only if the parameter
α satisfies α ≥ 5/8, and that the measure is supported on simple curves only if α = 5/8. In
the latter case the restriction measure is simply the SLE(8/3) law from z to w in D. For
α = 1 it turns out that the restriction measure coincides with the law of filled-in Brownian
excursions in D from z to w.

For all α ≥ 5/8, one of the fundamental constructions of [LSW03] is that restriction
measures can be realized by adding to an SLE(κ) curve the filled-in loops that it intersects
from an independent realization of the Brownian loop soup, for an appropriate choice of
κ for the curve and intensity parameter λ for the loop soup. Let

κ = 6

2α + 1
, λ = (8 − 3κ)α,
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and let γ be a chordal SLE(κ) and Lλ be an independent realization of the Brownian loop
soup (in H) with intensity parameter λ. The individual loops in Lλ will be generically
denoted by η, they can be thought of as continuous curves η ∶ [0, tη] → H such that
η(0) = η(tη). Throughout we will use γ and η to denote the curves as well as their traces,
i.e. γ[0,∞) and η[0, tη], respectively. It will be clear from the context which we are
referring to. Let K be the hull generated by the union of γ and all the (filled-in) η ∈ Lλ
such that η ∩ γ ≠ ∅. Then [LSW03] (along with [LW04]) proves that K is distributed
according to Pα.

This construction allows us to identify restriction hulls with pairs (γ,L), where γ ∶
[0, tγ] → C is a continuous, simple curve and L is a set of loops. Furthermore, the curve
plus loops structure gives a clean way of time parameterizing the hulls. Letting K be a
restriction hull, which we identify with (γ,L), we define Kt to be the hull generated by
γ[0, t] plus the union of all filled-in loops η ∈ Lλ such that η ∩ γ[0, t] ≠ ∅. Then (Kt)t≥0

is a growing family of hulls that increases to K∞ = K. It is important for us to have
such a time parameterization so that we may properly describe the renewal theory for the
restriction hulls, but the particular time parameterization is not especially important since
we are mostly interested in the restriction hull as a topological object. We remark that
this growing family is not continuous with respect to the time parametrization, since loops
are added “all at once”, but again it does not really matter for our purposes (nevertheless,
notice that the parameterization is right continuous). The only issue to point out is that
the bridge points of a restriction hull will always be a subset of the underlying (simple)
curve γ, and therefore to each bridge point there is a corresponding unique bridge time.
Hence the set of bridge times G is a well defined object.

The curve-plus-loops structure also makes it easy to define various operations on hulls.
Given two pairs (γ,L) and (γ∗,L∗) with γ(0) = γ∗(0) = 0, their concatenation is defined
by

(γ,L) ⊕ (γ∗,L∗) = (γ ⊕ γ∗,L ∪ (γ(tγ) + L∗)) ,

where γ ⊕ γ∗ is the usual concatenation of curves given by

(γ ⊕ γ∗) (t) = { γ(t), 0 ≤ t ≤ tγ
γ∗(t − tγ) + γ(tγ), tγ ≤ t ≤ tγ + tγ∗

We also define a time shift for the hulls. For t ≤ s ≤ tγ, define the curve γt,s by γt,s(t′) ∶=
γ(t + t′) for 0 ≤ t′ ≤ s − t, and let

Lt,s ∶= {η ∈ L ∶ η ∩ γt,s ≠ ∅, η ∩ γ[0, t] = ∅}.

Then we define Λt,sK ∶= (γt,s,Lt,s), which is the future hull between times t and s, and
θt,sK ∶= Λt,sK − γ(t), which shifts the future hull to start at the origin. If s = tγ, which
usually for us means s = ∞, we write Λt and θt for these operators. In the case that K is
an unbounded hull in H and t is a bridge time for K, it is easy to see that θtK is also an
unbounded hull in H. At non-bridge times θtK does not remain in H.
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Imagine a walker moving along the hull that has discovered Kt at time t. The infor-
mation that is progressively revealed to the walker is encapsulated by the filtration

Ft ∶= σ(Ks; 0 ≤ s ≤ t).

With respect to this filtration, the following Domain Markov property is true:

The conditional law of ΛtK, given Ft, is P(H/γ[0,t],γ(t),∞)
α . (16.4)

This is similar to the Domain Markov property for regular SLE, where the future curve
is an independent SLE(κ) curve from γ(t) to ∞ in H/γ[0, t], except that in the case of
restriction measures one also attaches to the curve the filled-in loops of an independent
realization of the Brownian loop soup in the domain H/γ[0, t]. Note, however, that
both the future curve and loops are sampled from the laws corresponding to the domains
H/γ[0, t], not the laws corresponding to H/Kt. In short, the future curve and future loops
are allowed to intersect the past loops but not the past curve γ[0, t].

For the domain (H,0,∞) recall that the restriction measures satisfy the restriction
formula (16.3):

Pα (K ∩A = ∅) = φ′A(0)α,

where A is a hull in H that is a positive distance from zero, and φA is a conformal map
from H/A onto H satisfying φA(z) ∼ z as z →∞. In fact, specifying the above probabilities
for a sufficiently large class of hulls A (so-called smooth hulls) uniquely determines Pα,
see [LSW03] for a proof of this fact. For general triples (D,z,w), the restriction formula
is

P(D,z,w)
α (K ∩A = ∅) = φ′f(A)(0)α, (16.5)

where A is a hull in D not containing z, and f is a conformal map from D onto H that
sends z to 0 and w to ∞.

The restriction formula will be heavily used throughout this chapter. For a given hull
A there are various techniques from both complex analysis and probability theory that
can be used to compute φ′A(0). We will exclusively use probabilistic techniques involving
Brownian motion; these are described in the next section.

3 Bridge Lines and Bridge Points
The main focus of this section is proving Theorem 16.2. Specifically, we establish the
existence of bridge points and lines for restriction hulls with α < 1, and also prove the
non-existence for α ≥ 1.

First observe that part (1) of Theorem 16.2 is trivial. The scale invariance of C and D
follows immediately from the scale invariance of the restriction hulls (which itself follows
from the scale invariance of SLE and of the loop soup). To prove part (2), first recall that
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bridge points of a restriction hull are always on the SLE curve itself and never on a loop,
and that there is always a unique bridge time corresponding to every bridge point. We
refer to the end of the section for the proof.

The most involved proofs are for calculating the Hausdorff dimensions of C and D.
The computation of the Hausdorff dimensions in Theorem 16.2 follows standard “one-
point” and “two-point” arguments, as in, for example, [AS08, Bef08b, Law96, SZ07]. The
idea behind this argument is to approximate C and D by “thickened” sets εC and εD, and
then obtain estimates on the probability that a given set of points belongs to the thickened
sets. A specific bound on the probability that one point belongs to the thickened set gives
an upper bound on the Hausdorff dimension, and a similar bound on the probability that
two points are in the thickened sets, together with the order of magnitude of the one-point
estimate, gives a lower bound on the dimension. We recall the result that we will use in
the remainder; throughout this chapter we use the notation f(ε) ≍ g(ε) to indicate that
there exists constants C1 and C2 independent of ε such that C1g(ε) ≤ f(ε) ≤ C2g(ε), for
all ε sufficiently small.

Proposition 16.4. Let H be a random subset of C and εH be the set of points at distance
less than ε from H. Suppose that the two following conditions are fulfilled for some s ≥ 0
and constant c > 0:

• for all z ∈ H, P (z ∈ εH) ≍ εs,

• for all distinct w, z ∈ H, P (w, z ∈ εH) ≤ cεs ∧ c(ε2s/ ∣w − z∣s).

Then dimHH ≤ 2 − s with probability one, and with some strictly positive probability we
also have dimHH ≥ 2 − s. If H is a random subset of R then the same conclusion holds
with 2 − s replaced by 1 − s.

Note that Proposition 16.4 by itself is not enough to conclude that the Hausdorff
dimension of H is a constant, since the lower bound only holds on some event of positive
probability. In our situation we are able to conclude that the Hausdorff dimension of C
and D is constant by using a 0-1 law. The argument that follows uses the Blumenthal
0-1 Law and is modified from [Law96].

Proof of Theorem 16.2, part (3) We will prove the result for C, a similar argument
holds for D. For 0 ≤ t ≤ s, define Ct(s) ∶= {bridge points of Ks} ∩Kt. For a fixed d > 0,
let Wt(s) ∶= {dimHCt(s) ≥ d}. It is enough to show that Pα (W∞(∞)) = 0 or 1.

First note that for fixed s, both the sets Ct(s) and Wt(s) are increasing in t, while for
fixed t they are decreasing in s. Defining

Vs ∶=
∞
⋂
n=1

W 1
n
(s) = {dimHCt(s) ≥ d ∀ 0 < t ≤ s} ,

it follows that Vs is also decreasing in s. For each element of the event Vs/V∞, there exists
a t0 such that 0 < t0 ≤ s and for all 0 < t ≤ t0,

dimHCt(∞) < d ≤ dimHCt(s).
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But this can only happen if for every 0 < t ≤ t0, the future hull ΛsK destroys bridge points
of Ks that are in Kt, and since this happens for every 0 < t ≤ t0 and Kt → {0} as t→ 0, this
forces that the future hull comes arbitrarily close to the real axis. But this is clearly an
event of measure zero. Hence for every s > 0, Pα (Vs/V∞) = 0, from which it immediately
follows that

Pα (
∞
⋂
n=1

V 1
n
) = Pα (V∞) .

However, the intersection of the V1/n is F0+-measurable, and in the case of SLE(8/3)
it follows that P5/8 (V∞) = 0 or 1 by the Blumenthal 0-1 Law, since the corresponding
measure P5/8 is a pushforward of Wiener measure through the Loewner equation. For
general α > 5/8, the same type of Blumenthal 0-1 Law holds via the usual argument.
Indeed, the Domain Markov property implies that φKt(ΛtK) is a restriction hull that is
independent of Ft, hence for A ∈ F0+ and t > 0 and any bounded, continuous function f
on hulls we have

E [f (φKt(ΛtK))1A] = E [f (φKt(ΛtK))]Pα (A)

Taking a limit of both sides as t ↓ 0 and using the fact that f is continuous and φKt goes
continuously to the identity we get that

E [f(K)1A] = E [f(K)]Pα (A) ,

which shows that A is independent of all elements of F∞, and therefore of itself. ◻

We now use Proposition 16.4 to prove part (4) of Theorem 16.2. We use the following
events to define our thickened sets.

