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Résumé

Cette thése traite des phénoménes critiques deux dimensionels. Plus précisément,
nous étudions des modeéles planaires de physique statistique qui exhibent une transi-
tion de phase, c’est-a-dire un changement brusque de leurs propriétés macroscopiques.
L’étude se concentre sur deux familles de modéles: la FK-percolation et les modéles de
boucles dénommés modéles O(n). Ces modéles englobent deux cas particuliers fonda-
mentamentaux que sont le modéle d’Ising et les marches auto-évitantes. Cette thése est
donc a l'interface entre la physique statistique, les combinatoires et les probabilitiés. Elle
s’articule en trois parties.

Dans un premier temps, nous identifions la phase critique de la FK-percolation. Ce
résultat est le point de départ de notre étude, puisqu’il localise le point auquel la tran-
sition de phase de nos modéles a lieu. Nous étudions ensuite la transition de phase —
en particulier son ordre — par le biais d’observables parafermioniques. Cette étude est
I'opportunité d’introduire ces observables et de les étudier en détail. Elles sont au coeur
des deux autres parties de la theése.

La deuxiéme partie est dévolue au modeéle d’Ising et son équivalent FK, le modéle
FK-Ising (ces deux modéles constituent un modéle mathématique concrét pour les
phénomémes de magnétisme). L’observable parafermionique se révéle alors étre holo-
morphe discréte. Ce fait important a été exploité par Smirnov puis Chelkak-Smirnov
afin de montrer I'invariance conforme de ces deux modéles au point critique. Ce résultat
primordial ouvre la voie & de nombreuses questions. Nous nous attachons a répondre a
certaines d’entre elles. En particulier, nous étudions la géométrie de la phase critique, et
les relations entre les phases critique et presque-critique.

La derniére partie traite des marches auto-évitantes. Ce modéle de polyméres, intro-
duit par Flory, est la source de difficiles problémes, pour lesquels les outils mathématiques
sont peu développés. Cependant, il est possible d’exhiber une observable parafermionique
dans ce cas particulier également. Nous étudions cette observable afin d’estimer le nom-
bre de marches auto-évitantes de longueur prescrite sur le réseau en nid d’abeille. Deux
autres résultats concernant les marches auto-évitantes et leur limite d’échelle conjecturée
complétent ce manuscript.

Nous espérons que vous prendrez autant de plaisir a lire ces lignes que nous en avons
eu a les écrire. Bonne lecture!
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Abstract

This thesis deals with two-dimensional planar phenomenon. More precisely, we study
planar models of statistical physics that exhibit a phase transition, i.e. an abrupt change
of their macroscopic properties. The study focuses on two families of models: random-
cluster models and loop O(n)-models. These models encompass two fundamental cases:
the Ising model and the self-avoiding walk. This thesis is at the interface between statis-
tical physics, combinatorics and probabilities. It is organized in three parts.

In the first part, we identify the critical phase of the random-cluster model. This result
is the starting point of our study, since it localizes the point at which the phase transition
occurs. We then study the phase transition itself — in particular its order — by means of
parafermionic observables. It also gives us the opportunity to introduce these observables
and study them in detail. They are indeed at the hearts of the two next parts.

The second part is devoted to the Ising model and its random-cluster representation,
the FK-Ising model (these two models constitute a concrete mathematical frame for the
study of ferro-magnetism). The parafemionic observable appears to be discrete holomor-
phic in these cases. This important fact was harnessed by Smirnov and Chelkak-Smirnov
in order to prove conformal invariance of these two models at criticality. This deep result
paved the way to a complete study of the critical phase. In particular, we study the ge-
ometry of the critical phase, as well as the relation between the critical and near-critical
phases.

The last part deals with the self-avoiding walk. This model of polymers, introduced by
Flory, offers many difficult problems, for which mathematical tools are limited. Neverthe-
less, it is possible to exhibit a parafermionic observable once again in this particular case.
We study this observable in order to estimate the number of self-avoiding walks with a
prescribed length on the honeycomb lattice. Two other results dealing with self-avoiding
walks and their conjecture scaling limits complete the study.

We hope you will enjoy reading these lines at least as much as we enjoyed writing
them. Bonne lecture!

vii
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Organization of the thesis

Chapters 2, 3, 6 and 13 describe more-or-less standard theories and do not present new
results. They contain the necessary background for understanding the other chapters.
Chapter 7 contains Smirnov’s proof of conformal invariance, which is used in several
parts of the thesis. Other chapters describe joint works. We use published results as a
basis for most of the chapters, even though the original articles have been modified in
order to unify notation and concepts, and to avoid repetitions. New results are also added
at several places in the thesis.
Let us now describe briefly the content of each chapter.

Chapter 1 is a general description of two-dimensional statistical physics intended for a
large audience of mathematicians. This chapter is independent of the rest of the document.

Chapter 2 is a toolbox on discrete complex analysis. Theorems gathered in this chapter
will be used extensively in the rest of the document. The first section surveys general
definitions on graphs and should not be skipped.

Part 1: Random-cluster models Chapters 3, 4 and 5 form the first part of this
thesis. They all deal with planar random-cluster models with ¢ > 1.

Chapter 3 is a mathematical introduction to the random-cluster model. It studies its
basic properties. We chose to restrict ourselves to the case of the random-cluster model on
the square lattice. A particular emphasize is made on the existence of a phase transition
and on planar duality.

Chapter 4 identifies rigorously the position of the phase transition. The proof harnesses
two ingredients: first, the study of crossing probabilities in the torus at the so-called self-
dual point (this is the equivalent of the celebrated Russo-Seymour-Welsh Theorem for
percolation) and second, a sharp threshold argument to prove that crossing probabilities
go to 0 or 1 away from the self-dual point. It is then possible to prove that the phase
transition must occur at the self-dual point. A byproduct of the proof is the fundamental
property of exponential decay of correlations in subcritical phase.

Chapter 5 dives into the study of the critical regime itself. We introduce the so-called
parafermionic observable and use it to prove several properties on random-cluster models.
We will see in the next chapters that special values of ¢ are much better understood than
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the general ones, yet it is possible to prove interesting results for every ¢ > 1. In particular,
we show that the phase transition is second order by proving that the correlation length
¢ blows up when p approaches the critical point when 1 < ¢ < 4. We strengthen this
property by showing that the susceptibility diverges when 1 < ¢ < 3. On the other hand,
when ¢ > 4, we give another identification of the critical point, and we provide evidences
that the phase transition is of first order.

Part 2: The FK-Ising and Ising models. The second part of the thesis contains
a more elaborated study of the FK-Ising model, i.e. the random-cluster model with
q = 2. Indeed, this model, which can be coupled with the Ising model, satisfies special
integrability properties that allow a much more precise understanding.

Chapter 6 presents the Ising and FK-Ising models in the planar case. Our goal is
once again to focus on specific properties of these models and not to provide a general
exposition. We will focus on the Edwards-Sokal coupling between the Ising and the FK-
Ising model, and on the low and high-temperature expansions of the model, which leads
the definition of the so-called spin fermionic observable.

Chapter 7 is an exposition of Smirnov’s proof of conformal invariance for the FK-Ising
model. The main ingredient is the discrete holomorphicity of the fermionic observable.
In the scaling limit, the properly rescaled observable converges to a conformally covariant
object, namely the solution to a certain Riemann-Hilbert boundary problem. We also
include a sketch of Chelkak-Smirnov proof of conformal invariance for the Ising model.
Let us insist on the fact that these proofs are not due to us.

Chapter 8 studies the observable away from the critical point. We show that it becomes
massive harmonic. This massive harmonicity allows the computation of the correlation
length of the model explicitly, and its comparison to large deviation estimates for the
simple random walk, thus proving a link between Ising and random walks first noticed by
Messikh.

Chapter 9 is devoted to the proof of Russo-Seymour-Welsh type bounds on crossing
probabilities at criticality. The proof relates crossing probabilities on the boundary of a
domain to the fermionic observable and to discrete harmonic measure. The novelty of
this chapter with respect to crossing probabilities proved in Chapter 4 comes from the
uniformity with respect to boundary conditions. This fact allows us to deduce several
noteworthy results.

Chapter 10 investigates a generalization of the result of Chapter 9. Namely, we prove
crossing probabilities in general discrete topological rectangles. While this result could
appear technical, we believe it to be crucial in the proof of the so-called full scaling-limit of
the FK-Ising and Ising models. As an application, we derive the universal arm exponents
for FK-Ising, and in particular we show that the five-arm exponent is equal to 2. We
deduce an alternative proof of convergence to SLE.

Chapter 11 presents a proof that interfaces of the FK-Ising and the Ising model con-
verge to the Schramm-Loewner Evolution of parameters 16/3 and 3 respectively. The
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main ingredients are contained in Chapter 7 and 9. We sketch two proofs, one invoking
a result by Kemppainen and Smirnov (they proved it using this strategy in [KS10], and
the other invoking the estimation of the five-arm event.

Chapter 12 is a study of the near-critical regime. In particular, we identify the ge-
ometric correlation length of the FK-Ising. Contrarily to the percolation case, it is not
possible to obtain the correlation length using the so-called four-arm exponents. In this
case, one should consider a exponent related to the influence of an edge, an exponent
which is different from the four-arm event. We discuss the mechanisms involved in this
phenomenon.

Part 3: O(n)-models and the Self-avoiding walk. Chapter 13 recall general facts
on the O(n)-model and the self-avoiding walk which will be used in the next section. In
particular, we discuss the bridge decomposition of self-avoiding walks.

Chapter 14 presents a computation of the connective constant on the hexagonal lattice.

We show Nienhuis’s prediction that = V2 ++v/2. We also study self-avoiding walks on
the so-called 3.122 lattice and on a slightly modified lattice. These walks can easily be
obtained from the self-avoiding walks on the hexagonal lattice via a so-called star-triangle
transformation. Surprisingly, these three lattices are the only planar lattices for which a
close formula is known (or even conjectured) for the connective constant. We also state a
conjecture concerning the behavior of critical planar self-avoiding walks.

Chapter 15 studies supercritical self-avoiding walks. We show that these walks become
space-filling in the scaling limit. The theorem is much more rigid that the previous one
and applies on any lattice with sufficient symmetry and in any dimensions.

Chapter 16 studies the decomposition of SLE(8/3) (the conjectured scaling limit of
self-avoiding walks) into bridges.

Last but not least, Chapter 17 gather open questions on the different subjects treated
in this thesis. In particular, parafermionic observables are used to predict the critical
behavior of random-cluster and O(n) models. In addition, we include a short discussion
of the square lattice O(n)-model.
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Chapter 1

Introduction

Abstract: The first chapter is independent of the rest of the document. It contains a
general presentation of planar statistical physics aimed for a wide audience of mathemati-
cians. The main objective is neither completeness nor rigor, but rather to provide a soft
introduction of the main concepts appearing in the thesis.

1 Phase transitions

When heating a block of ice, it turns to water. This very familiar phenomenon hides a
rather intricate one: the properties of HoO molecules do not depend continuously on the
temperature. More precisely, macroscopic properties of a large system of H,O molecules
evolve non-continuously when the temperature rises. For instance, when passing through
0 degree Celsius, the density increases from 0.91 to 1 (it is even more impressive when
passing from water to vapor, where the density drops by a factor 1600).

This example of the every day life is an instance of phase transition. In a system com-
posed of many particles interacting directly only with their neighbors, a phase transition
occurs if a macroscopic property of the system changes abruptly as a relevant parameter
(temperature, porosity, density) is varied continuously through a critical value. Under-
standing how local interactions can govern the behavior of the whole system is extremely
hard in general, and involve all fields of physics.

In order to simplify the problem, one can introduce a model, i.e. an idealized system of
particles following elementary rules, which should mimic the behavior of the real model.
An example of model could be the following. In order to model the evolution of a large
population, one can forget about mortality, fecundity or sex, and simply assume that
every individual is hermaphrodite and dies after giving birth to exactly n children. It is
then straightforward to see that such a population survives for ever if and only if n > 1.
Of course, this model is pretty far from reality and can be improved in a number of ways.
For instance, one can assume that every individual has a random number N € {0,1,..}
of children. It is then possible to show that the population survives forever if and only
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Figure 1.1: A high-temperature supraconductor levitating above a ferromagnet.

if E[N] > 1, where E[N] is the averaged number of children per individual. In human
populations, it is usually admitted that E[N] should be around 2.1 per couple to insure
stability of the population. It exceeds the theoretical prediction and shows that other
factors must be taken into consideration (which is not surprising). Nevertheless, the
study of simplified models provides good guesses about the behavior of phenomenon in
real life.

The area of science in charge of modeling large systems mathematically is called statis-
tical physics. Before diving into mathematical models, let us mention other two classical
phase transitions.

Another example of phase transition is given by superconductors. Superconductivity
is the phenomenon of exact zero electrical resistance occurring in special materials at very
low temperature. It was discovered by Heike Kamerlingh Onnes in 1911 when studying
solid mercury at very low temperature (liquid helium was recently discovered, allowing
to work with cryogenic temperatures). Below a certain critical temperature T, = 4.2 K,
the mercury looses its resistance abruptly (Kamerlingh also discovered, without noticing
it, the superfluid transition of helium at 7, = 2.2 K). Since then, superconductivity has
been studied extensively, and the number of examples of superconductors has exploded.
Practical applications are numerous, and everyone has the image of a superconductor
levitating above a magnet in mind (Fig. 1.1).

Another experiment, which is perhaps even more important historically, was performed
in 1895 by Pierre Curie. He showed that a ferromagnet looses its magnetization, when
heated above a critical temperature, called the Curie temperature. The experiment is
fairly simple theoretically: one attaches a rod of iron to an axis, near a large magnet. At
room temperature, the rod is attracted by the magnet. When the rod gets hot enough,
it abruptly come back to vertical, witnessing a loss of magnetization, see Fig. 1.2. Prac-
tically, the difficulty of the experiment comes from the fact that this temperature equals
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Figure 1.2: Experimental setup to find the Curie temperature of a ferromagnetic material.

770 degree celsius for iron. If the composition of the magnet is different, the critical
temperature changes (it can be 30 degree celsius only), yet the phenomenon remains the
same. The moral is: it is always possible to un-magnet a matter by heating it, which nat-
urally leads to the following question: what is the microscopic phenomenon explanation
this macroscopic behavior?

2 Three models of statistical physics

The previous examples illustrate the different kinds of phase transitions occurring in
nature. We now aim for a theoretical study of phase transitions. The three following
examples illustrate the different properties of statistical models we wish to study through
the phase transition. Before starting, a warning: everything contained in this section is
not necessarily proved mathematically! We simply plan to motivate the introduction of
divers notions, such as critical exponents, universality, correlation length, order of a phase
transition, thermodynamical quantities in a comprehensive way.

2.1 Percolation

Definition and phase transition Percolation is probably the simplest model of sta-
tistical physics. It was introduced by Broadbent and Hammersley in 1957 as a model for a
fluid in a porous medium [BH57|. The medium contains a network of randomly arranged
microscopic pores through which fluid can flow. One can interprate the d-dimensional
medium as being a lattice (for instance the hypercubic lattice with Z¢ as vertex set and
edges between nearest neighbors), each vertex being a possible hole in the medium. In
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Figure 1.3: A three-dimensional percolation cluster on Z3.

our setting, a vertex is called open if it is a hole, and closed otherwise. One can then think
of the open vertices together with the edges between them as a subgraph of Z<.

In order to model the randomness inside the medium, we simply state that each vertex
is open with probability p, and closed with probability 1 - p, and this independently of
each others. The random graph obtained is called w,, and the probability measure is
denoted by PP,.

For a fluid to flow through the medium there must exist a macroscopic set of connected
open vertices. The phase transition in this model on Z? thus corresponds to the emergence
of an infinite connected component (sometimes called cluster) of open vertices.

Intuitively, there are more and more open vertices in the graph when we increase p.
It is thus not surprising that there exists a critical p. = p.(d) € [0,1] such that

e for p < p.(d), there is no infinite cluster,

e for p > p.(d), there is a infinite cluster. This cluster is unique on Z¢ (this result is
due to [AKN87], alternative arguments were presented in [GGR88| and [BK89).

Actually, p.(1) = 1, since as soon as the vertex-density equals p < 1, there are always
closed vertices to the right and left of every given vertex. Therefore, there is no phase
transition in dimension 1. However, as soon as d > 1, the phase transition occurs in the
sense that p.(d) lies strictly between 0 and 1. The behavior changes drastically when the
porosity parameter p evolves continuously through p.(d).

Infinite-cluster density 6(p) and universality When p > p.(d), there exists a unique
infinite cluster. Via invariance by translation, this cluster has a positive density 6(p),
which can be defined as

6(p) = P,(0 belongs to the infinite cluster).



Figure 1.4: Percolation configurations on the triangular lattice for three different values
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We are interested in the behavior of 6(p) when p N p.(d). This behavior is very similar
in every dimensions, even though subtle differences do occur. More precisely, 6(p) is
predicted to always follow a power law decay in (p — p.). The power, usually named £,
depends on the dimension in the following way:

5/36 ifd=2
0(p) ~ (p-p.)® where 8 ={numerical value if de {3,4,5}
1 ifd>6

The value ( is called a critical exponent.

As mentioned earlier, one can consider percolation on the hypercubic lattice. Nev-
ertheless, percolation can be defined on any graph or lattice. For instance, it could be
defined on the triangular lattice or the triangular lattice in dimension two (see Fig. 1.4). A
striking feature of percolation, and more generally of a relevant statistical model!, is that
the behavior is universal: the microscopic properties of the model depend on the local
geometry of the graph, while the macroscopic do not. It mimics real phase transitions:
the critical temperature for superconductors ranges from a few degrees Kelvin to thirty or
even more degrees Kelvin, yet the phase transition is similar. In the case of percolation,
connectivity properties between two neighbors in the square or the hexagonal lattices are
not the same, yet the thermodynamical properties, such as the infinite-cluster density,
behave similarly. Thus, the exponent (3 is expected to be the same for any lattice of a
fixed dimension. For instance, 3 equals 5/36 for the hexagonal, triangular and square
lattices.

Correlation length £(p) and order of a phase transition As a matter of fact, a
phase transition always occurs in infinite volume. To illustrate this, let us make a brief
detour and discuss the physical notion of correlation length. It is also an opportunity to
introduce an additional critical exponent.

Consider the percolation of parameter p on a box of size N € (0,00]. Can we decide
with high probability if p is supercritical or not? When N = oo (in other words, we
look at the percolation on Z? itself), it is sufficient to check the existence of an infinite
cluster. Now, if N is finite, the situation is more intricate. Indeed, when N is very small,
it is even difficult to give good bounds on p, see the left-side picture in Fig. 1.5, while
when N is very large, the configuration looks pretty much like the one on Z¢. Roughly
speaking, the correlation length is the smallest N = N(p) for which we can recognize with
good probability if p is supercritical or not. Similarly, the correlation length in subcritical
phase (when p < p.(d)) is the smallest N = N(p) for which we can decide if p is suberitical
or not.

Mathematically, the correlation length is defined in a a priori completely different
fashion. We will discuss the relation between the previous non-rigorous definition and the
mathematical one in Chapter 12. Formally, when p < p.(d), largest connected components

lwe will encounter other examples further on
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Figure 1.5: Pictures of three percolation configurations with p = 0.58. In the first one, the
size of the box is so small that the number of blue hexagons is not even a good indicator
of the value of p. In the second one, blue hexagons are in majority, yet connectivity
properties of the configuration are still ’in favor’ of the yellow hexagons (for instance,
there is an open yellow path crossing the rectangle from top to bottom). In the last one,
the size is big enough that there exists a net of open paths crossing the square from one
side to the other. These connected paths are reminiscent of the infinite cluster, and it
becomes natural to expect p to be supercritical. These three pictures are respectively
much below, around and much above the correlation length. If p was closer to p., the
third picture would have to be taken much bigger to be sure to find such a net of open
paths.
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E(p) = |p—1/2|743

14

0(p) = (p—1/2)°*

0 pc:1/2 1

Figure 1.6: Behavior of thermodynamical quantities through the critical value.

in boxes of size N are typically of size log N. Equivalently, the probability for points
(0,0,..,0) and (N,0,..,0) to be connected by a path of adjacent open vertices decays
exponentially fast and more precisely like

P,((0,0,..,0) < (N,0,..,0)) = e N/(E@rox ()

where £(p) € (0,00) is called the correlation length?. In supercritical, a corresponding
definition can be introduced.

In the case of percolation, the correlation length is finite when p # p. and goes to
infinity when p ~ p.. This is not the case for every model and it is a proof of a second
order phase transition. Once again, the behavior of {(p) is expected to follow a power
law governed by a critical exponent:

4/3 it d=2
&(p) » [p—pe|™ where v =< numerical value if de{3,4,5}.
1/2 itd>6

2.2 Ising model

The celebrated Lenz-Ising model is one of the simplest models in statistical physics ex-
hibiting an order-disorder transition. It was introduced by Lenz in |[Len20| and studied

2The mathematical justification of this definition is the following: for every x,y, P,(0 < z)P,(z <
z+y) <P,(0 <z and x < z+y) <P,(0 < x+y) (the right inequality is direct, while the left one follows
from the fact that conditionally on the existence of one of the two paths, the second is more likely to
exist, see the FKG inequality in Chapter 3 for more details). Now, translation invariance implies that
P,(z < z+y) = P,(0 < y), thus giving that the sequence uy = P,(0 < Nej) is submultiplicative. A
classical use of Fekete’s subadditive lemma allows us to define £(p).
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by his student Ising in his thesis [Isi25]. It is a model for ferromagnetism as an attempt
to explain Curie’s temperature. See [Nis05, Nis09| for a historical review of the classical
theory.

Definition The definition is slightly more intricate than for percolation. In the Ising
model, iron is modeled as a collection of atoms with fixed positions on a crystalline lattice.
In order to simplify, each atom has a magnetic ’spin’, pointing in one of two possible
directions. We will set the spin to be equal to 1 or —1. Each configuration of spins has
an intrinsic energy, which takes into account the fact that neighboring sites prefer to be
aligned (meaning that they have the same spin), exactly like magnets tend to attract or
repel themselves.

Formally, fix a box A of size n in dimension d. let o € {-1,1}* be a configuration of
spins 1 or —1, the energy of the configuration ¢ is given by the Hamiltonian

Ey(0) = =) 0,0,

~y

where x ~ y means that = and y are neighbors in A. Note that up to an additive constant
equal to —|A|, E, is twice the number of disagreeing neighbors3.

Following a fundamental principle of physics, we wish to construct a model of random
spin configurations that favor configurations with small energy. A natural choice is to
sample a random configuration proportionally to its Boltzman weight: at a temperature
T, the probability pir s of a configuration o satisfies

(0) e~ 1En(0)
pra(o) = ——
Zr A
where
ZT,A = Z 6_%EA(6—)
ge{-1,1}A

is the so-called partition function defined in such a way that the sum of the weights over
all possible configurations equals 1.

Note that the configurations minimizing the energy, and therefore the most likely, are
the extremal ones: either all +1 or all —1. Nevertheless, there are only two of them, thus
the probability to see them in the nature is tiny. In other words, there is a competition
between energy and entropy. The number of configurations for some level of energy can
balance the decrease of energy. Finally, properties of a typical configurations are not
trivial to study, and depends on the temperature. For instance, if T' converges to oo, the
configurations become equally likely and the model is almost equivalent to a percolation
model (on sites this time) where sites are independent. This phase is called disordered.
On the contrary, when 7" goes to 0, the energy outdoes the entropy and configurations
with a large majority or +1 (or —1) become typical. This phase is called ordered. The
existence of two different phases suggests a phase transition.

3—0101, + 1 equals 2 if the two sites agree, and 0 otherwise.
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Figure 1.7: A configuration of the Ising model on the square lattice ((C) S. Smirnov).

Phase transition of the Ising model Assume that spins on the boundary of the
box A are forced to be +1 (we denote the measure thus obtained by p7.,) and define the
magnetization at the origin in the box A by

MA(T) == g p(0)-

Since the boundary favors pluses, this magnetization is positive. Now, when letting the
size of the box go to infinity, the magnetization decreases and converges to a limiting
quantity, called the (spontaneous) magnetization M(T) :=limy ,za Ma(T).

The phase transition in dimension d > 2 is the following: there exists a critical tem-
perature T, = T.(d) € (0, 00) such that

e when 1T'>T,., My =0,
e when T'<T,, My >D0.

In other words, when the temperature is large, the spin at zero forgets about the boundary
conditions: there is no long-range memory. When the temperature is low, the spin keeps
track of the boundary conditions at infinity and is still plus with probability larger than
1/2.

We are now in a position to explain Curie’s experiment. A magnet imposes an exterior
field on an iron rod, forcing exterior sites to be align within it. At low temperature, sites
deep inside 'remember’ that boundary sites are aligned, while at high temperature, they
do not. Therefore, sites become globally aligned at low temperature, hence explaining the
magnetization and the attraction.
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In his thesis, Ising proved that there is no phase transition when d = 1. In other words,
at any positive temperature, the spontaneous magnetization equals 0. He predicted the
absence of phase transition to be the norm in every dimension. This belief was widely
shared, and motivated Heisenberg to introduce a famous alternative model where spins
take value in the three-dimensional sphere S3 (in fact, this is the classical counterpart,
first studied in [HK34] of the quantum Heisenberg model) .

However, some years later Peierls [Pei36] used estimates on the length of interfaces
between spin clusters to disprove the conjecture, showing a phase transition in the two
dimensional case. In fact, a phase transition occurs in every dimension d > 2 4, making
the prediction of Ising among the wrongest generalizations in mathematics. The funny
thing is that the name ’Ising model’ was coined by Peierls in his publication. Ising retired
from academics and discovered only 25 years later that his model became famous. Today,
the Ising model is widely believed to be the most celebrated model in statistical physics.

Physical phase transition Fixing boundary conditions to be +1 or —1 is not com-
pletely satisfying physically. In order to mimic the real life experiment, let us add a
magnetic field h in the following way: redefine the energy to be
Eyxp(o) = - Zoxay - hZO'x.
Ty zel

Obviously, h favors pluses when it is positive (the energy decreases for each spin +1), and
minuses when it is negative. Exactly as before, the measure s 7 is defined by assigning
to each configuration a weight proportional to e"TPan(@) 5 Ag expected, M (T,h) is
strictly positive when h > 0 and strictly negative when A < 0, but what about h going
to 07 This operation corresponds to removing the magnetic field in the model. A phase
transition occurs, at the same critical temperature T, as above, in the following way:

e When 7' >T., M(T,h) goes to 0 when h goes to 0.

e When 7' < T, M(T,h) goes to M(T) > 0 when h goes to 0 from above, and to
—M(T) when h goes to 0 from below.

Therefore, at low temperature, the magnet keeps a spontaneous magnetization.

Can we find the equivalent of the percolation critical exponent 57 Let us study
the phase transition, and in particular try to recover critical exponents. Exactly as in the
percolation case, the behavior of the magnetization M (7T,0) when T approaches T, from
below follows a power law:

1/8 if d=2
M(T,0) ~ (T.-T)? where 8 ={real number ifd=3.
1/2 ifd>4

4Tt occurs whenever the lattice is not quasi-isometric to Z. Here we are cheating a little since this
result is not yet known on Cayley graphs with intermediate growth.
®Boundary spins are not compelled to be +1 anymore.



CHAPTER 1. INTRODUCTION 16

The critical exponent 8 can be compared to the infinite-cluster density of percolation.
We will see in Chapter 6 that they are related via the class of random-cluster models.

2.3 Self-avoiding walks

In 1953, Nobel prize winner Paul Flory introduced self-avoiding walks as a model for
ideal polymers® [Flo53]. The model is very simple. Consider a lattice (for instance the
hypercubic lattice): a self-avoiding walk is a self-avoiding sequence of neighboring vertices.

Enumeration of self-avoiding walks Of course, the first question that comes to mind
deals with the number of self-avoiding walks of length n. More precisely, define €2,, to be
the set of self-avoiding walks of length n on Z?, and ¢, to be its cardinality.

Counting self-avoiding walks has a long history, see [MS93|. Let us consider the case
of the hypercubic lattice Z3. Orr [Orrd7| counted them up to n = 6 by hand. For instance,

ce = 16 926

Computers opened a new scope by offering computational power, yet they reached their
full capacity very quickly. The difficulty comes from the fact that there is an exponential
number of self-avoiding walks of length n (we leave to the reader the pleasure to prove
the following bounds d* < ¢, < 2d(2d -1)"1). In 1959, Fisher and Sykes [FS59|

enumerated 3D self-avoiding walks up to n = 9. In 1987, Guttman |[Gut87| pushed the
computation up to n = 20. Recently, [SBB11]| used a new algorithm together with 50000

hours of computing time to count self-avoiding walks up to n = 36:
c36 = 2 941 370 856 334 701 726 560 670.

Even though it seems hopeless to compute ¢,, explicitly for every n, it is possible to study
its asymptotic behavior. Since a (n +m)-step self-avoiding walk can be uniquely cut into
a n-step self-avoiding walk and a parallel translation of a m-step self-avoiding walk, we
infer that

Cp+m < CnCm,
from which it follows that there exists p. € (0,+00) such that

1
e = lim ¢,

n—>o00
The positive real number p. is called the connective constant of the lattice. We thus obtain
that ¢, = ,u?w(n) and the computation of the connective constant becomes a tempting
question... Unfortunately, explicit formulee for u. are not expected to be frequent, and
mathematicians and physicists only possess numerical predictions for the most common

lattices with the exception of the hexagonal lattice, for which . = V2 + /2.

64.e. long chains of identical monomers like DNA.
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Figure 1.8: A 1000-step self-avoiding walk ((©) Vincent Beffara).

Overcoming the deception due to the absence of explicit formula for u., one can use
e to get sharper predictions on the behavior of ¢,. Physicists (always one step ahead)
conjecture that

43/32  ifd=2
Cn & N7y where y=41.162... ifd=3
1 if d > 4 (with logarithmic correction for d = 4)

Once again, v is a universal exponent depending only on the dimension of the lattice.
In this context, universality seems even more surprising: it implies that even though
the number of self-avoiding walks is growing exponentially at different speeds for say the
hexagonal and the square lattice, the correction to the exponential growth is the same for
both lattices.

Mean-square displacement Flory was not interested in the combinatorial aspect of
self-avoiding walks but rather in its geometry. He predicted that the averaged squared
euclidean distance between the ending point and the origin for self-avoiding walks of
length n

(hP) = ~ 3 H()P

n yeQdy
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behaves like n?/2 in dimension 2, where y(n) is the last step of a n-steps self-avoiding
walk. Later, physicists provided strong evidences that

34  ifd=2
(y(n)) » n* where v=140.59.. ifd=3
1/2  ifd>4

It is now a good place to compare self-avoiding walks to the simple random walks
model. A walk is a trajectory in Z¢, possibly self-crossing. The number of walks of length
n is obviously (2d)" and the uniform measure on the family of walks of length n has a nice
interpretation. It corresponds to the random walk constructed as follows: every step, the
walker chooses a neighbor uniformly at random. This model is much better understood
that the self-avoiding walk. For instance, (%# > eq, [n|* behaves asymptotically like n.

Self-avoiding walks are more spread (they go further) than simple random walks in
dimensions 2 and 3. This fact is natural, since a self-avoiding trajectory repulses itself.
Interestingly, it is no longer true when the dimension becomes larger. It is actually
possible to guess that this would occur, since the simple random walk itself becomes
macroscopically self-avoiding at large scales when d > 4.

Phase transition for self-avoiding walks So far, the self-avoiding walk did not fit in
the frameworkworkof statistical physics since it does not depend on any parameter and
does not exhibit a phase transitions. Thus, let us restate the model in a slightly different
way.

Imagine we are now modeling a polymer in a solvent tied between two points a,b on
the boundary of a domain 2. We can model these polymers by self-avoiding walks on
a fine lattice Qs := 0Z% N Q of meshsize 6 << 1. In order to take into consideration the
properties of the solvent, let  be a real positive number. Our polymer will be a curved
picked at random among every possible self-avoiding paths in 5 from as to b5 (as and
bs are the closest points to a and b on §25), with probability proportional to z1!, where
|7| is the length of the self-avoiding walk + 7. More precisely, let T's(£2,a,b) be the set of
self-avoiding trajectories from as to bs in {25. The random polymer will have the law

$|’Yé‘

]P),U,,(;(fy&) =

Yty (@ap) TN

This model of random interface exhibits a phase transition when z varies®. On the one
hand, when x is very small, the walk is penalized very much by its length, and it tends
to be as straight as possible. On the other hand, if x is very large, the walk is favored by
its length and tends to be as long as possible. Therefore, there exists x. such that:

e When z < ., 75 (which is a random curve) becomes ballistic when § goes to 0: it
converges to the (deterministic) geodesic between a and b in €.

"This is similar to the Ising model, the energy is equal to the number of vertices on the walk, and the
‘temperature’ parameter T = -1/logx
8Here, 6 — 0 replaces the passage to the infinite-volume n — oo for percolation and Ising.
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e When z > z., 75 converges to a random continuous curve filling the whole domain
) when d goes to 0.

It is possible to prove that x. = 1/p.. In other words, in order to obtain a critical model,
one should penalize a walk of length n by p;™ (which is intuitive, since there are roughly
u? of them). When x = z., the sequence (v5) should converge in the space of random
continuous curve when ¢ goes to 0. In particular, the possible limiting curves should be
invariant under scaling. Typical objects having the scale-invariance property are fractals,
and it is conjectured that the scaling limit of self-avoiding walk at = = z. is a random
fractal.

Flory’s exponents and mean-field approximation For the anecdote, let us present
Flory’s original determination of v (a little bit of sweetness in the hostile world of critical
exponents). We aim to identify the typical distance N of the last site 7, of a n-step self-
avoiding walk. In order to do so, we compute the probability of |y,| = NV in two different
ways

First, let us make the assumption that sites are roughly spread on the box of size N 9,
and that all sites play symmetric roles with respect to each other. We thus know that
at each step £+ 1 < n, a random walker must avoid the k previous sites if it wants to
remain self-avoiding, so that it must choose one of the N? — k available sites. Thus, the
probability that v is still self-avoiding after n steps is of order

n—l(Nd_k

n-1 2
— |~ - d] x -
[ i ) exp( kz_;)k/]\f) exp( 2Nd)

k=0
as long as n < N?. The assumption consisting to forget geometry (we do not require that
the k-th point is a neighbor of the k — 1-th one) is called the mean-field approzimation.
Second, make the natural assumption that the end-point of the walk is distributed as
a Gaussian, the probability for a walk to be at distance N from the origin is then equal
to

Nt exp(-N?/n).

1
T N2
Equaling the two quantities, we find that n? ~ N2 j.e. N ~ n3/(d+2) It gives the following
predictions for d = 1,2, 3, 4:

1ifd=1
|3ifd=2
PRl = 1305 it d = 3
1/2if d = 4

Flory’s argument is slightly more evolved and checks in particular that the reasoning
cannot be valid when d > 4. Surprisingly, the prediction is true for d = 1,2 and 4. It
is slightly off for d = 3. In fact, the prediction is obvious when d = 1. For d = 4, the

9actually one could take cst- N with a very large constant instead of N, but this would not matter.
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mean-field approximation is valid, even though its rigorous justification is a very hard
problem. Funnily, the prediction in dimension 2 is saved by the surprising cancellation
of two large mistakes. The probability to be self-avoiding is much smaller than the one
described above. In the same time the Gaussian behavior of the walk is also completely
wrong.

Flory’s argumentation (especially in dimension 4) emphasizes an important fact of
statistical physics: the mean-field approximation (i.e. assuming that the system lives on
the complete graph) provides tractable ways to predict values for critical exponents and
in large enough dimensions, these predictions are right. The reason for this connection is
actually much deeper than Flory’s argument. Roughly speaking, high-dimensional lattices
behave with respect to statistical models like sparse graphs. Making the assumption that
we are on the complete graph is then a small mistake. In the case of the self-avoiding walk,
the comparison with the simple random walk illustrates this phenomenon. The dimension
at which lattice exponents start to equal mean-field exponents is called the upper critical
dimension d.. It is equal to 4 for the self-avoiding walk and the Ising model, while it is 6
for percolation.

In low dimensions, the behavior does not correspond to the mean-field one. Interest-
ingly, the critical exponents in two dimensions are all rational and fairly simple, which
suggests a specific feature of two-dimensions that we shall discuss now.

3 Why two dimensions?

In the previous section, we self-avoiding walk by studying three very different models of
statistical physics, that they shared properties concerning their phase transitions. On the
one hand, critical exponents become independent of the dimension when exceeding the
upper critical dimension of the model. On the other hand, exponents have rational values
in two dimensions, which suggests the existence a deep underlying mechanism coming
from physical laws. Our goal is to understand the phase transition in the latter case and
we now fix d = 2 for the rest of the manuscript. Mathematicians also make the
assumption that models are critical.

This latter assumption is not very dramatic. In order to study the phase transition,
in particular the critical exponents related to thermodynamical quantities, it is sufficient
to study the critical phase. Indeed, critical exponents are not independent: they are
connected via the so-called scaling relations, which do not depend on the model. One
example of scaling relation is given by 3 = vn, where  and v were defined in the context
of percolation, but also exist for other statistical models, and 7 is the one-arm exponent 1°.

10The exponent 7 can be introduced in most statistical physics models. In the case of percolation or
Ising, it is defined as follows:

e for percolation at criticality, there is no infinite cluster and the probability for two points to be
connected converges to 0 when their distance goes to oo. In fact, the behavior should be

1

Pp. (0 & z) = W?
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Therefore, critical exponents depending only on the critical phase are often sufficient to
understand the other critical exponents (such as 5 or v).

3.1 Exactly solvable models and Conformal Field Theory:

The planar Ising model has been the subject of experimentation for both mathematical
and physical theories for almost a century. Through a short historic of this model, we
shall explain two physical perspectives on statistical physics.