Definition 16.5. For z ∈ H and ε > 0, let I(z, ε) be the horizontal line y = Im z with the
gap of width 2ε centered around z removed. That is

I(z, ε) ∶= {w ∈ H ∶ Imw = Im z, ∣Re(w − z)∣ ≥ ε} .

Define the sets εC and εD by

εC ∶= {z ∈ H ∶ I(z, ε) ∩K = ∅} , εD ∶= {L > 0 ∶ I(nε + iL, ε) ∩K = ∅ for some n ∈ Z} .

Lemma 16.6. With the definitions above, the following is true Pα-a.s.:

C = ⋂
ε>0

εC, D = ⋂
ε>0

εD.
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0

ǫ ǫ

Figure 16.2: The dotted point is z and the two horizontal lines on either side form the
set I(z, ε). This figure depicts the event that an SLE(8/3) avoids the hull I(z, ε).

Proof Recall that C consists of z ∈ H for which K ∩ {y = Im z} = {z}. Hence if z ∈ C
then z ∈ εC for all ε > 0. To prove the converse, note that if z ∈ εC for every ε > 0 then z
is the only possible element in the set K ∩ {y = Im z}. But the latter set is always non-
empty, since restriction hulls are connected and their vertical component goes from zero
to infinity (Pα-a.s.), and therefore with Pα-probability 1 the set K ∩{y = L} is non-empty
for all L > 0. The proof for D is exactly the same. ◻

The restriction formula makes it easy to compute the probability that a point z ∈ H
is in εC. Indeed, by formula (16.3) we have

Pα (z ∈ εC) = Pα (I(z, ε) ∩K = ∅) = φ′I(z,ε)(0)α,

where φI(z,ε) is a conformal map from H/I(z, ε) onto H such that φI(z,ε)(w) ∼ w as w →∞.
Similarly,

Pα (w, z ∈ εC) = φ′I(w,ε)∪I(z,ε)(0)α.

By Proposition 16.4, the Hausdorff computation for C and D therefore comes down to an
estimate of the derivative of these conformal maps at zero. We list three possible methods
for these estimates. One deals only with conformal maps and is entirely analytic. The
others use probabilitic techniques. We recall the analytic method but do not enter into
details.



CHAPTER 16. BRIDGE DECOMPOSITION OF RESTRICTION MEASURES 301

Analytic Method: While it is not possible to write down φI(z,ε) explicitly, one can write
down the general form of its inverse. Let

fz,ε(w) ∶= λw + Im z

π
(log(w − a) − log(w − b) + πi) ,

where the imaginary part of the logarithm is zero along the positive real axis and π on
the negative real axis. For appropriate choices of real constants λ, a, and b (with a < b,
λ > 0), fz,ε maps H onto H/I(z, ε). These constants implicitly depend on z and ε, although
it is difficult to give closed-form expressions for them. Close analysis of the asymptotic
behavior of λ, a, and b could be used to get estimates on φ′

I(z,ε)(0) as ε ↓ 0, but we will
mostly avoid this strategy. We will, however, mention that a and b are determined mostly
by z, while λ is proportional to ε−2.

Brownian Excursion Method: The first probabilistic method uses a well-known for-
mula, due to Bálint Virág [Vir03], for Brownian excursions in the upper half plane. Recall
that a Brownian excursion in H can be thought of as a Brownian motion that is started
at zero and conditioned to have a positive imaginary part at all later times. Such excur-
sions can be realized by a random path whose horizontal component is a one-dimensional
Brownian motion and whose vertical component is an independent Bessel-3 process.

Lemma 16.7. ([Vir03]) Let A be a compact hull in the upper half plane such that H/A
is simply connected and dist(0,A) > 0, and φA be a conformal map from H/A into H such
that φA(0) = 0 and φA(z) ∼ z as z →∞. If BE denotes the path of a Brownian excursion
in H from 0 to ∞, then

φ′A(0) = P (BE does not intersect A) .

In particular, this lemma shows that the filling in of a Brownian excursion has the
law of a restriction measure with index 1. It can also be used to get the estimates of
Proposition 16.4, but we prefer the following method that produces asymptotic results
(even if they are not necessary in our setting).

Brownian Motion Method: Instead of using Brownian excursions to compute φ′A(0),
one can use Brownian motion directly. Oftentimes this is easier as it doesn’t require
dealing with the conditioning. In an appropriate sense, φ′A(0) is the exit density at zero
(with respect to Lebesgue measure) of a Brownian motion in H/A, starting from ∞. This
is also called the excursion Poisson kernel as seen from ∞. In what follows we let B be
a complex Brownian motion.

Definition 16.8. Given a simply connected domain D with z ∈D, w ∈ ∂D, let HD(z,w)
denote the Poisson kernel. In the case D = H/A, we will often be interested in the “Poisson
kernel as seen from infinity”, for which we introduce the notation

HH/A(∞,w) ∶= lim
L↑∞

LHH/A(iL,w).
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The following estimates will be useful when using Lemma 16.9 to estimate φ′A(0). For
x > 0, HH(z, x) = 1

π Im(z)/∣z − x∣2 and consequently HH(∞, x) = 1
π . Recall that under a

conformal map f ∶ D → D′, HD(z,w) changes according to the scaling rule HD(z,w) =
∣f ′(w)∣Hf(D)(f(z), f(w)). In particular, we have the scaling ruleHH/A(∞,w) =HH/rA(∞, rw).

The next lemma outlines how to use Brownian motion directly to estimate φ′A(0). The
method of proof is virtually identical to the one for Lemma 16.7, so we refer the reader
to [Vir03] for details.

Lemma 16.9. For a complex Brownian motion and a compact hull A in the upper half-
plane such that H/A is simply connected and dist(0,A) > 0,

φ′A(0) =HH/A(∞,0).

The computation of φ′
I(z,ε)(0) is thus reduced to some estimates on the exit density of

a Brownian motion in the domain H/I(z, ε). In order to simplify the computations, we
first estimate exit densities for an intermediate set εS.

Lemma 16.10. Let εS = R × [0,2i]/I(i, ε). Then for x ∈ R and λ ∈ [−1,1],

HεS(λε + i, x) ∼
π
√

1 − λ2

8 cosh2(πx/2)
ε (16.6)

as ε ↓ 0, where “∼" means that the ratio of the two terms converges to 1 uniformly with
respect to x and λ. In particular, the probability that the Brownian motion started at i
exits Sε on R is of order ε.

Proof Let εz = λε+ i. In this case, it is easy to find an explicit conformal map from εS
onto H. A simple one is given by

εf(z) = ( e
πz + eπε

eπz + e−πε
)

1/2
.

By the scaling rule for the Poisson kernel

HεS(εz, x) = ∣εf ′(x)∣HH(εf(εz), εf(x)) =
∣εf ′(x)∣

π

Im(εf(εz))
∣εf(εz) − εf(x)∣2

.

It is straightforward to verify that

εf(x) ∼ 1,

as ε ↓ 0, and

∣εf ′(x)∣ = 1

2fε(x)
2πeπx sinh(πε)
(eπx + e−πε)2

∼ π2ε

4 cosh2(πx/2)
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Similarly

εf(εz) = ( e
πε − eπλε

e−πε − eπλε
)

1/2

∼ ( 1 − λ
−1 − λ

)
1/2

= i(1 − λ
1 + λ

)
1/2
.

Assembling the pieces proves (16.6), and then integrating (16.6) over x proves the last
statement. ◻

Lemma 16.11. Let x ∈ R and λ ∈ [−1,1]. Then

HH/I(i,ε)(λε + i, x) ∼HSε(λε + i, x)

as ε ↓ 0.

Proof If a Brownian motion started at λε + i exits εS at x, then it also exits H/I(i, ε)
at x. Consequently, the Poisson kernel on the left hand side is bigger than the one on
the right. They are not the same because the Brownian motion in H/I(i, ε) can hit the
line y = 2i before hitting zero, which the Brownian motion in εS is not allowed to do.
Asymptotically this event contributes nothing; indeed there is only an O(ε) chance that
the Brownian motion even makes it up to y = 2i, and then another O(ε) chance that it
passes back through the gap. Overall this makes the event of order ε2 (uniformly in x and
λ), which, by Lemma 16.10, is negligible compared to HSε(λε + i, x). ◻

Proposition 16.12. For z = y(x + i) ∈ H,

φ′I(z,ε)(0) ∼ U(z)ε2

as ε ↓ 0, where

U(y(x + i)) = π

16y2 cosh2(πx/2)
.

Proof It suffices to prove the result in the case z = x + i, for the general form use the
scaling rule. We use Brownian motion coming down from infinity as in Lemma 16.9. In
order to reach 0, the Brownian motion coming down from infinity must first pass through
the gap of width 2ε centered at z, and then from the gap it must transition to zero while
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avoiding I(z, ε). The two events are independent by the Strong Markov property, and
each one is O(ε). More precisely, by Lemmas 16.10 and 16.11,

φ′I(z,ε)(0) =HH/I(x+i,ε)(∞,0)

= ∫
[−ε,ε]

HH(∞, x + y)HH/I(x+i,ε)(x + y + i,0)dy

= ∫
ε

−ε

1

π
HH/I(i,ε)(y + i,−x)dy

= ε

π ∫
1

−1
HH/I(i,ε)(λε + i,−x)dλ

∼ ε2

8 cosh2(πx/2) ∫
1

−1

√
1 − λ2 dλ.

◻

From Proposition 16.12 and the restriction formula, it is easy to derive the probability
that a bridge point is within distance ε of a given point z decays like ε2α. From this the
first part of Proposition 16.4 follows easily, but we need a last proposition in order to
derive the two point estimate.

Proposition 16.13. Let z,w ∈ H, with Im(z) > Im(w), and εz, εw > 0. Let A = I(z, εz) ∪
I(w, εw). Then

φ′A(0) ≍ U(z −w)U(w)ε2zε2w,

as εz, εw ↓ 0.

Proof The argument is virtually the same as for the one-point estimate in Proposition
16.12, the only difference being that the Brownian motion, after passing through the first
gap at z then has to pass through a second gap at w. The probability of the latter event
can be estimated using Proposition 16.12; indeed, after temporarily shifting w to zero,
there is a U(z − w)ε2zεw chance that the Brownian motion hits in an εw neighbourhood
of w (and therefore also the second gap). With some positive probability it hits in the
middle of the second gap, where the probability of moving to zero is, up to a constant,
given by U(w)εw. These two probabilities multiply since, by the Strong Markov property,
the path before the second gap is independent of the path after the second gap. ◻

Remark 16.14. By carefully decomposing the path according to the points it passes
through in the gaps and then integrating, the statement of Proposition 16.13 could be
strengthened to an asymptotic result rather than just up to constants. For our purposes,
however, this is not required.
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Proof of Theorem 16.2, part (4) Propositions 16.12 and 16.13 combine with Propo-
sition 16.4 to prove the result for C.

For D, the key observation is that if two gaps on a horizontal line do not overlap, then
the curve can only avoid the line by going through one of them. Consequently, for n ≠m,
the events I(nε + iL, ε/2) ∩K = ∅ and I(mε + iL, ε/2) ∩K = ∅ are disjoint, and therefore

Pα (L ∈ εD) = Pα (⋃
n∈Z

{I(nε + iL, ε/2) ∩K = ∅})

= ∑
n∈Z

Pα (I(nε + iL, ε/2) ∩K = ∅)

∼ 1

L2α ∑
n∈Z

U (nε
L
+ i)

α

(ε
2α

4α
)

∼ ε2α−1

4αL2α−1 ∫R
U(x + iL)α dx

∼ παε2α−1

32αL2α−1 ∫R
cosh−2α (πx/2) dx.

The transition from sum to integral is a Riemann sum approximation. By 2α > 1, the
integral is a finite constant depending only on α. This gives the one-point estimate for D.

Similarly, for 0 < L < L′,

Pα (L,L′ ∈ εD) = Pα ( ⋃
m,n∈Z

{nε + iL,mε + iL′ ∈ Cε/2})

= ∑
m,n∈Z

Pα (nε + iL,mε + iL′ ∈ Cε/2)

≍ ∑
m,n∈Z

ε4αU [(m − n)ε + i(L′ −L)]αU(nε + iL)α

≍ ε4α−2∫
R
U(x + i(L′ −L))α dx∫

R
U(x + iL)α dx

≍ ε4α−2

L2α−1(L′ −L)2α−1

We use the same transition from sum to integral as in the one-point bound. Proposition
16.4 now completes the proof. ◻

We show that C and D are almost surely empty for α ≥ 1. For α < 1, the Haussdorff
dimension is strictly positive and the set is non empty.

Proof of Theorem 16.2, part (5) For α = 1, recall that the imaginary part of a
Brownian excursion is a Bessel(3) process, and a bridge height for the hull necessarily
corresponds to a point of increase for the Bessel(3) process. However, it is well known
that Bessel(3) has no point of increase since, for example, a Bessel(3) process reversed
from its last passage time of a level has the same law as a Brownian motion up to its first
hitting time of zero, and Brownian motion is known to have no points of increase (see
[RY99] for details of both facts).
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For α > 1 consider the rectangle R = [−1,1] × [1/2,1]. Cover it with 22n squares
each of side length 2−n, and let {Si}1≤i≤22n be the boxes and zi be their centers. Then,
by Proposition 16.12, the expected number of squares containing a bridge point decays
exponentially fast since

Eα
⎡⎢⎢⎢⎢⎣

22n

∑
i=1

1{C ∩ Si ≠ ∅}
⎤⎥⎥⎥⎥⎦
≍

22n

∑
i=1

Pα (I(zi,2−n) ∩K ≠ ∅)

≍
22n

∑
i=1

U(zi)(2−n)2α

= 2(2−2α)n2−2n
22n

∑
i=1

U(zi)

≤ C2(2−2α)n,

for some constant C > 0. The last inequality is a simple consequence of the fact that U is
Riemann integrable and hence

2−2n
22n

∑
i=1

U(zi) → ∫
R
U(z)dA(z) < ∞,

where dA(z) is two-dimensional Lebesgue measure. The Borel-Cantelli lemma then proves
that R almost surely contains no bridge points. By scale invariance any scaled version of
R also contains no bridge points. Translates of R in the horizontal direction also contain
no bridge points, since clearly the expected number of bridge points in translates of R
decreases as the rectangle is moved away from the imaginary axis. Finally, since the entire
half-plane can be covered with countably many scaled and translated versions of R, the
entire plane must almost surely be free of bridge points. ◻

We end this section with the proof of part (2) of Theorem 16.2. The lack of isolated
points in C and D is also a consequence of the renewal property of restriction hulls at
bridge points, so we defer the proof of this fact until the end of Section 4.

Proof of Theorem 16.2, part (2) We prove the result for D; the proof for C is
similar. To prove that D is closed, suppose that L is a limit point of D. Without loss of
generality we may assume that the limiting sequence of bridge heights Ln that converges
to L is strictly increasing. If t is the bridge time corresponding to L, then the restriction
hull after time t must reside in the domain Im z ≥ L (since each Ln is a bridge height).
Then L is not in D if and only if the future hull touches the line Im z = L but does not
cross it, which is clearly an event of probability zero. Indeed, for two points z and w on
the same horizontal line let us define A(z, εz,w, εw) to be the event that the hull goes
through the balls B(z, εz) and B(w, εw) while avoiding I(z, εz) ∩ I(w, εw). The estimates
of Proposition 16.13 can be used to show that the probability of A(z, εz,w, εw) is of order
ε2αz ε

2α
w , which easily implies the result since α > 1/2. ◻
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4 Renewal at Bridge Lines
In this section we show that the restriction hulls renew themselves at bridge heights. Most
of the section is technical, so first we would like to give the intuition behind the renewal
property. It is almost entirely a consequence of restriction. Suppose that K is a restriction
hull with the law Pα. Given Ft, the Domain Markov property (16.4) says that the future
hull has the restriction law corresponding to the domain (H/γ[0, t], γ(t),∞). But if we
also know that t is a bridge time, then the future hull is separated from the past by the
bridge line that the hull is currently at. The future hull is therefore conditioned not to go
below this bridge line, and this conditioning is, by the restriction property, “equivalent”
to sampling the future hull from the restriction measure corresponding to the half plane
above the bridge line. Shifting the bridge point back to the origin, this means that the
shifted future hull θtK also obeys the law Pα and is independent of Ft.

There are two main technical obstacles to this intuition. The first is that the event
that t is a bridge time for K is not measurable with respect to Ft, since the set of bridge
times is a function of the entire hull. To address this problem and still have a meaningful
notion of renewal, we simply expand our filtration to a larger one Gt that tells us which
bridge heights of Kt are also bridge heights of K. The second and more problematic
technicality is that t being a bridge time is an event of measure zero, and so conditioning
on it requires some care. Theorem 16.19 deals with this latter problem by showing that
the restriction hulls obey a certain Domain Markov property with respect to Gt, and from
this concludes that they refresh themselves at Gt-stopping times τ such that Pα (τ ∈ G) = 1
(recall that G is the set of bridge times).

We make the following definitions:

Definition 16.15. For t ≥ 0, let Dt be the set of bridge heights of Kt. Note that Dt is
Ft-measurable and D∞ =D. Observe that Dt∩D is the set of bridge heights of Kt that are
also bridge heights of K, and Dt/D is the set of bridge heights of Kt that are not bridge
heights of K. We also define

Lt ∶= supDt ∩D, L′t ∶= infDt/D.

Note that neither of these quantities, nor Dt ∩D or Dt/D, are Ft-measurable. However,
they are measurable with respect to the enlarged filtration

Gt ∶= σ (Ks,Ds ∩D; 0 ≤ s ≤ t) .

Clearly Ft ⊂ Gt, and in this larger filtration the bridge lines (and points, and times) of K
that belong to Kt are measurable objects.

Notice that Dt ∩D is almost surely closed, and therefore Lt is actually a maximum
rather than a supremum (i.e. Lt ∈ Dt ∩D). Hence Lt is the largest bridge height of Kt

that is also a bridge height of K. Clearly Lt ≤ L′t. The next result follows easily from
these definitions.

Proposition 16.16. The σ-algebra Gt is generated by Kt and Lt, i.e.

Gt = σ (Ft, Lt) .
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Proof Clearly σ (Ft, Lt) ⊂ Gt, since Lt is determined by Dt/D. For the other direction,
it is clear that Dt ∩ D = {L ∈ Dt ∶ L ≤ Lt}. Hence Dt ∩ D is determined by both Dt

(which is itself determined by Kt) and Lt. This is sufficient because for s < t we have
Ds ∩D ⊂Dt ∩D, and hence Ds ∩D is the intersection of Ds, which is Fs-measurable, and
Dt ∩D, which we have just shown is σ (Ft, Lt)-measurable. ◻

Proposition 16.17. For a fixed t > 0, Lt < L′t with probability one.

Proof First observe that t is almost surely not a bridge time. It is easy to see that
the distance between γ[t,∞) and the last bridge line Im(z) = Lt is strictly positive (for
instance, there must exist another bridge height higher than Lt, and between, it is a
continuous compact curve). But a bridge height for γ[0, t) that is not a bridge height
for the whole curve must be greater than inf Im(γ[t,∞)). We deduce that L′t is strictly
greater than Lt. ◻

Definition 16.18. Given a subset K of C, define J(K) ∶= inf {Im z ∶ z ∈K}.

With this definition in hand we state the chapter’s main technical theorem.

Theorem 16.19. Suppose K = (γ,L) obeys the law Pα, and let τ be a Gt-stopping time.
On the event that τ is a bridge time the Gτ -conditional law of θτK is simply the law
of a restriction hull in H. If τ is not a bridge time then the conditional law of ΛτK,
given Gτ , is the same as the law of a restriction hull K ′ in H/γ[0, τ] whose distribution
is the restriction measure corresponding to the triple (H/γ[0, τ], γ(τ),∞), but further
conditioned on the event Lτ < J(K ′) ≤ L′τ .