Exactly solvable models It all started with Peierls’s proof of the existence of a phase
transition. This argument (the first of the kind) paved the way to the study of the
critical regime!’. The next step was achieved by Onsager in 1944. In a series of seminal
papers [Ons44, KO50]|, he'? computed the partition function of the model and proved
the equality 8 = 1/8. This result represented a shock for the community: it was the
first mathematical proof that the mean-field behavior was inaccurate in low dimensions!
Moreover, in the physical approach to statistical models, the computation of the partition
function is the first step towards a deep understanding of the model, enabling for instance
the computation of the free energy. The formula provided by Onsager led to an explosion
in the number of results on the planar Ising model (papers published on the Ising model
can now be counted by thousands). Among the most noteworthy results, Yang derived
rigorously the spontaneous magnetization [Yan52| (the result was derived non rigorously
by Onsager himself), McCoy and Wu [MW73] computed many important quantities of
the Ising model, including several critical exponents, culminating with the derivation of
two-point correlations ur(cgo,) between sites 0 and = = (n,n) in the whole plane. See
the more recent book of Palmer for an exposition of these and other results [Pal07].

The computation of the partition function was accomplished later by several other
methods and the model became the most prominent example of an exactly solvable model.
The most classical techniques include the transfer-matrices technique developed by Lieb
and Baxter [Lie67, Bax89|, the Pfaffian method, initiated by Fisher and Kasteleyn, using
a connection with dimers models [Fis66, Kas61], and the combinatorial approach to the
Ising model, initiated by Kac and Ward [KW52] and then developed by Sherman [She60]
and Vdovichenko [Vdo65], see also the more recent [DZM*99, Cim10].

Despite the number of results that can be obtained using the partition function, the
impossibility to compute it explicitly enough in finite volume makes the geometric study
of the model very hard to perform while using the classical methods. The lack of under-
standing of the geometric nature of the model remained unsatisfying for years.

e for the Ising model, the magnetization equals 0 and we have

1
pr.(000z) ~ W.

HPeierls argument was later extended to many other statistical models.
2]ater helped by Kaufman.
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Renormalization group theory and Conformal Field Theory The arrival of the
renormalization group formalism (see [Fis98| for a historical exposition) led to a better
physical and geometrical understanding, albeit mostly non-rigorous. It suggests that
block-spin renormalization transformation (coarse-graining, e.g. replacing a block of
neighboring sites by one site having a spin equal to the dominant spin in the block)
corresponds to appropriately changing the scale and the temperature of the model. The
critical point arises then as the fixed point of the renormalization transformations. In par-
ticular, under simple rescaling the Ising model at the critical temperature should converge
to a scaling limit, a continuous’ version of the originally discrete Ising model, correspond-
ing to a quantum field theory. This leads to the idea of universality: the Ising models on
different regular lattices or even more general planar graphs belong to the same renor-
malization space, with a unique critical point, and so at criticality the scaling limit of the
Ising model should always be the same (it should be independent of the lattice while the
critical temperature depends on it).

Being unique, the scaling limit at the critical point must satisfy translation, rota-
tion and scale invariance, which allows us to deduce some information about correlations
[PP66, Kad66].

In seminal papers [BPZ84b, BPZ84a| Belavin, Polyakov and Zamolodchikov, suggested
a much stronger invariance of the model. Since the scaling-limit quantum field theory is a
local field, it should be invariant by any map which is locally a composition of translation,
rotation and homothety. Thus it becomes natural to postulate full conformal invariance
(under all conformal transformations!® of subregions). This prediction generated an ex-
plosion of activity in conformal field theory, allowing for non rigorous explanations of
many phenomena, see [ISZ88| for a collection of the original papers of the subject.

Note that planarity enters into consideration through the fact that conformal maps
form a rich family of operators. Indeed, the category of conformal maps in dimension two
is composed of many elements, while it restricts in higher dimensions to compositions of
rotations, translations and inversions.

Where are we now? The above exposition shows two different approaches to the same
problem relying heavily on two-dimensionality:

e The exact solvability of the (discrete) planar Ising model, which allows rigorous
derivation of important quantities, yet at the same time provides a poor geometric
understanding.

e The non-rigorous conformal field theory approach, with the postulate of a ’contin-
uum limit’, invariant under many geometric transformations, which allows a deep
geometric understanding of the model.

13Conformal maps are maps on open sets of C conserving the angles. Equivalently, they are the
one-to-one holomorphic maps.



CHAPTER 1. INTRODUCTION 23

3.2 A mathematical setting for conformal invariance of lattice
models

To summarize, Conformal Field Theory asserts that a planar statistical model, such as
percolation, Ising or the self-avoiding walk, admits a ’scaling limit’ at criticality, and that
this scaling limit is a conformally invariant object.

From a mathematical perspective, this notion of conformal invariance of a model is
ill-posed, since the meaning of scaling limit is not even clear. The following solution to
this problem can be implemented: the scaling limit of the model could simply be less rich
and retain the information given by ’interfaces’ only!4. The advantage of this approach
is that there exists a mathematical setting for families of continuous curves.

Let us first start with the study of one curve. There is a number of ways to isolate
an ’interface’ ' in a model. For pedagogical reasons, we simplify the presentation as
much as possible by providing two examples in elementary cases. Fix a simply connected
domain (€2, a,b) with two points on the boundary and consider discretizations (€25, as, bs)
of (2,a,b) by an hexagonal lattice of meshsize §. A particularly simple model to start
with is the critical self-avoiding walk. The model of random polymer between as and b

contains by definition only one interface (the walk itself), denoted ”y§elf ~avoidingwalk ) o

parameter x being critical, Conformal Field Theory predicts that 7§6lf ~avoidingwalk o) suld
converge when ¢ goes to 0 to a random continuous curve between a and b in €2. A second
model of interest is the critical Ising model on the triangular lattice. Assume now that
we fix the spins to be +1 on the arc d,;, and —1 on the arc dy,. Thus, there exists a unique
interface between +1 and -1 going from a to b. We call this interface ,ygsing . Conformal
Field Theory once again predicts that 'yésmg converges when ¢ goes to 0 to a random
continuous non-selfcrossing curve between a and b in €). By the way, how would you
proceed for site percolation on the triangular lattice (the answer hides in Fig. 1.11)7 In
fact, Conformal Field Theory also predicts that the limits of (75~ ¥mowk), o and
(7§Smg )ss0 must be conformally invariant, where now conformal invariance has a precise

meaning;:

A family of random continuous curves Y(aqp) ndexed by simply connected domains
with two marked points on the boundary (§2,a,b) is conformally invariant if for any
(2, a,b) and any conformal map'® ¢ : Q - C,

W ° Y(Q,a,b) has the same law as V() ib(a), (b)) -

4 There is no reason why all the information of a model should be encoded into information on interfaces,
yet one can hope that most of the relevant quantities can be recovered from it.

15j e. a boundary between two different regions determined by the model
16 conformal means holomorphic and one-to-one. Via Riemann mapping theorem, we know that many

such maps exist
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Figure 1.9: The interface of an Ising model at critical temperature ((C) Stanislav Smirnov).

In words, the random curve obtained by taking the scaling limit of self-avoiding walks
on ((2),%(a),1(b)) has the same law as the image by ¥ of the scaling limit of self-
avoiding walks on (€,a,b). It is clear when working on the hexagonal lattice, that rota-
tions by an angle 7/3 are preserving the model. Conformal Field Theory predicts that
the model possesses much more symmetries as soon as we allow ourselves to go to the
scaling limit.

In 1999, Schramm proposed a natural candidate for the possible conformally invari-
ant families of continuous non-selfcrossing curves. He noticed that interfaces of models
further satisfy the domain Markov property (see Chapter 11), which, together with the
assumption of conformal invariance, determine the possible families of curves. In [Sch00],
he introduced the Schramm-Loewner Evolution'™ — SLE for short. The SLE(k), for x > 0,
is the random Loewner Evolution with driving process \/kB;, where (B;) is a standard
Brownian motion (the precise definition of SLE is presented in Chapter 11). By construc-
tion, the process is conformally invariant, random and fractal. In addition, it is possible
to study quite precisely the behavior of SLEs using stochastic calculus and to derive path
properties such as the Hausdorff dimension, intersection exponents, etc... Depending on
k, the behavior of the process is very different, as one can see on Fig. 1.10. The prediction
of Conformal Field Theory then translates into the following predictions for models.

The limit of (73w 4mowalky o and (750 in (Q,a,b) is a Schramm-Loewner
Evolution.

"Tn the original paper, the process is called Stochastic-Loewner Evolution.
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Naturally, the parameter x depends on the model, yet, it is usually possible to guess
which one it should be. For instance, self-avoiding walks should converge to SLE(8/3),
while Ising interfaces should converge to SLE(3).

In order to finish this chapter, let us deal with families of interfaces. In the case of
self-avoiding walks, the problem does not make sense, yet for the Ising model, there are
many interfaces. More precisely, consider the Ising model without boundary conditions
in an approximation of 2. Interfaces now form a family of loops. By consistency, each
loop should look like a SLE(3). Sheffield and Werner [SW10a, SW10b| introduced a one-
parameter family of processes of non-intersecting loops which are conformally invariant
— called the Conformal Loop Ensembles CLE(k) for £ > 8/3. Non-surprisingly, loops
of CLE(k) are locally similar to SLE(k). In the case of the Ising model, the limits of
interfaces all-together should be a CLE(3).

Interestingly, path properties of SLEs and CLEs allow us to derive some critical expo-
nents governing the scaling limit at criticality. Then, scaling relations allow us to obtain
a complete understanding of the phase transition.

3.3 Conformal invariance of percolation and Ising models

Even though we now have a mathematical frameworkwork for conformal invariance, it
remains an extremely hard task to prove convergence of interfaces to SLEs. Observe that
working with interfaces offers a further simplification: properties of these interfaces should
also be conformally invariant. Therefore, we could simply look at an observable of the
model, i.e. something that we can measure by looking at the configuration. Of course,
it is not clear that this observable would tell us anything about critical exponents, yet it
already represents a significant step toward conformal invariance.

In 1994, Langlands, Pouliot and Saint-Aubin [LPSA94] published a number of numeri-
cal values in support of conformal invariance (in the scaling limit) of crossing probabilities
in the percolation model. More precisely, they checked that taking different topological
rectangles, the probability Cs(2, A, B,C, D) of having a path of adjacent open edges from
AB to CD converges when ¢ goes to 0 towards a limit which is the same for (2, A, B, C, D)
and (), A", B",C", D") if they are image of each other by a conformal map!'®. The paper
[LPSA94|, while only numerical, attracted many mathematicians to the domain. The
same year, Cardy [Car92| proposed an explicit formula for the limit of crossing probabil-
ities. In 2001, Smirnov proved Cardy’s formula rigorously for critical site percolation on
the triangular lattice, hence rigorously providing a concrete example of a conformally in-
variant property of the model. A somewhat incredible consequence of this theorem is that
the mechanism can be reversed: even though Cardy’s formula seems much weaker than
convergence to SLE, they are actually equivalent. In other words, conformal invariance
of one well-chosen observable of the model can be sufficient to prove conformal invariance
of interfaces, which in turn is sufficient to determine critical exponents. We are now in a

18This property can be expressed in terms of properties of an interface, thus keeping this discussion in
the frameworkworkproposed earlier.
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Figure 1.10: Two examples of Schramm-Loewner Evolution (SLE(8/3) and SLE(6)). The
behavior is very different: the first one is almost surely a simple curve while the second one
has self-touching points, the haussdorff dimensions are different, etc... ((©) V. Beffara).
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Figure 1.11: An exploration path for percolation. It converges to SLE(6) in the scaling
limit ((©) V. Beffara).

much better position in order to understand conformal invariance of a model: it suffices
to show that an observable of the discrete model converges to a conformally invariant (in
fact a conformally covariant) family of functions.

In 2010, Smirnov strake a second time by exhibiting conformally covariant observables
for the so-called FK-Ising [SmilOa| and Ising [CS09] models. Nonetheless, in this case
the study of the critical regime is harder than in the percolation case. Indeed, long-range
dependence at criticality makes the mathematical understanding more involved and even
convergence of interfaces to SLE is difficult. Anyway, the philosophy remains the same and
full conformal invariance should follow from conformal covariance of these observables.

We conclude this paragraph with a warning (or a touch of hope, depending on personal
opinion): there are very few models which have been proved to be conformally invariant.
For instance, the self-avoiding walk does not belong to this restricted club and it remains
a very important open problem to prove convergence of self-avoiding walks to SLE(8/3).

3.4 Discrete holomorphicity and statistical models

The previous discussion (especially in the Ising case) sheds a new light on both approaches
described in Subsection 3.1: combinatorial properties of the discrete Ising model allow
us to prove the convergence of discrete observables to conformally covariant objects. In
other words, exact integrability and Conformal Field Theory are connected via the proof
of the conformal invariance of the Ising model.
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Archetypical examples of conformally covariant objects are holomorphic solutions to
boundary value problems such as Dirichlet or Riemann problems. It becomes natural
that discrete observables which are conformally covariant in the scaling limit are naturally
preharmonic or preholomorphic functions, i.e. relevant discretizations of harmonic and
holomorphic functions. Therefore, proofs of conformal invariance harness discrete complex
analysits in a substantial way. The use of discrete holomorphicity appeared first in the
case of dimers [Ken00] and has been extended to several statistical physics models since
then. Other than being interesting in themselves, preholomorphic functions found several
applications in geometry, analysis, combinatorics, probability, and we refer the interested
reader to the expositions by Lovasz [Lov04], Stephenson [Ste05], Mercat [Mer01], Bobenko
and Suris [BS08].

To conclude this section, we are now in a possession of a natural mathematical frame-
workwork to prove conformal invariance of a model: one needs to prove conformal invari-
ance of an observable. Proving this requires a deep understanding of discrete complex
analysis, and of its connections to the model. Very often, the integrability properties of
the model are at the heart of the proof, thus showing a new connection between exactly
solvable models and Conformal Field Theory.

4 Unifying families of models

Percolation, Ising and self-avoiding walks provide us with three examples of models which
are conformally invariant in the scaling limit (only conjecturally for the self-avoiding
walk). They correspond to three values of the Schramm-Loewner Evolution (k equals 6,
3 and 8/3 respectively). But what about other values of k7 Is it always possible to find
a conformally invariant model which interfaces converge to SLE(k)? More importantly,
can these seemingly very different models be related? At last, can this relation explain
the similarities between the different models? The answer to these questions come from
the existence of two grand families of models. These models will be at the heart of the
theory, we would like to present them now.

4.1 Random-cluster model

Fortuin and Kasteleyn introduced the random-cluster model in 1969. Roughly speaking,
the random-cluster model on a graph G is also a percolation model, in the sense that the
output is a random subgraph of G' with the same set of vertices and a subset of its edges,
but not longer independent. More precisely, an edge of a finite graph G is either open
or closed. The random-cluster configuration w is the graph obtained by keeping only the
open edges. Let p € [0,1] and ¢ € (0,00). The probability of w for the random-cluster
model on G with parameters p, ¢ is given by

1

ZG,p,q

p# open edges(l _ p)# closed edges q# connected components

Gpg(w) =
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Figure 1.12: A macroscopic cluster in a critical percolation configuration with p = 1/2.

where Z¢ , , is once again a normalizing factor called the partition function of the model.
When ¢ = 1, the model is simply edge percolation (a model very similar to the site
percolation described earlier). When ¢ # 1, the model is different and exhibits long range
dependence.

It is possible (yet non-trivial) to define the model on Z2. As for percolation, the
random-cluster model with fixed ¢ > 0 should encounter a phase transition in p. Below
some critical parameter p.(q), there is no infinite cluster, while above it, there exists a
unique infinite cluster. The phase transition is different when ¢ varies, and the richness
of this behavior is one of the success of random-cluster models. More precisely,

e when ¢ € (0,4], the transition is expected to be continuous, in the sense that the
infinite-density cluster 6(p,q) converges to 0 when p \ p.(q). The critical phase
should also be conformally invariant, and the collection of interfaces at criticality!®
should converge to CLE(x), where x = 47 /arccos(—/q/2).

e when ¢ > 4, the phase transition becomes first order. More precisely, 6 does not
converge to 0 when p goes down to p.(q).

Another important advantage of the random-cluster model is its connection to other
models. When p - 0 with ¢/p — 0, we obtain a model of a random connected graph,
called the uniform spanning tree, see Fig. 1.13. When ¢ is an integer, one can play the
following game. Color independently each connected component of a (p, ¢)-random-cluster

19We did not describe interfaces in percolation or the random-cluster model, yet one can consider
boundary of connected components for instance.
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Figure 1.13: The pink part forms a spanning tree (a tree passing through every vertex).
The black path is a space-filling curve bordering the spanning tree. It is also possible
to consider the scaling limit of the black path: it converges to SLE(8) [LSWO04a] (©) O.
Schramm).

configuration w with one of ¢ fixed colors chosen uniformly. We obtain a random coloring
o€{l,..,q}* of A. The probability measure P is a Boltzman measure with energy given
by

Hya(o) = - Z loy=c,-

z~y
The random coloring of the lattice with law P is called the Potts model with ¢ colors at
a temperature T. When ¢ = 2, it corresponds to the Ising model (simply call one color
+1 and the other —1). Therefore, there exists a coupling of the Ising model with the ¢ = 2
random-cluster model. This property links the Ising model to random-cluster models and
thus to percolation.

4.2 O(n)-models

We would like to finish this first chapter by introducing another class of models. Ising’s
conjecture of the absence of phase transition led Heisenberg to introduce his famous model.
In the classical version of this quantum model, spins are 3-dimensional unit vectors. The
energy of a configuration is then

H(o) = _Z<‘7m70y>-

~y
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In [Sta68|, this model was generalized by taking spins to be n-dimensional unit vectors,
and called spin O(n)-models. The n =1 model is the Ising model yet again. Ironically,
while spin O(n)-models were introduced in order to create relevant models for magnetism
with a phase transition, it appears that only the n = 1 model (the Ising model) exhibits
one.

Now take the Ising model on the triangular lattice. Interfaces between +1 and -1
define a loop model on the dual hexagonal lattice. The statistics of this model is easy
to compute: the probability of a configuration is proportional to e 28#edges  In fact,
this model gives rise to a family of models, called loop O(n)-models. Consider a finite
subgraph A of the hexagonal lattice and set n > 0 and x > 0. Choose a configuration w of
loops with one self-avoiding path starting from the origin with probability

I'# edgesn# loops

Pon(w) = Z\

When n = 0, we obtain the self-avoiding walk and the model undergoes a phase transition
when x varies from 0 to co. The n =1 and = = 1 model is exactly the interfaces of site
percolation with parameter p = 1/2 on the triangular lattice. For integer values of n,
one can relate the spin O(n)-model to the loop O(n)-model, see Chapter 13 for details.
Therefore, spin and loop O(n)-models form two families of models that relate the self-
avoiding walk, the percolation and the Ising models.

Conclusion

We presented several aspect of statistical physics, in particular when the models are
planar. We sketched deep links between physics and mathematics. Nevertheless, most of
what we presented is still conjectural. In this thesis, we make some of the connections
between physics and mathematics rigorous by studying random-cluster and O(n)-models.
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Chapter 2

Discrete complex analysis on graphs

Abstract: This chapter must be understood as a toolbox. It gathers several theorems
concerning the theory of discrete holomorphic maps on discretizations of domains of the
plane. These theorems will be extensively used in the whole manuscript. The two first
parts are classical and can be found in any textbook on discrete harmonic functions. The
third part is extracted from [SmilOal.

Complex analysis is the study of harmonic and holomorphic functions in complex
domains. In this section, we shall discuss how to discretize harmonic and holomorphic
functions, and what are the properties of these discretizations.

There are many ways to introduce discrete structures on graphs which can be developed
in parallel to the usual complex analysis. We will consider scaling limits (as mesh of the
lattice tends to zero), therefore we wish to deal with discrete structures which converge
to the continuous complex analysis as graphs become finer and finer.

The chapter is organized as follows. The first section (perhaps the most important one)
defines the notion of discrete approximation of a continuous domain. The second section
deals with discrete harmonic functions. While the theory is fairly classical, we chose
to expose it anyway, in particular because specific properties are needed later, and that
they are not necessarily known to everyone. Section 3 introduces discrete holomorphic
functions. Section 4 is devoted to s-holomorphic maps while the last section discusses
other possible approaches.

1 Lattices and approximation of domains

1.1 Primal, dual and medial graphs

The (rotated) square lattice L = (V,E) is the graph with vertex set V := e"/4Z? and
edge set E given by edges between nearest neighbors, see Fig. 2.1. An edge with end-
points z and y will be denoted by [zy]. If there exists an edge e such that e = [zy], write
T~y

33
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Figure 2.1: The black sites together with the plain edges constitute the primal lattice L.
The white sites, together with the dashed edges constitute the dual lattice IL*.

A finite graph G = (V, E) is always a subgraph of I and is called a primal graph. The
boundary of GG, denoted by dG, is the set of sites of G with fewer than four neighbors
in G.

The dual graph G* of a planar graph G is defined as follows: sites of G* correspond
to faces of G (for convenience, the infinite face will not correspond to a dual site), edges
of G* connect sites corresponding to two adjacent faces of G. The dual lattice of L is
denoted by L*.

The medial lattice IL° is the graph with the centers of edges of L as vertex set, and
edges connecting nearest vertices, see Fig. 2.2. The medial graph G° is the subgraph
of IL.° composed of all the vertices of IL.° corresponding to edges of G. Note that LL° is
a rotate and rescaled (by a factor 1/v/2) version of L. We will often use the connection
between the faces of IL® and the sites of L. and IL*. A face of the medial lattice is said to
be black if it corresponds to a site of I, and white otherwise. Faces are sometimes called
diamonds and a color is associated to them in a unequivocal fashion. Edges of IL° are
oriented counterclockwise around black faces.

1.2 Approximations of domains

We will be interested in finer and finer graphs approximating continuous domains. For
0 > 0, the square lattice V201L of mesh-size /26 will be denoted by ILs. The definitions
of dual and medial lattices extend to this context. Note that the medial lattice ILj has
mesh-size 0 L.

For a simply connected domain €2 in the plane, set 25 = Q2 nILs. The edges connecting
sites of (s are those included in €2. The graph €25 should be thought of as a discretization

!The convention is convenient since the medial lattice will be used more frequently than the primal
one.
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Figure 2.2: The medial lattice associated to L and LL*. Each face corresponds to either a
black site or a white site.

of 2. We will always make the assumption that the graph is simply connected?. Under
mild hypothesis, this assumption is always fulfilled when ¢ is small enough.

More generally, when no continuous domain €2 is specified, ()5 stands for a finite simply
connected subgraph of LLs.

We will be considering sequences of functions on €25 for § going to 0. In order to
make functions live in the same space, we implicitly perform the following operation: for
a function f on s, choose a diagonal for every square and extend the function to 2 in a
piecewise linear way on every triangle. Since no confusion will be possible, the extension
is denoted by f as well.

2 Preharmonic functions

2.1 Definition and connection with random walks

Introduce the (non-normalized) discretization of the Laplacian operator A := $(02,+092,)
in the case of the square lattice ILs. For v e Ly and f:ILs - C, define

1
Asfw) = 32 (F0) - F()).
The definition extends to rescaled square lattices in a straightforward way (for instance
to Lg).
Definition 2.1. A function h : Qs — C is preharmonic (resp. pre-superharmonic, pre-

subharmonic) if Ash(z) =0 (resp. <0, 20) for every x € Q.

One fundamental tool in the study of preharmonic functions is the classical relation
between preharmonic functions and simple random walks:

2Meaning that it is connected and the complement in L is connected.
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Let (X,,) be a simple random walk killed at the first time it exits Qs, then h is prehar-
monic on Qs if and only if (h(X,)) is a martingale.

Using this fact, one can prove that harmonic functions are determined by their value
on 02, that they satisfy Harnack’s principle, etc. We refer to [Law91] for a deeper study
on preharmonic functions and their link to random walks. Also note that the set of
preharmonic functions is a complex vector space. As in the continuum, it is easy to see
that preharmonic functions satisfy the maximum and minimum principles.

2.2 The discrete harmonic measure

The discrete harmonic measure Hg, (-, y) of y € 0Qs is the unique harmonic function on
Qs ~ 005 vanishing on the boundary 0€)s, except at y, where it equals 1. Equivalently,
Hgq,(z,y) is the probability that a simple random walk starting from z exits Q5 \ 0Qs
through y.

Proposition 2.2. For any harmonic function h: Qs - C,

ho= > h(y)Ho,(-y).

yE@Qg

Proof Note that ¥, .o, h(y)Hq;(+,y) is harmonic in 25 with same boundary conditions
as h. Since a harmonic function is determined by its boundary conditions, the result
follows. O

We recall two results on discrete harmonic measures. The first one is asserting that
the exiting distribution of a random-walk starting at the center of a cube is more or less
uniform.

Proposition 2.3. There exists C > 0 such that Hg,(0,y) < Co for every § > 0 and
y € 0Qs, where @ =[-1,1]2.

We omit the easy proof of this statement. The second result is a discrete (weak)
Beurling estimate.

Proposition 2.4 (Beurling’s estimate). There exists oo > 0 such that for any 1> r > 4§ >0
and any curve v inside D := {z : |z| < 1} from C ={z:|z| =1} to {z :|z| = r}, the probability
for a random walk on Ds starting at 0 to exit (D~ )5 through C is smaller than re.

Proof For any annulus A, := {z : z < |z| < 2z}, with » < 2 < 1, the random walk
trajectory has a uniformly positive probability ¢ > 0 to close a loop around the origin
while crossing this annulus. In this case, the trajectory necessarily intersects . Since the
random walk trajectory must cross roughly log,r annuli As-», and that at each step it

has a probability at least ¢ > 0 to close a circuit, the result follows with aw = -1/log,c. O
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2.3 Derivative estimates and compactness criteria

For general functions, a control on the gradient provides regularity estimates on the
function itself. It is a well-known fact that harmonic functions satisfy the reverse property:
controlling the function allows us to control the gradient. The following lemma shows that
the same is true for preharmonic functions.

Proposition 2.5. There exists C >0 such that, for any preharmonic function h: Q5 - C
and any two neighboring sites x,y € (s,

SUD.cq, [A(2)]

(2.1)

Proof Let z,y € Q5. The preharmonicity of h translates to the fact that h(X,) is
a martingale (where X,, is a simple random walk killed at the first time it exits ).
Therefore, for z,y two neighboring sites of €25, we have

h(x) - h(y) = E[h(X,) - h(Y:)] (2.2)

where under E, X and Y are two simple random walks starting respectively at z and y,
and 7, 7/ are any stopping times. Let 2r = d(z,€Q¢) > 0, so that U = x + [-r, r]? is included
in 2s5. Fix 7 and 7’ to be the hitting times of 0Us and consider the following coupling of
X and Y (one has complete freedom in the choice of the joint law in (2.2)): (X,,) is a
simple random walk and Y,, is constructed as follows,

o if X; =y, thenY, =X,,; forn>0,

e if X; #y, then Y}, = 0(X,,1), where o is the orthogonal symmetry with respect to
the perpendicular bisector ¢ of [ X7, y], whenever X,,,; does not reach £. As soon as
it does, set Y,, = X, 41.

It is easy to check that Y is also a simple random walk. Moreover, we have

1) = h()| < E[R(X) = AV [1x, 0, ] <2 (;gg |h<z>|) P(X, + V)

Using the definition of the coupling, the probability on the right is known: it is equal to
the probability that X does not touch ¢ before exiting the ball and is smaller than <

r

(with C" a universal constant), since Uy is of radius r/§ for the graph distance. We deduce
that

)=l (sup ) S5 < 2(supia) o

r ZEQ(;

Recall that functions on 25 are implicitly extended to €.
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Proposition 2.6. A family (hs)sso of preharmonic functions on the graphs Qs is precom-
pact for the uniform topology on compact subsets of 2 if one of the following properties
holds:

(1) (hs)sso is uniformly bounded on any compact subset of Q,
or

(2) for any compact subset K of Q, there exists M = M(K) >0 such that for any 6 >0

52 Z |h5($)|2 < M.

:L'EK(;

Proof Let us prove that the proposition holds under the first hypothesis and then that
the second hypothesis implies the first one.

We are faced with a family of continuous maps hs : {2 > C and we aim to apply the
Arzela-Ascoli theorem. It is sufficient to prove that functions hs are uniformly Lipschitz
on any compact subset since they are uniformly bounded on any compact subset of €.
Let K be a compact subset of Q. Proposition 2.5 shows that |hs(x) — hs(y)| < Ckd for
any two neighbors z,y € K, where

SUPs»0 SUPge:d(z,K)<r/2 |hs(z)]
d(K,Qe°) ’

Ck = C

implying that |hs(x) - hs(y)| < 2Ck|x — y| for any z,y € K5 (not necessarily neighbors).
The Arzelé-Ascoli theorem concludes the proof.

Now assume that the second hypothesis holds, and let us prove that (hs)sso is bounded
on any compact subset of ). Take K c 2 compact, let 2r = d(K,€Q¢) > 0 and consider

r € K. Using the second hypothesis, there exists k := k(z) such that 55 <k < % and

5 > |hs(n)? < 2M/r, (2.3)
y€OUys

where Uys = = + [k, 0k]? is the box of size k (for the graph distance) around z and
M = M(y+ [-r,r]?). Proposition 2.2 implies

hs(z) = > hs(y)Hy,,(z,y) (2.4)

yedUys

for every x € Uy,.. Using the Cauchy-Schwarz inequality, we find

yedUys

hé(‘r)Q = ( az[:] h6(y)HUk5(‘r7y))
< (5- 62(; |h5(y)|2) (% > Hukg(:c,yf) < 2M/r-C

where C' is a uniform constant. The last inequality used Proposition 2.3 to affirm that
Hy,,(z,y) <C6 for some C' = C(r) > 0. O
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2.4 Discrete Dirichlet problem and convergence in the scaling
limit

Preharmonic functions on square lattices of smaller and smaller mesh size were studied

in a number of papers in the early twentieth century (see e.g. [PW23, Bou26, Lus26]),

culminating in the seminal work of Courant, Friedrichs and Lewy. It was shown in [CFL28|

that solutions to the Dirichlet problem for a discretization of an elliptic operator converge

to the solution of the analogous continuous problem as the mesh of the lattice tends to
zero. A first interesting fact is that the limit of preharmonic functions is indeed harmonic.

Proposition 2.7. Any limit of a sequence of preharmonic functions on s converging
uniformly on any compact subset of € is harmonic in €2.

Proof Let (hs) be a sequence of preharmonic functions on s converging to h. Via
Propositions 2.5 and 2.6, (3[hs(-+0)—hs])ss0 is precompact. Since 9,k is the only possible
sub-sequential limit of the sequence, (ﬁ[h(g( +0) = hs])ss0 converges (indeed its discrete
primitive converges to h). Similarly, one can prove convergence of discrete derivatives
of any order. In particular, 0 = 55zAshs converges to 1[u.h + Oyyh]. Therefore, h is
harmonic. O

In particular, preharmonic functions with a given boundary value problem converge
in the scaling limit to a harmonic function with the same boundary value problem in a
rather strong sense, including convergence of all partial derivatives. The finest result of
convergence of discrete Dirichlet problems to the continuous ones will not be necessary in
our setting and we state the minimal required result:

Theorem 2.8. Let Q2 be a simply connected domain with two marked points a and b on the
boundary, and f a bounded continuous function on the boundary of 2. Let fs5:0Qs - C
be a sequence of uniformly bounded functions converging uniformly away from a and b to
f. Let hs be the unique preharmonic map on €5 such that (hs)ea, = f5- Then

hs — h when § - 0

uniformly on compact subsets of €1, where h is the unique harmonic function on §2, con-
tinuous on €1, satisfying hjpo = f.

Proof Since (fs5)ss0 is uniformly bounded by some constant M, the minimum and max-
imum principles imply that (hs)sso is bounded by M. Therefore, the family (hs) is
precompact (Proposition 2.6). Let h be a sub-sequential limit. Necessarily, h is harmonic
inside the domain (Proposition 2.7) and bounded. To prove that h = h, it suffices to show
that h can be continuously extended to the boundary by f.

Let € 9Q\ {a,b} and € > 0. There exists R > 0 such that for § small enough,

|fs(x") = fs(x)|<e for every 2’ € 902N Q(x, R),
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where Q(z,R) =x + [-R, R]?. For r < R and y € Q(z,r), we have

|he(y) = fs(x)] = Ey[fs(X7) - fs(2)]

for X a random walk starting at y, and 7 its hitting time of the boundary. Decomposing
between walks exiting the domain inside Q(z, R) and others, we find

hs(y) = fs(x)] < & + 2MP,[X: ¢ Q(x, R)]

Proposition 2.4 guarantees that P,[ X ¢ Q(z, R)] < (r/R)* for some independent constant
a > 0. Taking r = R(g/2M)Y* and letting § go to 0, we obtain |h(y) - f(z)| < 2¢ for every
yeQ(xz,r). O

2.5 Discrete Green functions

This paragraph concludes the section by mentioning the important example of discrete
Green functions. For y € Q5 \ 08y, let Go,(-,y) be the discrete Green function in the
domain €25 with singularity at y, i.e. the unique function on )5 such that

e its Laplacian on Q5 \ 025 equals 0 except at y, where it equals 1,
e G, (-, y) vanishes on the boundary 0€s.

The quantity —Ggq,(z,y) is the number of visits at  of a random walk started at y and
stopped at the first time it reaches the boundary. Equivalently, it is also the number of
visits at y of a random walk started at x stopped at the first time it reaches the boundary.
Green functions are very convenient, in particular because of the Riesz representation
formula for (not-necessarily harmonic) functions:

Proposition 2.9 (Riesz representation formula). Let f: Qs - C be a function vanishing
on 0Q2s. We have

f = ZAéf(y)GQ(;(,y)

yeQs

Proof Note that f -3, o, Asf(y)Ga,(+,y) is harmonic and vanishes on the boundary.
Hence, it equals 0 everywhere. O

Finally, a regularity estimate on discrete Green functions will be needed. This
proposition is slightly technical. In the following, a@Qs = [-a,a]?> nLs and V.f(x) =
(f(z+06) - f(z), f(z+id) - f(z)).

Proposition 2.10. There exists C'> 0 such that for any 6 >0 and y € 9Qs,

Z |V$G9Q5(I,y)| < Co Z GQQ(;(Z',y)-
zeQs zeQs
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Proof In the proof, C1,....,Cs denote universal constants. First assume y € 9Qs \ 3Q)s.
Using random walks, one can easily show that there exists C; > 0 such that
1

01 G9Q5 (ZE, y) < G9Q5 (xla y) < CngQg(x7 y)

for every x, 2’ € 2Q)s (this is a special application of Harnack’s principle). Using Proposi-
tion 2.5, we deduce

D IVaGog; (z,y) < 3, 26 max Gog, (v,y) < C1Ca6 ), Gog,(,y)
reQs zeQs 2€2Qs zeQs
which is the claim for y € 9Q;s \ 3Q);.
Assume now that y € 3Q)s. Using the fact that Gog, (x,y) is the number of visits of
for a random walk starting at y (and stopped on the boundary), we find

Z GQQa (xa y) 2 C'3/52'
$€Q§

Therefore, it suffices to prove ¥,.o, |[VGogs(2,y)| < C4/d. Let Gr; be the Green function
in the whole plane, ¢.e. the function with Laplacian equal to d,,, normalized so that

G, (y,y) = 0, and with sublinear growth. This function has been widely studied, it was
proved in [MW40] that

1 - o
GLé(.Qj,y):;ln(|x5y|)+05+0(m).

Now, Gr;(-,y) — Gog, (-, y) — %ln(%) is harmonic and has bounded boundary conditions
on 09Q)s. Therefore, Proposition 2.5 implies

> Ve (G (2,y) - Gog, (2,))| < Ced-1/6% = Cs/d.
zeQs

Moreover, the asymptotic of G, (-, y) leads to

Z ‘sz]LL;(‘Tay)l < 07/5
zeQs

Summing the two inequalities, the result follows readily. O

3 Preholomorphic functions

3.1 Historical introduction

Preholomorphic functions appeared implicitly in Kirchhoff’s work in 1847 [Kir47|, in which
a graph is modeled as an electric network. Assume every edge of the graph is a unit resistor
and for u ~ v, let F'(uv) be the current from u to v. The first and the second Kirchhoff’s
laws of electricity can be restated:
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e the sum of currents flowing from a vertex is zero:

> F(uv) =0, (2.5)

v~U
e the sum of the currents around any oriented closed contour 7 is zero:

> F(uv)=0. (2.6)

[uv]ey

Different resistances amount to putting weights into (2.5) and (2.6). The second law
is equivalent to saying that F'is given by the gradient of a potential function H, and the
first equivalent to H being preharmonic.

Besides the original work of Kirchhoff, the first notable application of preholomorphic
functions is perhaps the famous article [BSST40] of Brooks, Smith, Stone and Tutte,
where preholomorphic functions were used to construct tilings of rectangles by squares.

Preholomorphic functions distinctively appeared for the first time in the papers [Isa4l,
Isa52| of Isaacs, where he proposed two definitions (and called such functions 'mono-
diffric’). Both definitions ask for a discrete version of the Cauchy-Riemann equations
O0io F' =10, F or equivalently that the zZ-derivative is 0. In the first definition, the equation
that the function must satisfy is

ilf(E)= (5] = fF(W)-f(5)

while in the second, it is

ilf(E)-fW)] = f(N)-f(5),

where N, E, S and W are the four corners of a face. A few papers of his and others
mathematicians followed, studying the first definition, which is asymmetric on the square
lattice. The second (symmetric) definition was reintroduced by Ferrand, who also dis-
cussed the passage to the scaling limit and gave new proofs of Riemann uniformization
and the Courant-Friedrichs-Lewy theorems [Fer44, LF55|. This was followed by extensive
studies of Duffin and others, starting with [Duf56].

3.2 Isaacs’s definition of preholomorphic functions

We will be working with Isaacs’s second definition (although the theories based on both
definitions are almost the same). The definition involves the following discretization of the
0= %(835 +10,) operator. For a complex valued function f on Ls (or on a finite subgraph
of it), and x € L}, define

05f(x) = LIE)-F ] + SN = F ()]

where N, E, S and W denote the four vertices adjacent to the dual vertex x indexed in
the obvious way.
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Remark 2.11. When defining derivation, one uses duality between a graph and its dual.
Quantities related to the derivative of a function on G are defined on the dual graph
G*. Similarly, notions related to the second derivative are defined on the graph G again,
whereas a primitive would be defined on G*.

Definition 2.12. A function f : €2 — C is called preholomorphic if O5sf(x) =0 for every
xeQ;. ForxeQf, 05f(x) =0 is called the discrete Cauchy-Riemann equation at .

The theory of preholomorphic functions starts much like the usual complex analy-
sis. Preholomorphic functions are preharmonic. Moreover, sums of preholomorphic func-
tions are also preholomorphic, discrete contour integrals vanish, primitive (in a simply-
connected domain) and derivative are well-defined and are preholomorphic functions on
the dual square lattice, etc... In particular, the (discrete) gradient of a preharmonic func-
tion is preholomorphic (this property has been proposed as a relevant generalization in
higher dimensions).

Proposition 2.13. Preholomorphic functions are preharmonic for a slightly modified
Laplacian (the average over edges at distance /26 minus the value at the point).

Unfortunately, the product of two preholomorphic functions is no longer preholomor-
phic in general: e.g., while restrictions of 1, z, and 22 to the square lattice are preholo-
morphic, the higher powers are only approximately so. The restriction of a continuous
holomorphic function to Ls satisfies discrete Cauchy-Riemann equations up to O(d3).
This makes the theory of preholomorphic functions significantly harder than the usual
complex analysis, since one cannot transpose proofs from continuum to discrete in a
straightforward way.

3.3 Discrete contours and weak discrete-holomorphicity

In the continuum, many definitions of holomorphicity are equivalent. Most of these defi-
nitions have natural counterparts in the discrete. The previous section was dealing with
discretization of Cauchy-Riemann equations. This definition is the most suitable to study
integrable systems. Nevertheless, we can be interested in weaker versions of discrete
holomorphicity.

Morera’s theorem asserts that continuous functions with integrals around any contour
vanishing are exactly holomorphic functions. Therefore, it can be interesting to have an
equivalent of this definition in the discrete.

Definition 2.14 (Discrete contours). A discrete contour in a graph G is a one-to-one
circuit of oriented edges in G*.

Recall that every edge e of G is in correspondence with an edge of G* denoted e* (and
vice versa). For a function f: E[G] - C and a discrete contour +, the discrete integral of

f on ~ is defined by
L(f) = ) fle)-(v-u)
e*=[uv]ey
As mentioned in Remark 2.11, discrete integrals are thus defined on the dual graph.
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Definition 2.15 (Weak discrete holomorphicity). A function h: G — C is weakly discrete
holomorphic if its integral on any discrete contour vanishes.

This definition corresponds to assuming only the second Kirchhoff’s law. Note that
the definition is much weaker than the previous one. For instance, a weakly discrete
holomorphic function is not determined by its boundary conditions.

A sequence of weakly discrete holomorphic functions on approximations of a given
domain converging uniformly on any compact subset tends to a continuous function with
vanishing integrals along contours. Morera’s theorem then implies that the limit is holo-
morphic. Hence, this notion is sufficient to imply holomorphicity in the scaling limit,
when such scaling limit is known to exist.

Let us mention that Smirnov used this notion of weak discrete holomorphicity in
order to prove Cardy’s formula [Smi01|. Many statistical models will be shown to possess
weakly discrete holomorphic observables. The difficulty is that convergence (or simply
precompactness) of these observables is out of reach for now.

4 s-holomorphic functions

As explained in the previous sections, there are difficulties when dealing with the square
of a preholomorphic function. In order to partially overcome this difficulty, we introduce
s-holomorphic functions (for spin-holomorphic), a notion that will be central in the study
of the spin and FK fermionic observables. This notion was developed in [Smil0Oa] and we
refer to it for additional information.

4.1 Definition of s-holomorphic functions

In this section, s-holomorphic functions are defined on the medial lattice L§ only. For
any edge of the medial lattice e 3, the complex line passing through the origin and /e
(the choice of the square root is not important) is denoted by ¢(e). The different lines
associated with medial edges on L are R, e/™/*R, iR and e""/“R, see Fig. 2.3.

Definition 2.16. A function f :Qf — C is s-holomorphic if for any edge e of Qf, we
have

PZ(e) [f(l’)] = P@(e)[f(y)]

where x,y are the endpoints of e and Py is the orthogonal projection on (.

The definition of s-holomorphicity is not rotationally invariant. Nevertheless, f is
s-holomorphic if and only if e”/4f(i-) (resp. if(—)) is s-holomorphic.

Proposition 2.17. Any s-holomorphic function f: 3 — C is preholomorphic on €.

3The edge e being oriented, it can be thought of as a complex number.
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NW. NE

e—in/4 v
Piﬁ/4

SW SE

Figure 2.3: Lines {(e) for medial edges around a white face.

Proof Let f:Qf - C be a s-holomorphic function. Let v be a vertex of Ls ulLj (this
is the vertex set of the dual of the medial lattice). Assume that v € Qf, the other case
is similar. We aim to show that Jsf(v) = 0. Let NW, NE, SE and SW be the four
vertices around v as illustrated in Fig. 2.3. Next, let us write relations provided by the
s-holomorphicity, for instance

Pr[f(NW)] = Pp[f(NE)].
Expressed in terms of f and its complex conjugate f only, we obtain
F(NW)+ f(NW) = f(NE)+ f(NE).
Doing the same with the other edges, we find

f(NE)+if(NE) f(SE)+if(SE)
f(SE) - f(SE) fF(SW) - f(SW)
fFSW) =i f(SW) FINW) —if (NW)

Multiplying the second identity by —z, the third by —1, the fourth by i, and then summing
the four identities, we obtain

0=(1-i) [f(NW) = f(SE) +if (SW) —if (NE)] = 2(1-1)0sf (v)

which is exactly the discrete Cauchy-Riemann equation in the medial lattice. ]

4.2 Discrete primitive of F?

One might wonder why s-holomorphicity is an interesting concept, since it is more restric-
tive than preholomorphicity. The answer comes from the fact that a relevant discretization
of %Im ( B f2) can be defined for s-holomorphic functions f.
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Theorem 2.18. Let f : Qf — C be an s-holomorphic function on the discrete simply

connected domain §25, and by € 25, then there exists a unique function H : Q5 uQf — C
such that

H (bo)

H(b) - H(w)

1 and
5 [P [P @ (= 6 [P lFw)[)

for every edge e = [xy] of QF bordered by a black face b e Qs and a white face w € Q.

An elementary computation shows that for two neighboring sites by, by € Q5, with v
being the medial vertex at the center of [b1bs],

H(b) - Hb) = SIm[f(0)? (b - b)),

the same relation holding for sites of 2. This legitimizes the fact that H is an analogue

of 1Im (fz f2)

Proof The uniqueness of H is straightforward since €)f is simply connected. To obtain
the existence, construct the value at some point by summing increments along an arbitrary
path from by to this point. The only thing to check is that the value obtained does not
depend on the path chosen to define it. Equivalently, we must check the second Kirchhoff’s
law. Since the domain is simply connected, it is sufficient to check it for elementary
'square’ contours around each medial vertex v (these are the simplest closed contours).
Therefore, we need to prove that

| Py LFO I = | Py LF @) 1P + | P LF @I = [Py LF@)T = 0, (2.7)

where n, e, s and w are the four medial edges with end-point v, indexed in the obvious
way. Note that ¢(n) and £(s) (resp. {(e) and ¢(w)) are orthogonal. Hence, (2.7) follows
from

‘ 2

= 1fP = [Pyl + P [F@IF (28)

a

| Puay [F )] + [Py [ (0)]

Even if the primitive of f is preholomorphic and thus preharmonic, this is not the case
for H in general*. Nonetheless, H satisfies subharmonic and superharmonic properties.

Denote by H® and H° the restrictions of H : Qs u Q5 - C to Qs (black faces) and Q
(white faces).

Proposition 2.19. If f: Qf - C is s-holomorphic, then H* and H° are respectively
subharmonic and superharmonic.

4H is roughly (the imaginary part of) the primitive of the square of f.
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o O e
EXE

®@ O | @

Figure 2.4: Arrows corresponding to contributions to 2AH*. Note that arrows from black
to white contribute negatively, those from white to black positively.

Proof Let B be a vertex of Qs \ 92s. We aim to show that the sum of increments of
H* between B and its four neighbors is positive. In other words, we need to prove that
the sum of increments along the sixteen arrows drawn in Fig. 2.4 is positive. Let a, b,
¢ and d be the four values of \/ng(e)[ f(y)] for every vertex y € Qf around B and any
edge e = [yz] bordering B (there are only four different values thanks to the definition
of s-holomorphicity). An easy computation shows that the eight ’interior’ increments
are thus —a?, -b?, —c?, —d? (each appearing twice). Using the s-holomorphicity of f on
vertices of 25 around B, we can compute the eight ’exterior’ increments in terms of a, b,
¢ and d: we obtain (av/2-b)2, (bV/2-a)2, (bV/2-¢)2, (cv/2-b)2, (cv/2-d)?, (dV2-c)?,

(dV2 +a)?, (av/2 +d)?. Hence, the sum S of increments equals

S = A(a®+02+ A +d?) - 4V2(ab + be + ed — da) (2.9)
= 4|e_i”/4a—b+ei3”/4c—id‘2 > 0. (2.10)
The proof for H° follows along the same lines. O

Remark 2.20. A subharmonic function in a domain is smaller than the harmonic func-
tion with the same boundary conditions. Therefore, H® 1s smaller than the harmonic
function solving the same boundary value problem while H° is bigger than the harmonic
function solving the same boundary value problem. Moreover, H*(b) is larger than H°(w)
for two neighboring faces. Hence, if H* and H° are close to each other on the boundary,
then they are ’sandwiched between two harmonic functions with roughly the same bound-
ary conditions’. In this case, they are almost harmonic. This fact will be central in the
proof of conformal invariance.
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Figure 2.5: The black graph is the isoradial graph. Grey vertices are the vertices on the
dual graph. There exists a radius r > 0 such that all faces can be put into an incircle of
radius r. Dual vertices have been drawn in such a way that they are the centers of these
circles.

5 Isoradial graphs and circle packings

Duffin [Duf68] extended the definition of preholomorphic functions to isoradial graphs.
Isoradial graphs are planar graphs that can be embedded in such a way that there exists
r > 0 so that each face has a circumcircle of same radius r > 0, see Fig. 2.5. When
the embedding satisfies this property, it is said to be an isoradial embedding. We would
like to point out that isoradial graphs form a rather large family of graphs. While not
every topological quadrangulation (graph all of whose faces are quadrangles) admits a
isoradial embedding, Kenyon and Schlenker [KS05] gave a simple necessary and sufficient
topological condition for its existence. It seems that the first appearance of a related
family of graphs in the probabilistic context was in the work of Baxter [Bax89|, where the
eight vertex model and the Ising model were considered on Z-invariant graphs, arising
from planar line arrangements. These graphs are topologically the same as the isoradial
ones, and though they are embedded differently into the plane, by [KS05] they always
admit isoradial embeddings. In [Bax89|, Baxter was not considering scaling limits, and
so the actual choice of embedding was immaterial for his results. However, weights in his
models would suggest an isoradial embedding, and the Ising model was so considered by
Mercat [Mer01|, Boutilier and de Tiliere [BdT10, BdT11], Chelkak and Smirnov [CSO0§]
(see Chapter 17 for more details). Additionally, the dimer and the uniform spanning
tree models on such graphs also have nice properties, see e.g. [Ken02|. Today, isoradial
graphs seem to be the largest family of graphs for which certain lattice models, including



CHAPTER 2. DISCRETE COMPLEX ANALYSIS ON GRAPHS 49

the Ising model, have nice integrability properties (for instance, the star-triangle relation
works nicely). A second reason to study isoradial graphs is that it is perhaps the largest
family of graphs for which the Cauchy-Riemann operator admits a nice discretization.
In particular, restrictions of holomorphic functions to such graphs are preholomorphic to
higher orders. The fact that isoradial graphs are natural graphs both for discrete analysis
and statistical physics sheds yet more light on the connection between the two domains.

In [Thu86], Thurston proposed circle packings as another discretization of complex
analysis. Some beautiful applications were found, including yet another proof of the
Riemann uniformization theorem by Rodin and Sullivan [RS87|. More interestingly, circle
packings were used by He and Schramm [HS93| in the best result so far on the Koebe
uniformization conjecture, stating that any domain can be conformally uniformized to a
domain bounded by circles and points. In particular, they established the conjecture for
domains with countably many boundary components. More about circle packings can be
learned from Stephenson’s book [Ste05|. Note that unlike the discretizations discussed
above, the circle packings lead to non-linear versions of the Cauchy-Riemann equations,
see e.g. the discussion in [BMSO05].
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Chapter 3

Two-dimensional random-cluster
models

Abstract: The family of random-cluster models is presented mathematically. The chapter
gathers several properties (some non-standard) on this model and we refer to the extensive
literature on the subject for additional information. The presentation is deliberately not
general and is focused on crucial properties for this text.

1 The family of random-cluster models

1.1 Definition of the model

The random-cluster model can be defined on any graph. However, we restrict ourselves
to the square lattice L = (V,E) of mesh size 1 (recall that it is a version rotated by an
angle /4 of 72).

A configuration w on G is a subgraph of GG, composed of the same sites and a subset of
its edges. The edges belonging to w are called open, the others closed. Two sites a and b
are said to be connected if there is an open path, i.e. a path composed of open edges only,
connecting them (this event will be denoted by a <> b). Two sets A and B are connected
if there exists an open path connecting them (denoted A <> B). The maximal connected
components will be called clusters.

Boundary conditions £ are given by a partition of dG. The graph obtained from
the configuration w by identifying (or wiring) the edges in ¢ that belong to the same
component of £ is denoted by wu&. Boundary conditions should be understood as encoding
how sites are connected outside of G. Let o(w) (resp. ¢(w)) denote the number of open
(resp. closed) edges of w and k(w,&) the number of connected components of w U .
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Definition 3.1. The probability measure ¢g g Of the random-cluster model on G with
parameters p and q and boundary conditions £ is defined by

0@) (1 — p)e(@) gh(w,E)
p p q
65 i) = B 1)

G.p,q

for every configuration w on G, where Zé is a normalizing constant referred to as the

partition function.

P4

Figure 3.1: Left: Example of a configuration on the rotated lattice. Right: A configu-
ration together with its dual configuration.

1.2 Special boundary conditions

Four boundary conditions play a special role in the study of the random-cluster model:

e The wired boundary conditions, denoted by ¢ b 18 specified by the fact that all
the vertices on the boundary are pairwise wired (only one set in the partition).

e The free boundary conditions, denoted by ¢% b 18 specified by no wiring between
sites.

e The periodic boundary conditions: for n > 1, the torus of size n can be seen as
the box [0,n]? with the boundary conditions obtained by imposing that (i,0) is
wired to (i,m) for every i € [0,n] and that (0,7) is connected to (n,j) for every
j €[0,n]. The random-cluster measure on the torus of size n is denoted by ¢S,q,[0,n]2

or more concisely ¢p 4. Note that this realization of the torus provides us with a

natural embedding in the plane (although of course the boundary conditions cannot

be realized using disjoint paths outside the square [0,71]? because the torus itself is

not a planar graph).
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e The Dobrushin boundary conditions: assume that 0G is a self-avoiding polygon in
L, let a and b be two sites of dG. Orienting its boundary counterclockwise defines
two oriented boundary arcs Jy, and 0Op,; the Dobrushin boundary conditions are
defined to be free on J,; (there are no wirings between boundary sites) and wired on
Opa (all the boundary sites are pairwise connected). These arcs are referred to as the
free arc and the wired arc, respectlvely. The measure associated to these boundary
conditions will be denoted by gbG pa

2 Finite energy and Domain Markov properties

2.1 The domain Markov property

Consider a graph G = (V, F) and F c E. One can encode, using appropriate boundary
conditions &, the influence of the configuration outside F' on the measure within it. In
other words, given the state of edges outside a graph, the conditional measure inside F' is
a random-cluster measure with boundary conditions given by the wiring outside F'. More
formally,

Theorem 3.2. Let G = (V,E) be a graph, (p,q) € [0,1] x (0,00) and zi boundary condi-
tions. Fix F c E. Let X be a random variable measurable in terms of edges in F (call
Fer the o-algebra generated by edges of E N F'). Then,

G’pq(X|FE\F)(¢) %;p,q(X)7
where V¥ is a configuration outside F' and £ U1 is the wiring inherited by & and the edges
This property allows us to decorrelate events in disjoint areas even though they are
not independent.

Proof Let us deal with the case F' = E ~ {e}. Let w a configuration on F' and define
we to be the configuration on E coinciding with w on F' and with e open. Then for any
configuration w,

O (W F(e)) (e open) = 6, (wle open) = @5, ()5, (¢ open)
) po(w)+1(]_ _p)c(w)qk(w SN Y open P (w)(l _p)c(w)qk(w,s)
 Tpp@(L-p)@gt@O] 3 pe@ (1 - p)e@)gh®)
po(w)+1(1 _ p)c(w)qk(w,w)
- Za)‘ pO(Q|F)+1(]_ — p)c(Q\F)qk(aj\F’w)

qu(w)

where 1) is given by the boundary conditions £ with the two end-points of e wired together.
Similarly
qu(W|f{e})(€ Closed) (bG\epq( )
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and the claim follows easily for F' = E'\ {e}. The result can be deduced for every random
variable X by linearity. Now, one can repeat the previous reasoning recursively and the
result follows for any arbitrary subset of edges F'. 0

2.2 Finite energy property

This is a very simple property of random-cluster models. Let € € (0,1/2). The conditional
probability for an edge to be open, knowing the states of all the other edges, is bounded
away from 0 and 1 uniformly in p € (¢,1-¢€) and in the configuration away from this edge.
This property extends to any finite family of edges. Via the domain Markov property:

Proposition 3.3. Let p,q > 0 and G a graph. There exists ¢ = ¢(G,p,q) such that for

any configuration w, gbg’p’q(w) > ¢ for any boundary conditions &.

The proof is extremely easy and is not included here. A typical example of a model not
satisfying the finite energy property if the uniform (or any decent) measure on spanning
trees. Indeed, knowing the whole configuration outside an edge e, it is not necessarily
possible for e to be open (for instance if there is a cycle once e is open).

3 Strong positive association when ¢ > 1

An event is called increasing if it is preserved by addition of open edges. A typical
increasing event is the existence of a path between two sets A and B. The class of
increasing events is central in the study of random-cluster models, due to the so-called
positive association of the model.

3.1 Holley criterion

A measure p; stochastically dominates pso if for every increasing event A, py(A) > ua(A).
We first present a sufficient condition for two measures to be stochastically ordered.

Let Q be the space of subgraphs (V, F) of G = (V,E) with F' c E (edges in F' are
called open). We restrict ourselves to positive! probability measures on 2. For wy,ws € ),
wy V ws (resp. wy Aws) is the configuration with set of open edges being the union (resp.
the intersection) of the sets of open edges of w; and ws.

Theorem 3.4 (Holley inequality [Hol74]). Let py, us be two measures such that
p(wi vws)po(wr Awe) > py(wr)pe(we),  wi,ws €8, (3.2)

then p1(A) > pa(A) for any increasing event A.

Li.e. measures p which satisfies p(w) > 0 for every w € Q.
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The proof of this statement is a construction via Markov chains of a coupling (wy,ws)
between the two measures (w; is chosen according to the measure p;, and wy according to
the measure ), in a way that every open edge in ws is open in w;. The proof is omitted
here (see Theorem (2.1) of [Gri06] for details). Let us mention that Theorem 3.4 possesses
an elegant simplification: (3.2) does not need to be checked for every configurations wy,
wy. Define w® (resp. w,) to be the configurations coinciding with w on E \ {e}, and
with e open (resp. e closed). Define w$ (resp. w!, wef and wey) to be the configurations
coinciding with w on E'\ {e, f} and with e open and f closed (resp. e closed and f open,

e, f open and e, f closed).

Theorem 3.5. Let puiy, po be two measures such that for any w and e, f,

pr(w)pa(we) > pa(we)pa(w”)
() pa(wer) > pu(w!)na(wf),
then py stochastically dominates ps.
Holley criterion is particularly suitable to prove the Fortuin-Kasteleyn-Ginibre in-
equality [FKGT1|. First proved by Harris in the case of product measures (in this case, it
is called Harris inequality), the inequality relates the probability of the intersection of two

events to the product of the probabilities. It belongs to the class of correlation inequalities
(several other examples will be provided in this manuscript).

Theorem 3.6 (FKG lattice condition). Let G = (V,E) be a finite graph and p be a
positive measure on ). If for any configuration w and e, f € E

) pwer) > p(wlHn(ws), (3.5)
then for any increasing events A, B,
wW(AnB) 2 p(A)u(B). (3.6)
The previous inequality immediately implies
(XY 2 p(X)u(Y) (3.7)

for any increasing random variables X,Y. By taking the complement, one can also work
with decreasing events or decreasing random variables.

Proof Equation (3.6) can be understood as p(:|B) stochastically dominates (). Let
us check Holley inequalities (3.3) and (3.4). We do it only for (3.4) ((3.3) is even easier).
Fix w as well as e and f,

w1 B)p(wer) 2 p(wl|B)p(wy)

is equivalent to (multiplying by u(B))

Lyeren :u(wef):u(wef) 2 1w£eB M(wg)ﬂ(w?)'

The indicator function on the left is equal to 1 if the one on the right is equal to 1,
therefore, the previous inequality is a consequence of (3.5). ]
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3.2 Strong positive association for random-cluster models

Theorem 3.7 (Fortuin-Kasteleyn-Ginibre inequality [FKGT71]). Fiz a finite graph G,
boundary conditions £ and two parameters p € [0,1] and ¢ > 1. For any two increasing
events A and B, we have

qu(AmB) qu(A)¢qu(B)- (3.8)

Proof Let us check criterion (3.5). Fix w a configuration and two edges e, f. We need
to prove

o(wef)+o(w wef w, Owg o(w$ wg wS
[p/(1-p)] (w7 )+o( ef)qk( Jrk(wer) > [p/(1-p)] (we )+o( f)qk( k(W)

Since o(we) +0(wey) = o(wl) +0(w$), the only property to check is that k(w®') +k(wes) 2
k(wl) + k(w %) (recall ¢ > 1). Yet this inequality is obvious if we study wether both
end-points of f are already connected or not in wig. e} - O

Corollary 3.8. Fiz a finite graph G, boundary conditions & and ¢ > 1. For any p; < po
and any increasing event A,

gbf’l)q’G(A) < (bf)g,q,G(A)' (39)
Proof For a random variable X, an easy computation implies

Oy (X) = 05, (XY K

where K is a normalizing constant and

p1/(1-p1)

Plugging X =1, we find K = ¢§17q7G(Y). Now, X and Y are increasing, therefore (3.7)
implies

Y(w) = (M )°<w>'

G0 (X) = G50 a(XV)[D, (V) 2 65 o(X).

Theorem 3.9. Fiz a finite graph G and two parameters p € [0,1] and g > 1. For any
boundary conditions 1 <& (i.e. sites wired in ¢ are wired in &), we have

qu(A) = ¢qu(A) (3.10)

for any increasing event A.
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Proof Consider v as being the partition (F, .., E}) of boundary vertices and construct
a new graph by adding edges between vertices of E; for every ¢. Call this new graph G|
and FEj the set of additional edges. Now, the domain Markov property implies

¢qu( ) = G pq( | all the edges of Ey are closed)
¢qu( ) = G pq( | all the edges of Ey are open).

Using the FKG inequality twice, we obtain

Brpa(A) < 05 pq(A) < 0,4 (A)

for any increasing event A depending on edges in G. |

For stochastic ordering, the free and the wired boundary conditions are thus extremal.
More formally, for any increasing event A and any boundary conditions &,

U pa(A) < 05, (A) < 68, (A). (3.11)

Combined with the domain Markov property, the comparison between boundary condi-
tions allows us to bound conditional probabilities.

4 Planar duality

4.1 Statement and self-dual point

In two dimensions, one can associate with any random-cluster model on a graph GG a dual
model on G*. Given a subgraph configuration w, construct a model on G* by declaring
any edge of the dual graph to be open (resp. closed) if the corresponding edge of the
primal lattice is closed (resp. open) for the initial configuration. The new configuration
is called the dual configuration of w and is denoted w*, see Fig. 3.1.

Two sites u and v in G* are said to be dual-connected if there is a dual-open path, i.e.
an open path in the dual model between u and v (this event will be denoted by a < b).
Two sets U and V' are dual connected if there exists a dual-open path connecting them
(denoted U <> V). The maximal dual-connected components will be called dual-(open)
clusters.

So far, nothing depends on the model and the construction of the dual configuration
is not especially interesting. The miracle of this duality is that the dual configuration is
also a random-cluster configuration, however with other parameters. In crude words, the
duality could be describe as:

If w is sampled according to a random-cluster measure with parameters (p,q), the law
of the dual configuration w* is the random-cluster measure on G* with parameters (p*,q)
where

(1-p)q

—(1—p)q+p' (3.12)

P =p"(p,q) =
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When defining the dual of a random-cluster model, one must be careful about bound-
ary conditions or the previous statement remains too vague. Before describing in more
detail how boundary conditions should be handled, let us introduce the self-dual point

psa(q):

Definition 3.10. The self-dual point ps = psa(q) is the unique solution of the equation
P (psd7 Q) = Psd; 1.e.

s (3.13)
1+./q

psd(Q) =

4.2 Planar duality and boundary conditions

As mentioned above, the previous statement is very rough, and one needs to be careful
about boundary conditions. We now treat three crucial examples to us.

Free-wired boundary conditions The dual of the wired boundary conditions are
the free boundary conditions. Similarly, the dual of a random-cluster model with free
boundary conditions is a random-cluster model with wired boundary conditions. Formally,

Proposition 3.11. The dual model of the random-cluster on G with parameters (p,q) and
wired boundary conditions is the random-cluster with parameters (p*,q) and free boundary
conditions on G*.

Proof Note that the state of edges between two sites of G is not relevant when bound-
ary conditions are wired. Indeed, sites on the boundary are connected via boundary
conditions anyway, so that the state of each boundary edge does not alter the connectiv-
ity properties of the subgraph, and is independent of other edges. For this reason, forget
about edges between boundary sites and consider only inner edges (which correspond to
edges of G*): o(w) and c¢(w) then denote the number of open and closed inner edges.

Set e* for the dual edge of G* associated to the (inner) edge e. From the definition of
the dual configuration w* of w, we have o(w*) = a — o(w) where a is the number of edges
in G* and o(w*) is the number of open dual edges. Moreover, connected components of
w* correspond exactly to faces of w, so that f(w) = k(w*), where f(w) is the number of
faces (counting the infinite face). Using Euler’s formula

# edges + # connected components + 1 = Fsites + # faces,
which is valid for any planar graph, we obtain, with s being the number of sites in G,

kE(w) = s-1+f(w)-o(w) = s=1+k(w*)—a+o(w").



CHAPTER 3. TWO-DIMENSIONAL RANDOM-CLUSTER MODELS 61

The probability of w* is equal to the probability of w under ¢g A

1
Phpa@) = (1 Py
Gipyq
1 B p “ o(w w
- U g
Gip.q
_ (1 ;p)a [p/(l _ p)]a—o(w*)qs—l—a+k(w*)+o(w*)
ZG,p,q
paqsflfa ol o )
= ——la@-p)/pI"¢"D = ) o (W)
ZG&D,q
since ¢(1-p)/p =p*/(1-p*), which is exactly the statement. O

Dobrushin boundary conditions The same reasoning as before (using Euler’s for-
mula) shows that the dual of qﬁ‘g; g 18 gi?;*,q- In words, the dual of a random-cluster
model with parameters (p,q), free boundary conditions on d,, and wired boundary con-
ditions on 0, is the random-cluster model with parameters (p*,q) with wired boundary
conditions on 9}, and free boundary conditions on 9;,, where 9, is the inner dual arc

adjacent to J,, and 0;, is the outer arc adjacent to Op,2.

Periodic boundary conditions The case of periodic boundary conditions, or equiva-
lently the case of the random-cluster model defined on a torus (with no boundary condi-
tions) is a little more involved: indeed, its dual is not a random-cluster model; yet it is
not very different from one, and that will be enough for our purposes. In order to state
duality in this case, additional notations are required. Let f(w) be the number of faces
delimited by w, i.e. the number of connected components of the complement of the set
of open edges, and s(w) be the number of vertices in the underlying graph (it does not
depend on w). We will now define an additional parameter §(w).

Call a (maximal) connected component of w a net if it contains two non-contractible
simple loops of different homotopy classes, and a cycle if it is non-contractible but is not
a net. Notice that every configuration w can be of one of three types:

e One of the clusters of w is a net. Then no other cluster of w can be a net or a cycle.
In that case, let §(w) = 2;

e One of the clusters of w is a cycle. Then no other cluster can be a net, but other
clusters can be cycles as well (in which case all the involved, simple loops are in the
same homotopy class). Then let §(w) = 1;

e None of the clusters of w is a net or a cycle. Let §(w) = 0.

20ne should be careful when defining these arcs. In the next chapters, we will take care of this
technical issue.
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With this additional notation, Euler’s formula becomes
s(w) —o(w) + f(w) =k(w) +1 -0(w). (3.14)

Besides, these terms transform in a simple way under duality: o(w) +o(w*) is a constant,
f(w) = k(w*) and §(w) = 2 - §(w*). The same proof as that of usual duality, taking the
additional topology into account, then leads to the relation

(BBgm) ({w}) o< g @ap. - ({w}). (3.15)

This means that even though the dual model of the periodic boundary conditions random-
cluster model is not exactly a random-cluster model at the dual parameter, it is absolutely
continuous with respect to it and the Radon-Nikodym derivative is bounded above and
below by constants depending only on g. Another way of stating the same result would
be to define a balanced random-cluster model with weights

N 1-6(w)
() = Y ()

this one is absolutely continuous with respect to the usual random-cluster model and does
satisfy exact duality.

5 Infinite-volume measures and phase transition.

5.1 Definition of infinite-volume measures

The definition of an infinite-volume random-cluster measure is not direct. Indeed, one
cannot count the number of open or closed edges on L = (V,E) since they could be
(and would be) infinite. We thus define infinite-volume measures indirectly: they are the
measures which coincide, when restricted to a finite box, with random-cluster measures
in finite volume.

So far, the problem of the o-field was eluded since every set of configurations was
measurable in finite volume. In infinite-volume, we must be careful and proceed as follows:
() is the space of configurations on the whole lattice and F is the smallest o-algebra
containing every events depending on a finite number of edges.

Definition 3.12. Let p € [0,1] and q € (0,00). A probability measure ¢ on (2, F) is
called an infinite-volume random-cluster measure with parameters p and q if for every
event A€ F and any box A,

S(AIFL)(E) = 85, (A),

for ¢-almost every & € 2, where Fg.p s the o-algebra generated by edges in E N A.
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The domain Markov property and the comparison between boundary conditions allow
us to construct infinite-volume measures. Indeed, consider a sequence of measures on
boxes of increasing size with free boundary conditions. This sequence is increasing in the
sense of stochastic domination, which implies that it converges weakly to a limiting mea-
sure, called the random-cluster measure on IL with free boundary conditions and denoted
by ¢9, ®. This construction can be performed with many other sequences of measures,
defining several a priori different infinite-volume measures on IL. For instance, one can
define the random-cluster measure ¢}, with wired boundary conditions by considering
the decreasing sequence of random-cluster measures on finite boxes with wired boundary
conditions. It could also be possible to see infinite-volume measures existing intrinsiquely,
in the sense that they are not limits of random-cluster measures in finite volume.

The question of uniqueness of infinite measures is very difficult in general. The fol-
lowing powerful theorem answers partially this question and will be useful in the next
paragraphs.

Theorem 3.13 (see Theorem (4.60) of [Gri06]). For g > 1, the set D, of edge-weight p
for which uniqueness fails is at most countable.

There is an easy criterion, due to the positive association, to decide wether or not the
infinite-volume measures are unique for some parameters p and ¢:

Proposition 3.14. Let p€[0,1] and q € (0,00). If ¢, = ¢ ., then there exists a unique

P,
infinite-volume measure with parameters p and q, denoted ¢, ,.

5.2 Ergodicity of infinite-volume random-cluster measures

A property that will be used implicitely in many arguments in this chapter and the next
ones is the ergodicity of the measures. More precisely,

Theorem 3.15 (Corollary (4.23) of [Gri06]). Fiz p € [0,1] and q € (0,00). Any

translational-invariant event A € F has probability 0 or 1 under the measures ¢, , and

0
p.q-

5.3 Critical point

We are now in a position to discuss the phase transition of the random-cluster model.
Theorem 3.16. There exists a critical point p, € (0,1) such that:
e For p<p., any infinite-volume measure has no infinite cluster almost surely.

e For p>p., any infinite-volume measure has a unique infinite cluster almost surely.

3More precisely, the restrictions to a box Ay of measures with free boundary conditions on boxes A,
n > N, form an increasing sequence of measures, allowing us to construct a limiting measure ¢ on Ay
by the formula ¢(A) := limpn_ o0 Pp.q,n(A). Since these limits are compatible for different N, it defines a
measure on Z? (with o-algebra F).
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Note that several parts of the previous statement are not straightforward:

- It is natural to define the parameter p. as the infimum of edge-weights p for which
there is an infinite-volume measure possessing an infinite cluster with positive probability.
Yet, non-uniqueness of infinite-volume measures can copromise this strategy. Fortunately,
Theorem 3.8 guarantees that the set of edge-weights such that uniqueness fails is discrete,
which is enough to legitimate the definition of p..

- The fact that the infinite cluster exists with probability one or zero is a consequence
of ergodicity (Theorem 3.15).

- The uniqueness of the infinite cluster is a consequence of an argument of Burton-
Keane [BK89] (note that this uniqueness can fail when considering random-cluster models
on more general graphs such as non-amenable Cayley graphs).

- The fact that p, lies strictly between 0 and 1 is not obvious (and false in one dimen-
sion). A counting argument similar to Peierls’s argument [Pei36| allows us to rule out
these two possibilities. Since Peierls’s argument will be presented in the case of the Ising
model, we do not spend more time on it now.

Overall, the existence of a critical point is not completely direct. Nevertheless, it
remains a well understood problem. Its computation is a much harder task and the
existence of a nice formula for p.(q) is not even obvious.

On the square lattice, it is natural to conjecture that the critical point satisfies p. = psq-

Conjecture 3.17. The critical parameter p.(q) of the random-cluster model on the square
lattice equals psq(q) = /q/(1+/q) for every ¢>1.

Indeed, if one assumes p. # psq, there would be two phase transitions, one at p., due to
the change of behavior in the primal model, and one at p}, due to the change of behavior
in the dual model. Hence, the natural assumption that only one phase transition occurs
implies p. = psq- Nevertheless, this heuristic argument is not a mathematical proof, and
a formal derivation was lacking for many years. Recently, the critical point was finally
identified rigorously. This is the subject (among other things) of Chapter 4.

6 The inequality p. > pgg.

A lower bound for the critical value can be derived using the uniqueness of the infinite
cluster. Indeed, if one assumes that p. < psg, the configuration at p,y must contain one
infinite open cluster and one infinite dual open cluster (since the dual random-cluster
model is then supercritical as well). Intuition indicates that such coexistence would imply
that there is more than one infinite open cluster; an elegant argument (due to Zhang in
the case of percolation) formalizes this idea. We refer to the presentation in Theorem
(6.17) of [Gri06] for full detail, but still give a sketch of the argument.

Proposition 3.18. For q > 1, there exists almost surely no infinite cluster at ps(q) for
the infinite-volume measure with free boundary conditions.
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The proof goes as follows, see Figure 3.2. Assume that p. < psq and consider the
random-cluster model with p = pss. There is an infinite open cluster, and therefore, one
can choose a large box such that the infinite open cluster and the dual infinite open cluster
touch the boundary with probability greater than 1—¢. The FKG inequality (through the
so-called “square-root trick™ for two increasing events A and B with same probabilities,
qbép’q(Am B)>1-(1 —gbg7p7q(A))1/2) implies that the infinite open cluster actually touches
the top side of the box, using only edges outside the box, with probability greater than
1 — eY/4. Therefore, with probability at least 1 — 2¢1/4, the infinite open cluster touches
both the top and bottom sides, using only edges outside of the box.

A similar argument implies that the infinite dual open cluster touches both the left and
right sides of the box with probability at least 1-2¢/4. Therefore, with probability at least
1-4¢'/4, the complement of the box contains an infinite open path touching the top of the
box, one touching the bottom, and infinite dual open paths touching each of the vertical
edges. Enforcing edges in the box to be closed, which brings only a positive multiplicative
factor due to the finite energy property of the model, and choosing ¢ sufficiently small,
there are two infinite open clusters with positive probability. Since the infinite open
cluster must be unique, this is a contradiction which implies that p. > p.q.