Remark 16.20. Note that if τ is a bridge time then Lτ = Imγ(τ) and Lτ ′ = ∞. In this
situation the notation Lτ < J(K ′) < Lτ ′ can be interpreted as meaning that the future hull
lies strictly above the bridge line, which is an event of measure zero. To fully emphasize
this very important point we have handled this case with a separate statement at the
beginning of the theorem.

Theorem 16.19 should be seen as the extension of the Domain Markov property (16.4)
to the enlarged filtration Gt. In words, it simply says that the extra information in Gτ
forces the future restriction hull to go below the horizontal line y = L′τ but stay above the
horizontal line y = Lτ . This extra conditioning stops L′τ from being a bridge height for
K but preserves Lτ as a bridge height. A detailed proof of the theorem follows. It uses a
standard procedure, which we modified from [Vir03], to bootstrap from the easy case of
τ being a deterministic time to the general case that τ is a stopping time.
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Proof To simplify notation, we will write

Ptα ∶= P(H/γ[0,t],γ(t),∞)
α ( ⋅ ∣Lt < J(K ′) ≤ L′t )

throughout this proof. The goal of the proof is to show that the Gτ -conditional law of
ΛτK is Pτα.

Consider first the case that τ is a deterministic time t. Recall that conditioning on
Gt is the same as conditioning on Ft and Lt, by Proposition 16.16. Conditional on Ft,
the Domain Markov property (16.4) says that ΛtK has the restriction law for the triple
(H/γ[0, t], γ(t),∞). Conditioning again on Lt forces the future hull to stay above y = Lt
but to go below y = L′t, and since Lt < L′t with positive probability this conditioning is
well-defined. Hence the law conditioned on Gt is exactly Ptα.

Another way of stating the above is as follows: let X be a bounded, continuous2
function on hulls. Then

Eα [X(ΛtK)∣ Gt] = Et
α [X] , (16.7)

where Eα and Etα denote expectations with respect to Pα and Ptα, respectively. To finish
the proof we need to extend (16.7) to Gt-stopping times instead of just fixed times. First
suppose that τ only takes values in some countable set T . Then

Eα [X(ΛτK)∣ Gτ ] = ∑
t∈T

Eα [X(ΛτK)1{τ = t}∣ Gτ ]

= ∑
t∈T

Eα [X(ΛtK)1{τ = t}∣ Gt]

= ∑
t∈T

1{τ = t}Eα [X(ΛtK)∣ Gt]

= ∑
t∈T

1{τ = t}Et
α [X]

= Eτ
α [X] .

From this we can bootstrap up to the case of general τ . Let τn be the smallest element
of 2−nN that is greater than or equal to τ . Then the last argument applies to τn, so that

Eα [X(ΛτnK)∣ Gτn] = Eτn
α [X] . (16.8)

However, since τn is determined at time τ (i.e. τn is Gτ -measurable),

Eα [X(ΛτnK)∣ Gτn] = Eα [X(ΛτnK)∣ Gτ ] .

Since ΛτnK → ΛτK as n →∞, and X is bounded and continuous, it follows that the left
hand side of (16.8) converges to

Eα [X(ΛτK)∣ Gτ ] .
2The topology we consider is close to the Caratheodory topology and has been defined in [LSW03,

Lemma 3.5]
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Hence, if we can show that Eτn
α [X] converges to Eτ

α [X] then we are done. Since X is
bounded and continuous, this is equivalent to showing that almost surely the law Pτnα
converges weakly to Pτα, which we prove in the next lemma. ◻

Lemma 16.21. Let τ be a Gt-stopping time and τn be the smallest element of 2−nN that
is greater than or equal to τ . Then Pτnα converges weakly to Pτα with probability one, where
we define Pτα (⋅) ∶= Pα (θτ ⋅) in the case that τ is a bridge time.

Proof Throughout this proof we will let Ht ∶= (H + iLt)/γ[0, t].
As shown in [LSW03, Lemma 3.2], a probability measure on unbounded hulls in the

plane is uniquely determined by the collection of probabilities

P (K ∩A = ∅)

that is indexed by a sufficiently large class of hulls A. Hence it is enough to show that

Pτnα (K ′ ∩A = ∅) → Pτα (K ′ ∩A = ∅) (16.9)

for all hulls A in this class, with probability one. In our case, it is sufficient to prove
that for each fixed restriction hull in H, the convergence (16.9) holds for all hulls A in Hτ

that are a positive distance from γ(τ). Note that since τn ↓ τ and γ is continuous, for
sufficiently large n one must have that A is at positive distance from γ(τn) also. Hence
the probabilities on both sides are well defined. We prove (16.9) in the two distinct cases
that τ is and is not a bridge time.

Case 1: τ is not a bridge time
First observe that in the definition of Ptα, the conditioning J(K ′) > Lt forces the

hull K ′ to avoid the region {Im z ≤ Lt}, and by the restriction property this can equally
be achieved by sampling K ′ from the restriction measure corresponding to the triple
(Ht, γ(t),∞). Thus we have the relation

P(H/γ[0,t],γ(t),∞)
α ( ⋅ ∣Lt < J(K ′) ≤ L′t ) = P(Ht,γ(t),∞)

α ( ⋅ ∣J(K ′) ≤ L′t ) .

Let gt be the conformal map from Ht onto H such that gt(γ(t)) = 0 and gt(z) ∼ z as
z →∞. Let Rt ∶= {z ∈Ht ∶ Im z ≤ L′t}. Then

Ptα (⋅) = P(Ht,γ(t),∞)
α (⋅ ∣K ′ ∩Rt ≠ ∅) .

The first key observation is that for all n sufficiently large we have that Lτn = Lτ . This
equality is clear since G is closed, and hence τn must belong to the same connected
component of Gc that τ belongs to, for n sufficiently large. For these n we have Lτn = Lτ .
For L′τ there are two distinct possibilities, which we now treat separately.
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First note that necessarily L′τ < ∞. Indeed, the maximum of the imaginary part of
ImKτ is always an element of Dτ , and since τ is not a bridge time this maximum cannot
be in D. So first consider the case that L′τ < Imγ(τ). By formula (16.5), we have that

Ptα (K ′ ∩A = ∅) = P(Ht,γ(t),∞)
α (K ′ ∩A = ∅,K ′ ∩Rt ≠ ∅)

P(Ht,γ(t),∞)
α (K ′ ∩Rt ≠ ∅)

=
φ′At(0)α − φ

′
At∪St(0)α

1 − φ′St(0)α
. (16.10)

where At = gt(A) and St = gt(Rt) (this is justified since neither A nor Rτ contains γ(τ)).
Equation (16.10) shows that it is sufficient to prove

φ′Aτn(0) → φ′Aτ (0), φ′Aτn∪Sτn(0) → φ′Aτ∪Sτ (0), φ′Sτn(0) → φ′Sτ (0). (16.11)

For n large enough, L′τn = L′τ since for any neighborhood of Imγ(τ) there is an n sufficiently
large such that Dτn/Dτ is contained within this neighborhood. Since L′τ < Imγ(τ), by
making the neighborhood sufficiently small we get that Dτn/D and Dτ/D must have the
same infimum; that is L′τn = L′τ . Hence, Aτn and Sτn are only decreasing as γ[0, τn]
decreases, and again since γ[0, τn] is a simple curve that shrinks to γ[0, τ] it follows that
gτn converges uniformly to gτ on all subcompacts of Hτ , from which the convergences of
(16.11) follow (by Cauchy’s derivative formula and the Schwarz reflection principle, see
[LSW03]).

The second possibility is to have L′τ = Imγ(τ). On the one hand, the conditioning on
K ′ going below Im(γ(τ)) is trivial so that Pτα = P(Hτ ,γ(τ),∞)

α . On the other hand, L′τn is
greater than L′τ so that one can strengthen the conditioning of Pτnα by requiring that the
future hull goes below L′τ . Since γ is a simple curve shrinking to 0, one again has that gτn
converges uniformly to gτ on all subcompacts of Hτ , which proves that the conditioning
becomes trivial.

Case 2: τ is a bridge time
In this case note that A is a hull in the domain H + iImγ(τ) = H + iLτ ; hence it is

simply a translate of a hull in H. Moreover gτ is simply the shift map z → z − γ(τ), from
which it follows that Aτ = A − γ(τ) and Sτ = H. Since Pτα(⋅) = Pα(θτ ⋅), proving (16.9)
amounts to showing that

Pτnα (K ′ ∩A = ∅) → φ′Aτ (0).

We use (16.10) to rewrite the left hand side. Define Ut = φAt(St ∩Act) so that

φAt∪St = φUt ○ φAt ,

from which it follows that

φ′At∪St(0) = φ
′
Ut(0)φ

′
At(0).
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Therefore

Pτnα (K ′ ∩A = ∅) = φ′Aτn(0)
α

1 − φ′Uτn(0)
α

1 − φ′Sτn(0)
α
.

The convergence of φ′Aτn(0) to φ′Aτ (0) is simple since it only involves the map gτn . Note
that Lτ ≤ Lτn ≤ Imγ(τn), so that the domains Hτn converge to Hτ , and since γ is a simple
curve it once again follows that gτn converges uniformly to gτ on all subcompacts of Aτ .
As before, this implies the convergence of φ′Aτn(0) to φ′Aτ (0).

It remains to be shown that, as n→∞,

1 − φ′Uτn(0)
α

1 − φ′Sτn(0)
α
= Pα (K ′′ ∩Uτn ≠ ∅)
Pα (K ′′ ∩ Sτn ≠ ∅)

→ 1.

Observe that

Pα (K ∩Uτn ≠ ∅) = Pα (K ∩ φAτn(Sτn ∩A
c
τn) ≠ ∅)

= P(H/Aτn ,0,∞)
α (K ∩ Sτn ≠ ∅)

∼ P(H/Aτ ,0,∞)
α (K ∩ Sτn ≠ ∅) .