/OO AV X f)oooo

’ N

N - - 4 .
[0,n)? — |[0,n)?| — [[0,n)? ' — (
square root intersection of s finite energy it
trick events Q/oo
\oo
. _ 1 1 1
Pral) 21 Dpa() 2 1= ¢l bpal) 21— det Dp.a() 2 el — dei)

Figure 3.2: A figurative description of the proof of p. > ps4.

Uniqueness of the infinite measure for p < p,(q) When p < py < p., there is no
infinite cluster for any infinite-volume measure. The following theorem will be very useful
in our study.

Theorem 3.19. Fiz q > 1. The unique edge-weight p € [0,1] for which there can exist
distinct infinite-volume measures is psq(q).

From now on, when p # p,(q), the unique infinite measure with parameters (p,q) is
denoted by ¢,,. This measure can be equivalently thought of as ¢) , or ¢} ,.
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. o . T 0 1 0
Proof First, note that it is sufficient to prove ¢, , = ¢p, (or even Gpq < Ppq since the

other bound is obvious) for p < psa(q). Indeed, (3.11) implies that every infinite-volume
measure is sandwiched between ¢ . and ¢, ,. Moreover, duality implies that ¢g*7 0= }D*’q,
giving uniqueness above p,q(q) from uniqueness below it.

Fix an increasing event A depending on a finite number of edges (all included in the
box of size N). When n goes to infinity, the probability of the event £, that [-N, N]? is
connected to the exterior of [-n,n]? goes to 0 (there is no infinite cluster since p < p,.).

On the one hand, ¢} ,(An E,) goes to 0 when n goes to infinity. On the other hand,
conditioning on the exterior most dual circuit I" surrounding [-N, N]? in [-n,n]? to be

equal to a deterministic circuit vy in L.* implies:

(AT =7) < @) p(A) < ) (A).

Indeed, the conditioning boils down to fixing free boundary conditions on ~ thanks to the
domain Markov property. In addition, comparison between boundary conditions allow
us to compare to the case where the free boundary conditions are on 9[-n,n]? (which is
further from [~N, N]?). Since the result is uniform on vy, ¢} (An E£5) < ¢f (A). Now,

pa(A) = & (ANEy) + 6, ,(ANE]) < 6, ,(AnE,) + ¢),(A),

thus implying ¢ ,(4) < @9 ,(A) for increasing events depending on a finite number
of edges (simply let n go to infinity). The proof can be concluded by recalling that
any increasing events can be approached by increasing events depending only on a finite

number of edges. O



Chapter 4

The self-dual point of the
two-dimensional random-cluster model
1s critical for ¢ > 1

Abstract: This chapter is devoted to the determination of the critical point of the
random-cluster models with ¢ > 1 for the square, the hexagonal and the triangular lattices.
It is inspired by the article The self-dual random-cluster model is critical above q = 1
[BDC10], written with V. Beffara and published in Probability Theory and Related Fields.

There are no conjectures for the value of the critical point for general infinite graphs.
However, in the case of the square lattice, planar duality hints that the critical point is
the same as the so-called self-dual point satisfying psq = p*(psq), which has a known value

V4
1+/q

In this chapter, we prove this result for all ¢ > 1:

psd(q) =

Theorem 4.1. Let g > 1. The critical point p. = p.(q) for the random-cluster model with
cluster-weight q on the square lattice satisfies

_ Vi
1+\/§'

A rigorous derivation of the critical point was previously known in three cases. For
q = 1, the model is simply bond percolation, proved by Kesten in 1980 [Kes80] to be critical
at p.(1) = 1/2. For ¢ = 2, the self-dual value corresponds to the critical temperature of
the Ising model, as first derived by Omnsager in 1944 [Ons44]; one can actually couple
realizations of the Ising and random-cluster models to relate their critical points, see

Pec
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Chapter 6. For modern proofs in that case, see [ABF87| or the short proof of Chapter 8
[BDC11|. Finally, for sufficiently large ¢, a proof is known based on the fact that the
random-cluster model exhibits a first order phase transition (see [LMMS*91, LMRS86],
the proofs are valid for ¢ larger than 25.72). Let us mention that physicists derived
the critical temperature for the Potts models with ¢ > 4 in 1978, using non-geometric
arguments based on analytic properties of the Hamiltonian [HKW78|.

In the subcritical phase, the probability for two points x and y to be connected by a
path is proved to decay exponentially fast with respect to the distance between x and y.
In the supercritical phase, the same behavior holds in the dual model. This phenomenon
is known as the sharp phase transition:

Theorem 4.2. Let ¢ > 1. For any p < p.(q), there exist 0 < C(p,q),c(p,q) < oo such that
for any x,y € 72,
Opq(z = y) < C(p, q)e PO, (4.1)

where | -| denotes the Euclidean norm.

The proof involves two main ingredients. The first one is an estimate on crossing
probabilities at the self-dual point p = pyq = \/q/(1 +./q): the probability of crossing a
rectangle with aspect ratio (o, 1) — meaning that the ratio between the width and the
height is of order & — in the horizontal direction is bounded away from 0 and 1 uniformly
in the size of the box. It is a generalization of the celebrated Russo-Seymour-Welsh
theorem for percolation.

The second ingredient is a collection of sharp threshold theorems, which were originally
introduced for product measures. They have been used in many contexts, and are a pow-
erful tool for the study of phase transitions, see Bollobas and Riordan [BR06a, BROGb].
These theorems were later extended to positively associated measures by Graham and
Grimmett [GG11, GG06, Gri06]. In our case, they may be used to show that the proba-
bility of crossings goes to 1 when p > /q/(1+./q).

Actually, the situation is complicated: the dependence inherent in the model makes
boundary conditions difficult to handle. More precisely, one can use a classic sharp thresh-
old argument for symmetric increasing events in order to deduce that the crossing prob-
abilities of larger and larger domains, under wired boundary conditions, converge to 1
whenever p > /q/(1+/q). Moreover, the theorem provides us with bounds on the speed
of convergence for rectangles with wired boundary conditions. A new way of combining
long paths allows us to create an infinite cluster. We emphasize that classical arguments,
used by Kesten [Kes80] in the case of percolation, do not seem to work in our case.

This approach allows the determination of the critical value, yet it provides us with a
rather weak estimate on the speed of convergence for crossing probabilities. Nevertheless,
combining the fact that the crossing probabilities go to 0 when p < pyy with a very general
threshold theorem, we deduce that the cluster-size at the origin has finite moments of any
order. It is then an easy step to derive the exponential decay of the two-point function in
the subcritical case.



CHAPTER 4. CRITICAL POINT OF THE 2D RANDOM-CLUSTER MODEL 69

Theorem 4.2 has several notable consequences. First, it extends up to the critical point
results that are known for the subcritical random-cluster models under the exponential
decay condition (for instance, Ornstein-Zernike estimates [CIV08| or strong mixing prop-
erties). Second, it identifies the critical value of the Potts models via the classical coupling
between random-cluster models with cluster-weight ¢ € N and the g-state Potts models
(see Chapter 6).

The methods of this chapter harness symmetries of the graph, together with the self-
dual property of the square lattice. In the case of the hexagonal and triangular lattices, the
symmetries of the graphs, the duality property between the hexagonal and the triangular
lattices and the star-triangle relation allow us to extend the crossing estimate proved in
Section 1, at the price of additional technical difficulties. The rest of the proof can be
carried over to the triangular and the hexagonal lattices as well, yielding the following
result:

Theorem 4.3. The critical value p. = p.(q) for the random-cluster model with cluster-
weight q > 1 satisfies

y2+3y2—q=0  on the triangular lattice and
y3 —3qy.—q*> =0 on the hexagonal lattice,

where Y. := p./(1 = pe). Moreover, there is exponential decay in the subcritical phase.

The technology developed in the present chapter relies heavily on the positive associ-
ation property of the random-cluster measures with ¢ > 1. Our strategy does not extend
to random-cluster models with ¢ < 1. Understanding these models is a challenging open
question.

The chapter is organized as follows. Section 1 is devoted to the statement and the proof
of the crossing estimates. In Section 2, we briefly present the theory of sharp threshold
that will be employed in the next section. Section 3 contains the proofs of Theorems 4.1

and 4.2. Section 4 is devoted to extensions to other lattices and contains the proof of
Theorem 4.3.

1 Crossing probabilities for rectangles at the self-dual
point

In this section, we prove crossing estimates for rectangles of prescribed aspect ratio. This
is an extension of the Russo-Seymour-Welsh theory for percolation. We will work with
p = psa(q) and the measures ¢} . and ¢p ,4n; We present the proof in the periodic
case. The case of the (bulk) wired boundary condition can be derived from this case (see
Corollary 4.9).
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For a rectangle R, let C,(R) denote the event that there exists a path between the top
and the bottom sides which stays inside the rectangle. Such a path is called a wvertical
(open) crossing of the rectangle. Similarly, define C,, to be the event that there exists an
horizontal open crossing between the left and the right sides. Finally, C}(R*) denotes the
event that there exists a dual-open crossing from top to bottom in the dual graph R* of
R.

The following theorem states that, at the self-dual point, the probability of crossing a
rectangle horizontally is bounded away from 0 uniformly in the sizes of both the rectangle
and the torus provided that the aspect ratio of the rectangles remains constant. The size
of the ambient torus is denoted by m. Note that p = p* when p = py, and hence the
balanced random-cluster measure on the torus is self-dual.

Theorem 4.4. Let a > 1 and ¢ > 1. There exists c(«) > 0 such that for every m > an >0,

Ig‘sd,q,m(ch([()’an) X [O,H))) > c(a). (4.2)

The proof begins with a lemma, which corresponds to the existence of ¢(1) and is
based on the self-duality of random-cluster measures on the torus. This lemma is classic
and is the natural starting point for any attempt to prove RSW-like estimates.

Lemma 4.5. Let q > 1, there ezists ¢(1) > 0 (depending only on the parameter q) such
that for everym>n>1, ¢b  (Cy([0,n)?)) > ¢(1).

A
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Figure 4.1: Left: The square [0,n)? (all the sites in the shaded region) and its dual have
the same graph structure. Right: The events C,([0,1)?) and C3([0,n)?).

Proof Note that the dual of [0,7)? is [0,7)? (meaning the sites of the dual torus inside
[0,n)2), see Figure 4.1. If there is no open crossing from left to right in [0,7)?2, there exists
necessarily a dual-open crossing from top to bottom in the dual configuration. Hence, the
complement of Cp([0,n)?) is C;([0,n)?), thus yielding

gsd,q,M(Ch([O’ n)Q)) + ¢gsd7Q7m(C;([07n)2)) =1
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Using the duality property for periodic boundary conditions and the symmetry of the
lattice, the probability ¢p_, ¢.m(C:([0,7)?)) is larger than c¢p., 4.m(Cr([0,7)?)) (for some
constant ¢ only depending on ¢), giving

1< (1+0)b o m(Ch([0,1)?)),

which concludes the proof. O

Remark 4.6. This lemma could be stated in terms of the balanced random-cluster measure
instead of the usual one. Then, as in the case of percolation, one would obtain that the
probability of a horizontal crossing of the square is exactly 1/2. However, because going
back and forth between the balanced and standard measure would be a little tedious in what
follows, everything is stated in terms of @p.,.qm — and c(1) depends on the value of q.

The only major difficulty is to prove that rectangles of aspect ratio « are crossed in the
horizontal direction — with probability uniformly bounded away from 0 — for some o > 1.
There are many ways to prove this in the case of percolation. Nevertheless, they always
involve independence in a crucial way; in our case, independence fails, so a new argument
is needed. The main idea is to invoke self-duality in order to enforce the existence of
crossings, even in the case where boundary conditions could look disadvantageous. In
order to do that, we introduce the following family of domains, which are in some sense
nice symmetric domains.

d=—¥2 4R

free on this arc

Figure 4.2: Two paths v, and 7, satisfying Hypothesis () and the graph G(~1,72).

Define the line d := —v/2/4 +iR. The orthogonal symmetry o4 with respect to this line
maps L to L*. Let 71 and 72 be two paths satisfying the following Hypothesis (*), see
Figure 4.2:

e 7, remains on the left of d and 7, remains on the right;

e v, begins at 0 and v, begins on a site of L n (-v/2/2 +iR,);
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e 71 and 04(72) do not intersect (as curves in the plane);

e 7, and 04(72) end at two sites (one primal and one dual) which are at distance v/2/2
from each other.

The definition extends trivially via translation, so that the pair (7y1,72) is said to satisfy
Hypothesis () if one of its translations does.

When following the paths in counter-clockwise order, one can create a circuit by
linking the end points of v; and o4(72) by a straight line, the start points of o4(72)
and 7y, the end points of 75 and o4(71), and the start points of o4(y;) and ;. The
circuit (v1,04(72),7v2,04(71)) surrounds a set of vertices of L. Define the graph G (71, 72)
composed of sites of I that are surrounded by the circuit (v1,04(72),72,04(71)), and of
edges of L that remain entirely within the circuit (boundary included).

The mized boundary conditions on this graph are wired on ; (all the edges are pairwise
connected), wired on s, and free elsewhere. The measure on G(7,72) with parameters
(psd,q) and mixed boundary conditions is denoted by ¢_, g1, OF more simply ¢., ~,.

Lemma 4.7. For any pair (71,72) satisfying Hypothesis (%), the following estimate holds:

1
1+¢?

By (71 € 72) 2

Proof On the one hand, if 7 and v are not connected, o4(v1) and o4(72) must be
connected by a dual path in the dual model (event corresponding to o4(7v1) < 04(72) in
the dual model). Hence,

L=¢y (< 72) +oax @l (11 < 72), (4.3)

where o4 (47, .,) denotes the image under o4 of the dual measure of ¢, ,. This measure
lies on G(71,72) as well and has parameters (psq, q).

When looking at the dual measure of a random-cluster model, the boundary conditions
are transposed into new boundary conditions for the dual measure. In the case of the
periodic boundary conditions, the boundary conditions for the dual measure are the same.
Here, the boundary conditions become wired on 77 U and free elsewhere (this is easy to
check using Euler’s formula).

It is very important to notice that the boundary conditions are not exactly the mixed
one, since y; and 7, are wired together. Nevertheless, the Radon-Nikodym derivative of
o4 * ¢, ., with respect to ¢,, -, is easy to bound. Indeed, for any configuration w, the
number of cluster can differ only by 1 when counted in og4 * @3 ., or ¢, ,, so that the
ratio of partition functions belongs to [1/q,q]. Therefore, the ratio of probabilities of
the configuration w remains between 1/¢? and ¢2. This estimate extends to events by
summing over all configurations. Therefore,

oq* @) (1 e ) < PPy (11 < 72).
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When plugging this inequality into (4.3), we obtain

92571772 ('71 Al 72) + q2¢71772('71 A '72) >1

which implies the claim. O

We are now in a position to prove the key result of this section.

Proposition 4.8. For all m>3n/2 >0, the following holds:

b am|Co([0,m) x [0,3/2n))] > O\
Psd,q,m 2(1 + q2)

Before proving this proposition, let us show how it implies Theorem 4.4. The strat-
egy is straightforward and classic: crossings can be combined together using the FKG
inequality only.

Proof of Theorem 4.4 If « < 3/2, Proposition 4.8 implies the claim so we can assume
a > 3/2. Define the following rectangles, see Figure 4.3:

Rl = [jn/2,jn/2 +3n/2) x [0,n) and RY = [jn/2,jn/2+n) x [0,n)

for j € [0,]2a] - 1], where |2| denotes the integer part of z. If every rectangle R is
crossed horizontally, and every rectangle R} is crossed vertically, then [0,an) x [0,n) is
crossed horizontally. This event is denoted by B. The rectangle R;.‘ is crossed horizontally
with probability greater than c¢(1)3/[2(1 + ¢*)] (Proposition 4.8), the rectangle R is
crossed vertically with probability greater than ¢(1) (Lemma 4.5) and so, using the FKG
inequality,

C(1)4 )LQQJ

G005 0020 (57105

The claim follows with c(a) := [e(1)%/(2 + 2¢?) 2. O

Proof of Proposition 4.8 The proof goes as follows: we start with creating two paths
crossing square boxes, and we then prove that they are connected with good probability.

Setting of the proof. Consider the rectangle R = [0,3n/2) x [0,n) which is the union
of the rectangles Ry = [0,n) x [0,n) and Ry = [n/2,3n/2) x [0,n), see Figure 4.3. Let A
be the event defined by the following conditions:

e Ry and R, are both crossed horizontally (these events have probability at least ¢(1)
to occur, using Lemma 4.5);
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in

R ]1.1 RY Ré’, R ¢

N \ fffff - /

R1 RZ
0 n/2 n 3n/2

Figure 4.3: Left: A combination of crossings in smaller rectangles creating a horizontal
crossing of a very long rectangle. Right: The rectangles R, R, and R, and the event A.

e [n/2,n) x {0} is connected inside Ry to the top side of Ry (which has probability
greater than ¢(1)/2 to occur using symmetry and Lemma 4.5).

Employing the FKG inequality, we deduce that

(1)

praaan(A) 2 =57

Psdyq,

(4.4)

When A occurs, define I'; to be the top-most horizontal crossing of R, and I's the right-
most vertical crossing of Ry from [n/2,n) x {0} to the top side. Note that this path is
automatically connected to the right-hand side of R, — which is the same as the right-
most side of R. If I';y and I's are connected, then there exists a horizontal crossing of R.
In the following, I'; and I'; are shown to be connected with good probability.

Exploration of the paths I'; and I';. There is a standard way of exploring R in order
to discover I'; and I'y. Start an exploration from the top-left corner of R that leaves open
edges on its right, closed edges on its left and remains in R;. If A occurs, this exploration
will touch the right-hand side of R; before its bottom side; stop it the first time it does.
Note that the exploration process “slides” between open edges of the primal lattice and
dual open edges of the dual (formally, this exploration process is defined on the medial
lattice). The open edges that are adjacent to the exploration form the top-most horizontal
crossing of Ry, i.e. I';. At the end of the exploration, the process has a prior: discovered
a set of edges which lies above I'y, so that the remaining part of R; is undiscovered.

By starting an exploration at point (n,0), leaving open edges on its left and closed
edges on its right, the rectangle Ry can be explored entirely. If A holds, the exploration
ends on the top side of Ry. The open edges adjacent to the exploration constitute the
path I's and the set of edges already discovered lies “to the right” of I's.

The reflection argument. Assume first that I'y = 7, and I's = 45, and that they do
not intersect. Let x be the end-point of 74, 7.e. its unique point on the right-hand side of
R;. We wish to define a set G(~1,72) similar to those considered in Lemma 4.7. Apply
the following “surgical procedure,” see Figure 4.4:
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2

!

Figure 4.4: The light gray area is the part of R that is a priori discovered by the explo-
ration processes (note that this area can be much smaller). The dark gray is the domain
Go(71,%2). All the paths involved in the construction are depicted. Note that dashed
curves are “virtual paths” of the dual lattice obtained by the reflection o4: they are not
necessarily dual open.

e First, define the symmetric paths o4(7;) and o4(7y2) of 71 and v, with respect to
the line d:= (n - /2/4) +iR;

e Then, parametrize the path o4(7;) by the distance (along the path) to its starting
point o4(z) and define 41 c v so that o4(71) is the part of o4(71) between the start
of the path and the first time it intersects v5. As before, the paths are considered
as curves of the plane; denote the intersection point of the two curves by z. Note
that v; and -, are not intersecting, which forces o4(;) and 72 to be;

e From this, parametrize the path 75 by the distance to its starting point (n,0) and
set y to be the last visited site in I before the intersection z. Define 75 to be the
part of 7, between the last point intersecting n + iR before y and y itself;

e Paths 47 and 45 satisfy Hypothesis () so that the graph G(71,72) can be defined;

e Construct a sub-graph Ggo(71,72) of G(71,72) as follows: the edges are given by
the edges of L included in the connected component of G(51,%2) N (71 U 7y2) (i.e.
G(%1,%2) minus the set 71 U~y,) containing d (it is the connected component which
contains x — €i, where € is a very small number), and the sites are given by their
endpoints.

The graph Go(71,72) has a very useful property: none of its edges has been discov-
ered by the previous exploration paths. Indeed, o4(71) and o4(z) are included in the
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unexplored connected component of R\ Ry, and so does Go(71,72) N (RN Ry). Edges of
Go(71,72) in Ry are in the same connected component of R\ (71 U7,) as x —¢€i, and thus
lie ‘below’ ~;.

Conditional probability estimate. Still assuming that v, and +» do not intersect, we
would like to estimate the probability of 7, and 5 being connected by a path knowing
that I'y =, and I's = 7». Following the exploration procedure described above, v; and 7,
can be discovered without touching any edge in the interior of Go(71,72). Therefore, the
process in the domain is a random-cluster model with specific boundary conditions.

The boundary of Go(v1,72) can be split into several sub-arcs of various types (see
Figure 4.4): some are sub-arcs of 71 or 7, while the others are (adjacent to) sub-arcs
of their symmetric images o4(71) and o4(72). The conditioning on I'y = 77 and 'y = 9
ensures that the edges along the sub-arcs of the first type are open; the connections along
the others depend on the exact explored configuration in a much more intricate way, but in
any case the boundary conditions imposed on the configuration inside G (51, 72) are larger
than the mixed boundary conditions. Notice that any boundary conditions dominate the
free one and that 4, and 45 are two sub-arcs of the first type (they are then wired). Thus,
the measure restricted to Go(%1,%2) stochastically dominates the restriction of ¢s, 5, to
Go(71,72)-

From these observations, we deduce that for any increasing event B depending only
on edges in Go(71,7%2),

psd7q,m(B|F1 =7, FQ = 72) 2 ¢71772(B) (45)

In particular, this inequality can be applied to {73 < v2 in Go(71,72)}. Note that if 4,
and 7, are connected in G(71,72), 71 and ~, are connected in Go(71,%2). The first event
is of ¢, 5,-probability at least 1/(1 +¢?), implying

pbd,q m(’yl A ’72|F1 = 7171—‘2 = 72) 2 ¢71772(’Yl > 72 in GO(’Yl,’YQ))

- - 1
20515 (1 < 92) 2 1 Z

(4.6)

Conclusion of the proof. Note the following obvious fact: if 7; and 7, intersect, the
conditional probability that I'; and I'y intersect, knowing I'; = v, and I's = 7, is equal to
1 — in particular, it is greater than 1/(1 + ¢?). Now,

gsd,q,m(ch(R)) 2 Qﬁgsd,q,m(ch(R) N A)

>¢p  om({l1 e TapnA)

= Opes.am ( psd,q,m(rl < Iy, F2)1A)
Cc(1)®

Z1+q pam(4) 2 2(1+q)2

where the first two inequalities are due to inclusion of events, the third one to the definition
of conditional expectation, and the fourth and fifth ones, to (4.6) and (4.4). O
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An equivalent of Theorem 4.4 holds in the case of the infinite-volume random-cluster
measure with wired boundary conditions.

Corollary 4.9. Let a > 1 and q > 1; there exists ¢(«) >0 such that for every n > 1,
paalCr([0,an) x [0,n))] 2 ¢(). (4.7)

Proof Let a > 1 and m > 2an > 0. Using the invariance under translations of ¢}_, ;m
and comparison between boundary conditions, we have

Qs;sdyq,[*%,%)? [Ch([(),ozn) x [O,H))] 2 gsd,q,m[ch([o’an) x [O,TL))] 2 C(a).

When m goes to infinity, the left hand side converges to the probability in infinite volume,
so that

Ilisd,q[ch([ovan) x [Oan))] > c(w).

Remark 4.10. The only place where periodic and (bulk) wired boundary conditions are
used 1s in the estimate of Lemma 4.5. For instance, if one could prove that the probability
for a square box to be crossed from top to bottom with free boundary conditions stays
bounded away from O when n goes to infinity, then an equivalent of Theorem 4.4 would
follow with free boundary conditions.

Uniform estimates with respect to boundary conditions should be true for q € [1,4);
the random-cluster model is expected to be conformally invariant in the scaling limat. It
should be false for q > 4. Indeed, for q >4, the phase transition is (conjecturally) of first
order in the sense that there should not be uniqueness of the infinite-volume measure. At
q = 4, the random-cluster model should be conformally invariant, but the probability of a
crossing with free boundary conditions should converge to 0. Nevertheless, the probability
that there is an open circuit surrounding the box of size n in the box of size 2n with free
boundary conditions should stay bounded away from 0.

Proving an equivalent of Theorem /4.4 with uniform estimates with respect to boundary
conditions 1s an important question, since it would allow us to study the critical phase.
The special case q =2 will be derived in Chapter 9.

2 A sharp threshold theorem for crossing probabilities

The aim of this section is to understand the behavior of the function p — ¢§,q7n(A) for a
non-trivial increasing event A. This increasing function is equal to 0 at p =0 and to 1 at
p =1, and we are interested in the range of p for which its value is between ¢ and 1 -¢ for
some positive & (this range is usually referred to as a window). Under mild conditions on
A, the window will be narrow for large graphs, and its width can be bounded above in
terms of the size of the underlying graph, which is known as a sharp threshold behavior.
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Historically, the general theory of sharp thresholds was first developed by Kahn, Kalai
and Linial [KKL88| (see also [Fri04, FK96, KS06]) in the case of product measures. In
lattice models such as percolation, these results are used via a differential equality known
as Russo’s formula, see [Gri99, Rus81|. Both sharp threshold theory and Russo’s formula
were later extended to random-cluster measures with ¢ > 1, see references below. These
arguments being not totally standard, we remind the readers of the classical results and
refer them to [Gri06| for general results. Except for Theorem 4.13, the proofs are quite
short so that it is natural to include them. The proofs are directly extracted from the
Grimmett’s monograph |Gri06].

In the whole section, G' denotes a finite graph; if e is an edge of G, let J. be the
random variable equal to 1 if the edge e is open, and 0 otherwise. Let us start with an
example of a differential inequality, which will be useful in the proof of Theorem 4.2.

Proposition 4.11 (see [Gri06, GP97]|). Let q > 1; for any random-cluster measure qbf)q o
with p € (0,1) and any increasing event A,

d
d_pgb;q,G(A) 2 4¢§7Q,G(A)¢f),q7G(HA)7
where Ha(w) is the Hamming distance between w and A.
Proof Let A be an increasing event. The key step is the following inequality, see

[BGK93, Gri06], which can be obtained by differentiating with respect to p (for details of
the computation, see Theorem (2.46) of [Gri06]):

d%asg,q,,g(m - S 66, (Lade) - 6, o(J)é, o(A)]. (48)

(1_ )eeE

A similar differential formula is actually true for any random variable X, but this fact will
not be used in the proof. Define || to be the number of open edges in the configuration, it
is simply the sum of the random variables J., e € E. With this notation, one can rewrite
(4.8) as

[65,0.cUn1La) = &5, (1)), 6(A)]

[¢§>,q,G((|77|+HA)]1A) qu(|77|+HA)¢z€qG(A)
~ ¢ o(Hala) + 5 o(HA)0, , o(A)]
¢£ D,q, G(HA)Cbg Dyq, G(A)

d ¢
il A) =
dp%’q’G( ) p(1-p)

1
~p(1-p)

§ p(l )

To obtain the second line, simply add and subtract the same quantity. In order to go
from the second line to the third, remark two things: in the second line, the third term
equals 0 (when A occurs, the Hamming distance to A is 0), and the sum of the first two
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terms is positive thanks to the FKG inequality (indeed, it is easy to check that |n| + Ha
is increasing). The claim follows since p(1 -p) < 1/4. O

This proposition has an interesting reformulation: integrating the formula between p;
and p, > py, we obtain

_4 _ 5 H
qbf)h%G(A) < (bf)g,q,G(A) e (p2=p1)¢;, 4. (Ha) (4.9)

(note that H, is a decreasing random variable). If one can prove that the typical value
of H, is sufficiently large, for instance because A occurs with small probability, then one
can obtain bounds for the probability of A. This kind of differential formula is very useful
in order to prove the existence of a sharp threshold. The next example presents a sharper
estimate of the derivative.

Intuitively, the derivative of ¢§’ q7G(A) with respect to p is governed by the influence
of one single edge, switching from closed to open (roughly speaking, considering the
increasing coupling between p and p+dp, it is unlikely that two edges switch their state).
The following definition is therefore natural in this setting. The (conditional) influence
on A of the edge e € F, denoted by I4(e), is defined as

La(e) =65, (Al = 1) = 65 o(AlJ. = 0).

Proposition 4.12. Let ¢ > 1 and € > 0; there exists ¢ = c¢(q,€) > 0 such that for any
random-cluster measure gbf?’qg with p € [e,1 - €] and any increasing event A,

d
d—p@f’q’G(A) >c > Ia(e).

ecE
Proof Note that, by definition of 74(e),

5 o(Lade) = 85 o (A)ds  o(Je) = La(e) S, , o(Je) (1= 65 (o))

so that (4.8) becomes

d%qbfv,q,G(A) - ]ﬁ PICAECOICELECAVIO
o Bac() (1= 05,6(0)
) ZE p(1-p) La(e)

from which the claim follows since the term

Grac(J) (1=, ()
p(1-p)

is bounded away from 0 uniformly in p € [e,1—¢] and e € E when ¢ is fixed. O
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There has been an extensive study of the largest influence in the case of product
measures. It was initiated in [KKL88| and recently lead to important consequences in
statistical models, see e.g. [BR06a, BRO6b|. The following theorem is a special case of
the generalization to positively-correlated measures.

Theorem 4.13 (see [GG11]). Let ¢ > 1 and € > 0; there exists a constant ¢ = ¢(q,€) €
(0,00) such that the following holds. Consider a random-cluster model on a graph G with

|E| denoting the number of edges of G. For every p € [e,1—¢] and every increasing event
A, there exists e € E such that

log | E]
E|

Iu(e) 2 c¢l, , o(A)(1- &5, o(A))

There is a particularly efficient way of using Proposition 4.12 together with Theo-
rem 4.13. In the case of a translation-invariant event on a torus of size n, horizontal
(resp. vertical) edges play a symmetric role, so that the influence is the same for all the
edges of a given orientation. In particular, Proposition 4.12 together with Theorem 4.13
provide us with the following differential inequality:

Theorem 4.14. Let ¢>1 and e >0. There exists a constant ¢ = c(q,e) € (0,00) such that
the following holds. Let n > 1 and let A be a translation-invariant event on the torus of
size n: for any p€[e,1-¢],

d
5 %han(A) 2 (64, (A1 08,1, (4)) logn,

For a non-empty increasing event A, the previous inequality can be integrated between
two parameters p; < py (we recognize the derivative of log(z/(1-x))) to obtain

- (bgl’q’n(A) > - ¢£2’q’n(A) nc(p2-p1)
Dpran(A)  Ppagn(A)

If ¢, 4n(A) is assume to stay bounded away from 0 uniformly in n > 1, there exists ¢ > 0
such that
Poo(A) 21— cnelpzpy), (4.10)

Pp2,9,

This inequality will be instrumental in the next section.

3 The proofs of Theorems 4.1 and 4.2

The previous two sections combine in order to provide estimates on crossing probabilities
(see [BR0O6a, BROGD] for applications in the case of percolation). Indeed, one can consider
the event that some long rectangle is crossed in a torus. At p = pyq, the probability of this
event is known to be bounded away from 0 uniformly in the size of the torus (thanks to
Theorem 4.4). Therefore, Theorem 4.14 can be applied to conclude that the probability
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goes to 1 when p > py (there is also an explicit estimate on the probability). It is then an
easy step to deduce a lower bound for the probability of crossing a particular rectangle.

Theorem 4.1 is proved by constructing a path from 0 to infinity when p > p,q, which
is usually done by combining crossings of rectangles. There is a major difficulty in doing
such a construction: one needs to transform estimates in the torus into estimates in
the whole plane. One solution is to replace the periodic boundary conditions by wired
boundary conditions. The path construction is a little tricky since it must propagate
wired boundary conditions through the construction (see Proposition 4.17); it does not
follow the standard lines.

Theorem 4.2 follows from a refinement of the previous construction in order to estimate
the Hamming distance of a typical configuration to the event {0 < L\ [-n,n)?}. It allows
the use of Proposition 4.11, which improves bounds on the probability that the origin is
connected to distance n. With these estimates, the cluster size at the origin can be shown
to have finite moments of any order, whenever p < pys. Then, it is a standard step to
obtain exponential decay in the subcritical phase.

The following two lemmas will be useful in the proofs of both theorems. We start with
proving that crossings of long rectangles exist with very high probability when p > py4.

Lemma 4.15. Let a« > 1, ¢ > 1 and p > psq; there exists g9 = €o(p,q, ) > 0 and ¢y =
co(p, q, ) >0 such that

p (C.([0,n) x [0,an))) > 1 - con™=° (4.11)

p,q,2%n

for every n > 1.

Proof The proof will make it clear that it is sufficient to treat the case of integer «, we
therefore assume that « is a positive integer (not equal to 1). Let B be the event that
there exists a vertical crossing of a rectangle with dimensions (n/2,a2n) in the torus of
size a?n. This event is invariant under translations and satisfies

P (B) > ¢£Sd7q’a2n(cv([0,n/2) X [O,azn))) > ¢(202)

psd,q,OZQTL

uniformly in n.
Let p > psq. Since B is increasing, Theorem 4.14 (more precisely (4.10)) can be applied
to deduce that there exist € = (p,q,«) and ¢ = ¢(p, ¢, @) such that

o, (B)>21-cn". (4.12)

p,q,a°n
If B holds, one of the 2a? rectangles
[271/2,2?7//2 + n) x [jom, (] + 1)@’)1), (Z7j) € {07 "'72052 - 1} X {07 RS 1}

must be crossed from top to bottom. Denote these events by A;; — they are translates of
Co([0,n) x[0,an)). Using the FKG inequality in the second line (this is another instance
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of the “square-root trick” mentioned earlier), we find
gb}ianﬁn(B) <1- ¢pq oc2n(BC) <I- ¢pqa2n(m@j"42¢j)

<1- Hgb e (A5)=1- [1 - ¢§7q7a2n(CU([0,n) X [O,Ozn))]2

a3

Plugging (4.12) into the previous inequality, we deduce

P (C.([0,n) x [0,an))) > 1 - (en=e)1/(2%),

P,q,0%n

The claim follows by setting ¢q = c//)* and g, := £/(2a3). O

Let a>1 and n > 1; define the annulus
Az = [_an+1’a/n+1]2 N [—oz",oz”]Q.

An open circuit in an annulus is an open path which surrounds the origin. Denote by
A% the event that there exists an open circuit surrounding the origin and contained in
A2 together with an open path from this circuit to the boundary of [-a"*2, am*2]?] see
Figure 4.5. The following lemma shows that the probability of A goes to 1, provided
that p > psq and that boundary conditions are wired on [-a"*2, a"*2]2.

[—antl gnti]?

[70/"+2. an+2]2

Figure 4.5: Left: The event A% Right: The combination of events A%: it indeed
constructs a path from the origin to infinity.

Lemma 4.16. Let 6 > 1, ¢ > 1 and p > pgq; there exists ¢1 = c1(p,q,0) and &1 = e1(p,q,0)

such that for everyn > 1,
¢11;7q’5'rL+2 (‘A',(SFL) Z 1 - Cle_aln'
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Proof First, observe that A% occurs whenever the following events occur simultaneously:

e The following rectangles are crossed vertically:

Rl - [5”,(5”“] x [_5n+1’5n+1]7
Rz - [_(5n+1’ _5n] x [_5n+1’5n+1];

e The following rectangles are crossed horizontally:

R3 . [_5n+175n+1] x [5n75n+1]’
R4 . [_5n+175n+1] % [_5n+1’ _577,]’
R5 - [_(5n+2’5n+2] x [_5n’(5n]

For the measure in the torus, these events have probability greater than 1 —c(d")=¢ with
c=co(p,q,20/(6-1)) and € = e¢(p,q,26/(6 — 1)). Using the FKG inequality, we obtain

O ma(AD) 2 (1= (6"

from which the following estimate can be deduced, harnessing the comparison between
boundary conditions,

O (D) 2 (1= (579",

The claim follows by setting ¢y := 5¢ and &7 := elogé. O

The following proposition readily implies Theorem 4.1; It will also be useful in the proof
of Theorem 4.2. We wish to prove that the probability of the intersection of events A? is
of positive probability when p > pyy. So far, we know that there is an open circuit with
very high probability when we consider the random-cluster measure with wired boundary
conditions in a slightly larger box. In order to prove the result, assume the existence of
a large circuit. Then, we iteratively condition on events A° , k> 0. When conditioning
‘from the outside to the inside’, there exists an open circuit in A° , | that surrounds 42 ,
at every step k. Using comparison between boundary conditions, the measure in A° |
stochastically dominates the measure in A° , | with wired boundary conditions. In other
words, we keep track of advantageous boundary conditions. Note that the reasoning, while
reminiscent of Kesten’s construction of an infinite path for percolation, is not standard.

Proposition 4.17. Let § > 1, ¢ > 1 and p > psq; there exist ¢,c1,e1 > 0 (depending on p,
q and §) such that for every N > 1,

Ppg ( N Az) >c 10_0[ (1-ce®™) > 0.
n=N

n>N
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Proof Let 0 >1,qg>1, p>ps, N >1 and recall that there is a unique infinite-volume
measure ¢, ,. For every n > 1, we know that

n n-1
gbp,q (kOVAi) = ¢p,q(-/4£z) H ¢p,q(“42|-’4§'7 kF+1<j< n) (4-13>
= k=N

On the one hand, let k € [N,n - 1]. Conditionally on Aj-, kE+1 < j <n, there
exists a circuit in the annulus Aiu- Consider the exterior-most such circuit, denoted
by I', by exploring from the outside. Conditionally on I' = 7, the unexplored part of the
box [-0k+2,§%+2]2 follows the law of a random-cluster configuration with wired boundary
condition. In particular, the conditional probability that there exists a circuit in A¢
connected to 7y is greater than the probability that there exists a circuit in Ai connected
to the boundary of [-0%+2, §¥+2]2 with wired boundary conditions. Therefore, we obtain
that almost surely

Gpa (A ALk +1<j<n) = ¢, 0(dpa(AT = 7))
> fpq(0L 512 (AD))

>1-cek

where Lemma 4.16 was harnessed in the last inequality.

On the other hand, for p = pyg, consider the event A% in the bulk. Thanks to Corol-
lary 4.9, its probability is bounded away from O uniformly in n. Since the event is
increasing, there exists ¢ = ¢(d) > 0 such that

(bp,q(Afz) = ¢11,7q(«42) 2C

for any n > N and p > p,g. Plugging the two estimates into (4.13), we obtain
n n-1 oo
Ona ( M Ai) >c[[(1-ae®h) 2 e [[(1-ae=h).
k=N k=N k=N

Letting n go to infinity concludes the proof. O

Proof of Theorem 4.1 The bound p,. > ps, is provided by Proposition 3.18. For p > pyq,
fix 0 > 1. Applying Proposition 4.17 with N =1, we find

$p.g(0 < 00) 2 ey (ﬂ Ag) >0

n>1

so that p is supercritical. The constant ¢ > 0 is due to the fact that [-§2,62]? is required
to contain open edges only (¢ > 0 exists using the finite energy property). Since p is
supercritical for every p > psq, we deduce p. < psq. O
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Proof of Theorem 4.2 Let x be a site of Z2, and let C, be the cluster of z, i.e. the
maximal connected component containing the site z. Its cardinality is denoted by |C,|. We
first prove that |C,| has finite moments of any order. Then we deduce that the probability
of {|C.| > n} decays exponentially fast in n. The proof of the Step 2 is extracted from
[Gri06].

Step 1: finite moments for |C,|. Let d >0 and p < psq; we wish to prove that

Gp.q(IC2]?) < 0. (4.14)

In order to do so, let py := (p + psq)/2 and define D, := {x < Z2> ~ (x + [-n,n)?)}; denote
by H, the Hamming distance to D,,. Note that H,, is the minimal number of closed edges
that one must cross in order to go from x to the boundary of the box of size n centered
at . Let

2d+ 3

From Proposition 4.17 applied to the (supercritical) dual model, the probability of
Nusn (A2)* is larger than c[IX (1 - cie™®™) > 0 ((A2)* is the occurrence of A% in the
dual model). Hence, there exists N = N(p1, ¢, @) sufficiently large such that

- ( Ao

n>N

Q= exp [u] >1

On this event, H,, is greater than (logn/loga)— N since there is at least one closed circuit
in each annulus A with k> N (thus increasing the Hamming distance by 1). We obtain

logn

OpealH) > (122 = N) by ( N (Az)*) >

log a N ~4loga
for n sufficiently large. Then, (4.9) implies
¢p,q(Dn) < ¢p1,q(Dn) exXp [ —4(p1 _p)¢p1,q(Hn)] <~ (24+8) (4.15)
for n sufficiently large, from which (4.14) follows readily.
Step 2: exponential decay. Note that, from the first inequality of (4.15), it is sufficient
to prove that for some constant ¢ > 0,

liminf H,/n>c¢ a.s.
n—oo

in order to show that ¢, ,(D,) decays exponentially fast.

Consider a (not necessarily open) self-avoiding path ~ going from the origin to the
boundary of the box of size n. The number T'(y) of closed edges along this path can be
bounded from below by the following quantity:
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Indeed, the number of closed edges in ~ is larger than the number of distinct clusters
intersecting . Moreover, if C denotes such a cluster, we have that 1> 3. |C| ™" 1.ec. The
last inequality is due to Jensen’s inequality. Since H,, can be rewritten as the infimum of
T'(vy) on paths going from 0 to the boundary of the box, we obtain

LUNG (12|cz|)1. (4.16)

W 2o R 2

The goal of the end of the proof is to give an almost sure lower bound of the right-hand
side. We will harness a two-dimensional analogue of the strong law of large number. In
order to do that, the random variables |C,| need to be transformed to obtain independent
variables. We start with the following domination.

Let (éz)zegn be a family of independent subsets of Z? distributed as C,. We claim that
(IC.])zes, is stochastically dominated by the family (M., ),es, defined as

M, := sup IC,|.

yeZ?:zeCy

Let vy, vs,... be a deterministic ordering of Z2. Given the random family (@z)zegn,
we shall construct a family (D, ).es, having the same joint law as (C.).es, and satisfying
the following condition: for each z, there exists y such that D, c @y. First, set D, = CN'UI.
Given Dy, D,, ..., D,,, define £ =U;L; Dy,. If v,y € B, set D, ., = D, for some j such
that vy € Dy, If v,41 ¢ E, proceed as follows. Let A E be the set of edges of Z? having
exactly one end-vertex in E. A (random) subset F of C,, ., may be found in such a way
that F' has the conditional law of C),,; given that all edges in A FE are closed; now set
D,, ., = F. The domain Markov property and the positive association can be used to show
that the law of C,, ,, depends only on A.E, and is stochastically dominated by the law
of the cluster in the bulk without any conditioning. The required stochastic domination
follows accordingly. In particular, |C.| < M, and M, has finite moments.

From (4.16) and the previous stochastic domination, we get

1 - 1 -
—Z|CZ|) 2(limsup sup —ZMZ) :

H.
liminf == > liminf  inf (
|’7| zey n—00  ~4:0<7Z2\B, |’7| zey

n—00 n n—oo 'y:0<—>Z2 B,

The second step is now to replace M, by random variables that are independent. Lemma 2
of [FN93] can be harnessed to show that

-1 -1
(lim sup  sup L > Mz) > (21im sup sup € > |C~Z|2)
n—>00  4:0-7Z2\By, |7| zey n—oo  |I'|>n |F| zey
where the supremum is over all finite connected graphs I' of cardinality larger than n that
contain the origin (also called lattice animals).
Since the |C.[2 are independent and have finite moments of any order, the main result
of [CGGK93, GK94| guarantees that
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1 -
2limsupsup = > |[C.[*<C a.s.

n—oo |[|>n |F| zey

for some C' > 0. Therefore, with positive probability, liminf H,/n is greater than a given
constant, which concludes the proof. O

4 The critical point for the triangular and hexagonal
lattices

Let T be the triangular lattice of mesh size 1, embedded in the plane in such a way that
the origin is a vertex and the edges of T are parallel to the lines of equations y = 0,
y=+/3z/2 and y = —/3x/2. The dual graph of this lattice is a hexagonal lattice, denoted
by H, see Figure 4.6. Via planar duality, it is sufficient to handle the case of the triangular
lattice in order to prove Theorem 4.3. Define pr as being the unique p € (0, 1) such that
y3 +3y? — ¢ =0, where y := pr/(1 - pr). The goal is to prove that p.(T) = pr.

bt

Pr

Figure 4.6: Left: The triangular lattice T with its dual lattice H. Right: The exchange
of the two patterns does not alter the random-cluster connective properties of the black
vertices.

The general strategy is the same as in the square lattice case. We prove that at
p = pr, a crossing estimate similar to Theorem 4.4 holds. Sharp threshold arguments
and proofs of Section 3 can be adapted mutatis mutandis, replacing square-shaped annuli
by hexagonal-shaped annuli. The crossing estimate must be slightly modified, and we
present the few changes. It harnesses the planar-duality between the triangular and the
hexagonal lattices, and the so-called star-triangle transformation (see e.g. Section 6.6 of
[Gri06] and Figure 4.6). The reader is assumed to be already familiar with the star-triangle
transformation.

Let e; = /3/2+1/2 and e, = i; whenever coordinates are written, they are understood
as referring to the basis (e, e3). A ‘rectangle’ [a,b)x[c, d) is the set of points in z € T such
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that z = Aey + pes with A € [a,b) and p € [¢,d) (it has a lozenge shape, see e.g. Figure 4.8).
By analogy with the case of the square lattice, C,(D) denotes the event that there exists
a path between the top and the bottom sides of D which stays inside D. Such a path is
called a vertical open crossing of the rectangle. Other quantities are defined similarly. Let
T, be the torus of size m constructed using the “rectangle” [0,m] x [0,m] with respect to
the basis (e1,€e2). The crossing estimate is presented in the case of the torus T,, (deriving
the bulk estimate follows the same lines as in the square lattice case); ¢y, 4.m denotes the
random-cluster measure on T,,.

Theorem 4.18. Let o > 1 and g > 1. There exists ¢(«) > 0 such that for every m > an >0,
gbgﬂ‘ﬂ,m(ch([()?n) X [07an))) 2 C(Oé). (417)

The main difficulty is the adaptation of Lemma 4.7. Define the line d := —\/§/ 3 +iR.
The orthogonal symmetry o4 with respect to d maps T to another triangular lattice. Note
that this lattice is a sub-lattice of H (in the sense that its vertices are also vertices of H).
Let 1 and 7, be two paths satisfying the following Hypothesis (), see Figure 4.7:

e 7, remains on the left of d and 7, remains on the right,

72 begins at 0 and 7, begins on a site of T n (=v/3/2 +iR,),

7 and 04(72) do not intersect (as curves in the plane),

1 and o4(7,) end at two sites (one primal and one dual) which are at distance v/3/3
from one another.

When following the paths in counter-clockwise order, a circuit can be created by linking
the end points of v; and o4(72) by a straight line, the start points of o4(72) and s,
the end points of 75 and o4(71), and the start points of o4(71) and ;. The circuit
(71,04(72),72,04(71)) surrounds a set of vertices of T. Define the graph G(v1,72) with
sites being site of T that are surrounded by the circuit (v1,04(72),72,04(71)), and with
edges of T that remain entirely inside the circuit (boundary included).

o\

)
[ ]
o
—--e===%

Q
=
%
N

Figure 4.7: The graph G(v1,72) with the two solid arcs 77 and 7, and the dashed arcs
o4(71) and 04(72). The dual arcs 77 and v; are dotted.
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An additional technical condition will be needed, which we present now. Note that for
any edge of o4(T) there is one vertex of T and one vertex of H at distance v/3/6 from its
midpoint. For any edge of o4(71) and o4(72), the associated vertex of T is assumed to be
in the interior of the domain G(~v1,72) (therefore, the associated vertex of H is outside the
domain, see white vertices in Fig 4.7). This condition will be referred to as Hypothesis
(%%).

The mized boundary conditions on this graph are wired on ; (all the edges are pairwise
connected), wired on s, and free elsewhere. The measure on G(71,72) with parameters
(pr, ¢) and mixed boundary conditions is denoted by ¢, 44,4, O more simply ¢., ,. With
these definitions, we find an equivalent of Lemma 4.7:

Lemma 4.19. For any 1,72 satisfying Hypotheses () and (x*), we have
1
1+q2

¢717’72 (71 g 72) 2

Proof As previously, if 7; and ~, are not connected, 7; and ~; are connected in the dual
model, where ~f,75 c H are the dual arcs bordering G(v1,72) close to o4(71) and o4(72).
Thanks to Hypothesis (x*) and the mixed boundary conditions, this event is equivalent
to the event that o4(71) and o4(72) are dual connected. Using Hypothesis (*) and the
symmetry, we deduce

Syma(1 o 7) +oux 8, (n o) =1,
where as before o4 * ¢} . denotes the push-forward under the symmetry o4 of the dual
measure of ¢, ,, — in particular, it lies on o4(H) and the edge-weight is pr. This lattice
contains the sites of T and those of another copy of the triangular lattice which is denoted
by T’. Since v, and 7, are two paths of T, one can use the star-triangle transformation
for any triangle of T included in G(71,72) that contains a vertex of T’: one obtains that
Ta* QL (71 <~ 72) is equal to the probability of 74 and ~5 being connected, in a model on
T with edge-weight pr. Here, Hypothesis (x*) is needed again in order to ensure that all
the triangles containing a vertex of T’ have no edges on the boundary (which would have
forbidden the use of the star-triangle transformation). The same observation as in the
case of the square lattice shows that the boundary conditions are the same as for ¢, ,,
except that arcs 7; and -, are wired together. The same reasoning as in Lemma 4.7
implies that

Oq * ¢;1,72(71 - 72) < q2¢wl,w(% < 72),
and the claim follows readily. 0

The existence of ¢(1) is obtained in the same way as in the case of the square lattice,
with only the obvious modifications needed; the details are left as an “exercise for the
reader”. Theorem 4.18 is derived exactly as in Section 1, as soon as an equivalent of
Proposition 4.8 holds:

Proposition 4.20. There exists a constant ¢(3/2) >0 such that, for all m >3n/2 >0,
ET’%m(Cv([O,?)n/Q) X [O,n))) > c(3/2).
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3n/2e1 + ney
nep + neg

e

[ g \
l 3n/2eq \\

nesg

o - = replaced by

Figure 4.8: Left: The set [0,3n/2) x [0,n) and the event A. Right: One can obtain
the path I'} from I'y by replacing any bad edge with two edges. Since I'y is the top-most
crossing, it contains no double edges and this construction can be done.

Proof The general frameworkwork of the proof is the same as before, but some tech-
nicalities occur because the underlying lattice is not self-dual. Consider the rectan-
gle D = [0,3n/2) x [0,n), which is the union of rectangles D; = [0,n) x [0,n) and
Dy =[n/2,3n/2) x[0,n), see Figure 4.8. Let A be the event that:

e D; and D, are both crossed horizontally (each crossing has probability at least ¢(1)
to occur);

e [n/2,n) x {0} (resp. [n,3n/2) x {n}) is connected inside Dy to the top side (resp.
to the bottom). Using the FKG inequality and symmetries of the lattice, this event
occurs with probability larger than ¢(1)2/4.

Therefore, A has probability larger than ¢(1)*/4.

When A occurs, define I'y to be the top-most crossing of the rectangle Dy, and I'y the
right-most crossing in Dy between [n/2,n) x {0} and the top side of Dy. Note that I'y is
automatically connecting [n/2,n) x {0} to the right edge and to [n,3n/2) x {n}. In order
to conclude, it is sufficient to prove that I'y and 'y are connected with probability larger
than some positive constant.

Consider the lowest path I"} above I'y which satisfies the following property: for any
edge e in I'}, the associated site of o4(H) (see the definition of Hypothesis (x*)) is in
the connected component of D; N I'} above I']. Such a path can be obtained from I'; by
replacing every ‘bad’ edge with the other two edges of a triangle, as shown in Figure 4.8.
Since I'y is the top-most crossing, it cannot have double edges and the path I} can be
constructed. In particular it ends at the same point as 'y, and it goes from left to right.
Note that it is not necessarily open. Define I', similarly in the obvious way (the left-most
path on the right of I'y such that for any edge of I'}, the associate site of o4(H) is on the
right of I'}).
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We now sketch the end of the proof. Apply a construction similar to the proof of
Proposition 4.8 in order to create a domain G(I'},I}). With mixed boundary conditions,
the probability of connecting I'} to I}, in G(I'},I'}) is larger than 1/(1+¢?) (I'} and I
have been constructed in such a way that Hypothesis (%) is fulfilled). But I'; disconnects
I} from I}, and I'y disconnects I', from I';. Using boundary conditions inherited from the
fact that 'y and I'y are crossings, one can prove that I'; is connected to I'y in G(I'},T'%)
with probability larger than 1/(1 + ¢?). The end of the proof follows exactly the same
lines as in the case of the square lattice. 0
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Chapter 5

Parafermions in the random-cluster
model

Abstract: Parafermionic observables were introduced in order to study the critical
phase (p,q) = (psa(q),q). The main results of this chapter include the weak discrete
holomorphicity of parafermionic observables, an alternative proof of Theorem 4.1 for ¢ >
4, and the divergence of the correlation length when approaching the critical point for
random-cluster models with ¢ < 4 (this shows that the transition is of second order).
This chapter is inspired by the article Parafermions in the planar random-cluster model
[BDCS11] written with V. Beffara and S. Smirnov.

Critical random-cluster models exhibit a very rich behavior depending on the value
of q. Exact computations can be performed (see [Bax89|), and despite the fact that they
do not lead to fully rigorous mathematical proofs, they do provide insight and further
conjectures on the behavior of these models at and near criticality. For a wide range
of values of ¢, the so-called scaling limit is expected to be conformally invariant (see
the second part of the manuscript for additional details). Nevertheless, very little of the
behavior of the model is rigorously understood. In particular, the question of the order
of the phase transition is far from being solved. The random-cluster phase transition is
conjectured to be of first order for ¢ > 4 and second order for ¢ < 4.

Definitions of the order of a phase transition differ from one field to the other. In
physics, Ehrenfest classified phase transitions based on the behavior of the thermodynam-
ical free energy viewed as a function of other thermodynamical quantities. He defined the
order of the phase transition as the lowest derivative of the free energy which is discon-
tinuous at the phase transition. For instance, the partition function is continuous yet non
differentiable when the transition is of first order. Even though physics predict that all the
notions of order of a phase transition are the same, probabilistic definitions are slightly
different and involve uniqueness of infinite-volume measures or the so-called correlation
length. Let us describe these two points of view in the special case of random-cluster
models.

93
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The first point of view invokes Gibbs measures. The random-cluster model is then
said to exhibit a first order phase transition if there are several critical infinite-volume

measures. This boils down to ¢,  , being different from ¢9 . or equivalently to the
5.,.q-almost sure existence of an infinite cluster. On the contrary, the transition is of
second order if ¢} =¢f .

The second point of view uses the correlation length £(p) defined by:

1
E(p)t = —1111;15 - log gbg,q(o <n).

The transition is of second order if the correlation length goes to infinity when p goes to p..
It is of first order otherwise. In physics, the two definitions are believed to be equivalent in
natural cases. Nevertheless, the second definition of first order phase transition is a prior:
stronger than the first one. Indeed, exponential decay for ¢9  is implied, thanks to a
submultiplicativity argument!, by the fact that the correlation length does not diverge
near criticality. A classical application of the Borel-Cantelli lemma gives that exponential

decay of correlations for ¢f  implies the existence of an infinite cluster in its dual ¢;,_, .

In order to understand the phase transition in random-cluster models, the so-called
parafermionic observables are studied in depth. These observables were first introduced
in [SmilOa| for random-cluster models with parameter ¢ € [0,4], as (anti)-holomorphic
parafermions of fractional spin o € [0, 1], given by certain vertex operators. So far discrete
holomorphicity was rigorously proved only for ¢ = 2, and probably holds exactly only for
this value. In this chapter, these vertex operators are generalized to random-cluster
models with arbitrary ¢ > 0.

Using the parafermionic observable, we are able to prove that the correlation length
diverges when 1 < ¢ < 4, which proves that the phase transition is of second order (in the
weak sense):

Theorem 5.1. When 1< q<4, £(p) tends to infinity when p 7 p.(q).
In fact, the following stronger result can be proved:

Theorem 5.2. When 1< g <3, we have

Z Qﬁgaq[O < 1] = oo,

xeZ?

In the physics litterature, the mean-size of the cluster is called susceptibility. Note
that for ¢ = 1, this result implies that there is no dual infinite cluster for ¢y/5; = ¢2c(1),1'
It would be interesting to generalize this argument? to other values of ¢, for instance when
q = 3, in order to obtain the stronger characterization of a second order phase transition:

uniqueness of infinite-volume measures at criticality.

1See the proof of Theorem 5.1 for details.
2The absence of infinite cluster for the infinite-volume measure with wired boundary conditions implies

that (bzle wa = ¢2S ..q- Proposition 3.14 then implies uniqueness of the infinite-volume measure.
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Let us now deal with the ¢ > 4 case. When ¢ > 25.72, first order phase transition
was proved in [LMMS+91, LMR86|. We are presently unable to prove that a first order
phase transition occurs in the whole regime ¢ > 4, even though a fairly close result can be
proved: consider the graph U with vertex set Z3 and edges given by

o [(z,y,2),(z+1,y,2)] for every x,y,z € Z,
e [(x,y,2),(x,y+1,2)] for every x,y,z € Z such that 'y + 0" or 'y =0 and z >0,
e [(2,0,2),(x,1,2—1)] for every <0 and z € Z.

Theorem 5.3. When p = psq and q > 4, there ezists an infinite cluster (not using boundary
sites) almost surely for the measure ¢[hpsd7 ”

We hope it is possible to bootstrap the result on U to Z2, thus proving the weak
characterization of first order phase transition.

We conclude this chapter by providing an alternative derivation of the critical point
when ¢ > 4. While this result also follows from the previous chapter, the technique gives
(a little) more information on the critical phase and is probably more robust. Note that
comparison between random-cluster models allow us to extend the next theorem to ¢ = 4.

Theorem 5.4. Let ¢ > 4. The critical point p. = p.(q) for the random-cluster model with
parameter q on the square lattice satisfies

_Va
Pe=77 NGE

The chapter is organized as follows. In the next section, the loop representation of the
random-cluster model is introduced, and the parafermionic observable is defined. Two
very important properties are also proved. They will be used extensively in the second
part of this manuscript. The second section deals with critical random-cluster models
on U. Theorems 5.1, 5.2 and 5.3 are proved in the third section. We also introduce a
parafermionic observable in the degenerated case ¢ = 4. The last section is devoted to the
proof of Theorem 5.4.

1 The loop model representation and parafermionic ob-
servables

1.1 The loop representation of the planar random-cluster model

Let (G, a,b) be a Dobrushin domain. In this paragraph, we aim for the construction of the
loop representation of the random-cluster model, defined on the medial graph (G°,a°,b°)
of the Dobrushin domain. The medial graph G* is defined in a slightly non-classical way,
see Fig. 5.1 for an explanatory picture: consider G together with its dual G* and add all
the sites of L.* adjacent to the free arc 0, (call this set 07,), the medial graph G* is the
subgraph of IL¢ given by:
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Figure 5.1: A domain G with Dobrushin boundary conditions: the vertices of the primal
graph are black, the vertices of the dual graph G* are white, and between them lies the
medial graph G°. The arcs 0y, and 0}, are the two outermost arcs. The arcs d;, and 0,
are the arcs bordering 0y, and 07, from the inside. The arcs 0, and Oy, (resp. 07, and
0Oy,) are drawn in solid lines (resp. dashed lines)
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e E[G°] is the set of edges bordering faces of L° corresponding to V[G]uV[G*]ud?,
e V[G®] is the set of end-points of edges in E[G°].

The medial vertices a® and b° are the two medial vertices of G° having three adjacent
medial edges.

The random-cluster measure on (G, a,b) with Dobrushin boundary conditions has a
rather convenient representation in this setting. Consider a configuration w, it defines
clusters in G and dual clusters in G* (note that the arc d,, being free, the arc 07, must be
dual-wired thanks to planar duality). Through every vertex of the medial graph passes
either an open bond of G or a dual open bond of G*, hence there is a unique way to
draw an Eulerian (i.e. using every edge exactly once) collection of loops on the medial
lattice. These loops are the interfaces, separating clusters from dual clusters. Namely,
a loop arriving at a vertex of the medial lattice, always makes a +m/2 turn so as not to
cross the open or dual open bond through this vertex, see Fig. 5.1. Besides loops, the
configuration will have a single curve joining the vertices adjacent to a and b, which are
the only vertices in V° with three adjacent edges (the edges entering a and b are denoted
by e, and e, respectively). This curve is called the exploration path and is denoted by .
It corresponds to the interface between the cluster connected to the wired arc 0, and the
dual cluster connected to the free arc 97,.

This gives a bijection between random-cluster configurations on G and Eulerian loop
configurations on G°. The probability measure can be nicely rewritten (using Euler’s
formula) in terms of the loop picture:

Proposition 5.5. Let pe (0,1) and ¢ >0 and let (G,a,b) be a Dobrushin domain, then
for any configuration w,

o(w £(w
o W) = = 2@ g (5.1)

where x = p/[\/q(1-p)], €(w) is the number of loops in the loop configuration associated
to w, o(w) is the number of open edges, and Z is the normalization constant.

Proof Recall that .
o (W) = [p/(l—p)]"(“’q’“(“’)-

The dual of QSqu i lgff g With w* being the dual configuration of w, we find

\/¢G7pq G*p q(w*)
V) " OV )

o(w)

1 p(1-p*) o(W)+o(w)  _ p(w)+k(w?)
Vpr/(1-p*) q
VZ (1-p)p* Va

o(w)+o(w™)
Va/p /(1 -p*) N k(w)+k(w*)-1
NILL*

Gna@)

N
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Figure 5.2: A random-cluster configuration in the Dobrushin domain (G, a,b), together
with the corresponding interfaces on the medial lattice: the loops are grey, and the ex-
ploration path v from a® to b° is black. Note that the exploration path is the interface
between the open cluster connected to the wired arc and the dual-open cluster connected

to the white faces of the free arc.
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where the definition of p* was used to prove that ’(’ﬁg’;z = 22. Note that {(w) = k(w) +
k(w*) -1 and
A/

Va/pr[(1-p*)
does not depend on the configuration (the sum o(w) + o(w*) being equal to the total
number of edges). Altogether, this implies the claim. 0

7 =

o(w)+o(w*)

1.2 Observables for Dobrushin domains.

Fix a Dobrushin domain (G, a,b). Following [Smil0Oa|, an observable F': E, — C is now
defined on the edges of the medial graph. Roughly speaking, F' is a modification of
the probability that the exploration path passes through an edge. First, introduce the
following definition

Definition 5.6. The winding Wr(z,z") of a curve I' between two edges z and z' of the
medial graph is the total (signed) rotation (in radians) that the curve makes from the
mid-point of the edge z to that of the edge z' (see Fig. 5.5).

We are now in a position to define Smirnov’s edge-observable

Definition 5.7 (Smirnov’s observable). Consider a Dobrushin domain (G,a,b) and two
parameters p € (0,1), ¢ > 0. Define the (FK) parafermionic observable F' for any edge
eeF, by
a,b ioc Wy (e,e
F(e) = ¢G’p7q (e W ( b)ﬂeey) ) (5.2)

where vy is the exploration path and o is given by the relation

sin(om/2) = g (5.3)

For ¢ € [0,4], the observable F' is a holomorphic parafermion of spin o, which is a real
number in [0,1]. For ¢ >4, 0 € 1 +iR and does not have an obvious physical meaning; it
would nonetheless be amusing to find one.

Sometimes, we use & := o — 1 and the observable I defined for any edge e € E, by

F(e) = ¢ (e7Wr(e)],.), (5.4)

1.3 Two fundamental properties of the observable
Let a = a(p,q) € [0,27) be given by the relation

elom/2 4 I(p)

elop) .- = AP
elom/23(p) + 1
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Proposition 5.8. Consider a medial vertez v in G°~OG°. The two edges pointing towards
v are indexed by N and S, and the other twos by E and W in the obvious way. Then,

F(N)-F(S) = w9 j[F(E)- F(W)]. (5.6)

When p = ps(q), a(p,q) =0 and the previous relation becomes a discretization of the
Cauchy-Riemann equation (see Chapter 2). Note that (5.6) immediately translates into
the relation:

F(N)+F(S) = e®O[F(E)+F(W)]. (5.7)

Even though this relation has no natural interpretation in terms of discrete complex
analysis, it would sometimes be more convenient to handle than (5.6).

wired arc

wired arc

Figure 5.3: Two associated configurations w and s(w)

Proof Let us assume that v corresponds to a primal edge pointing SE to NW, see
Fig. 5.4. The case NE to SW is similar.

We consider the involution s (on the space of configurations) which switches the state
(open or closed) of the edge of the primal lattice corresponding to v. Let e be an edge of
the medial graph and denote by

7b i
o O @) e,

the contribution of the configuration w to Fjs(e). Since s is an involution, the following
relation holds:

F(;(e) = zwzew = %;[ew+es(w)].

In order to prove (5.6), it suffices to prove the following for any configuration w:

Ny + Nywy = S = Sswy = €D i[E, + By - Wiy - Wy ). (5.8)
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There are three possibilities:

Case 1: the exploration path v(w) does not go through any of the edges adjacent to v.
It is easy to see that neither does y(s(w)). All the terms then vanish and (5.8) trivially
holds.

Case 2: v(w) goes through two edges around v. Note that it follows the orientation of
the medial graph, and thus enters v through either W or F and leaves through N or S.
Assume that v(w) enters through the edge W and leaves through the edge S (i.e. that
the primal edge corresponding to v is open). The other cases are treated similarly. It is
then possible to compute the contributions of all the edges adjacent to v of w and s(w)
in terms of W,,. Indeed,

e The probability of s(w) is equal to 1/(x/q) times the probability of w (due to the
fact that there is one less open edge of weight x and one less loop of weight /g, see
Proposition 5.5);

e Windings of the curve can be expressed using the winding at W. For instance, the
winding of N in the configuration w is equal to the winding of W plus an additional
/2 turn.

The contributions are given as:

configuration W E N S
w W, 0 0 el /AW,
s(w) Woo!/(@/@) | e"PWo/(2/q) | e W/ (2/q) | €™ Wo/(2/2)

Using the identity elo/2 — ¢7io7/2 = i, /g, we deduce (5.8) by summing (with the right

weight) the contributions of all the edges around v.

Case 3: y(w) goes through the four medial edges around v. Then the exploration path

of s(w) goes through only two, and the computation is the same as in the second case.
In conclusion, (5.8) is always satisfied and the claim is proved. ]

So far, we have shown that the (partial) integrability of the random-cluster model
implies local properties of the observable yet the observable was not related to connectivity
properties of the model. On the boundary, it is in fact possible to connect the observable
to the probability to be connected to the boundary.

Lemma 5.9. Let u € G be a site on the free arc O, and e be a side of the black diamond
associated to u which borders a white diamond of 0, see Figure 5.5. Then,

F(e) = eioW(een) Qﬁg;q(u < wired arc),

where W (e, ep) is the winding of an arbitrary curve on the medial lattice from e to ey.
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Figure 5.4: A zoom on the consequence of switching the state of one bond in terms of
loops.

Proof Let u be a site of the free arc and recall that the exploration path is the interface
between the open cluster connected to the wired arc and the dual open cluster connected
to the free arc. Since u belongs to the free arc, u is connected to the wired arc if and only
if e is on the exploration path, so that

a,b

@0 (u < wired arc) = D pqle€).

G.pyq
The edge e being on the boundary, the exploration path cannot wind around it, so that
the winding of the curve is deterministic. Call it W (e,e;). We deduce from this remark
that

F(e) _ gba,b (eiaw(e76b)ﬂ-e€7)

G.p.q elWlee) ¢a7b (e€v)

G,p,q

— eloW(een) Q%bpq(u <« wired arc).

The observable in infinite Dobrushin domains. The definition of F' can be ex-
tended to the case of infinite Dobrushin domains. Consider two non-intersecting doubly-
infinite arcs 0 on IL and 0* on L* defining an infinite simply-connected domain G of LL°.
This domain has two ends, denoted —oo and oo, where oo is found at the end of 0 3. Set
¢°GO”7;Z° to be the random-cluster measure* of parameters (p,q) on G with wired boundary
conditions on 0 and dual-wired boundary conditions on 0* (corresponding to free bound-
ary conditions on the adjacent primal arc). The arc 0 is the wired arc and 0* is the free
one. For instance, the strip Sy = Z x [0, /] with wired boundary conditions on the bottom
and free boundary conditions on the top enters into this framework.

3When going along 0 in the clockwise direction

4Here, the measure is not necessarily unique. We thus assume that it is constructed using nested
boxes with free boundary conditions on the intersection of their boundary with 0*, and wired elsewhere.
When there is no infinite-cluster in infinite volume, the measure is unique (for instance when p # psq).
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wired arc Oy,

b < 7 T

WF(Z,Z/) =0

/
free arc 0%, E,—gr
Wr(z,2") =2n

a /

z & r
Wr(z,2") =7/2

Figure 5.5: Left: A schematic picture of the exploration path and a boundary point wu,
together with two possible choices e; and ey for e. If u is connected to the wired arc,
the exploration path must go through e. Right: The winding of a curve. In the first
example, the curve did one quarter-turn on the left and one quarter-turn on the right.

The loop representation also exists in this setting. The gbG -probability of having
both an infinite cluster and a dual infinite cluster being 0, there is a unique interface vy
going from +oo to —co and separating the primal cluster connected to 9 and the dual-
cluster connected to 9*. We define

(6) — A 00[ ’wa(e:_‘x’)]l

¢G,p q eE'y]

where W, (e, —o0) is the winding of the curve between e and —oco. This winding is well-
defined up to an additive constant (since —oo does not really make sense as a medial edge)
that we fix on a case by case basis. It is easy to see that F'is the limit of observables in
finite boxes, so that properties of fermionic observables in finite Dobrushin domains carry
over to the infinite-volume case. In particular, the conclusions of the previous lemmas
apply to the infinite case as well.

2 The phase transition through parafermionic observ-
ables

2.1 Random-cluster models on surfaces with a singularity

We introduce a family of domains. Recall the definition of the graph U: it is given by the
vertex set Z3 and the edge set containing

o [(z,y,2),(x+1,y,2)] for every x,y,z € Z,
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e [(x,y,2),(x,y+1,2)] for every x,y,z € Z such that 'y + 0" or 'y =0 and z >0,
e [(2,0,2),(x,1,2-1)] for every z <0 and z € Z.

This graph can be seen as a graph on the universal cover of R?~ {(-1/2,1/2)}. Its medial
graph is defined similarly to the previous cases and is denoted by U°.

A subgraph of U is said to be simply connected if its complement in U is connected.
It is a Dobrushin domain if it has two marked points on its boundary. It is possible to
define the parafermionic observable on any Dobrushin domain in exactly the same way as
for planar simply connected domains GG°. Moreover, the following local relations are still
valid at criticality:

Proposition 5.10. Let ¢ >0 and p = psq(q) and fix a Dobrushin domain G of U. Consider
a medial vertex v in G° N\ 0G°. Index the two edges pointing toward v by N and S, and
the other twos by E and W in the obvious way. Then,

F(N)+F(S) = F(E)+E(W) (5.9)

Proof We shall not repeat the proof of Proposition 5.8 (which implies this case when
G is planar). The only point which could differ is the winding of possible loops, which
could be different of 27 on general graphs. Yet, this is not the case for these graphs and
the proposition holds true. O

For n € N, define
Uso = {(z,9,2) eU: |z +]y| <n}

For 0 € §N, define Uy, to be the connected component of the origin in U, \ (pgl U p_gf),
where
0= {(z,y,0):z>0and z =y} u{(x,y,0):x>0and z=y+1}

and py is the rotation in U by an angle 6.

Proposition 5.11. Fiz ¢ +# 4 and p = psa(q). There exists C >0 such that for every 0, n,
there ezists 0, : OUy,, - [0,C'] such that

> 0O ) (0 x) = 1, (5.10)
OUg n
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where © : OUyp ,, - R is defined by

O+7/2  if (x,y,2) € pol
-0-7/2 if (z,y,2) € p_gl
-3 /4 ify=0, <0,
-7/2 if v,y <0,

~m/4 f v =0, y<0
O(z,y,2) = 2mz+ i fx=0,y<0,

0 if x>0, y<0,
/4 ifx>0, y=0,
/2 if ©,y >0,

3 /4 ifr=0, y>0,
s if x<0, y>0.

The function ©(x,y,z) is a step function following the usual definition of the angle.

Proof Fix ¢ # 4, p = p,(q) and drop them from the notation. Consider the random-
cluster model on Uy, with free boundary conditions. This model can be thought of as
a random-cluster model in a Dobrushin domain, where the wired arc is empty. In other
words, if eg denotes the medial edge adjacent to 0 and pointing south-west, ¢ is both e,
and e, and the exploration path ~ is the loop passing through is. For technical reasons, it
will be more convenient to consider the edge eq as being two half-edges e, and e;,. Then,
we define the parafermionic observable in this domain as usual.

Summing the relation (5.9) over all vertices in Uy, containing four adjacent medial

edges, we obtain
Y F(e)- > F(e) =0, (5.11)

e entering e exiting

where F is the set of medial edges with two endpoints in Uy ~0U;  and the edges entering
(resp. exiting) are the edges appearing not in E entering (resp. exiting) E.
Lemma 5.9 shows that for e on the boundary,

F(e) _ 6iUW(€76b)¢%8,n(O <—>[E)

where z is the site bordered by e.
Now, one entering and one exiting edge is associated to each boundary site:

e if x # 0, the entering edge is e, and the exiting is e;, and the associated windings
are 0 and 2,

e forsites in /, the entering edge has winding -0 (z)+7/2 and the exiting -©(z)+37/2,

e for other sites with two neighbors in Uy, the entering edge has winding —-O(z)+7/2
and the exiting -O(x) + 37/2,
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e for the remaining sites (with one neighbor), the entering edge has winding -0(z) +
7/4 and the exiting -0 (z) + 77 /4.

Plugging this new input into (5.11), we obtain

L S o e7i57r/4)e—i&®(x)¢?]gyn(0 < 1) + (5.12)
1 neighbor
Y (e - €3z‘&w/2)e4&6(x)¢(l)]6 (0ez) =0 (5.13)
others 7

which gives

sin(3om/4) ), e_i(}@(x)qﬁ?]e’n(() < ) +sin(om/2) > e_i‘}e(x)gb?]m(() < z) = sin(om).

1 neighbor others
(5.14)
To conclude, note that
sin(6m) = \/q-q*/4
sin(67/2) = \/1-¢q/4
o~ 1
sin(367/4) = 5\/1 —q/4(V1+a/2+ 7/ (2V/1 +/a/2)).
a

2.2 Divergence of the correlation length when 1< ¢ <4
The main subject of this paragraph is the proof of Theorems 5.1 and 5.2.

Proof of Theorem 5.2 Fix 1 < ¢ <3 and p = p.(q). Set 92 = pf U p_. and call
0% = 0U, , \ Of. Taking the real part of (5.10), we find

> b, c08(0(x)) -gb?]m(O o) = 1- ) d,c08(60(x))- qb%m(() < I).