The last relation follows since gτn converges uniformly to gτ on all subcompacts of Hτn , to
which A eventually belongs, so that Aτn converges to Aτ . Next recall that Sτn = gτn (Rτn),
and

0 < sup ImRτn ≤ L′τn − Imγ(τ),
with the right hand side going to zero as n → ∞. Since the distance of Aτ from zero is
positive, for n sufficiently large the probability that a restriction hull intersects Sτn is of
the order of sup ImRτn and dominated by hulls that intersect Sτn near zero. Since the set
Sτn is the same near zero in both H and H/Aτ , the ratio

P(H/Aτ ,0,∞)
α (K ∩ Sτn ≠ ∅)

Pα (K ∩ Sτn ≠ ∅)

tends to 1. ◻

Remark 16.22. Theorem 16.19 is most useful when τ is a bridge time, meaning it almost
surely takes values in G. In that case γ(τ) is a bridge point for K, and the corresponding
bridge line separates the future hull from the past. Shifting the future hull back to the
origin by subtracting off γ(τ), we have the following:

Corollary 16.23. At Gt-stopping times τ that almost surely take values in G, the shifted
future hull θτK obeys the law Pα.

Corollary 16.23 will be the key element in proving that the restriction hulls can be
decomposed into a Poisson Point Process, which is the subject of the next section. Before
doing that, we immediately apply the corollary to Theorem 16.2, part (2) by showing that
C and D almost surely have no isolated points.
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Proof of Theorem 16.2, part (2) We have already shown that C and D are closed,
we prove that C has no isolated points. Almost surely, zero is not isolated in C because of
the scale invariance and the fact that bridge points exist. For a rational number r, let τr
be the first bridge time after time r. Then by the previous corollary, we deduce that the
law of θτrK obeys the law Pα. Since γ(τr) shifts to zero under θτr , the previous remark
shows that γ(τr) is almost surely not isolated. From these facts we deduce that the event
{γ(τr) is not isolated in C for all rational r} has probability one. If a point γ(t) ∈ C were
isolated then there would have to be an interval of time around t which contains no other
bridge times, but since this interval contains a rational time we arrive at a contradiction.
◻

5 Local Time of the Decomposition
In this section we will show that there exists a natural local time on the bridge heights
that we use to decompose the restriction hulls into a Poisson Point Process of irreducible
bridges. All the results of this section derive from the theory of subordinators and re-
generative sets, which is well described in [Ber99]. We briefly recall the definition of
regenerative sets, which is taken from [Ber99, Chapter 2].

Definition 16.24. A random subset S of [0,∞) is a regenerative set with respect to a
filtration Ft if for every s ≥ 0, conditionally on Ms = inf{t > s ∶ t ∈ S} < ∞, the shifted set
(S −Ms) ∩ [0,∞) has the same law as S and is independent of FMs.

Using the results of Sections 3 and 4, we can immediately prove:

Proposition 16.25. The set D of bridge heights is regenerative with respect to DL ∶=
σ(D ∩ [0, L]).

Proof Consider L ≥ 0. Since D is closed, ML ∈ D almost surely. Then ML is a bridge
height, and the time τL at which the curve reaches this bridge height is a Gt-stopping time
taking values in G. By Corollary 16.23, the GτL-law of θτLK is the same as the original
law of K. Consequently, the GτL-law of D(θτLK) = D −ML is the same as the law of D.
Since DL ⊂ GτL this completes the proof. ◻

Proposition 16.25 proved that the set D is regenerative, and consequently by [Ber99,
Theorem 2.1] it is the closure of the image of some subordinator (and the subordinator is
unique up to a linear change of its time scale). On the other hand, Theorem 16.2 showed
that D is scale invariant, and it is an easy step to deduce from this that the subordinator
must be stable. Recall that there is a one-parameter family of stable subordinators,
indexed by the real numbers between 0 and 1, and, as shown in [Ber99, Chapter 5], the
index of a stable subordinator is the same as the Hausdorff dimension of its image. Hence
we have the following:
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Corollary 16.26. Under the law Pα, the set D is the closure of the image of a stable
subordinator (σλ, λ ≥ 0) of index 2 − 2α.

The parameter λ can be thought of as the local time corresponding to the subordinator.
Recall that the local time for σ is the function λ ∶ [0,∞) → [0,∞) defined by λ(s) ∶= inf{t ≥
0 ∶ σt > s}, and it is well known in the subordinator literature that λ is an increasing,
continuous function which increases only on D. This means that if we run the restriction
hulls on the λ time scale, then the hull grows only when it is crossing bridge lines. For
λ ≥ 0 we define

τh ∶= inf{t ≥ 0 ∶ sup Im(Kt) = h},

and

t(λ) ∶= τσλ .

Note that σλ is the bridge height at which λ units of local time are first accumulated, and
then t(λ) is the time, in the original parameterization of the restriction hull, at which the
local time first reaches λ. It follows that t(λ) is an increasing, right-continuous process
for which the closure of its image is precisely the set of bridge times G. Intervals of λ on
which the process t(λ) is flat correspond to times at which the restriction hull is between
bridge heights. Using the t(λ) time-scale, we are able to define a Poisson Point Process
taking values in the space of irreducible bridges rooted at the origin. Let δ be the curve
which starts and ends at zero in zero time (i.e. δ ∶ {0} → {0}). For λ ≥ 0, define eλ by

eλ = { θt(λ−),t(λ)K, t(λ) > t(λ−)
δ, t(λ) = t(λ−) (16.12)

From this we have the following:

Proposition 16.27. eλ is an (Ft(λ))λ≥0
Poisson Point Process on the space of irreducible

bridges.

Proof Take a subset U of the set of irreducible bridges that doesn’t contain δ, and an
interval I ∶= [λ1, λ2]. As in [RY99, Chapter XII], one needs to show that the number of
times that eλ belongs to U for λ ∈ I is independent of Ft(λ1) and has the same law as the
number of times that eλ belongs to U for λ ∈ [0, λ2−λ1]. But this is essentially a property
of Corollary (16.23). ◻

We denote by να the intensity measure of the Poisson Point Process eλ, and we call it
the continuum irreducible bridge measure. It conveniently encodes all the behavior
of continuum irreducible bridges. For a set of irreducible bridges E, να(E) is simply the
expected number of elements of E that occur in e[0,1], which may or may not be finite.
For instance, if EL is the set of irreducible bridges with height greater than L, then a
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simple consequence of Corollary 16.26 is that να(EL) = cαL2α−2 for some fixed constant
cα, and furthermore,

PL
α(⋅) ∶=

να(⋅ ∩EL)
να(EL)

(16.13)

is exactly the law of the first irreducible bridge with height greater than L. To make the
analogy with other well-known decompositions of stochastic processes, να is the equivalent
of Itô’s measure on 1-dimensional Brownian excursions, or Balint Virág’s measure on 2-
dimensional Brownian Beads. Compared to half-plane SAWs, να is the analogue of the
measure P(ω) = β−∣ω∣ on SAW irreducible bridges, although we point out that P is a
probability measure (by Kesten’s relation), whereas να is infinite but σ-finite.

In the case of half-plane SAWs, the measure on paths is realized by concatenating
together an i.i.d. sequence of irreducible bridges, each distributed according to P, and
in the continuum a similar statement holds. If (eλ)λ≥0 is a Poisson Point Process of
irreducible bridges with intensity measure να, then the concatenation

K =⊕
λ≥0

eλ

has the law of an index α restriction hull. Note, however, that we are not attempting
to show that the irreducible bridges can be concatenated together in such a way as to
reconstruct the sequence of growing hulls (Kt)t≥0, even though this should be possible with
enough care. Recall though that the time parameterization we are using for the restriction
hulls is completely artificial to begin with, and therefore attempting to reconstruct it would
mostly be an uninteresting and unuseful exercise.

6 Open Questions
In this final section we present some open questions that were raised by our work.

Question 16.28. What other properties of the irreducible bridge measure να can be de-
rived?

Our work has essentially determined only one main property of bridges: that the
distribution of their vertical height is the same as the jump distribution for a stable
subordinator of index 2 − 2α (up to a multiplicative constant). Ultimately we hope that
much more can be said about irreducible bridges than this. It may be naturally difficult
to say anything more, since even in the case of half-plane SAWs there is not much known
about irreducible bridges (although in the “off-critical” case there are some results, see
[MS93, Chapter 4]). For other two-dimensional decompositions, notably Virág’s Brownian
Beads, it appears similarly difficult to say anything about the bead measure.

Question 16.29. Is there a constructive way of building irreducible bridges?
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In the case of SLE(8/3), for example, is there a driving term for the Loewner equation
that outputs irreducible bridges (perhaps with at least some specified vertical height)?
And for general restriction measures with α < 1, can some driving term for the Loewner
equation be combined with the Brownian loop soup to produce irreducible bridges for
restriction hulls?

Question 16.30. Is there a natural “length” that can be put on irreducible bridges?

For half-plane SAWs the length of the walk is simply the number of steps in it, and
many results on SAWs are expressed in terms of this length. We expect that there is
some way of defining a similar natural length on irreducible bridges, and that this length
is somehow the scaling limit of the length for SAWs. However, because the irreducible
bridges are fractal objects it is not an easy matter to define a non-trivial length on
them. In the case of SLE(8/3) specifically, this question is closely related to the problem
of the “natural time parameterization” for SLE, which has recently been considered by
Lawler and Sheffield [LS09]. The key idea of their time parameterization is to build a
length measure on the curve (that also has some other desirable properties), and then
reparameterize in such a way that the length of the curve at time t is t, as with the SAWs.
Their length measure should also be a natural length measure for irreducible bridges.

Question 16.31. Is there some sort of continuous analogue of Kesten’s relation?

This is closely related to the problem of the natural length on irreducible bridges
described above. Supposing that L(K) is the “natural length” of an irreducible bridge,
and making an analogy with (16.2), we might expect that

∫
∞

0
β−lνα (L(K) ∈ dl)

is finite for β < µ but infinite for β > µ, for some universal µ, and then one can ask for
the behavior at this critical µ.

Question 16.32. Can the restriction hulls be time parameterized in such a way that the
time parameterization also refreshes itself at bridge points?

Presently we are only showing that the hulls refresh themselves as sets and not as time
parameterized objects. But it is entirely plausible that there is some time parameteriza-
tion which refreshes itself at bridge points along with the geometrical objects, especially
considering that the counting parameterization for half-plane SAWs has this property (at
each bridge point, one simply starts counting off the number of steps anew). It is possible
that the natural time parameterization of Lawler and Sheffield will have this property
for SLE(8/3) but it is not immediately clear that this will be the case, since their time
parameterization has no way of seeing that it is currently at a bridge point and therefore
is unlikely to refresh at such bridge times.

Question 16.33. Can some element of the bridge decomposition be used to prove the
existence of, or at least heuristically deduce, critical exponents for half-plane SAWs or
SAW bridges?
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For example, it is conjectured that the number of N -step SAW bridges grows asymp-
totically like N−βuN as N →∞, for the same µ as in (16.1) and some unknown constant
β. Recently, Neal Madras has privately communicated to us his conjecture that β = 7/16,
although this quantity was likely known beforehand in the physics literature. He uses two
different methods to derive this value, the first being based purely on some heuristics for
half-plane SAWs, and the other making use of the relation (16.13) and the conjecture that
the scaling limit of half-plane SAWs is SLE(8/3). Being able to answer further questions
of this type would be extremely helpful for studying half-plane SAWs.

Question 16.34. Do bridge heights and lines exist for SLE(κ) for values of κ different
from 8/3. If so, what is the Hausdorff dimension of C and D and how does it depend on
κ?

Currently we only know that at κ = 0 and κ = 8/3, the Hausdorff dimensions of C and
D are 1 and 3/4, respectively (the κ = 0 result is clear from the fact that the corresponding
SLE curve is a vertical line). We conjecture that the Hausdorff dimensions of C and D are
always the same, and they are a strictly decreasing, continuous function of κ. When κ = 4
the Hausdorff dimension must certainly be zero since the SLE(4) curve comes arbitrarily
close to the real line, but we do not know if this is the smallest κ for which the dimension
is zero. We have no conjecture as to what that κ might be, other than it is somewhere
between 8/3 and 4.

We should briefly mention that, as a corollary of Theorem 16.2, we do have lower
bounds on the Hausdorff dimension of C and D for 2 ≤ κ ≤ 8/3. Since attaching loops to
an SLE curve can only reduce the number of bridge points that the SLE curve has, we
know

Proposition 16.35. Let C and D be the set of bridge points and heights for an SLE(κ)
curve, with 2 ≤ κ ≤ 8/3. Then the Hausdorff dimensions of C and D are both almost
surely constant, with dimHC ≥ 3 − 6

κ .

This lower bound is probably far from sharp, since it is increasing with κ rather
than decreasing. To prove that the Hausdorff dimensions of C and D are almost surely
constant, Theorem 16.2 part (3) can be used without modification.
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Chapter 17

Many questions and a few answers

Abstract: In this chapter, we gather several open questions and recall some of the main
conjectures in the domain.

1 Ising model

1.1 Universality of the Ising model

Until now, we considered only the square lattice Ising model. Nevertheless, normalization
group theory predicts that the scaling limit should be universal. In other words, the limit
of critical Ising models on planar graphs should always be the same. In particular, the
scaling limit of interfaces in spin Dobrushin domains should converge to SLE(3).

Of course, one should be careful about the way the graph is drawn in the plane. For
instance, the isotropic spin Ising model of Chapter 6, when considered on a stretched
square lattice (every square is replaced by a rectangle), is not conformally invariant (it
is not invariant under rotations). Isoradial graphs mentioned in Chapter 2 form a large
family of graphs possessing a natural embedding on which a critical Ising model is expected
to be conformally invariant. More details are now provided about this fact.

Definition 17.1. A rhombic embedding of a graph G is a planar quadrangulation satis-
fying the following properties:

• the vertices of the quadrangulation are the vertices of G and G⋆,

• the edges connect vertices of G to vertices of G⋆ corresponding to adjacent faces of
G,

• all the edges of the quadrangulation have equal length, see Fig. 2.5.

A graph which admits a rhombic embedding is called isoradial.

319
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Isoradial graphs are fundamental for two reasons. First, discrete complex analysis
on isoradial graphs was extensively studied (see e.g. [Mer01, Ken02, CS08]) as ex-
plained in Chapter 2. Second, the Ising model on isoradial graphs satisfies very spe-
cific integrability properties and a natural critical point can be defined as follows. Let
Jxy = arctanh [tan (θ/2)] where θ is the half-angle at the corner x (or equivalently y)
made by the rhombus associated to the edge [xy]. One can define the critical Ising model
with Hamiltonian

H(σ) = −∑
x∼y

Jxyσxσy.

This Ising model on isoradial graphs (with rhombic embedding) is critical and conformally
invariant in the following sense:

Theorem 17.2 (Chelkak, Smirnov [CS09]). The interfaces of the critical Ising model on
isoradial graphs converge, as the mesh size goes to 0, to the chordal Schramm-Loewner
Evolution with κ = 3.

Note that the previous theorem is uniform on any rhombic graph discretizing a given
domain (Ω, a, b), as soon as the edge-length of rhombi is small enough. This provides a
first step towards universality for the Ising model.

Question 17.3. Since not every topological quadrangulation admits a rhombic embedding
[KS05], can another embedding with a sufficiently nice version of discrete complex analysis
always be found?

Question 17.4. Is there a more general discrete setup where one can get similar esti-
mates, in particular convergence of preholomorphic functions to the holomorphic ones in
the scaling limit?

In another direction, consider a biperiodic lattice L (one can think of the universal
cover of a finite graph on the torus), and define a Hamiltonian with periodic correlations
(Jxy) ∈ (0,∞)E(L) by setting H(σ) = −∑x∼y Jxyσxσy. The Ising model with this Hamil-
tonian makes perfect sense and there exists a critical inverse temperature separating the
disordered phase from the ordered phase.

Question 17.5. Prove that there always exists an embedding of L such that the Ising
model on L is conformally invariant.

Note that the question of universality is not restricted to the Ising case. It is classical
in the case of random-walks, has been studied in the case of loop-erased random-walks
[YY08]. Recently, progresses have been made in the case of bond percolation [GM11a,
GM11b].

1.2 Full scaling limit of critical Ising model

It has been proved in [Smi10b] that the scaling limit of Ising interfaces in Dobrushin
domains is SLE(3). Chelkak-Smirnov’s proof of this fact was provided in Chapter 11. The
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next question is to understand the full scaling limit of the interfaces. This question raises
interesting technical problems. Consider the Ising model with free boundary conditions.
Interfaces now form a family of loops. By consistency, each loop should look like a
SLE(3). We believe that the strong form of crossing estimates proved in Chapter 10
would be useful to study these interfaces. In [HK11], Hongler and Kytolä made one step
towards the complete picture by studying interfaces with +/ − /free boundary conditions.

Sheffield and Werner [SW10a, SW10b] introduced a one-parameter family of processes
of non-intersecting loops which are conformally invariant – called the Conformal Loop
Ensembles CLE(κ) for κ > 8/3. Not-surprisingly, loops of CLE(κ) are locally similar to
SLE(κ) and these processes are natural candidates for the scaling limits of planar models
of statistical physics. In the case of the Ising model, the limits of interfaces all together
should be a CLE(3).

1.3 Scaling relations for the Ising model

As mentioned in Chapter 12, the near-critical phase of the FK-Ising model exhibits striking
phenomena. It would be interesting to understand the behavior of the increasing coupling
between random-cluster measures, and to make sense of the scaling relations when the
probability to be pivotal is replaced by the influence. Let us mention that most of the
exponents for Ising model have been already computed. Still, the understanding of the
mechanisms behind the scaling relations is of some value. A natural question to start
with would be the following:

Question 17.6. Does the derivative of the one-arm probability πp1(n) = φp,2(0↔ ∂Bn) in
FK-Ising behaves like πp1(n) ⋅ ddpφp,2(Bn is crossed)?

1.4 Conformal invariance of Ising model when β < βc
The high-temperature Ising model on the triangular lattice should also be conformally
invariant. Each spin is either + or −, with probability 1/2 (in this case there is only one
infinite-volume measure, hence the symmetry +/−). Moreover, the correlations between
spins decay exponentially fast (think that the random-cluster representation is subcriti-
cal). The scaling-limit of the interfaces +/− should be conformally invariant, and should
satisfy the locality property, hence it should be SLE(6).

Question 17.7. Prove conformal invariance (universality in the temperature parameter)
of the high-temperature of the Ising model on the triangular lattice?

This model is at the interface between critical Ising and percolation on the triangular
lattice, two models for which conformal invariance is known.
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2 Random-cluster model with cluster-weight q ≥ 0

2.1 Identification of the critical point and crossing probabilities

On the square lattice, the random-cluster model with cluster-weight q ∈ (0,∞) is conjec-
tured to be critical for pc(q) =

√
q/(1+√

q). This result was proved in Chapter 4 for q ≥ 1.
Yet the proof strongly relies on positive association. In fact, the existence of a critical
point is not even proved in the case q ∈ (0,1). These models are expected to be negatively
correlated and the FKG inequality is not valid anymore 1. In opposition with the theory
of positively correlated models, negative correlation is very poorly understood.

Question 17.8. Prove that there is a phase transition for q < 1 for the square lattice?
Prove that pc(q) =

√
q/(1 +√

q)?
Note that critical points are not expected to have ’nice’ values for general models.

In particular, one should not expect to find close formulæ. Nevertheless, an important
corollary of the proof in Chapter 4 is the exponential decay of correlations in subcritical
phase and proving this fact makes perfect sense:

Question 17.9. Prove that the phase transition of random-cluster models with q ≥ 1 is
sharp on any periodic lattice.

The argument developed in Chapter 4 is quite general in nature, yet quite fragile
concretely. Indeed, the two ingredients of the proof (crossing probabilities estimates, also
called RSW theorems, and sharp threshold theorems) are expected to be universal. This
seems to suggest that the proof itself should be robust. Unfortunately, the proof of RSW
relies heavily on strong forms of self-duality to counter the lack of independence which
is not available for general random-cluster models. Although, it should be possible to
obtain RSW at criticality abstractly, as it is the case for percolation. In fact, even in the
case of percolation the proof of RSW is restricted to lattices with rotationally symmetry
(except a recent proof due to Grimmett and Manolescu [GM11a] for anisotropic models).
This leads to the following question:

Question 17.10. Understand RSW for general lattices (for percolation of for random-
cluster models with bulk boundary conditions).