3 3
zed] zeds

Yet, cos(60O(x)) = cos(63m/2) is non-positive on dy since & > 1/3 for ¢ € [1,3]. Therefore,

Y oy (0ex) > Y 5—Icos(&@(x))-¢0 0w z) > 1
xedy o xedy C o C

where C' is defined in Proposition 5.11. Since 97 is a subset of JA,, (where A,, is the ball
of size n for the graph distance),

2 a0 ) 2 3, ) b, 4(0< )
xel n>0 zeOA,
> > > 0, (0 x)
n>0 zedy
> Zé = oo.

n>0
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o

We now prove a stronger result than Theorem 5.1: correlations decay polynomially fast
at criticality. This property distinguishes the critical phase from the subcritical one, since
correlations decay exponentially fast in the latter. Before proving this stronger result, let
us show how it implies Theorem 5.1:

Proof of Theorem 5.1 We have for every n,m >0, using the FKG inequality,
2’(1(0 < (n+m)) > qu(() snn<on+m) > gg(() <—> n)qﬁg’q(o < m)

which implies that
2,(1(0 <> n) S e—”/f(p)’

where £(p) is the correlation length. If £(p) does not converge to oo, it increases to £ > 0
when p / psg. We thus obtain at p,:

0 =i 0 < [ -n/&(p) — o~/
peaa(0 1) = T (0 < n) < lim e e,
In particular, it converges exponentially fast to 0, which is in contradiction with the
polynomial decay of correlations (see Proposition 5.12 below), thus proving the claim. O

Proposition 5.12. Let g€ [1,4) and p = psq. There exists ¢ >0 such that

1
0
psd,q(oex) 2 W

We first use the same reasoning as in the proof of Theorem 5.2 to provide lower
bounds on the probability for points in U to be connected. We then use these lower
bounds to prove lower bounds on the probability for two points of a Dobrushin domain
to be connected. This finally allows us to conclude the proof by getting rid of boundary

conditions.

Proof Fix 1< ¢<4 and p = psg and drop them from the notation. In this proof, the
constants C7, Cs,.. will depend only on q.

Connection probabilities in a Dobrushin domain We generalize the argument
employed in the previous proof. Fix 6 € 7/2N such that cos[d(0+7/2)] < 0 and cos[56'] > 0
for every 0 <6’ <6 +7/2. Set 0} to be the set of points on Uy, such that 0(z) < 6, and
0% = Uy, \ 07. The same reasoning as in the previous proof implies

1
Z ?]e,n(()<—>x) > 6

7
xed]
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It implies that there exists = € 97 such that

1 C.
0 (=N > = —2
e T

Let us translate and rotate Uy, (by an application T") in such a way that Tz = 0 and the
domain lies above the origin. Trivially, for every n >m >0
0 2 0 &
v, (0 < 0[-m,m]*) > ¢y, (0(=Tx) < T0) > —. (5.15)

Note that T'Uy , is not planar, which represents a difficulty. Nevertheless, (5.15) implies
two estimates in planar Dobrushin domains.

First, boundary conditions on R,, = [-2n,2n]x[0,n] inherited from those on T'Uy,, are
stochastically dominated by wired boundary conditions on the top and free elsewhere. If
¢%P" denotes the measure on R, with these boundary conditions, we find

P17 (0 > O -m, m]?) > % (5.16)
for every m < n.

Second, boundary conditions on C), = [-2n,2n] x [0,2n] \ {n} x [n,2n] inherited from
those on T'Uy,, are stochastically dominated by wired boundary conditions on {n}x[n,2n]
and free elsewhere. If gzﬁ‘é‘jlbr denotes the measure on ), with these boundary conditions,
we obtain

&

dobr(0 «> 9[-m,m]?) > — (5.17)

for every m < n.

Probability of long crossings in a strip Fix ¢ < 1/100. We aim for the following
result:
¢

o5 ~([0,2n] x [0,10en] is horizontally crossed in Sige;) >
n nC

Y

where ¢ = ¢(¢) and ¢g’ " is the random-cluster measure in the strip S, := R x [0, n] with
free boundary conditions on the bottom and wired boundary conditions on the top.

Applying (5.16) for m = en, we face two cases:
o Case 1: ¢ (0« {en} x [0,en] in [-en,en] x [0,en]) > £
o Case 2: ¢ (0« [-en,en] x {en} in [-en,en] x [0,en]) > $2

CASE 1: The assumption immediately implies that

¢g "7 (0« {en} x [0,en] in [~en,en] x [0,en]) >
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Figure 5.6: Construction of paths to create a long dual-path from left to right.

In particular, there exists z € {en} x [0,en] such that

00,—00 . C(3
¢g " (0 e win S,p) > 3

Using the FKG inequality and the symmetry under reflexion, see Fig. 5.6, we obtain that

o2
57°(0 < (2en,0) in S.,) > —= 5.18
6570 (2en.0)n S) 2 2 (5.18)
Using the FKG inequality repeatedly (around 1/e times), we find
00,—00 . 03
¢ 7(0 < (2en,0) in S,,) > — (5.19)
n nc

for some constants C3 = C3(¢) and ¢ = ¢(¢).
CASE 2: There exists z € [-en,en] x {en} such that

) C
PEP" (0 < z in [-en,en] x {en}) > —S.
n
Using the FKG inequality yet again and the comparison between boundary conditions,
we find

C
%07(0 <> (0,10en) in [~2en,2en] x [0, 10en]) > —.
Now,
dobr () 3en in S > Cs
oy (0 < 3en in Sipen) 2 1,200

since we can combined the events
e 0« (0,10en) in [-2en,2en] x [0, 10en],
e cn < (en,10en) in [2en,4en] x [0, 10en],
e the two previous vertical paths are connected in [-2en, 4en] x [0, 10en]

in order to create a path from 0 to 3en. Note that the third event has probability
larger than 1/2 conditionally on the other two (use duality and crossings in squares with
free/wired/free/wired boundary conditions). Now, since 10e < 1/2, we are in the same
position as in (5.18) and the result follows.
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10en

A4

:’f\ﬂ’\/{\j\—’\r/

"~ 3en

Figure 5.7: Construction of paths to create an arc in the second case of the proof.

Probability of connection for ¢9 Conditionally on 0 <> d[-en,en] x [0,en], the
configuration outside in C, \ [-en,en]? is stochastically dominated by wired boundary
conditions on {n} x [n,2n]ud[-en,en]? and free elsewhere. Therefore, the probability of
having a vertical dual crossing in [en, 1len] x [0,2n] and [-1len,—en] x [0,2n] is larger
than (C3/n¢)? (simply wired the arcs {en}x[0,2n] and {-en}x[0,2n]). Yet, conditionally
on all these events, the two vertical dual crossings are dual connected in [-11en, 11en] x
[en, 12en] with probability larger than 1/2 since the boundary conditions on this square
are dominated by wired on the top and bottom and free elsewhere. Now if A,, denotes the
event that [—en,en]? is disconnected from the wired arc by a dual crossed path outside

of [-en,en]?, we find
¢ (0 Of-en.en] x[0,en] , An) > ¢ (An | 0 O-en,en] x [0,en])
- &P (0 <> O[-en,en] x [0,en])
CyC?2
T 9p2c+l’

In order to conclude, the comparison between boundary conditions implies

6.a(0 = O[=en,en]?) > 6%, (0 d[-en,en] x[0,en])
> &P (0 > 9[-en,en] x [0,en] | A,)
> 00(0 > O -en,en] x [0,en] , A,) > nfcil,
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2.3 Infinite clusters in universal covers when ¢ > 4

We now prove Theorem 5.3.

Proof of Theorem 5.3 Fix ¢ >4, p = psq and drop them from the notation. The fact
that a cluster exists with probability 0 or 1 is due to the fact that it is a translational
invariant event with respect to the vectors {(0,0,n),n € Z}.

Recall that in this case i0 is real and thus the winding term is positive. Fix 6 and
n >0, (5.10) implies that

> eiﬁe(x)qﬁ?]e’n(() <) <¢.
IE@U.g’n
In fact, the same reasoning can be applied for m < n to the domain Vj,, ,, corresponding
to the domain Uy, with an additional rectangle of size (m,n) at the "end’. We thus obtain

Z eiff@(m) ¢(‘)/

9,m,n(0 <« x) S CQJ
anVQ’myn

which gives, defining Vj,,  as the union of Vjp,,, for every n,

Z 61&®($)¢?/9,m700(0 <> x) S an

xE@Vgﬁm’w

which implies
> Y, (0o ) <Cel™,

xeddm

where 9™ is the set of boundary points x € Vjy, o with 6(x) > 6. Now, assume that
(0,0,7) and 0 are connected by an open path in U. It implies that there exists 6 > 27,
m >0 and a point y € 3™ such that 0 and y are connected in Vp,, «. Using comparison
between boundary conditions, we deduce

(0« (0,0r) < > D @Y, (0o )< Coe T,

0>27r,m>0 xedf-m

The Borel-Cantelli lemma implies that there is a finite number of couples (r,s) with
r <0 and s >0 such that (0,0,r) and (0,0, s) are connected. In particular, it implies that
there exists an infinite cluster in the dual, which is our claim. O

2.4 The case g=4
When ¢ =4, Smirnov’s parafermionic observable becomes simply
Fle) =62 (e em).

Proposition 5.8 then boils down to the fact that v enters and exists every vertex the same
number of times. Yet this is an easy implication of the fact that 7 is a curve. In particular,
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the relations are the same for every p and do not characterize the phase transition. The
reason for this loss of information is that we are not looking at the right observable.
Somehow, the observable becomes degenerated when ¢ — 4 (in particular because the
winding term becomes 1), and one should look at an expansion of the observable in
powers of 6. When expanding the observable, the second term is

G(e) := qﬁgf’p[Wv(e, ep)etValeen) .

Proposition 5.13. Fiz g =4 and p = psq(4) = 2/3. Consider a medial vertex v in G°~NOG°.
Index the two edges pointing toward v by N and S, and the other twos by E and W in
the obvious way. Then,

G(N)-G(S) = i [G(E)-G(W)]. (5.20)
Proof Consider the parafermionic observable F; in G° for the random-cluster model
with parameters ¢ and pg;(q). Proposition 5.8 implies
Fy(N) = Fy(S) = i [Fy(E) - F,(W)]. (5.21)
Expanding in ¢ -1 the winding term in Fj, we obtain:
Ey(e) = ¢qu([1 - W, (e, ep) + O(5%) ] (o)1, ).
Coming back to (5.21), we deduce
¢2;’q(eiWW(Naeb)1N€7) — (ba’b (eZW’Y(Sveb)ls )
i (6, (M ED L) g8 (1)) O((0 - 1)?)
(0. 1) (¢qu(W (N eb)ezWW(Neb)lN 7) qu(W (S eb)esz(Seb)ls )
- (¢qu(W (E, eb)esz(E )1 e ) - ¢qu(W7(VV, eb)ezW«/(W,eb)lwev)))

Now, the left hand side of the equality can be rewritten as
G (N eq) + oih (Se) - oil (Weq) - 6 (Eer) + O((o-1)?),
Since 7y is a curve from e, to e, the first four terms cancel each other, and we obtain
qu(W (N ep)e™ el e ) - ¢qu(W (S, ep)e™ 5N 1g.)
i (06 Wy (Woep)e™ WLy ) — o3 (WL (B, ep)e™ 1)) + O(o - 1).

By letting ¢ go to 4 from below (in this case o converges to 1), the result follows readily.
0

Corollary 5.14. There exists C' > 0 such that for every n and 0, there exists 6, : OUy ,, —
[0,C] satisfying

Z 5:0¢(()]9n(0 Hx) =~

J?EBUQ’”
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Proof The proof of Proposition 5.11 can be adapted to this context with minor changes.
O

Proposition 5.15. Fiz ¢ =4 and p = psq(4) =2/3. There exists ¢ >0 such that
1

]

gsd74(0 e x) 2

Proof The reasoning is almost the same as in the case ¢ < 4. First note that the

probability to cross a rectangle with wired boundary conditions does not go to 0 as was
proved in Theorem 9.1. Therefore,

1 2 i

4(0 < a[_nvn] n [_nvn] X [O,TL]) 2 —

n

Psd;

for some constant C; > 0.
Now, consider the domain U2 ,,. From Corollary 5.14, there exists x € OUyqp2 ,, such
that

Ol CQ
0
¢U2ﬂn2’n( %) |OUs 22 10| n3
Moreover, z satisfies |0(z)| < n3/2 since for z,
¢, , (0ex) < (1- ¢, , (0 & 0[-n,n]? in [=n,n] x [O’n]))o(x)/%.

Let us translate and rotate Up,, in such a way that = € {n} x [-n,n]. We find

... (2o {nf2} x[-n,n]) > o

2mn4,n 27rn2,

Cy

The end of the proof is the same as in the ¢ < 4 case. 0

3 An alternative proof that p.(q) = pss(q) for ¢ >4

When ¢ > 4, interestingly, the spin variable becomes non-real, therefore it does not have
an immediate physical interpretation. However, this allows us to write better estimates
even in the absence of exact holomorphicity and relate our observables to the connectivity
properties of the model. For p # p,q we prove that observables behave like massive har-
monic functions and decay exponentially fast with respect to the distance to the boundary
of the domain. Translated into connectivity properties, this implies the sharpness of the
phase transition at pgq. In this section, Theorem 5.4 is proved, as well as the following
statement:

Theorem 5.16. Let ¢ > 4. For every p < p., there exist 0 < ¢,C < oo such that
Pp.q(0 < a) < Ceeel

for any a € Z2.
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3.1 A representation formula for the observable

This section deals with the observable F. More precisely, the sum of F over a set A ¢ E, is
bounded in terms of the sum over the boundary edges of A. Let (G, a,b) be a Dobrushin
domain. For a set A of edges of F,, 0.A denotes the set of edges of F, \ A sharing a
vertex with an edge of A (also called the external boundary of the set).

Proposition 5.17. For any x # 1 and q # 4, there exists C; = C1(p, q) < oo such that for
any set of edges A c E, not containing any edge adjacent to a vertex of 0,V.,, there exists
a function § : 0. A — [-C1,C4] such that

(1 - cos(2a)) > F(e) = > 5. F ().

ecA e€de A

Proof Recall that ¢*(*) # 1 since z # 1 and ¢ # 4. Sum (5.7) over all vertices adjacent to
edges of A, and divide by (1-e'®®)). Tt provides a weighted sum of F'(e) (with coefficients
denoted by c(e)) identical to zero:

Se(e)F(e)+ Y cle)F(e) =0.

ecA ec0A

For an edge e € A, F(e) will appear in two identities, corresponding to its endpoints.
Since e is oriented away from one of its ends and towards the other one, the coefficients
will be 1 and —ei@®). Thus F(e) for e € A will enter the sum with a coefficient ¢(e) =
(1-ee@)/(1-ea@) =1,

For an edge e € 8,A, F (e) appears in one identity, corresponding to its endpoint
belonging to A. The coefficient is 1 or —e*(®) depending on the orientation of e with
respect to this endpoint. Thus F(e) enters the sum with a coefficient ¢(e) equal to
either 1/(1 -¢e'®)) or —el*(@) /(1 —el*(®)), The proposition follows immediately by setting
a. = —c(e) and C} := max{1,el*@)|}/[]1 - el*®)], O

3.2 Proof of Theorem 5.4

The main step of the proof is to show that, whenever p < py4, there is a very low probability
of having vertical crossings of an extremely large rectangle. This statement is sufficient
to prove Theorem 5.4, as was already seen in the previous chapter.

For L >0, consider an infinite horizontal strip S = Z x [0, L] together with its medial
lattice. We define two families of sets, the former ones being subsets of the strip and the
latter of the set F, of edges of its medial graph. More precisely, write e ~ a if the edge
e € E, is adjacent to the site a € L. For every n >0, define the following (possibly empty)
sets, as depicted in Figure 5.8:

R(m,n):=[0,m] x [n, L -n], Ro(m,n):={ee E,: Jae R(m,n),e~a},
R-(m,n):=[0,m] x [0,n - 1], Ri;(m,n):={ee E,: Jae R (m,n),e~a},
Rt(m,n):=[0,m] x [L-n+1,L], Ri(m,n):={eeE,: JaecR*(m,n),e~a}.
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-------------- I-----!---:---—:----/------------I----------‘IL—|—Z
A St R
1 nog I :
5 v " event B :
- .
b e e e e e |
B St\f R-(m,n)"
vov 5
0 m z
T T >

Figure 5.8: Definition of the different rectangles and events A and B.

Recall that in a Dobrushin domain, v denotes the exploration path, i.e. the interface
between the open cluster connected to the wired arc and the dual open cluster connected
to the free arc. The following lemma bounds the probability that the exploration path
passes through the rectangle R(m,n):

Lemma 5.18. Let ¢ > 4 and p # psq, then there exist positive constants c3 = c2(p,q) and
Cy = Cy(p, q) such that for any n < L2 and m > Cs,

o5 e (1N Ro(m,n) % @) < Cyme™2",

Proof Consider the observable F defined in the strip S;. Recall that in our setting = # 1
and F is non-negative. Set ¢y := —log (2C1/(2C; +1)) and C, := max {4Cy, 8exp(|o|27)}
where (] is defined in Proposition 5.17.

Fix m > Cy and consider some n < L/2. Denote

U= > F(e).

e€Ro(m,n)
Proposition 5.17 along with the non-negativity of F implies the following estimate:

U= > 8Fe)<Ci Y F(e). (5.22)

e€d.Ro(m,n) e€dcRo(m,n)

Divide the boundary 0.,R.(m,n) into four parts: the bottom Apet, the top A, and
both sides Ajery and Ayighe.-

On the one hand, since F is invariant under horizontal translations, the sums over the
left and right sides are the same as over any vertical cross-section of R.(m,n) and we
conclude that 5

> F(e)==U,. (5.23)
m

e€ Aot UAright
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On the other hand, the top and the bottom are contained inside U,,_; \ U,,, and therefore
> F(e)<Upi-U,. (5.24)

€€ AtopUAbottom

Combining Equations (5.22), (5.23) and (5.24) and using the inequality m > Cy > 4CY,
we obtain that

2 1
Un < &Un + Cl(Un—l - Un) < (_ - Cl) Un + ClUn—h
m 2
hence o0
1 _ o
Un < 567 Unt =€ Una, (5.25)

Take now n = 0, Aip and Aportom are thus at a distance one to the boundary of
the strip: an interface arriving there must have a winding bounded by +2x. Thus for
e € Agop U Apottom We have

F(e) = o5 pale V] <edPTg3 > (e e ) < el7PT

where the last equality is due to Lemma 5.9. Summing this over all 4m edges in the top
and bottom sides,

~ . 1
> F(e) < 4meloP™ < ~Cym. (5.26)
e€ AtopUApottom 2
Combining (5.22), (5.23) and (5.26) for n =0 we deduce that
2C,

1 1 1
Uo < U0+§CQTTLS §U0+§Cgm,

m
therefore
Uo < Cgm. (527)

(5.27) along with the iterated (5.25) imply
Up < Upe ™" < Come ", (5.28)
Similar reasoning applies to
F(e) 1= 05 pale ™)),

yielding the same inequality for

Vo= > F(e).
e€Ro(m,n)
Combining the two inequalities with (5.29), we obtain

¢§°L’;‘;(fy NR.(m,n) + @) < Z ¢§°L’;:Z(e €7)

eeRo(m,n)

g% > (F(e)+ﬁ’(e))§

e€Ro(m,n)

(Un + Vn) < C’gme_””,

DO | —
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where we used the fact that

Fe)+ F(e) =205 [cos(GW,(eq,€))leey] > 208" (e €7) (5.29)
(recall that & is purely imaginary). O

For a rectangle R, define the event C,(R) (resp. C,(R)) to be the existence of an
open path from the left-hand to the right-hand side (resp. from the top to the bottom)
of R. Similarly, we define C;(R) and C;(R) in terms of the dual open paths through
the rectangle R shifted by % + %, so that they belong to the dual lattice. In the next
lemma, probabilities of such events for rectangles of aspect ratio 1/3 whenever p < pyy are
bounded (duality provides estimates for p > py4 as well). Recall that ¢, , is the unique

infinite-volume measure.

Lemma 5.19. Let ¢ >4 and p < psq, there exist 0 < c3,C5 < oo such that for every m > 0,
Gp.q(Co([0,3m] x [0,m])) < Ce™ V™ q.s..

This result is not surprising when looking at typical (not formerly proved) subcritical
behaviors. Indeed, the probability for two points to be connected by an open path in the
subcritical phase should decay exponentially fast with respect to the distance between
them. It implies that the probability for large rectangles to be crossed from bottom to
top is extremely low.

Proof Throughout the proof, the side lengths of rectangles involved are implicitly
rounded up (for instance, \/n will actually mean [\/n ] in that context).
Fix p < psq and take m large enough satisfying

1
Come™2Vm < 3

We will work with L > 2n, n = \/m and the following events, depicted in Figure 5.8:
A=C,(R (m,~/m)), B=C(R"(m,v/m)).

Recall that the exploration path is an interface between the open cluster connected to the
(wired) bottom side and the dual open cluster connected to the (free) top side. Therefore,
if both A and B occur, the exploration path is forced to pass through R,(m,/m), thus
Lemma 5.18 implies the estimate

00,—00 —C: m 1
05, pa(AN B) < Come /™ < . (5.30)

Consider the symmetry of the strip exchanging its sides and add % so that the lattice
is mapped to its dual. Note that it preserves Dobrushin boundary conditions, e.g. the
wired boundary conditions on the bottom part are sent to the dual wired (= free) boundary
conditions on the top part. Therefore, by duality, the random-cluster measure ¢§°L’;:; with
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parameters p*(p,q) and ¢ gets mapped to the random-cluster measure on the dual strip
with the same boundary conditions and parameters p and ¢. This symmetry also maps
the event A to the event B, so that

Psrpa (B) =05, oo g (A) 2 05 0 (A),

since A is an increasing event and p*(p, q) > p (since p < pgq).
Hence (let us return to the fixed parameters p and ¢), event A has smaller probability
than B, and (5.30) implies

2052 (A) = 1< 05 2 (A) + o3 = (B) - 1< 63 pq(AﬁB)<—

concluding that
2

65 (C (R (m, f))) S <

Letting L go to infinity, the measure ¢g’ s, .pq CONverges to the random-cluster measure
¢p,q 0 the upper-half plane with wired boundary conditions on Z. Therefore, for m large
enough, the probability of the event C,(R~(m,+/m)) given that the bonds of Z are open
is bounded from above by 2/3.

Since these boundary conditions stochastically dominate all the others and A is an
increasing event, (3.10) implies that the probability of A is always smaller than 2/3,
uniformly with respect to the boundary conditions on Z — in other words, uniformly on
what happens below the rectangle. Consider m large enough and divide the rectangle
[0,3m] x [0,m] into rectangles R; (where i = 1---/m/3) with height /3m and width 3m.
Let A; be the event that R; is crossed vertically. Notice that for every 7, A; is a translate
of the event A. If there is a vertical crossing of [0, 3m] x [0, m], there must exist a vertical

crossing for each of these \/m/3 rectangles so that

m/3

m/3
¢p,q(cv([[073m]] x [[O,m]])) < ¢p,q( N Ai) = 2 ¢p,q(Ai|Aj>j < Z)

i=1

Estimating the conditional probabilities of events A; one by one, using the domain Markov
property and the uniform bound on boundary conditions, the claim follows. 0

Proof of Theorem 5.4 Let p < py. Lemma 5.19 implies that for n > 1,
Bp.g(0 = B;) < 4Cze V™, (5.31)

In particular, there is no infinite cluster almost surely and p. > pgq.

In addition to this, an easy application of Borel-Cantelli Lemma implies that there is
almost surely finitely many open circuits surrounding the origin. Hence, there is almost
surely a dual infinite cluster which gives p* > p?. Since it is true for any p < psq, psa > P,
or equivalently p. < pgq. 0
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Proof of Theorem 5.16 The rate of decay of the one arm event given in (5.31) is
strong enough to harness Theorems (5.64) and (5.66) of |Gri06] (see also the argument
in the previous chapter). These theorems prove that the probability decays exponentially
fast. O
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Chapter 6

Two-dimensional Ising model

Abstract: This chapter depicts general facts on the planar Ising model which are some-
times hard to find in the literature. One very important section is the section dealing with
the low and high temperature expansions along with the definition of the spin fermionic
observable.

1 Definition of the Ising model

1.1 Definition on the square lattice

The (spin) Ising model can be defined on any graph. However, we will once more restrict
ourselves to the square lattice. Let G be a finite subgraph of L, and b € {-1,+1}9¢. The
Ising model with boundary conditions b is a random assignment o € {-1,1}¢ of spins
o, € {-1,+1} (or simply —/+) to vertices of G such that o, = b, on OG, where o, denotes
the spin at site x.

The Hamiltonian of the model is defined by

Hi(o) = =) 0,0,
o~y

where the summation is over all pairs of neighboring sites x,y in G. The partition function
of the model is

Z = > exp [~BH ()] (6.1)

oe{-1,1}C: o=b on OG

where 3 is the inverse temperature of the model. The Ising measure is simply a Boltzman
measure with hamiltonian HY. More precisely, the probability of a configuration o is
equal to

= ——exp[-BHL(0)]. (6.2)
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1.2 Special boundary conditions

similarly to the random-cluster case, several boundary conditions will be of particular
importance in our study:

e all plus (resp. all minus) boundary conditions: the measure with all + (resp. all —)
boundary conditions is denoted by uj o (resp. 13 a)s

e free boundary conditions: the measure without any boundary conditions is called
the measure with free boundary conditions and is denoted by ,ug, o

e Dobrushin boundary conditions: assume that 0G is a self-avoiding polygon in L,
and let a and b be two sites of dG. Orienting G counterclockwise defines two
oriented boundary arcs 0y, and Op,; the Dobrushin boundary conditions are defined
to be — on Jy and + on Oy,. We will refer to those arcs as the arc minus and
the arc plus respectively. The measure associated to these boundary conditions is
denoted by u“ﬁbc Note that the Dobrushin boundary conditions possess a useful
property: they force the existence of a macroscopic interface in the model between
the — cluster connected to d,;, and the + cluster connected to Op,.

2 General properties

2.1 DLR condition

Similarly to the random-cluster case, the Ising model satisfies a strong form of domain
Markov property. In words, the Ising measure conditioned on the configuration outside
of a set V' is equal to the Ising measure with random boundary conditions on the exterior
boundary 0.V, i.e. the set of sites outside of V' connected by an edge to a site in V.
In particular, the Ising measure only keeps memory of the nearest neighbors (which is
in some sense even stronger than the domain Markov property for the random-cluster
models).

Proposition 6.1. Let V c V' two finite sets of vertices of Z?. Let o be a spin-configuration
on V'\V. Then

pa(Cv o) = p™ ().
2.2 Positive association of the Ising model

An event A is increasing if it is stable by switching of minuses to pluses. A typical example
is the existence of a path of pluses between two sets of the space.

Theorem 6.2 (FKG inequality). Let G be a finite graph, b be boundary conditions and
B >0. For any two increasing events A, B,

s c(AnB) 2 g o(A)ug o(B).
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Proof We use the FKG lattice condition (3.5) once again. Let o a configuration and
e, f two sites. The partial ordering is the usual ordering of {—,+}V, set o/ (respectively
Ocf, 0% and of ) to be the configuration agreeing with o away from e and f, and with
(0e,0¢) = (+,+) (resp. (-,—), (+,-) and (-, +)). The criterion (3.5) translates into the
following claim to prove

H(o™) + H(o.s) < H(o!) + H(0%). (63

When e and f are not adjacent, the two sides of (6.3) are equal. When e and f are
adjacent, we see that the left-hand term of (6.3) corresponds to configurations with o, = o
and f agreeing, while the right-hand term corresponds to configurations with o, # o¢. In
particular, the left-hand side is indeed smaller than the right-hand one. O

Theorem 6.3. Let G be a finite graph and B > 0. For boundary conditions by < by and
an increasing event A,

Ha(A) < i (A). (6.4)
Proof The proof follows the same lines as the previous proof of positive association. O

Like in the random-cluster model, we say that /12?0 stochastically dominates ,uZ}G. Note
that the + boundary conditions are the largest ones in the sense of stochastic ordering,
while — are the smallest.

Remark 6.4. There are however some differences between the Ising and the random-
cluster models. On the one hand, there does not exist any increasing coupling between
Ising measures at different temperatures. On the other hand, other correlation inequalities
are available. Even though it is not used in this document, let us mention one of them:
the Griffith-Kelly-Sherman inequality [Gri67, KS68]. For any graph G, any 5 > 0 and
any two sets A, B of vertices of G,

ME’,G’[UA] 2 07

nhaloaos] > ps gloalps glosl,

where 04 = [lyea0u. These inequalities can be used to proved that the derivative with
respect to 3 of MEG[O'O] is positive.

3 FK-Ising model and Edwards-Sokal coupling

The Ising model can be coupled to the random-cluster model with cluster-weight ¢ = 2
[ES88]. For this reason, the ¢ = 2 random-cluster model will be called FK-Ising. We now
present this coupling, called the Edwards-Sokal coupling, along with some consequences
for the Ising model.
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Let G be a finite graph and let w be a configuration of open and closed edges on G.
A spin configuration ¢ can be constructed on the graph G by assigning independently
to each cluster of w a + or — spin with probability 1/2 (more precisely all the sites of a
cluster receive the same spin).

Proposition 6.5. Let p € (0,1) and G a finite graph. If the configuration w is dis-
tributed according to a random-cluster measure with parameters (p,2) and free boundary
conditions, then the spin configuration o is distributed according to an Ising measure with
inverse temperature 3 = —% In(1-p) and free boundary conditions.

Proof Consider a finite graph G, let p € (0,1). Consider a measure P on pairs (w,0),
where w is a random-cluster configuration with free boundary conditions and o is the
corresponding random spin configuration, constructed as explained above. Then, for
(w,0), we have:

| 1
Pl(w,0)] = —5—p @ (1 -p) 28 27K = —o @) (1 — p)ele),
Zp,2,G Zp,2,G

Now, we construct another measure P on pairs of percolation configurations and spin
configurations as follows. Let & be a spin configuration distributed according to an Ising
model with inverse temperature 3 satisfying e 2% = 1 — p and free boundary conditions.
We deduce @ from & by closing all edges between neighboring sites with different spins,
and by independently opening with probability p edges between neighboring sites with
same spins. Then, for any (@, d),

o 6’25T(&)p0(‘:’)(1 - p)a*O(@)*T(ﬁ) po(a’)(l _p)C(@)
P[(w, U)] = Zf = Zf
B,p B.p

where @ is the number of edges of G and r(&) the number of edges between sites with
different spins.

Note that the two previous measures are in fact defined on the same set of ’compatible’
pairs of configurations: if ¢ has been obtained from w, then w can be obtained from o via
the second procedure described above, and the same is true in the reverse direction for @
and &. Therefore, P = P and the marginals of P are the random-cluster with parameters
(p,2) and the Ising model at inverse temperature (3, which is the claim. O

The coupling gives a randomized procedure to obtain a spin-Ising configuration from
an FK-Ising configuration (it suffices to assign random spins). The proof of Proposition 6.5
provides a randomized procedure to obtain an FK-Ising configuration from a spin-Ising
configuration.

If one considers wired boundary conditions for the random-cluster, the Edwards-Sokal
coupling provides us with an Ising configuration with + boundary conditions (or —, the two
cases being symmetric). We omit the details, since the generalization is straightforward.
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An important consequence of the Edwards-Sokal coupling is the relation between Ising
correlations and random-cluster connectivity properties. Indeed, two sites which are con-
nected in the random-cluster configuration must have the same spin, while sites which
are not have independent spins. This implies

Proposition 6.6. For pe (0,1), G a finite graph and 8 =-11n(1 -p),

M,J;,G[Uway] = ¢2,2,G(x<—>y)7
nialos] = 111,2,G(x<_)8G)'

4 Infinite-volume measures and phase transition

4.1 Definition of infinite-volume measures

Theorem 6.3 allows us to define infinite-volume measures as follows. Consider the nested
sequence of boxes A, = [-n,n]?. For any N > 0 and any increasing event A depending
only on edges in Ay, the sequence (15, (A))non is decreasing. Indeed, any configuration
of spins in JA,, being smaller than all +, the restriction of KA, to Ay, is stochastically
dominated by pf, . One can then define a limit, denoted by 15(A), which does not
depend on N. In this way, pj is defined for increasing events depending on a finite
number of sites. It can be further extended into a probability measure on the o-algebra
spanned by cylindrical events (events measurable in terms of a finite number of spins). The
resulting measure g is called the infinite-volume Ising model with + boundary conditions.

Observe that, similarly to the random-cluster model, one could construct (a priori)
different infinite-volume measures, for instance with — boundary conditions (the corre-
sponding measure is denoted by ,ué) If infinite-volume measures are defined from a prop-
erty of compatibility with finite volume measures, then 5 and p; are extremal among
infinite-volume measures of parameter 5. In particular, if y; = f15, there exists a unique
infinite volume measure.

4.2 Phase transition

The Ising model in infinite-volume exhibits a phase transition at some critical inverse
temperature ., above which a spontaneous magnetization appears.

Theorem 6.7. There exists (. € (0,00) such that:
o for any B < B, pjloo] =0,
o for any B> B, 15[00] > 0.

Furthermore, B, = 3log(1+ V2).
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Proof Proposition 6.6 immediately implies that 3. = -3 In[1 - p.(2)] by passing to the
infinite-volume. Then, Theorem 4.1 concludes the proof. 0

The proof of the existence of the phase transition on general graphs harnesses the
Edwards-Sokal only. Without the help of the FK-Ising model, one can use the GKS
inequality (see Remark 6.4) to show directly that pj[og] is increasing and thus deduce
the existence of .. Let us mention that the inverse critical temperature was identified
(without proof) by Kramers and Wannier [KW41a, KW41b|, using the duality between
low and high temperature expansions of the Ising model that we present in the next
section. Its first rigorous derivation is due to Yang [Yan52|. He uses the exact formula for
the (infinite-volume) partition function to compute the spontaneous magnetization of the
model (it was previously computed non-rigorously by Onsager). This quantity provides
one criterion for localizing the critical point. The first probabilistic computation of the
critical inverse temperature is due to Aizenman, Barsky and Fernandez |[ABF87|. This
manuscript contains two alternative proofs of this result, the one mentioned earlier, which
harnesses Chapter 4, and the other presented in Chapter 8.

4.3 Classification of Gibbs measures

Infinite-volume measures for the Ising models are typical Gibbs measures (see Section 2.3.2.
of [VEFS93| for details on Gibbs measures). Their classification is thus an important task.
While the question is difficult in high-dimension, it is understood in dimension two.

Proposition 6.8. When < (., there is a unique infinite-volume measure.

Proof It is sufficient to prove that pj = 5. Note that we already know pj > p. Define
na=3(1+04), where 04 = [Tyeq 04 Since Y .41, —ny is increasing, the FKG inequality

implies
NE(Z”:E_”A) ZNB(Z”J:_”A)
xeA zeA

which becomes

E;lué(nm) —p(ne) > pg(na) — pa(na).

Since B < B, we have uj(00) = pz(09) = 0, we find pg(na) = pz(na) for any finite set
A. Yet, the space of functions n4 spans all measurable functions, so that 0 and s
coincide. O

The classification when [ > (. is more interesting. The space of infinite-volume mea-
sures is a simplex.

Theorem 6.9 (Aizenman,Higushi [Aiz80, Hig81|, recent proof in [CV10]). Fiz 8 > (..
The only two extremal Gibbs measures are pjy and fug.
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This result is no longer true in higher dimensions: non translational-invariant Gibbs
measures can be constructed using 3D Dobrushin domains [Dob72|. For instance, one
can consider boxes with + boundary conditions on the upper half-space and — boundary
conditions on the lower half-space. These boundary conditions imply the existence of a
surface between + and —. In dimensions 3 and higher and at very high [, this surface
does not fluctuate much and it is possible to prove that the infinite measure constructed
by nested sequences of such boxes is not translationally invariant in the vertical direction.

The classification at criticality is in general much more difficult. For the Ising model,
this is not the case and it turns out that there exists a unique infinite-volume measure at
criticality. Since this fact plays a role in the proof of conformal invariance, we now sketch
an elementary proof due to W. Werner (the complete proof can be found in [Wer09b]).

Proposition 6.10. There exists a unique infinite-volume FK-Ising measure with param-
eter p. and there is almost surely no infinite cluster under this measure. Correspondingly,
there exists a unique infinite-volume spin Ising measure at f3..

Proof As described above, it is sufficient to prove that ¢) , = ¢, ,. First note that

there is no infinite cluster for ¢) , thanks to Proposition 3.18. Via the Edwards-Sokal

coupling, the infinite-volume Ising measure with free boundary conditions, denoted by ,ugc,
can be constructed by coloring clusters of the measure 9250 o+ Since there is no infinite
cluster, this measure is obviously symmetric by global exchange of +/—. In particular, the
argument of Proposition 3.18 can be applied to prove that there are neither + nor — infinite
clusters. Therefore, fixing a box, there exists a + star-connected circuit surrounding the
box with probability one (two vertices x and y are said to be star-connected if y is one of
the eight closest neighbors to x).

One can then argue that the configuration inside the box stochastically dominates
the Ising configuration for the infinite-volume measure with + boundary conditions (the
circuit of spin + behaves like + boundary conditions). Thus, u{% restricted to the box (in

fact to any box) stochastically dominates p; . It implies that ugc > ps . Since the other

inequality is obvious, u and fu5 are equal.

Via Edwards-Sokal’s couphng again, ¢ ;

.2 = ¢, 5 and there is no infinite cluster at
S
+

criticality. Moreover, py = ,uﬁc = pj, and there is a unique infinite-volume Ising measure
at criticality. 0

5 High and low temperature expansions and Kramers-
Wannier duality

5.1 The low temperature expansion

The low temperature expansion of the Ising model is a graphical representation on the dual
lattice. Fix a spin configuration o for the Ising model on G with + boundary conditions.
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The collection of contours of a spin configuration o is the set of interfaces (edges of the
dual graph) separating + and — clusters. In a collection of contours, an even number
of dual edges automatically emanates from each dual vertex. Reciprocally, any family of
dual edges with an even number of edges emanating from each dual vertex is the collection
of contours of exactly one spin configuration (since we fix + boundary conditions).

The interesting feature of the low temperature expansion is that properties of the
Ising model can be restated in terms of this graphical representation. We only give the
example of the partition function on GG but other quantities can be computed similarly.
Let g+ be the set of possible collections of contours, and let |w| be the number of edges
of a collection of contours w, then

ZE,G — 6,6’# edges in G* Z (€—2B)|w| . (65)

wEEG*

5.2 High temperature expansion

The high temperature expansion of the Ising model is a graphical representation on the
primal lattice itself. It is not a geometric representation since one cannot map a spin
configuration ¢ to a subset of configurations in the graphical representation, but a rather
convenient way to represent correlations between spins using statistics of contours. It is
based on the following identity:

v = cosh(B) + 0,0, sinh(B3) = cosh(B) [1 + tanh(B)c.0,] (6.6)

Proposition 6.11. Let G be a finite graph and a, b be two sites of G. At inverse tem-
perature 3 >0,

ZéiG — 2# vertices G COSh(ﬁ)# edges in G Z tanh(ﬁ)\w\ (67)

wESG

f [O’ o ] _ Zwe&'g(a,b) tanh(ﬁ)|w|
HpalOatt Yeg; tanh(B)l

(6.8)

where Eg (resp. Ea(a,b)) is the set of families of edges of G such that an even number of
edges emanates from each vertex (resp. except at a and b, where an odd number of edges
emanates).

The notation &g coincides with the definition £g+ in the low temperature expansion
for the dual lattice.
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Proof Let us start with the partition function (6.7). Let E be the set of edges of G.
We know

2o = ¥ I o

o [zyleE

cosh(B)# edeesimnG X" TT [1+ tanh(B)o,0,]

o [zyleE

cosh(B)# cdesin G [ tanh(B) [T o0y

o wck e=[zy]ew

cosh(g)# edees i & §™ tanh ()l Z [ .04

wcE e=[zy]ew

where we used (6.6) in the second equality. Notice that Y, [],-
if w is in &g, and 0 otherwise, hence proving (6.7).
Fix a,b e G. By definition,

vertices G
[y]ew T20y €quals 27#

f ZO' an-be_/BH(o.) Zo‘ O-ao-be_ﬁH(U)
Ng,G[O-an] = D o-BH(a) = i
ag IB7G

(6.9)

The second identity boils down to proving that the right hand terms of (6.8) and (6.9)
are equal, z.e.

Z O_ao_be—BH(a) — 2# vertices G COSh(ﬂ)# edges in G Z tanh(ﬁ)\w\ )
o we€q(a,b)

The first lines of the computation for the partition function are the same, and we end up
with:

Zaaabe‘ﬁH(”) = cosh(p)# cdeesin @ Z tanh(5) |°J| Za oy H 0.0y

wcE e=[zy]ew

_ 2# vertices G COSh(ﬂ)# edges in G Z tanh(ﬁ)M
we€q(a,b)

since ¥, 040y [Tec(uyjew 0x0y equals 2% vertices G if ) € £5(a, b), and 0 otherwise. O

The set &g is the set of collections of loops on G when forgetting the way we draw
loops (since some elements of &g, like a 'figure in eight’, can be decomposed into loops
in several ways), while £z(a,b) is the set of collections of loops on G together with one
curve from 0 to a.

Let us mention that the high-temperature expansion can be extended to other Ising
models. For instance, the partition function of the Ising model on (G,a,b) with free
boundary conditions conditioned on the event that a and b have the same spin is given
by

Zg:g = O vertices G COSh(B)# edges in G Z tanh(ﬁ)lwl. (610)
weEq(a,b)
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Figure 6.1: The possible collections of contours for + boundary conditions in the low-
temperature expansion do not contain edges between boundary sites of G. Therefore,
they correspond to collections of contours in £g+, which are exactly the collection of
contours involved in the high-temperature expansion of the Ising model on G* with free
boundary conditions.

5.3 Two applications: Kramers-Wannier duality and Peierls’s ar-
gument

Proposition 6.12 (Kramers-Wannier duality). Let 8 > 0 and define 8* € (0,00) such
that tanh(5*) = €728, then for every graph G,

; * . * d 5, G*
2 # vertices G COSh(ﬁ*) # edges in G Zg,G _ (6’8)# edges in

Zh g (6.11)
Proof When writing the contour of connected components for Ising with + boundary
conditions, the only edges of IL* used are those of G*. Indeed, edges between boundary
sites cannot be present since boundary spins are +. Thus, the right and left hand side terms
of (6.11) both correspond to the sum over Eg+ of (e~2#)ll or equivalently of tanh(3*)l,
implying the equality (see Fig. 6.1). ]

We are now in a position to expose Kramers-Wannier argumentation. Physicists expect
the partition function to exhibit only one singularity, localized at the critical point. If
Br # B., there would be at least two singularities, at S. and [, thanks to the previous
relation between partitions functions at these two temperatures. Thus, 3. should be equal
to 87, which implies 3, = %1n(1+\/§). Of course, the assumption that there exists a unique
singularity is hard to justify.

For completeness, let us mention Peierls’s argument, which rigorously proves that
Be € (0,00). It harnesses the low and high temperature expansions and is of great historical
significance. Interestingly, this argument has been generalized to many models, including
the random-cluster model. In particular, the (omitted) proof that the critical value of
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the random-cluster model p.(q) is not equal to 0 or 1 (Theorem 3.16) follows a similar
argument.

Proposition 6.13 (Peierls argument [Pei36]). The critical inverse temperature B, on the
square lattice is strictly positive and finite.

Proof Let us prove that j. is finite. We wish to estimate u} ,[09] when § is very large.
Since

pscloo] =2p5cloo=1] -1,
it is sufficient to show that i [o9 = 1] < 1/2 uniformly in the graph G. The observation
is that {og = -1} is included in the event that there exists a circuit in the low-temperature
expansion surrounding 0. Thus,

—2B|w
ZwEEG*:'\/ surrounding 0 € Al

6_25|W|

whaloo=-1] <
57G[ ] ZWGEG*

-2 —2B|w
Z'y surrounding 0 € Bl ZWESG* -y € ok

6_2ﬁ|"-’|

ZWESG*

> e 20l < i nd"e 2 < 1/2

7 surrounding 0 n=1

IN

for  large enough. In the second line, we used the fact that

T el < F 2

wESG* N ngG*

and in the third the fact that the number of paths of length n surrounding the origin is
smaller than n4".

The inequality 0 < 5. can be obtained using the high-temperature expansion instead
of the low-temperature. O

5.4 Fermionic observable in Dobrushin domains

Let (€2, a,b) be a simply connected domain with two marked points on the boundary. Let
2 be the medial graph of )5 composed of all the vertices of Ly bordering a black face
associated to (15, see Fig 6.3. This definition is non-standard since we include medial
vertices not associated to edges of {25. Let as and bs be two vertices of 925 close to a and
b. We call the triplet (€23, as,bs) a spin-Dobrushin domain.

Let E(as, z5) = Eq,(as, 25) be the set of collections of contours on €25 composed of loops
and one interface starting at as and finishing at z5. Recall that there is an ambiguity in
the way loops are drawn. In order to solve this issue, every w € Eq,(as, 25) is associated
to a unique family of loops with one interface by forcing every loop and interface to take
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Figure 6.2: An example of a collection of contours in £(as, z5) on the lattice €),,.

a turn to the left whenever there is an ambiguity!. The unique interface from as to zs is
called v = y(w).

The winding Wr(z,z') of a curve I' between two sites z and z’ of the medial graph
is the total (signed) rotation (in radians) that the curve makes from z to z’. With these
notations, we can define the spin-Ising fermionic observable.

Definition 6.14. On a spin Dobrushin domain (3, as,bs), the spin-Ising fermionic ob-
servable at z5 € QF is defined by

Zweg(aa,za) e—%in(w)(a(;,z(;) (\/§ - 1)|w|
2w (ag,bs) e 7 Wa) (@5:09) (\/2 — 1 )lel

F957a5,65(z5) =

The complex modulus of the denominator of the fermionic observable is connected
to the partition function of a conditioned critical Ising model. Indeed, fix b5 € 0€5.
Even though &(as,bs) is not exactly a high-temperature expansion (since there are two
half-edges starting from as and bs respectively), it is in bijection with the set &£(a,b).
Therefore, (6.10) can be used to relate the denominator of the fermionic observable to the
partition function of the Ising model on the primal graph with free boundary conditions
conditioned on the fact that a and b have the same spin.

The weights of edges are critical (since v/2 —1 = e2%). Therefore, the Kramers-
Wannier duality has a enlightning interpretation here. The high-temperature expansion

!This arbitrary choice is physically irrelevant. We could have chosen any other rule.



CHAPTER 6. TWO-DIMENSIONAL ISING MODEL 135

can be thought of as the low-temperature expansion of an Ising model on the dual graph,
where the dual graph is constructed by adding one layer of dual vertices around 0G,
see Fig. 6.2. Now, the existence of an interface between as and bs is equivalent to the
existence of an interface between pluses and minuses in this new Ising model. Therefore,
it corresponds to a model with Dobrushin boundary conditions on the dual graph. This
fact is not surprising since the dual boundary conditions of the free boundary conditions
conditioned on o, = g, are the Dobrushin ones. More importantly, it suggests a connection
between the fermionic observable and the interface in Dobrushin domains.

Let us mention that the numerator of the observable has also an interpretation using
high-temperature expansions. In fact, it can be shown that it corresponds to the high-
temperature expansion of the partition function of an Ising model with a disorder operator
at zs. More precisely, this operator introduces a monodromy at zs. Every time one turns
around zs, the spins are reversed. Equivalently, it boils down to reverse the correlation
constants along an arbitrary simple curve from zs to the boundary of the domain.

© © S

Figure 6.3: A high temperature expansion of an Ising model on the primal lattice together
with the corresponding configuration on the dual lattice. The constraint that as is con-
nected to bs corresponds to the partition function of the Ising model with +/— boundary
conditions on the domain.



CHAPTER 6. TWO-DIMENSIONAL ISING MODEL 136

6 Potts models and random-cluster models

The Edwards-Sokal coupling is not specific to the Ising model. More generally, the
random-cluster with integer parameter ¢ > 2 can be coupled with the Potts model. The
Potts model with ¢ colors is a random g¢-coloring of a finite graph G. Let us restrict to
the free boundary conditions case. The energy of a configuration o is given by

Hyc(o) = =23 15—,

~y
and the probability at inverse temperature S by
e_ﬁH;,G(U)

S ¢ AL

where the summation is over any g-coloring of G.

Let ¢ > 2 and let G be a finite graph. Assume a configuration w of open and closed edges
on G is given. One can deduce a g-coloring o of the graph G by assigning independently
to each cluster of w a color among the ¢ colors, each with probability 1/q.

Proposition 6.15. Let p € (0,1) and G a finite graph. If the configuration w is dis-
tributed according to a random-cluster measure with parameters (p,q) and free boundary
conditions, then the coloring o is distributed according to a Potts measure with inverse
temperature 3 = —% In(1-p) and free boundary conditions.

Proof The proof of the Edwards-Sokal coupling works mutatis mutandis in this case.
a

The coupling has many important implications. For instance, it allows us to sam-
ple efficiently Potts configurations via algorithms on the random-cluster model such as
Swendsen-Wang [SW8T] (see also Section 8 of [Gri06] and references therein). As before,
we also obtain a dictionary between properties of Potts models and their random-cluster
representations. Let us recall that one of the principal motivations for geometric or graph-
ical representations is the obtention of additional correlations inequalities. They can take
different forms depending on the model under study. In our case, random-cluster measures
verify the FKG inequality while Potts models do not. In fact, there is no straightforward
notion of increasing events for Potts models and the equivalent of the spin-Ising FKG
inequality does not exist. This is one (among many others) reason which prevents math-
ematicians and physicists from understanding the Potts model in a satisfying fashion.

Potts models also exhibit a phase transition at an inverse temperature .(q). Below
this critical inverse temperature, there is a unique Gibbs measure, while above this inverse
temperature, there are multiple Gibbs measures. Theorem 4.1 has the following important
corollary:

Theorem 6.16. For g > 2, the critical inverse temperature of the q-color Potts model is
B.(q) = 3log(1+./q). In addition, correlations decays exponentially fast when S < 3. and
the surface tension is strictly positive when 3> (..



Chapter 7

Conformal invariance of the FK-Ising
and Ising models

Abstract: This section is devoted to the proof of conformal invariance of the FK-Ising
and Ising models. These two results are due to Smirnov and Chelkak-Smirnov. Proofs
are included for self-containedness and since techniques invoked in them are crucial in the
next chapters. The proofs are adapted from lecture notes written by the author and S.
Smirnov for the Clay Probability Summer School in Buzios, 2010 [DCS11].

There are many different ways to define conformal invariance of a model. A geometric
definition of conformal invariance could be that interfaces in the model are conformally
invariant. Alternatively, conformal invariance can also refer to the fact that relevant ob-
servables of the model are conformally covariant in the scaling limit. More precisely, that
a family of observables in discrete domains converge in the scaling-limit to a conformally
covariant family of functions.

Definition 7.1. A family of functions Fq : Q) - C indexed by simply-connected domains
(sometimes with marked points on the boundary) is conformally covariant if there exists
a > 0 such that for any domain Q and any conformal map v : Q — C (i.e. holomorphic
and one-to-one),

Fo(z) = ¢'(2)* Fyay(v(2))  for every z € Q.
If a =0, the family is said to be conformally invariant.

Note that an archetype of a conformally covariant family of functions is the solution
to boundary problems such as Dirichlet or Riemann problems.

A family of observables for random-cluster models were introduced in Chapter 5. In
fact, these observables are weakly discrete-holomorphic and it is reasonable to expect
that their scaling limits are holomorphic. The boundary conditions can be determined
and correspond to discrete Riemann-Hilbert boundary problems. It provides a good hint

137
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that the scaling-limit of the observable is conformally covariant. Unfortunately, weakly
discrete-holomorphic functions are not determined by their boundary conditions and it
is not possible at the moment to prove that parafermionic observables converge in the
scaling limit to a conformally covariant family of functions.

When ¢ =2 (the case of FK-Ising), the observable satisfies specific additional integra-
bility properties that allow us to compute it very explicitly. Shortly, the complex argument
of the edge-observable is determined since the spin ¢ equals 1/2 and the winding at an
edge takes values in a set of the form Wy + 2nZ. This additional information allowed
Smirnov to prove that the observables are s-holomorphic and converge to a conformally
covariant family of functions.

In this chapter, discrete Dobrushin domains are discretizations of simply connected
domains €2 with two marked points a and b on the boundary. Furthermore, we assume by
is the south-east corner of the black face associated to b.

Theorem 7.2 (Conformal invariance of FK-Ising, Smirnov [SmilOal). Let (2,a,b) be a
simply connected domain with two marked points on its boundary. Let Fs be the vertex
fermionic observable in (3, as,bs) defined by

Fy(v) - %ZF(;(@), (7.1)

e~v
where e ~v means that v is an endpoint of e. We have

1
—Fs5(:) - Vo'(-) when d—0 7.2
NGT; () () (7.2)
uniformly on any compact subset of ), where ¢ is any conformal map from 2 to the strip
R x (0,1) mapping a to —oco and b to ool.

The Ising model is also conformally invariant in this sense: the conformally covariant
observable is the fermionic observable introduced in Chapter 6. We also assume Dobrushin
domains are approximation of continuous ones, and that b; is the south-east corner of the
black face associated to b.

Theorem 7.3 (Conformal invariance of the Ising model, Chelkak-Smirnov [CS09]). Let
(2,a,b) be a simply connected domain with two marked points on its boundary, the bound-

ary is assumed to be smooth in a neighborhood of b. Let Fs be the fermionic spin observable
in (Qs,as5,bs), then

) = ) when 0 —
Fs(") oy When 80 (7.3)

uniformly on every compact subset of €2, where 1 is any conformal map from € to the
upper half-plane H, mapping a to oo and b to 0.

!The strip is two-ended: —oo (resp. oo) is the end on the left (resp. on the right).
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Before diving into the proof, let us mention that conformal invariance of these observ-
ables is sufficient to prove a much stronger form of conformal invariance, namely conformal
invariance of interfaces. This discussion is deferred to Chapter 11.

The proofs of conformal invariance of the FK-Ising (due to Smirnov) and Ising (due to
Chelkak-Smirnov) are presented in Sections 1 and 2 respectively. The arguments involved
in this proof will be useful in the next chapters. Let us mention that conformal invariance
of discrete models is known in a very few other cases (namely random-walks via Lévy’s
theorem, loop-erased random walks [LSWO04al, dimers [Ken00|, site-percolation on the
triangular lattice [SmiO1] and uniform-spaning trees [LSW04a]).

1 Convergence of the FK fermionic observable

In this section, fix a simply connected domain (€2, a,b) with two points on the boundary.
For § > 0, always consider a discrete FK Dobrushin domain (€23, as,bs) and the critical
FK-Ising model with Dobrushin boundary conditions on it. Since the domain is fixed, set
Fs = Fgg,%b&ps , for the FK fermionic observable.

The proof of convergence is in three steps:

e First, prove the s-holomorphicity of the observable.

e Second, prove the convergence of the function Hs naturally associated to the s-
holomorphic functions Fj5/v/20 (see Section 4 of Chapter 2).

e Third, prove that F5/v/25 converges to \/¢'.

1.1 s-holomorphicity of the (vertex) fermionic observable for FK-
Ising.

The two next lemmata deal with the edge fermionic observable. They are the key steps
of the proof of the s-holomorphicity of the vertex fermionic observable.

Lemma 7.4. For an edge e € 23, F5(e) belongs to {(e).

Proof The winding at an edge e can only take its value in the set W +27Z where W is
the winding at e of an arbitrary interface passing through e. Therefore, the winding weight
involved in the definition of Fs(e) is always proportional to €"/2 with a real coefficient,
ergo Fy(e) is proportional to e"/2. In any FK Dobrushin domain, b; is the south-east
corner and the last edge is thus going to the right. Therefore ¢?"/2 belongs to £(e) for
any e and so does Fj(e). O

Even though the proof is finished, we make a short parenthesis: the definition of
s-holomorphicity is not rotationally invariant, nor is the definition of FK Dobrushin do-
mains, since the medial edge pointing to bs has to be oriented south-east. The latter
condition has been introduced in such a way that this lemma holds true. Even though
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this condition seems arbitrary, it has no influence on the convergence result, meaning that
one could perform a (slightly modified) proof with another orientation.
Proposition 5.8 implies the following result:

Lemma 7.5. Consider a medial vertex v in 25 N 39;. We have
F(;(N) + F(S(S) = F(;(E) + Fg(W)

where N, E, S and W are the adjacent edges indexed in clockwise order.

Proof Since o = 1/2, F is the complex conjugate of F and the lemma follows from
(5.7). O

We are now in a position to prove s-holomorphicity
Proposition 7.6. The vertex fermionic observable Fy is s-holomorphic.

Recall that the FK fermionic observable is defined on medial edges as well as on medial
vertices. Convergence of the observable means convergence of the vertex observable. The
edge observable is just a very convenient tool in the proof.

Proof The previous lemma and the definition of the vertex fermionic observable imply

1
Fg(v) = 5 ZF(;(@) = Fg(N) + F(;(S) = F(;(E) + F(;(W)
Using Lemma 7.4, F5(N) and Fj3(S) are orthogonal, so that F5(N) is the projection of
Fs(v) on ¢(N) (and similarly for other edges). Therefore, for a medial edge e = [zy],
Fs(e) is the projection of Fs(x) and Fj(y) with respect to £(e), which proves that the
vertex fermionic observable is s-holomorphic. O

The function Fjs/ V/26 is preholomorphic for every ¢ > 0. Moreover, Lemma 5.9 identi-
fies the boundary conditions of Fy/\/20 (its argument is determined) so that this function
solves a discrete Riemann-Hilbert boundary value problem. These problems are signifi-
cantly harder to handle than the Dirichlet problems. Therefore, it is more convenient to
work with a discrete analogue of Im ( [7[Fs(2)/ \/2_5]2dz), which should solve an approxi-
mate Dirichlet problem.

1.2 Convergence of (Hy)sso-

Since the FK fermionic observable Fs/v/26 is s-holomorphic, Theorem 2.18 defines a
function Hj.
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Figure 7.1: Two adjacent sites B and B’ on 0y, together with the notations used in the
proof of Lemma 7.8.

Corollary 7.7. Let A be the black face (vertex of 2s) bordering as, see Fig. 5.1. There
exists a unique function Hs: Q505 — R such that

Hs(A) = 1 and
Hy(B) - H;(W) = |Puo[Fs@)][* = |Puo[Fs()]] (7.4)

for the edge e = [zy] of QF bordered by a black face B € Qs and a white face W e Q5.
Moreover, its restriction H* to Qs is subharmonic and its restriction Hj to € is super-
harmonic.

Let us start with two lemmata addressing the question of boundary conditions for H.

Lemma 7.8. The function Hj is equal to 1 on the arc Oy, Hf is equal to 0 on the arc

*
.

Proof We first prove that H} is constant on dy,. Let B and B’ be two adjacent consec-
utive sites of dy,. They are both adjacent to the same dual vertex W e 5, see Fig. 7.1.
Let e (resp. €’) be the edge of the medial lattice between W and B (resp. B’). We deduce

H3(B) - Hy (B') = |F5(e)l” = [Fs(e')[* = 0 (7.5)

The second equality is due to |Fs(e)| = ?fgb];’d(W & 04) (Lemma 5.9). Hence, H; is
§:Ps
constant along the arc. Since Hj(A) = 1, the result follows readily.
Similarly, Hy is constant on the arc 9;,. Moreover, the dual white face A* € 9,

bordering a;s (see Fig. 5.1) satisfies
H{(A*) = H3(A)-|Fs(ed)l’ = 1-1 =0 (7.6)

(eq necessarily belongs to ). Therefore Hy =0 on 0. O
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Lemma 7.9. The function H} converges to 0 on the arc Og, uniformly away from a and
b, Hy converges to 1 on the arc 0y, uniformly away from a and b.

Proof Once again, we prove the result for Hj, the same reasoning then holds for Hj.
Let B be a site of d,, at distance r of 0y, (and therefore at graph distance r/d of Oy, in
Qs). Let W be an adjacent site of B on 0%,. Lemma 7.8 implies H3(W) = 0. From the
definition of Hg, we find

H3(B) = H;(W) +|Puo[Fs()]]* = [P [Fs(e)]] = 65" (eey)?

Qs,Psd

Note that e € v if and only if B is connected to the 'wired arc’ 9y,. Therefore, ¢a5 s (e €7)
is equal to the probability that there exists an open path from B to 0y,. Since the boundary
conditions on d,, are free, the comparison between boundary conditions shows that the
latter probability is smaller than the probability that there exists a path from B to 0Us
in the box Us = (B + [-r,7]?) nLs with wired boundary conditions. Therefore,

° CL 2
H3(B) = o3y (e€1)? < oy, (B < 0Us)’.
Proposition 6.10 implies that the right hand side converges to 0 (there is no infinite cluster
for ¢;Sd72), which gives a uniform bound for B away from a and b. O

The two previous lemmata assert that the boundary conditions for Hj and Hj are
roughly 0 on the arc d,, and 1 on the arc d,. Moreover, Hy and Hj are almost harmonic.
This should imply that (Hs)ss0 converges to the solution of the Dirichlet problem, which
is the subject of the next proposition.

Proposition 7.10. Let (2,a,b) be a simply connected domain with two points on the
boundary, then (Hg)sso converges to Im(¢) uniformly on any compact subsets of ) when
d goes to 0, where ¢ is any conformal map from Q to T =R x (0,1) sending a to —oo and
b to oo.

Before starting, remark that Im(¢) is the solution of the Dirichlet problem on (£2, a,b)
with boundary conditions 1 on 0, and 0 on d,.

Proof From Corollary 7.7, Hy is subharmonic, let h§ be the preharmonic function with
same boundary conditions as H§ on d€)5. Note that Hj < h§. Similarly, h$ is defined to
be the preharmonic function with same boundary conditions as Hj on 0€2;. If K c {2 is
fixed, where K is compact, let b; € K5 and w; € K; any neighbor of b5, we have

h(ws) < Hi(ws) < Hi(bs) < hy(by). (7.7)

Using Lemmata 7.8 and 7.9, boundary conditions for H; (and therefore ) are uniformly
converging to 0 on J,, and 1 on 0, away from a and b. Moreover, |h('5| is bounded
by 1 everywhere. This is sufficient to apply Theorem 2.8: h§ converges to Im(¢) on any
compact subset of {2 when 4 goes to 0. The same reasoning applies to h3. The convergence
for Hy and Hy follows easily since they are sandwiched between h§ and hj. O
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1.3 Convergence of FK fermionic observables (Fs5/\/20)ss0-

This section contains the proof of Theorem 7.2. The strategy is straightforward:
(Fs5/\/20)ss0 is proved to be a precompact family for the uniform convergence on compact
subsets of {2. Then, the possible sub-sequential limits are identified using Hj.

Proof of Theorem 7.2 First assume that the precompactness of the family (Fj/ V26 )§50
has been proved. Let (Fj,/\/20,)neny be a convergent subsequence and denote its limit
by f. Note that f is holomorphic as limit of preholomorphic functions. For two points
x,y € ), we have:

i, () - Hs, () = 51 ( [* P2 (2)az)

(for simplicity, also denote the closest points of z,y in Qs by x,y). On the one hand, the
convergence of (Fj, /v/20, )nen being uniform on any compact subset of €2, the right hand
side converges to Im ( [ (z)de). On the other hand, the left hand side converges to
Im(¢p(y) —¢(x)). Since both quantities are holomorphic functions of y, there exists C' e R
such that ¢(y) — ¢(z) = C' + [V f(2)2dz for every z,y € Q. Therefore f equals /¢'. Since
this is true for any convergent subsequence, the result follows.

Therefore, the proof boils down to the precompactness of (Fs/\/26)550. We will use
the second criterion in Proposition 2.6. Note that it is sufficient to prove this result for
squares ) c 2 such that a bigger square 9Q) (with same center) is contained in .

Fix 6 > 0. When jumping diagonally over a medial vertex v, the function Hs changes
by Re(FZ(v)) or Im(F2?(v)) depending on the direction, so that

2 L[] o
Y RNV = 6 T V@) + 8 Y [VH; () (738)
veQy zeQs zeQy
where VH;(z) = (Hy(z +0) — Hy(z), H}(x +1i0) — Hy(z)), and VHy is defined similarly
for Hy. It follows that it is enough to prove uniform boundedness of the right hand side
in (7.8). We only treat the sum involving H}, the other sum can be handled similarly.
Write Hj = S5 + Rs where S5 is an harmonic function with same boundary conditions
on 09Q); as H;. Note that Rs <0 is automatically subharmonic. In order to prove that
the sum of |[VHy| on (s is bounded by C/§, we deal separately with [V Ss| and |V Rs|.
First,
C C C.
3 |vSs(z)] < 5—21 : 6’25( sup |S(;(x)|) < 73 ( sup |Hg(x)|) < 74,
T€Qs edQs z€9Qs
where in the first inequality we used Proposition 2.5 and the maximum principle for Sy,
and the second the fact that Ss and H; share the same boundary conditions on 9¢)s. The
last inequality comes from the fact that Hj converges, hence remains bounded uniformly
in 9.
Second, recall that Ggg, (-, y) is the Green function in 9Q)s5 with singularity at y. Since
Rs equals 0 on the boundary, Proposition 2.9 implies

R(;(SU) = Z AR5(y)G9Q5(Iay)7 (7‘9)

ye9Qs
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thus giving

VRg(l’) = Z ARé(y)vagQa (xay)
y€9Qs

Therefore,

Z ‘VR(;(J?)‘ = Z ‘ Z AR5(y)va9Q5(x7y)‘

zeQs zeQs  ye9IQs
y€9Q 5 zeQs
< > ARs(y) Cs6 Y. Gog,(x,y)
ye9Q s zeQs
= G50 ). > ARs(y)Gog,(z,y)
2€Qs ye9Qs
= C56 Y Rs(z) = Cg/d
z€Qs

The second line uses the fact that ARs > 0, the third Proposition 2.10, the fifth Proposition
2.9 again, and the last one the fact that ()5 contains of order 1/§? sites and the fact that
Rs is bounded uniformly in § (since Hs and Sj are).

Thus, 63 ,.q, |VH;| is uniformly bounded. Since the same result holds for Hy,
(F5/\/26)550 is precompact on @ (and more generally on any compact subset of ) and
the proof is completed. 0

2 Convergence of the spin fermionic observable

We now turn to the proof of convergence for the spin fermionic observable. Fix a simply
connected domain (£2,a,b) with two points on the boundary. For § > 0, always consider
the spin fermionic observable on the discrete spin Dobrushin domain (€23, as,bs). Since
the domain is fixed, we set Fs = Fgg,%’bé. We follow the same three steps as before,
beginning with the s-holomorphicity. The other two steps are only sketched, since they
are more technical than in the FK-Ising case, see [CS09].

Proposition 7.11. For ¢ >0, Fs is s-holomorphic on €.

Proof Let z,y two adjacent medial vertices connected by the edge e = [zy]. Let v be
the vertex of Qs bordering the (medial) edge e. As before, set x, (resp. w,) for the
contribution of w to Fs(x) (resp. F3(y)). We wish to prove that

> Py (@) = 3 Puey(y)- (7.10)

Note that the curve v(w) finishes at x, or at y, so that w cannot contribute to Fs(z)
and Fs(y) at the same time. Thus, it is sufficient to partition the set of configurations
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Figure 7.2: The different possible cases in the proof of Proposition 7.11: w is depicted at
the top, and w’ at the bottom.

into pairs of configurations (w,w’), one contributing to y, the other one to x, such that
PZ(e)(l’w) = Pé(e) (yw’)'

Without loss of generality, assume that e is pointing south-east, thus ¢(e) = R (other
cases can be done similarly). First note that

Ty = %e—i%[Ww(w)(aav»’va)—Wﬁ,f(thths)](\/5_1)|w|7

where y(w) is the interface in the configuration w, 4’ is any curve from as to bs (recall
that the W,/ (as,bs) does not depend on '), and Z is a normalizing real number not
depending on the configuration. There are six types of pairs that one can create, see
Fig. 7.2 depicting the four main cases. Case 1 corresponds to the case where the interface
reaches x or y and then extends by one step to reach the other vertex. In Case 2, ~
reaches v before z and y, and makes an additional step to z or y. In Case 3, v reaches x
or y and sees a loop preventing it from being extended to the other vertex (in contrast to
Case 1). In Case 4, v reaches = or y, then goes away from v and comes back to the other
vertex. Recall that the curve must always go to the left: in cases 1(a), 1(b), and 2 there
can be a loop or even the past of v passing through v. However, this does not change the
computation.

We obtain the following table for x,, and vy, (we always express y, in terms of z,).
Moreover, one can compute the argument modulo 7 of contributions z,, since the orien-
tation of e is known. When upon projecting on R, the result follows.
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configuration Case 1(a) Case 1(b) | Case 2 | Case 3(a) | Case 3(b) | Case 4
Ty Ty Ty Ty (B T Ty
Yo (V2 - )&/, el;fi‘ll v, | ey, | edimliy, | eBimly | e binldy
arg. x, mod 7 5m/8 /8 /8 57/8 5 /8 5m/8
O

Proof of Theorem 7.3. The proof is roughly sketched in the following, we refer to
[CS09] for a complete proof.

Since Fj is s-harmonic, one can define the observable Hy as in Theorem 2.18, with the
requirement that it is equal to 0 on the white face adjacent to b. Then, Hy is constant
equal to 0 on the boundary as in the FK-Ising case. Note that Hs should not converge to
0, even if boundary conditions are 0 away from a. Firstly, HJ is superharmonic and not
harmonic, even though it is expected to be almost harmonic (away from a, H; and Hj
are close), it will not be true near a. Actually, Hs should not remain bounded around a.

The main difference compared to the previous section is indeed the unboundedness of
Hs near as which prevents us from the immediate use of Proposition 2.6. It is actually
possible to prove that away from a, Hs remains bounded, see [CS09]. This uses more
sophisticated tools, among which the 'boundary modification trick’ (see Chapter 9 for a
quick description in the FK-Ising case [DCHN10], and [CS09] for the Ising original case).
As before, boundedness implies precompactness (and thus boundedness) of (Fs)s.0 away
from a via Proposition 2.6. Since Hs can be expressed in terms of Fjy, it is easy to deduce
that Hjy is also precompact.

Now consider a convergent subsequence ( f5,, Hs, ) converging to (f, H). One can check
that H is equal to 0 on 0Q \ {a}. Moreover, the fact that Hy equals 0 on the boundary
and is superharmonic implies that Hy is larger or equal to 0 everywhere, implying H >0
in €2. This property of harmonic functions in a domain almost determines them. There is
only a one parameter family of positive harmonic functions equal to 0 on the boundary.
These functions are exactly the imaginary part of conformal maps from €2 to the upper
half-plane H mapping a to co. We can further assume that b is mapped to 0, since we are
interested only in the imaginary part of these functions.

Fix one conformal map v from €2 to H, mapping a to oo and b to 0. There exists A >0
such that H = \Imt). As in the case of the FK-Ising, one can prove that Im (fz f2) =H,
implying that f2 = \)’. Since f(b) =1 (it is obvious from the definition that Fs(bs) = 1),
A equals w';(m In conclusion, f(z) =+/¥'(2)/¢'(b) for every z € Q.

Note that some regularity hypothesis on the boundary near b are needed to ensure
that the sequence (fs, , Hs, ) also converges near b. This is the reason for assuming that
the boundary near b is smooth. We also mention that there is no normalization here. The
normalization 'from the point of view of b" was already present in the definition of the
observable. O



Chapter 8

The fermionic observable away from
the critical point

Abstract: The FK fermionic observable (case ¢ = 2) is studied away from the self-
dual point. An alternative derivation of the fact that the self-dual and critical points
coincide is obtained, which implies that the critical inverse temperature of the Ising model
equals %log(l ++/2). Moreover, the correlation length of the model is related to the large
deviation behavior of a certain massive random walk (thus confirming an observation by
Messikh [Mes06]), which allows us to compute it explicitly. This chapter is inspired by
the article Smirnov’s fermionic observable away from the critical point [BDC11], written
with Vincent Beffara and published in Annals of probabilities.

The problem of identifying the critical value of the Ising model is more than fifty years
old. The reader is referred to Chapter 6 for details. Summarizing, Kramers and Wannier
identified (without proof) the critical temperature where a phase transition occurs, sep-
arating an ordered from a disordered phase, using planar duality [KW4la, KW41b|. In
1944, Kaufman and Onsager [KO50| computed the free energy of the model, paving the
way to an analytic derivation of its critical temperature. In 1987, Aizenman, Barsky and
Fernandez [ABF87]| found a computation of the critical temperature based on differential
inequalities. Recently, a determination of the critical value of the FK-Ising model provides
yet another proof of this result, see Chapter 4. All of these strategies are quite involved,
and the first goal of this chapter is to propose an alternative method, relying only on
Smirnov’s fermionic observable:

Theorem 8.1. The critical inverse temperature of the Ising model on the square lattice
772 is equal to

,@czém(uﬁ).

Beyond the determination of the critical inverse temperature, physicists and mathe-
maticians are interested in estimates for the correlation between two spins, ug[o(a)o(b)].

147
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McCoy and Wu [MWT73| derived a closed formula for the two-point function, and an
asymptotic analysis shows that it decays exponentially fast when § < .. In addition to
this, it was noticed by Messikh [Mes06| that the rate of decay is connected to large devi-
ations estimates for the simple random walk. This chapter presents a direct derivation of
this link, which provides a quick proof of the following theorem:

Theorem 8.2. Let 3 < 5. and let g denote the (unique) infinite-volume Ising measure
at inverse temperature (3; fix a = (ay,az) € L. Then,

1
lim ——In (ug[o(0)o(na)]) = ajarcsinh sa; + agarcsinh sas,
n—oo n

where s solves the equation

V1 +(sa1)%+/1+ (saz)? =sinh 243 +sinh ™ 23.

Instead of working with the Ising model, it is once again more convenient to deal
with its random-cluster representation. The determination of 3. being equivalent to the
determination of the critical point p. for the FK-Ising, we aim for the latter.

The idea of the argument is the following. Below the self-dual point, the observable
can be defined but discrete holomorphicity fails and the observable decays exponentially
fast in the distance to the wired boundary. Along the free boundary, the modulus of the
observable can be written exactly as a connection probability, so in the p < psg regime
the two-point function is exponentially small as well, and that implies that the system is
in the subcritical regime and that a dual cluster exists. These two properties show that
p < p. <p* and Theorem 8.1 follows.

In fact, the rate of exponential decay (and therefore Theorem 8.2) can be derived
by comparing the observable to the Green function of a massive random walk (Proposi-
tion 8.7); the key ingredient is the observation that the observable is massive harmonic
in the bulk for p < psg. The correspondence between the two-point function of the Ising
model and that of the massive random walk was previously noticed by Messikh [Mes06].

Section 1 contains the proof of Theorem 8.1: it is shown that the observable decays
exponentially fast. Section 2 is devoted to a refinement of estimates on the observable,
which leads to the proof of Theorem 8.2.