A question which is strongly related to the previous one is the existence of so-called
strong Russo-Seymour-Welsh theorems. More precisely, does there exist lower and up-
per bounds on crossing probabilities at criticality which are uniform in the size and the
boundary conditions? In other words, the following is expected

Conjecture 17.11. Consider the random-cluster model of parameter (psd(q), q) with 1 ≤
q < 4 and let 0 < β1 < β2. There exist two constants 0 < c−(q) ≤ c+(q) < 1 such that for any
rectangle R with side lengths n and m ∈ Jβ1n,β2nK, one has

c−(q) ≤ Pξ
psd(q),q,R

(Cv(R)) ≤ c+(q)
1Consider a graph with two vertices joined by two edges: the probability that both edges are open is

smaller than the product of the probabilities of each one being open.
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for any boundary conditions ξ.

Theorem 4.4 does not answer this question since it is restricted to wired boundary
conditions at infinity or periodic boundary conditions (except when q = 1, since boundary
conditions do not matter in this case). Theorem 9.1 however solves the question for
q = 2. We have seen that even when q = 2, passing from free boundary conditions on a
smooth boundary to free boundary conditions on a rough boundary is not easy, and that
it requires additional arguments.

Uniform lower bounds holding true with free boundary conditions on the boundary
of a rectangle is a discrete statement and is therefore hard to predict using the usual
SLE-machinery. Nevertheless, it seems coherent to believe that Theorem 9.1 holds for
any q < 4. When q > 4, we have seen that the phase transition should be of first order,
and crossing probabilities with free boundary conditions should decay exponentially fast.
The case of q = 4 is interesting, since Theorem 9.1 is expected to fail, even though there
are still circuits in annuli with arbitrary boundary conditions with positive probability.
Note that the existence of a circuit in an annulus is an event which is measurable in terms
of the CLE in the scaling limit. Since q = 4 corresponds to CLE(4), there should be loops
surrounding the inner boundary with positive probability.

2.2 Order of the phase transition

Critical random-cluster is expected to exhibit a very rich phase transition, whose proper-
ties depend strongly on the value of q (see Fig. 17.1).

Case q ≤ 4. In Chapter 5, the transition was shown to be second order when q < 4 in
the sense that the correlation length diverges when approaching the critical point. As
was discussed previously, a very rich behavior can be expected at criticality in the case
of such phase transitions. In terms of probabilities, the divergence of the critical point is
not the best indicator of a second order phase transition. It would be more relevant to
classify infinite-volume measures at criticality and to prove the following:

Question 17.12. For q ≤ 4, prove that there is a unique infinite-volume measure with
parameter (psd(q), q).

Remember that it is sufficient to prove that there is no infinite cluster for φ1
psd,q

almost
surely. In the case of percolation, an argument of Russo [Rus78] shows that the divergence
of the susceptibility is equivalent to the absence of infinite cluster in the dual. For 1 <
q ≤ 3, the mean-size of the cluster at the origin under φ0

psd,q
was shown to be infinite

(corresponding to divergence of the susceptibility), which should be an indicator of the
absence of dual cluster. Since the dual model is a random-cluster model at criticality with
wired boundary conditions, the result would follow if Russo’s argument could be extended
to general random-cluster models. Even though the argument seems fairly rigid, we were
unable to generalize it.

Question 17.13. Show that an infinite susceptibility implies the absence of infinite-cluster
in the dual.
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Case q > 4. The picture is very different: the phase transition is conjectured to be of first
order : there are multiple infinite-volume measures at criticality. In particular, the critical
random-cluster model with wired boundary conditions should possess an infinite cluster
almost surely while the critical random-cluster model with free boundary conditions does
not (in this case, the connectivity probabilities should even decay exponentially fast).
This result is known only for q ≥ 25.72 (see [Gri06, LMMS+91, LMR86] and references
therein).

Question 17.14. Prove that there exists an infinite cluster for φ1
psd,q

whenever q > 4.

This result was shown in a different geometry, since there is an infinite cluster on the
infinite stairs (see Chapter 5). Bootstrapping information on measures in the plane would
be very interesting, and would allow us to prove first order phase transition.

2.3 Conformal invariance for q ∈ [0,4]
The parafermionic observable is now used to predict the critical behavior for general
q ∈ [0,4]. For q > 0, recall that the parafermionic observable is defined by

F (e) = Eaδ,bδ
Ω◇
δ
,p,q

[eσ⋅iWγ(e,bδ)1e∈γ], (17.1)

where σ = σ(q) is called the spin (σ takes a special value described below). When q ≤ 4,
the spin is real and is expected to be related to the central charge of the conformal field
theory describing the critical behavior. Less prosaically, the value of σ can be tuned in
such a way that F satisfies integrability relations at criticality: consider the observable F
at criticality with spin σ = 1 − 2

π arccos(√q/2). For any medial vertex inside the domain,

F (N) − F (S) = i[F (E) − F (W )] (17.2)

where N , E, S and W are the four medial edges adjacent to the vertex (See Proposi-
tion 5.8). These relations can be understood as Cauchy-Riemann equations around some
vertices and F is weakly-preholomorphic (see Section 3.3 of Chapter 2). Importantly, F
is not determined by these relations for general q (the number of variables exceeds the
number of equations). For q = 2, which corresponds to σ = 1/2, the complex argument
modulo π of the observable offers additional relations (Lemma 7.4) and it is then possible
to obtain the preholomophicity (Proposition 7.6).

Parafermionic observables can be defined on medial vertices by the formula

F (v) = 1

2
∑
e∼v
F (e)

where the summation is over medial edges with v as an end-point. Even so they are only
weakly-holomorphic, one still expects them to converge to a holomorphic function. The
natural candidate for the limit is not hard to find:
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Conjecture 17.15. Let q ≤ 4 and (Ω, a, b) be a simply connected domain with two points
on its boundary. For every z ∈ Ω,

1

(2δ)σ
Fδ(z) → φ′(z)σ when δ → 0 (17.3)

where σ = 1 − 2
π arccos(√q/2), Fδ is the observable at pc(q) in discrete domains with spin

σ, and φ is any conformal map from Ω to R × (0,1) sending a to −∞ and b to ∞.

Being mainly interested in the convergence of interfaces, one could try to follow the
same program as in Chapter 11:

• Prove compactness of the interfaces (done in Proposition 11.15).

• Show that sub-sequential limits are Loewner chains (with unknown random driving
process Wt).

• Prove the convergence of discrete observables (more precisely martingales) of the
model.

• Extract from the limit of these observables enough information to evaluate the
conditional expectation and quadratic variation of increments of Wt (in order to
harness Lévy theorem). This would imply that Wt is the Brownian motion with a
particular speed κ and so curves converge to SLE(κ).

The third step, corresponding to Conjecture 17.15, should be the most difficult. Note
that the second step is also open for q ≠ 0,1,2 (the first step is Theorem 11.15). Even
though the convergence of observables is still unproved, one can perform a computation
similar to the proof of Proposition 11.13 in order to identify the possible limiting curves
(this is the fourth step). The following conjecture is thus obtained:

Conjecture 17.16. For q ≤ 4, the law of critical random-cluster interfaces converges to
the Schramm-Loewner Evolution with parameter κ = 4π/arccos(−√q/2).

The conjecture was proved by Lawler, Schramm and Werner [LSW04a] for q = 0, when
they showed that the perimeter curve of the uniform spanning tree converges to SLE(8).
Note that the loop representation with Dobrushin boundary conditions still makes sense
for q = 0 (more precisely for the model obtained by letting q → 0 and p/q → 0). In fact,
configurations have no loops, just a curve running from a to b (which then necessarily
passes through all the edges), with all configurations being equally probable. The q = 2
case corresponds to Theorem 11.2. All other cases are wide open. The q = 1 case is
particularly interesting, since it is actually bond percolation on the square lattice.

Remark 17.17. The observable makes sense in the q > 4 case. Interestingly, the spin σ is
not real anymore and does not have any physical interpretation. A natural question would
be to relate this change of behavior for σ to the transition between conformally invariant
critical behavior and first order critical behavior.
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Figure 17.1: The phase diagram of the random-cluster model on the square lattice.

3 Self-avoiding walks and O(n) models on the hexago-
nal lattice

3.1 O(n) models

The Ising fermionic observable was introduced in [Smi06] in the setting of general O(n)
models on the hexagonal lattice. Exactly as in the case of the random-cluster model, one
can extend the definition of the spin fermionic observable. For a discrete domain Ω with
two points on the boundary a and b, the parafermionic observable is defined on middle of
edges by

F (z) =
∑ω∈E(a,z) e

−σiWγ(a,z)x# edges in ωn# loops in ω

∑ω∈E(a,b) e
−σiWγ(a,b)x# edges in ωn# loops in ω (17.4)

where E(a, z) is the set of configurations of loops with one interface from a to z. One can
easily prove that the observable satisfies local relations at the (conjectured) critical value
if σ is chosen carefully.

Proposition 17.18. If x = xc(n) = 1/
√

2 +
√

2 − n, let F be the parafermionic observable
with spin σ = σ(n) = 1 − 3

4π arccos(−n/2), then

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0 (17.5)
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Figure 17.2: The phase diagram of the O(n) model on the hexagonal lattice.

where p, q and r are the three mid-edges adjacent to a vertex v.

This relation can be seen as a discrete version of the Cauchy-Riemann equation on
the triangular lattice and the observable is weak-preholomorphic yet again. Once again,
the relations do not determine the observable for a general n. Nonetheless, if the family
of observables is precompact, then the limit should be holomorphic and it is natural to
conjecture the following:

Conjecture 17.19. Let n ∈ [0,2] and (Ω, a, b) be a simply connected domain with two
points on the boundary. For x = xc(n),

Fδ(z) → (ψ
′(z)
ψ′(b)

)
σ

(17.6)

where σ = 1− 3
4π arccos(−n/2), Fδ is the observable in the discrete domain with spin σ and

ψ is any conformal map from Ω to the upper half plane sending a to ∞ and b to 0.

A conjecture on the scaling limit for the interface from a to b in the O(n) model can
be also deduced from these considerations:

Conjecture 17.20. For n ∈ [0,2) and xc(n) = 1/
√

2 +
√

2 − n, as the lattice step goes
to zero, the law of O(n) interfaces converges to the chordal Schramm-Loewner Evolution
with parameter κ = 4π/(2π − arccos(−n/2)).

This conjecture is only proved in the case n = 1 (Theorem 11.3). The other cases are
open. The case n = 0 is especially interesting since it corresponds to self-avoiding walks.
Proving the conjecture in this case would pave the way to the computation of many
quantities, including the mean-square displacement exponent, see [LSW04b] for further
details on this problem.
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The phase x < xc(n) is subcritical and not conformally invariant (the interface con-
verges to the shortest curve between a and b for the Euclidean distance). The critical phase
x ∈ (xc(n),∞) should be conformally invariant, and universality is predicted: the inter-
faces are expected to converge to the same SLE. The edge-weight x̃c(n) = 1/

√
2 −

√
2 − n,

which appears in Nienhuis’s works [Nie82, Nie84], seems to play a specific role in this
phase. Interestingly, it is possible to define a parafermionic observable at x̃c(n) with a
spin σ̃(n) other than σ(n):
Proposition 17.21. If x = x̃c(n), let F be the parafermionic observable with spin σ̃ =
σ̃(n) = −1

2 −
3

4π arccos(−n/2), then
(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0 (17.7)

where p, q and r are the three mid-edges adjacent to a vertex v.

A convergence statement corresponding to Conjecture 17.19 for the observable with
spin σ̃ enables us to predict the value of κ for x̃c(n), and thus for every x > xc(n) thanks
to universality.

Conjecture 17.22. For n ∈ [0,2) and x ∈ (xc(n),∞), as the lattice step goes to zero,
the law of O(n) interfaces converges to the chordal Schramm-Loewner Evolution with
parameter κ = 4π/arccos(−n/2).

The case n = 1 corresponds to the subcritical high-temperature expansion of the Ising
model on the hexagonal lattice, which also corresponds to the supercritical Ising model
on the triangular lattice via Kramers-Wannier duality. The interfaces should converge
to SLE(6). In the case n = 0, the scaling limit should be SLE(8) which is space-filling.
For both cases, a (slightly different) model is known to converge to the corresponding
SLE (site percolation on the triangular lattice for SLE(6), and the perimeter curve of
the uniform spanning tree for SLE(8)). Yet, known proofs do not extend to this context.
Proving that the whole critical phase (xc(n),∞) has the same scaling limit would be an
important example of universality (not on the graph, but on the parameter this time).

The two previous sections presented a program to prove convergence of discrete curves
towards the Schramm-Loewner Evolution. It was based on discrete martingales converging
to continuous SLE martingales. One can study directly SLE martingales (i.e. with
respect to σ(γ[0, t])). In particular, g′t(z)α[gt(z)−Wt]β is a martingale for SLE(κ) where
κ = 4(α − β)/[β(β − 1)]. All the limits in these notes are of the previous forms, see e.g.
Proposition 11.13. Therefore, the parafermionic observables are discretizations of very
simple SLE martingales.

Question 17.23. Can new preholomorphic observables be found by looking at discretiza-
tions of more complicated SLE martingales?

Conversely, in [SS05], the harmonic explorer is constructed in such a way that a
natural discretization of a SLE(4) martingale is a martingale of the discrete curve. This
fact implied the convergence of the harmonic explorer to SLE(4).

Question 17.24. Can this reverse engineering be done for other values of κ in order to
find discrete models converging to SLE?
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Figure 17.3: Different possible plaquettes with their associated weights.

3.2 Discrete observables in other models

The study can be generalized to a variety of lattice models, see the work of Cardy, Ikhlef,
Riva, Rajabpour [IC09, RC07, RC06]. Unfortunately, the observable is only partially
preholomorphic (satisfying only some of the Cauchy-Riemann equations) except for the
Ising case. Interestingly, weights for which there exists a ’half-holomorphic’ observable
which is not degenerate in the scaling limit always correspond to weights for which the
famous Yang-Baxter equality holds.

Question 17.25. The approach to two-dimensional integrable models described here is in
several aspects similar to the older approaches based on the Yang-Baxter relations [Bax89].
Can one find a direct link between the two approaches?

Let us give the example of the O(n) model on the square lattice. We refer to [IC09]
for a complete study of the following.

It is tempting to extend the definition of O(n) models to the square lattice in order to
obtain a family of models containing self-avoiding walks on Z2 and the high-temperature
expansion of the Ising model. Nevertheless, difficulties arise when dealing with O(n)
models on non-trivalent graphs. Indeed, the indeterminacy when counting intersecting
loops prevents us from defining the model as in the previous paragraph.

One can still define a model of loops on G ⊂ L by distinguishing between local con-
figurations: faces of G⋆ ⊂ L⋆ are filled with one of the nine plaquettes in Fig. 17.3. A
weight pv is associated to every face v ∈ G⋆ depending on the type of the face (meaning
its plaquette). The probability of a configuration is then proportional to n# loops∏v∈L⋆ pv.

Remark 17.26. The case u1 = u2 = v = x, t = 1 and w1 = w2 = n = 0 corresponds to
vertex self-avoiding walks on the square lattice. The case u1 = u2 = v =

√
w1 =

√
w2 = x

and n = t = 1 corresponds to the high-temperature expansion of the Ising model. The case
t = u1 = u2 = v = 0, w1 = w2 = 1 and n > 0 corresponds to the random-cluster model at
criticality with q = n.

A parafermionic observable can also be defined on the medial lattice:

F (z) =
∑ω∈E(a,z) e

−iσWγ(a,z) n# loops ∏v∈L⋆ pv

∑ω∈E n
# loops ∏v∈L⋆ pv

(17.8)
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where E corresponds to all the configurations of loops on the graph, and E(a, z) corre-
sponds to configurations with loops and one interface from a to z.

One can then look for a local relation for F around a vertex v, which would be a
discrete analogue of the Cauchy-Riemann equation:

F (N) − F (S) = i[F (E) − F (W )], (17.9)

An additional geometric degree of freedom can be added: the lattice can be stretched,
meaning that each rhombus is not a square anymore, but a rhombus with inside angle α.

As in the case of random-cluster models and spin Ising, one can associate configurations
by pairs, and try to check (17.9) for each of these pairs, thus leading to a certain number
of complex equations. We possess degrees of freedom in the choice of the weights of the
model, of the spin σ and of the geometric parameter α. Very generally, one can thus try
to solve the linear system and look for solutions. This leads to the following discussion:

Case v = 0 and n = 1: There exists a non-trivial solution for every spin σ, which is in
bijection with a so-called six-vertex model in the disordered phase. The height function
associated with this model should converge to the Gaussian free field. This is an example
of a model for which interfaces cannot converge to SLE (in [IC09], it is conjectured that
the limit is described by SLE(4, ρ)).

Case v = 0 and n ≠ 1: There exist unique weights associated to an observable with
spin −1. This solution is in bijection with the random-cluster model at criticality with√
q = n + 1. Nevertheless, physical arguments tend to show that the observable with this

spin should have a trivial scaling limit. It would not provide any information on the
scaling limit of the model itself, see [IC09] for additional details.

Case v ≠ 0: Fix n, there exists a solution for σ = 3η
2π −

1
2 where η ∈ [−π,π] satisfies

−n2 = cos 2η. Note that there are a priori four possible choices for σ. In general the
following weights can be found:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = − sin(2φ − 3η/2) + sin(5η/2) − sin(3η/2) + sin(η/2)
u1 = −2 sin(η) cos(3η/2 − φ)
u2 = −2 sin(η) sin(φ)
v = −2 sin(φ) cos(3η/2 − φ)
w1 = −2 sin(φ − η) cos(3η/2 − φ)
w2 = 2 cos(η/2 − φ) sin(φ)

where φ = (1 + σ)α. We now interpret these results:
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When η ∈ [0, π], the scaling limit has been argued to be described by a Coulomb gas
with a coupling constant 2η/π. In other words, the scaling limit should be the same as
the corresponding O(n) model on the hexagonal lattice. In particular, interfaces should
converge to the corresponding Schramm-Loewner Evolution.

When η ∈ [−π,0], the scaling limit curve cannot be described by SLE, and it provides
yet another example of a two-dimensional model for which the scaling limit is not described
via SLE.

3.3 Self-avoiding walks

We finish by mentioning open questions on self-avoiding walks which do not require scaling
limits. As was mentioned before, Nienhuis predicted in [Nie82, Nie84] that there exists
A > 0 such that

cn ∼ A nγ−1
√

2 +
√

2
n

(17.10)

where γ = 43/32. He also conjectured that the so-called mean-square displacement
⟨∣γ(n)∣2⟩ should satisfy

⟨∣γ(n)∣2⟩ = 1

cn
∑

γ n−step SAW
∣γ(n)∣2 ∼ B n2ν (17.11)

where ν = 2/3 and B is a constant. It was shown in [LSW04b] that γ and ν could be
computed if the scaling limit of self-avoiding walks was conformally invariant, which brings
us back to Conjecture 17.20. Without going that far, an interesting question is to obtain
a polynomial bound on the correction term to cn. Indeed, the best known result, due to
Hammersley and Welsh [HW62] (see Chapter 13), is the following: there exists c > 0 such
that √

2 +
√

2
n

≤ cn ≤ ec
√
n
√

2 +
√

2
n

.

Question 17.27. Prove that there exists Γ < ∞ such that

cn ≤ nΓ
√

2 +
√

2
n

.

The geometry of the critical self-avoiding walk seems to be completely out of reach
as for today. Any non-trivial information on it would be of great value, in particular
any information distinguishing between the subcritical, the supercritical and the critical
phases. For instance, the following question corresponds to the fact that the self-avoiding
walk is not space-filling nor ballistic:

Question 17.28. There exists ε > 0 such that

n1+ε ≤ ⟨∣γ(n)∣2⟩ ≤ n2−ε.

We conclude this manuscript by an aesthetic and diverting question.

Question 17.29. What is the smallest connective constant for Cayley graphs not equal
to Z?
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