In this chapter, rotate the lattice by an angle pi/4 and fix ¢ =2 and drop it
from the notations.

1 Proof of Theorem 8.1

The proof consists of three steps:

e We first prove using Proposition 5.8 and Lemma 7.4 that the observable decays
exponentially fast when p < py in a well chosen Dobrushin domain (namely a strip
with free boundary conditions on the top and wired boundary conditions on the
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bottom). Lemma 5.9 then implies that the probability that a point on the top of
the strip is connected to the bottom decays exponentially fast in the height of the
strip.

e We derive exponential decay of the connectivity function for the infinite-volume
measure with free boundary conditions from the first part.

e Finally, we show that exponential decay implies that the random-cluster model is
subcritical when p < p,g, and that its dual is supercritical. This last step concludes
the proof of Theorem 8.1 and is classical.

In the proof, points are identified with their complex coordinates.

Step 1: Exponential decay in the strip. Let p < p,q and consider the random-cluster
model on the strip S of height ¢ > 0 with wired boundary conditions on the bottom and
free boundary conditions on the top. Define e, and eg,; to be the north-west-pointing
sides of the diamonds associated to the points ik and i(k + 1), respectively. Label some
of the edges around these two diamonds as x, 2/, ", y and 3’ as shown in Figure 8.1.

\f
S

CW.

Figure 8.1: Left: The labelling of edges around e used in Step 1. Right: A dual circuit
surrounding an open path in the box [-as,as]?. Conditioning on to the most exterior
such circuit gives no information on the state of the edges inside it.

Proposition 5.8 and Lemma 7.4 have a very important consequence: around a vertex v,
the value of the observable on one edge can be expressed in terms of its values on only two
other edges. This can be done by seeing the relation given by Proposition 5.8 as a linear
relation between four vectors in the plane R?, and applying an orthogonal projection to
a line orthogonal to one of them (which can be chosen using Lemma 7.4). One then gets
a linear relation between three real numbers, but using Lemma 7.4 “in reverse” shows
that this is enough to determine any of the corresponding three (complex) values of the
observable given the other two.

For instance, (5.6) can be projected around v; orthogonally to F'(y), so that a relation
is obtained between projections of F(z), F(z') and F(egs1). Moreover, the complex
argument (modulo 7) of F'is known (Lemma 7.4) for each edge so that the relation between
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projections can be written as a relation between F(x), F(x') and F(ep,1) themselves.
This leads to

e AR (2) = cos(m/4 — ) F(eper) — cos(m/4 + a)e ™ 2F(2'). (8.1)
Applying the same reasoning around v, we obtain
e AR (2) = cos(m/4 + o) F(ey,) — cos(m/4 — a)e ™2F (z). (8.2)
The translation invariance implies
F(z") = F(2"). (8.3)
Moreover, symmetry with respect to the imaginary axis implies that
F(x) =™ F(z') = e F(2). (8.4)

Indeed, if for a configuration w, = belongs to v and the winding is equal to W, in the
reflected configuration w’, " belongs to y(w’) and the winding is equal to 7/2 - W.
Plugging (8.3) and (8.4) into (8.1) and (8.2) leads to

[1+cos(m/4+ a)]cos(m/4+ )
[1+ cos(m/4—a)]cos(n/4d - )

e cos(m/4 + «)

Flewa) =e cos(m/4 - )

F(x) =

F(ek)

Remember that a(p) > 0 since p < pyq, so that the multiplicative constant is less than 1.
Using Lemma 5.9 and the previous equality inductively, there exists ¢; = ¢;(p) < 1 such
that, for every ¢ >0,

¢;:;‘X’[]€ <> Z] = |F(€£)| = c{|F(€1)| < C{,

where ¢;:;3°° is the random cluster measure on the strip Z x [0, /] with edge-weight p, free
boundary conditions on the top and wired boundary conditions on the bottom. The last
inequality is due to the fact that the observable has complex modulus less than 1.

Step 2: Exponential decay for ¢) when p < p,;. Fix again p < py. Let N e N and
recall that ¢2, N = qbgz’[_ N2 Converges to the infinite-volume measure with free boundary
conditions ¢ when IV goes to infinity.

Consider a configuration in the box [-N, N]2, and let A« be the site of the cluster
of the origin which maximizes the ¢*°-norm max{|x;|, |z2|} (it could be equal to N). If
there is more than one such site, A,., is defined to be the greatest one in lexicographical
order. Assume that Ap,.x equals a = a; +1ias with as > |aq| (the other cases can be treated
the same way by symmetry, using the rotationally invariance of the lattice).

By definition, if A, equals a, a is connected to 0 in [-ag, az]?. In addition to this,
because of our choice of the free boundary conditions, there exists a dual circuit starting
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from a +1/2 in the dual of [-ay,as]? (which is the same as L* n[-as - 1/2, a9 + 1/2]?) and
surrounding both a and 0. Let I' be the outermost such dual circuit: we get

?),N(Amax = a) = Z gbg,N(a - O|F = 7)¢2,N(F = 7)a (85>
v

where the sum is over contours 7 in the dual of [-az,a3]? that surround both a and 0.

The event {I' = v} is measurable in terms of edges outside or on v. In addition,
conditioning on this event implies that the edges of v are dual-open. Therefore, from
the domain Markov property, the conditional distribution of the configuration inside = is
a random-cluster model with free boundary conditions. Comparison between boundary
conditions implies that the probability of {a < 0} conditionally on {T" = ~} is smaller
than the probability of {a <> 0} in the strip S,, with free boundary conditions on the top
and wired boundary conditions on the bottom. Hence, for any such =,

O n(ao 0T =) <65 = (aw0) = o5 >(a Z) < =

(observe that for the second measure, Z is wired, so that {a <> 0} and {a <> Z} have the
same probability). Plugging this into (8.5),

al/2 al/2
?),N(Amax:a)gzc‘lv 2,N(F:7)SC|1|/ )
vy

Fix n < N. Since ¢; < 1, the previous inequality implies there exist two constants
0 < ¢9,Cy < 00 such that

27]\,(0 < 72\ [-n,n]?) < Z ¢27N(Amax =a)< Z c‘lal/2 < Cye™2m,

ae[-N,N]2\[-n,n]? a¢[-n,n]?
Since the estimate is uniform in N, we deduce that

P9(0 < Z* N [-n,n]?) < Coe™". (8.6)

Step 3: Exploiting exponential decay. The inequality p. > psq follows from (8.6)
since exponential decay prevents the existence of an infinite cluster for ¢9 when p < py.
The reasoning to prove p, < pyq is standard. Let A,, be the event that the point (n,0)
is in an open circuit which surrounds the origin. Notice that this event is included in
the event that the point (n,0) is in a cluster of radius larger than n. For p < ps4, (8.6)
implies that the probability of A, decays exponentially fast. The Borel-Cantelli lemma
shows that there is almost surely only a finite number of values of n such that A,, occurs.
In other words, there is only a finite number of open circuits surrounding the origin,
which enforces the existence of an infinite dual cluster. It means that the dual model is
supercritical whenever p < pgy. Equivalently, the primal model is supercritical whenever

P > Psq, Which implies p. < psq. O
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2 Proof of Theorem 8.2

In this section, the correlation length is computed in all directions. In [Mes06], Messikh
noticed that this correlation length was connected to large deviations for random walks
and asked whether there exists a direct proof of the correspondence. Indeed, large devia-
tions results are easy to obtain for random walks, so that one could deduce Theorem 8.2
easily. In the following, we exhibit what we believe to be the first direct proof of this
result.

An equivalent way to deal with large deviations of the simple random walk is to study
the massive Green function G,,, defined in the bulk as

Gm(x,y) = E”[ Z m”]LX":y],

n>0

where [E? is the law of a simple random walk starting at x.

The correlation length of the two-dimensional Ising model is the same as the correlation
length for its random-cluster representation so that we will state the result in terms of the
random-cluster. The parameters p and « = a(p) are used without revealing the connection
with 8 in the notation.

Proposition 8.3. For p<ps and any a e,
1 0 .1
— lim —log ¢,(0 <> na) = - lim —log G,,,(0,na) (8.7)
n—oo n, n—>oo n,

where m = cos[2a(p)] — the value of a(p) is given by (5.5).

In [Mes06], the statement involves Laplace transforms yet it can be translated it into
the previous terms. Moreover, the mass is expressed in terms of 3, but it is elementary
to compute it in terms of a. Theorem 8.2 follows from this proposition by first relating
the two-point functions of the Ising and ¢ = 2 random-cluster models as was mentioned
earlier, and then deriving the asymptotics of the massive Green function explicitly — the
details can be found for instance in the proof of Proposition 8 in [Mes06].

Before delving into the actual proof, here is a short outline of the strategy. Exponential
decay in the strip was already shown: it was an essentially one-dimensional computation.
We now aim to refine it into a two-dimensional version for correlations between two points
0 and a in the bulk, and once again the observable is used to estimate them. The basic
step, namely obtaining local linear relations between the values of the observable, is the
same, although it is complicated by the lack of translation invariance. The point is that
the observable is massive harmonic when p # p,q (see Lemma 8.4 below). Since Gy, (-, -) is
massive harmonic in both variables away from the diagonal x = y, it is possible to compare
both quantities.

The main problem is that we are interested in correlations in the bulk. The observable
can be defined directly in the bulk (see below) but it provides only a lower bound on the
correlations. In order to obtain an upper bound, we have to introduce an “artificial”
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domain (that will be T'(a) below), which needs two features: the observable in it can be
well estimated, and at the same time correlations inside it have comparable probabilities
to correlations in the bulk. For the second one, it is equivalent to impose that the Wulff
shape centered at 0 and having a on its boundary is contained in the domain in the
neighborhood of a; from convexity, it is then natural to construct T'(a) as the whole plane
minus two wedges, one with vertex at 0 and the other with vertex at a.

The proof is rather technical since one needs to deal with the behavior of the observable
on the boundary of the domains. This was also an issue in Smirnov’s proof. At criticality,
the difficulty was overcome by working with the discrete primitive H of F2. Unfortunately,
there is no nice equivalent of H to work with away from criticality. The solution is to use
a representation of F' in terms of a massive random walk. This representation extends to
the boundary and allows us to control the behavior of F' everywhere.

Proof Let p < py. Without loss of generality, consider a = (aj,as) € L satisfying
as > ay > 0. In the proof, a site u € I is identified with the unique side e, of the associated
black diamond which points north-west. In other words F'(u) and {u € v} should be
understood as F'(e,) and {e, € v} — notice that this differs from the notation used in
[Smil0al.

The lower bound. Consider the observable F' in the bulk defined as follows: for every
edge e not equal to ey,

Fe) = g} (W01, ). (8.8)

where « is the unique loop passing through eg. Note that this definition is justified by
the fact that p is subcritical, and that it immediately implies that

(0« a) > |F(a)|. (8.9)

Note that F' is not well defined at eg. Indeed, ey can be thought of as the start of the
loop « or its end. In other words, F' is multi-valued at ey, with value 1 or -1.

Proposition 5.8 can be extended to this context following a very similar proof, but
taking into account that F' is multi-valued at ey. More precisely, let ey = xy. Around any
vertex v ¢ {x,y} the relation in Proposition 5.8 still holds; besides,

F(SE)+1=¢€e® [F(SW)+F(NE)] ifv=y
F(SW)+ F(NE)=e®[-1+ F(SE)] ifv=z

where the NE (resp. SE, SW) is the edge at v pointing to the north-east (resp. south-
east, south-west). In other words, the statement of Proposition 5.8 still formally holds if
the convention becomes F'(ey) = 1 when considering the relation around z, and F'(ey) = -1
when considering the relation around y.

One can see that Lemma 7.4 is still valid. In fact, the two lemmas imply that F' is
massive harmonic:
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Lemma 8.4. Let p < psg and consider the observable F' in the bulk. For any site X not
equal to 0, we have

cos 2
4

where W, S, E and N are the four neighbors of X.

AJF(X) = [F(W)+F(S)+F(E)+ F(N)]-F(X) = 0,

Proof Consider a site X inside the domain and recall that X is indentified with the
corresponding edge of the medial lattice pointing north-west. Index the edges around X
in the same way as in Case 1 of Figure 8.2. By considering the six equations corresponding
to vertices that end one of the edges z1, ..., 2 (being careful to identify the edges A, B,
C and D correctly for each of the vertices), the following linear system can be obtained:

F(X)+ F(y) = e [F(z1)+ F(a)]
Fly2) + F(a1) = e [F(x) + F(W)]
F(S)+ F(s2) = e [Flgs) + F(zs)]
F(zs) + F(zg) = € [F(ys) + F(X)]
F(E) + F(zs) = o [F(2)+ Fly)]
F(xg) + Fys) = e [F(xs)+ F(N)]

iR e™/4R
e IT/AR R

case 4 argument of F'

Figure 8.2: Indexation of the edges around vertices in the different cases.

Recall that by definition, F'(X) is real. For an edge e, denote by f(e) the projection
of F(e) on the line directed by its argument (R, e™/*R, iR and e~ "/4R). By projecting
orthogonally to the F'(y;), ¢ =1...6, the system becomes:

F(X) = cos(m/4+a)f(x1) cos(m/4-a)f(zs) (1)
f(xr) = cos(m/4+a)f(z) cos(m/4—a) f(W) (2
f(xs) = cos(m/4-a)f(S) —cos(m/d+a)f(z2) (3)
f(X) = cos(m/4+a)f(zs) cos(m/d-a)f(xs)  (4)
f(xa) = cos(n/4+a)f(E) cos(r/4-a)f(xs)  (5)
flze) = —cos(m/4-a)f(xs) cos(r/4+a)f(N)  (6)

By adding (2) to (3), (5) to (6) and (1) to (4), we find

+ + + + + +

fQzs)+ f(x1) = cos(m/d—a)[f(W)+[f(5)] (7)
fQae) + f(xa) = cos(m/d+a)[f(E)+ f(N)] (8)
2f(X) = cos(m/d+a)[f(xs) + f(a1)] +cos(m/4—a)[f(xe) + f(za)] (9)
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Plugging (7) and (8) into (9) leads to
2f(X) =cos(m/d+a)cos(m/d—a)[f(W)+ f(S)+ f(E)+ f(N)].

The edges X, ..., N are pointing in the same direction so the previous equality becomes
an equality with F' in place of f (use Lemma 7.4). A simple trigonometric identity then
leads to the claim. O

Define the Markov process with generator A,, which one can see either as a branching
process or as the random walk of a massive particle. We choose the latter interpretation
and write this process (X,,m,) where X, is a random walk with jump probabilities
defined in terms of A, — the proportionality between jump probabilities is the same as
the proportionality between coefficients — and m,, is the mass associated to this random
walk. The law of the random walk starting at x is denoted P*. Note that the mass of the
walk decays by a factor cos2a at each step.

Denote by 7 the hitting time of 0. The last lemma translates into the following formula
for any a and any t,

F(a) = E*[F(Xinr)Minr]- (8.10)
The sequence (F'(X;)my)r is obviously uniformly integrable, so that (8.10) can be im-
proved to
F(a) = E'[F(X,)m,]. (8.11)
Equations (8.9), (8.11) together with Lemma 8.5 below give

C
¢2(O g a) 2 HGCOSQQ(Oa CZ),

which implies the lower bound.

Lemma 8.5. There exists ¢ >0 such that, for every a in the upper-right quadrant,

Cc
‘E“[F(XT)mT]‘ 2 mGCOSZOl(()?a)'

Proof Recall that F'(X,) is equal to 1 or -1 depending on the last step the walk takes
before reaching 0. Let us rewrite E¢[ F'(X,)m.] as

E[m” Lix, -wor s3] —E[m” Lix, N or B}]-

Now, let A, be the line y = -z, and let T" be the time of the last visit of A, by the walk
before time 7 (set T = oo if it does not exist). On the event that X, ; = W or S, this time
is finite, and reflecting the part of the path between T" and 7 across A, produces a path
from a to 0 with X, ; = ¥ or N. This transformation is one-to-one, so summing over all
paths, we obtain

Ea[mT 1{XT,1=W or S}] - Ea[mT 1{XT,1=N or E}] = —Ea[mT 1{XT,1=N or E}l{T:oo}]

which in turn is equal to =E¢[m"1{7_«}]. General arguments of large deviation theory
imply that Ea[mfl{T:m}] > ﬁGwsga(O, a) for some universal constant c. O
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L (w)

case 3: vertical part of L™ (w) free arc of T(w)

case 4: site w

case 2: horizontal part of L™ (w)

case 1: interior of T'(w)

L~ wired arc L~ of T'(w)

Figure 8.3: The set T'(w). The different cases listed in the definition of the Laplacian are
pictured.

The upper bound. Assume that 0 is connected to a in the bulk. We first show how to
reduce the problem to estimations of correlations for points on the boundary of a domain.

For every u = u; +iug and v = v1 +ivy two sites of L, write u < v if u; < v1 and us < vs.
This relation is a partial ordering of L. Consider the following sets

L*(u) = {zeL:u<z} and L~ = {xelL:zx<0}

and
T(u) = L~ (L*(u)ul).

In the following, L*(u) and L~ will denote the interior boundaries of T'(u) near L*(u)
and IL~ respectively, see Figure 8.3. The measure with wired boundary conditions on L~
and free boundary conditions on L*(u) is denoted ¢r(y).

Assume that a is connected to 0 in the bulk. By conditioning on w which maximizes
the partial >-ordering in the cluster of 0 (it is the same reasoning as in Section 3), we
obtain the following:

Ph(a<0)< Y dr)(w < L7) < Cslal w>aII|}uE|l§C3\a| 1wy (w < L7) (8.12)
for c3, C3 large enough. The existence of c3 is given by the fact that the two-point function
decays exponentially fast: a priori estimates on the correlation length show that the
maximum above cannot be reached at any w which is much further away from the origin
than a, and even that the sum of the corresponding probabilities is actually of a smaller
order than the remaining terms. Summarizing, it is sufficient to estimate the probability
of the right-hand side of (8.12).

Observe that w is on the free arc of T'(w), so that, harnessing Lemma 5.9, we find

Or(w)(w < L7) = |F(w)], (8.13)
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where F' is the observable in the infinite Dobrushin domain 7T'(w) (the winding is fixed in
such a way that it equals 0 at e,,). Now, similarly to Lemma 8.4, F' satisfies local relations
in the domain 7'(w):

Lemma 8.6. The observable F' satisfies A F = 0 for every site not on the wired arc,
where the massive Laplacian A, on T'(w) is defined by the following relations: for all
g:T(w)~»R, (9+Asg)(X) is equal to:

Cosfa [9(W) +g(S) +g(E) +g(N)] inside the domain;
cos 2a cos(m/4 + «) . N
2(1+ COS(72T/4 ~ ) [g(W) +g(S)] + T C?S(/Z/f _)a)g(E) on the horizontal part of L*(w);
2(1 + cos(7r2/4— @) [g(W) +9(S)](+ /14+_CO§(77/4—04)9(N) on the vertical part of L*(w);
2L g(W) + g(9)] + "D 0(B) 4 (V)] at w,

4
with N, E, S and W being the four neighbors of X .

Proof When the site is inside the domain, the proof is the same as in Lemma 8.4. For
boundary sites, a similar computation can be done. For instance, consider Case 2 in
Fig. 8.2. Equations (3) and (7) in the proof of Lemma 8.4 are preserved. Furthermore,
Lemma 5.9 implies that

F(X) = f(21) = ¢r)(X < L7)

and similarly f(z4) = f(E) (where f is still as defined in the proof of Lemma 8.4).
Plugging all these equations together, we obtain the second equality. The other cases are
handled similarly. O

Now, we aim to use a representation with massive random walks similar to the proof
of the lower bound. One technical point is the fact that the mass at w is larger than 1.
This could a priori prevent (F'(X;)m;); from being uniformly integrable. Therefore, the
behavior at w needs to be treated separately. Denote by 7 the hitting time (for ¢ > 0)
of w, and by 7 the hitting time of L~. Since the masses are smaller than 1, excepted at
w, (F(X;)My)i<rar, is uniformly integrable and we can applying the stopping theorem to
obtain:

F(w) = E"[F(Xonr )Mran | = EY[F(X7 )My Ly o | + EY[F(X)m Lo, |
Since X, = w, the previous formula can be rewritten as

Ee[F(X,)m,1,.,]
- ]Ew(mn :H-’T1<T) '

F(w) = (8.14)

When w goes to infinity in a prescribed direction, [1 — E¥(m.,, 1,,<,)] converges to
the analytic function h:[0,1] - R, p» 1 -E¥(m,,) (since the function is translation-
invariant). The function A is not equal to 0 when p = 0, implying that it is equal to 0 for
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a discrete set P of points. In particular, for p ¢ P, the first term in the right hand side
stays bounded when w goes to infinity. Denoted by C, = Cy(p) such a bound. Recalling
that |F| <1 and that the mass is smaller than 1 except at w, (8.14) becomes

|F(w)] < C4E*[F (X )m, Lrr, ]| <E*[mrLrer, ] (8.15)
<Oy Z Ex[(COS QCY)T]qul 1{(Xt) avoids L+(w)}] <Cy Z Gcos%z(oa :E) (8'16>

where the last inequality is due to the release of the conditioning on avoiding L*(w).
Finally, it only remains to bound the right hand side. From (8.16), we deduce

|F(U})| < C5|w|Gcos2a(Ouw) (817)

where the existence of C is due to the exponential decay of Geos24(+,+) and the fact that
Geos20(0,2) < Geosaa(0,w) whenever w < x. We deduce from (8.12), (8.13) and (8.17)
that
$,(0 < a) < C3C5al? |H|1az< o G (0,w) < Cglal*G(0, a). (8.18)
wW>a,|w|eo <c5|aoo
Taking the logarithm, the claim is obtained for all p < psq not in the discrete set P. The
result follows for every p using the fact that the correlation length is increasing in p. ©



Chapter 9

Connection probabilities and RSW-type
bounds for the two-dimensional
FK-Ising and Ising models

Abstract: This chapter is devoted to bounds on crossing probabilities in the criti-
cal FK-Ising model. These bounds are uniform in the size of the rectangles and in the
boundary conditions, they are analogues for the FK-Ising model to the celebrated Russo-
Seymour-Welsh bounds for percolation [Rus78, SW78|. The chapter is inspired by the
article Connection probabilities and RSW-type bounds for the two-dimensional FK-Ising
model [DCHN10], written with Clément Hongler and Pierre Nolin, and published in Com-
munications in Pure and Applied mathematics.

Consider rectangles R of the form [0,n]x [0, m] for n,m > 0, and translations of them.
The event that there exists a wvertical crossing in R, i.e. an open path from the bottom
side [0,n] x {0} to the top side [0,n] x {m}, is denoted by C,(R). Our main result is the
following:

Theorem 9.1 (RSW-type crossing bounds). Let 0 < 8y < 5. There exist two constants
0<c.<ey <1 (depending only on By and Ba) such that for any rectangle R with side

lengths n and m € [fin, fon] (i.e. with aspect ratio bounded away from 0 and oo by [3
and f33), one has

c- < ¢§S(1,2,R(CU(R)) < G

for any boundary conditions &, where gzﬁf;sd o p denotes the random-cluster measure on R
with parameters (p,q) = (psa,2) and boundary conditions &.

Our proof relies mostly on Smirnov’s observable. More precisely, it is based on precise
estimates on connection probabilities for boundary vertices, they allow us to use a second-
moment method on the number of pairs of connected sites. In order to do that, the

159
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fermionic observable is used to reveal some harmonicity on the discrete level, which enables
us to express macroscopic quantities such as connection probabilities in terms of discrete
harmonic measures. We would like to stress that our argument remains completely in a
discrete setting, using essentially elementary combinatorial tools: in particular, it does
not make use of continuum limits [SmilOb].

Crossing bounds turned out to be instrumental in the study of the percolation model
at and near its phase transition — for instance to derive Kesten’s scaling relations [Kes87],
that link the main macroscopic observables, such as the density of the infinite cluster
and the characteristic length. These bounds are also useful in the study of variations of
percolation, in particular for models exhibiting a self-organized critical behavior. Theorem
9.1 is then of particular interest in the study of the FK-Ising model at and near criticality
(see Chapter 12 as well).

Theorem 9.1 also appears to be useful in enabling to transfer properties of the scaling
limit objects back to the discrete models. It is therefore expected to be helpful to prove the
existence of critical exponents, in particular of the arm exponents. Connections between
discrete models and their continuum counterparts usually involve decorrelation of different
scales, and thus use spatial independence between regions which are far enough from each
other. In the random cluster model, one usually addresses the lack of spatial independence
by successive conditionings, using repeatedly the spatial (or domain) Markov property of
random-cluster models. For this reason, proving bounds that are uniform in the boundary
conditions seems to be important. An example of application of this technique is given
in Subsection 3.1.

This theorem allows us to derive easily several noteworthy results. Among the con-
sequences, let us mention power law bounds for magnetization at criticality for the Ising
model, first established by Onsager in [Ons44|, tightness results for the interfaces coming
from the Aizenman-Burchard technology, and the value 1/2 of the one-arm half-plane
exponent — which describes both the asymptotic probability of large-distance connections
starting from a boundary point for the FK-Ising model, and the decay of boundary mag-
netization in the Ising model. Moreover, Theorem 9.1 is used in [LS10] to establish a
polynomial upper bound for the mixing time of the Glauber dynamics at criticality, and
in [CNO7|, such crossing bounds allowed the authors to construct sub-sequential scaling
limits for the spin field of the critical Ising model.

We would also like to mention that other proofs of Russo-Seymour-Welsh-type bounds
have already been proposed. In [CS09|, Chelkak and Smirnov give a direct and elegant
argument to explicitly compute certain crossing probabilities in the scaling limit, but their
argument only applies for some specific boundary conditions (alternatively wired and free
on the four sides). In [CNO7|, Camia and Newman also propose to obtain RSW as a
corollary of a recently announced result [CS09|: the convergence of the full collection of
interfaces for the Ising model to the conformal loop ensemble CLE(3). The interpretation
of CLE(3) in terms of the Brownian loop soup [Wer03] is also used. However, to the
author’s knowledge, the proofs of these two results are quite involved, and moreover,
the reasoning proposed only applies for the infinite-volume measure. In these two cases,
uniformity with respect to the boundary conditions is not addressed, and there does
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not seem to be an easy argument to avoid this difficulty. While weaker forms might be
sufficient for some applications, it seems however that this stronger form is needed in
many important cases, and that it considerably shortens several existing arguments.
Another application of Theorem 9.1 is crossing formulae for the critical Ising model.
Denote by flmm the event that there exists a circuit of pluses surrounding A,, in A,,.

Theorem 9.2 (circuits in annuli). There exists a constant ¢ >0 such that for all n,

MBC,An/QAn (ATL,QH) > C.

It is a good point to mention a related result. The high-temperature Ising model on
the triangular lattice is expected to have the same scaling limit as critical site-percolation
on the triangular lattice. The reason is that correlation between sites decays exponen-
tially fast, and each site has probability 1/2 to be either + or —. For instance, the
infinite temperature limit is exactly site-percolation. This observation makes the model
extremely interesting, since it provides a (possibly tractable) model for which universal-
ity in the temperature 7" > T, holds. Unfortunately, the mathematical understanding of
high-temperature Ising models remains fairly basic. We now prove, using techniques of
Chapter 4, that RSW-types estimates hold true for high-temperature Ising models on the
triangular lattice. This result should be useful in order to prove conformal invariance of
this regime as well.

Theorem 9.3. Let a > 1 and < .. There exist ¢ = ¢(a) >0 and K = K(«) >0 such
that for every n >0,

ME,R@,”(C’I(RMW)) > c (9.1)

uniformly in the boundary condition &, where, in the coordinate system (1,¢e/3),

Ronn = [0,an] x[0,n]
RE, . = [-Klogn,an+ Klogn] x [-K logn,n + K logn],

and Cy, is the existence of a path of adjacent pluses rossing the rectangle horizontally.

We mention that a slight modification of this result is proved (using different tech-
niques) in [HTZ10).

The chapter is organized as follows. In Section 1, the observable is compared to certain
harmonic measures, for which estimates can be proved. These estimates are central in
the proof of Theorem 9.1, which is performed in Section 2. Section 3 is devoted to several
consequences. Section 4 contains the proof of Theorems 9.2 and 9.3.

Since p = ps4(2) and ¢ = 2 are fixed in this chapter, they are dropped from the
notation. For technical considerations, all graphs are rotated by an 7/4-angle
in this chapter.
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1 Comparison to harmonic measures

In this section, we obtain a comparison result for the boundary values of the fermionic
observable F' introduced in terms of discrete harmonic measures. It will be used to obtain
all the quantitative estimates on the observable that are needed for the proof of Theorem
9.1.

1.1 Comparison principle

As in the previous chapters, let (€2, a,b) be a discrete Dobrushin domain, with free bound-
ary conditions on the arc d,;, and wired boundary conditions on the other arc dy,. Set
F' for the fermionic observable in this domain and H the imaginary part of the discrete
primitive of F2? (like in previous chapter). Recall that H, and H, are the restrictions of
H to black and white faces respectively.

For our estimates, the medial graph of our discrete domain is extended by adding two
extra layers of faces: one layer of white faces adjacent to the black faces of the wired arc,
and one layer of black faces adjacent to the white faces of the dual free arc. This extended
domain is denoted by Q..

Remark 9.4. Note that a small technicality arises when adding a new layer of faces:
some of these additional faces can overlap faces that were already here. For instance, if
the domain has a slit, the free and the wired arc are adjacent along this slit, and the extra
layer on the wired arc (resp. on the dual free arc) overlaps the dual free arc (resp. the
wired arc). As will be seen, H, is equal to 1 on the wired arc, and to 0 on the additional
layer along the dual free arc. One should thus remember in the following that the added
faces are considered as different from the original ones — it will always be clear from the
context which faces are considered.

For any given black face B, let us define (X%),,, to be the continuous-time random
walk on the black faces of €, starting at B, that jumps with rate 1 on adjacent black
faces, except for the black faces on the extra layer of black faces adjacent to the dual
free arc onto which it jumps with rate p := 2/(v/2 + 1). Similarly, let (X%),, denote
the continuous-time random walk on the white faces of Q. starting at a white face W
that jumps with rate 1 on adjacent white faces, except for the white faces on the extra
layer of white faces adjacent to the wired arc onto which it jumps with the same rate
p=2/(~/2+1) as previously.

For a black face B, let HM,(B) denote the probability that the random walk XZ hits
the wired arc from b to a before hitting the extra layer adjacent to the free arc. Similarly,
for W a white face, we denote by HM, (W) the probability that the random walk X!
hits the additional layer adjacent to the wired arc before hitting the free arc. Note that
there is no extra difficulty in defining these quantities for infinite discrete domains as well.

With these notations, we obtain the following result:

Proposition 9.5 (uniform comparability). Let (£2,a,b) be a discrete Dobrushin domain,
and let e be a medial edge of Oy, (thus adjacent to the free arc). Let B = B(e) be the black
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Figure 9.1: Extend (), by adding two extra layers of medial faces, and extend the functions
H, and H, there. Here is represented the extension along the dual free arc.

face bordered by e, and W =W (e) be a white face adjacent to B that does not belong to
the dual free arc. Then we have

VHM, (W) < |F(e)| < VHM,(B). (9.2)

Proof By (7.4) and the lines following (7.4), we have |F(e)|> = H(B) and H(W) =
|F'(e)]> = |F(e")|? <|F(e)]?, where ¢’ is the medial edge between B and W: it is therefore
sufficient to show that H(B) < HM,(B) and H(W) > HM,(W). We only prove that
H(B) <HM,(B), since the other case can be handled in the same way.

For this, we use a variation of a trick introduced in [CS09] and extend the function H
to the extra layer of black faces — added as explained above — by setting H to be equal
to 0 there. It is then sufficient to show that the restriction H, of H to the black faces of
(), is subharmonic for the Laplacian that is the generator of the random walk X,, since it
has the same boundary values as HM, (which is harmonic for this Laplacian). Inside the
domain, subharmonicity is given by Corollary 7.7, since there the Laplacian of X, is the
usual discrete Laplacian (associated with it is just a simple random walk). The only case
to check is when a face involved in the computation of the Laplacian belongs to one of
the extra layers. For the sake of simplicity, we study the case when only one face belongs
to these extra layers.

Denote by By, By, Bg and Bg the black faces adjacent to B, and assume that Bg is

on the extra layer (see Figure 9.1). The discrete Laplacian of X, at face B is denoted by
A,. We claim that

2++/2 2/2
6+5\/§[H.(BW)+H.(BN)+H.(BE)]+6+5\/§

For that, let us denote by ey, e, e3, e4 the four medial edges at the bottom vertex v between
B and Bg, in clockwise order, with e; and ey along B, and ez and e, along Bg (see Figure
9.1) — note that e3 and e4 are not edges of €2, but of L.

AJHJ(B) = Ho(Bs)- Ho(B)>0.  (9.3)
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Extend F to e3 and ey by requiring F'(e3) and F'(e1) to be orthogonal, as well as F'(ey)
and F(ez), and F(e1)+ F(e3) = F(ez)+ F(e4) to hold true. This defines these two values
uniquely: indeed, as noted before, F/(es) = e ™/*F(e;) on the boundary (since W, (eq, €1)
and W, (e, e2) are fixed, with W, (e, e2) = W, (eq,€1) + 7/2, and the curve cannot go
through one of these edges without going through the other one), which implies, after a
small calculation, that

2-V2 2-V2
2+/2 2+2
If H, denotes the function defined by H, = H, on B, By, By and By, and by

(B9 = P (e - 222

then H, satisfies the same relation (7.4) (definition of H) for e and ey, as inside the do-
main. Since the fermionic observable F' verifies the same local equations, the computation
performed in Proposition 2.19, Corollary 7.7 applies at B (with H instead of H), and we
deduce

F(ea)l = |(tan D) F(en)| = 22 = 22 (B).

H.(B), (9.4)

AHL(B) - i[ﬁ.(BW) + H.(By) + Ho(Bg) + Ha(Bs)] - Ha(B)>0.  (9.5)

Using the definition of H,, this inequality can be rewritten as

1 6 +5v/2
Z[H'(BW) + H,(By) + Ho(Bg)] - m

Now using that H.(Bg) =0, the claim (9.3) follows. O

H.(B) > 0. (9.6)

1.2 Estimates on harmonic measures

In the previous subsection, a comparison principle between the values of H near the
boundary is given, and the harmonic measures associated with two (almost simple) ran-
dom walks, on the two lattices composed of the black faces and of the white faces re-
spectively. In this subsection, we provide estimates for these two harmonic measures in
different domains needed for the proof of Theorem 9.1. We start with giving a lower
bound which is useful in the proof of the 1-point estimate.

Lemma 9.6. For >0 and n >0, let RY be
RY = [-Bn, Bn] x [0,2n].
Then there exists c1(f) >0 such that for any n > 1,

HM, (17,) > ) (9.7)

n2

in the Dobrushin domain (Rﬁ,u,u) (see Figure 9.2), for all x = (21,0) and u = (uq,2n)
such that |zq|,|ui| < Bnj2 (i.e. far enough from the corners), W, being any of the two
white faces that are adjacent to x and not on the dual free arc.
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Figure 9.2: Estimate of Lemma 9.6: the dashed line corresponds to the dual free arc.

Proof This proposition follows from standard results on simple random walks (gambler’s
ruin type estimates). For the sake of conciseness, a detailed proof is not provided. O

In the remaining part of this section, consider only Dobrushin domains (2, a,b) that
contain the origin on the free arc, and are subsets of the medial lattice H,, where H =
{(x1,22) € Z?,x5 > 0} denotes the upper half plane — in this case, € is said to be a
Dobrushin H-domain. For the following estimates on harmonic measures, the Dobrushin
domains that are considered can also be infinite. We are interested in the harmonic
measure of the wired arc seen from a given point: without loss of generality, this point is
assumed to be the origin. Let By be the corresponding black face of the medial lattice,
and Wy be an adjacent white face which is not on the free arc.

We first prove a lower bound on the harmonic measure. For that, introduce, for k € Z
and n > 0, the segments

(k) = {k}x[0,n] (= {(k,j):0<j<n}).

Lemma 9.7. There exists a constant co > 0 such that for any Dobrushin H-domain
(2,a,b), we have
HM, (W;) > % (9.8)

provided that, in ), the segment l;,(=k) disconnects from the origin the intersection of the
free arc with the upper half-plane (see Figure 9.3).

Proof The arc [x(—k) disconnects the origin from the part of the free arc that lies in
the upper half-plane, let us thus consider the connected component of Q \ I;(=k) that
contains the origin. In this new domain €y, if boundary conditions along I;(-k) are
free, the harmonic measure of the wired arc is smaller than the harmonic measure of the
wired arc in the original domain €2. On the other hand, the harmonic measure of the
wired arc in ) is larger than the harmonic measure of the wired arc in the slit domain
(H N Ig(=k), (~k,k),00), which has respectively wired and free boundary conditions to
the left and to the right of (=k, k) (see Figure 9.3). Estimating this harmonic measure is
straightforward, using the same arguments as before. ]
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Figure 9.3: The two domains involved in the proof of Lemma 9.7.

Upper bounds on the harmonic measures are now derived. Estimates of two different
types will be needed. The first one takes into account the distance between the origin and
the wired arc, while the second one requires the existence of a segment [,,(k) disconnecting
the wired arc from the origin (still inside the domain).

Lemma 9.8. There exist constants c3,cq4 > 0 such that for any Dobrushin H-domain

(Q7 a? b)?

e if d1(0) denotes the graph distance between the origin and the wired arc,

1
HM,(By) < c3——, 9.9
( 0) C3d1(0) ( )
e and if the segment l,,(k) disconnects the wired arc from the origin inside €2,
HM. (By) < c4—= (9.10)

K[>

Proof Let us first consider item (9.9). For d = d;(0), define the Dobrushin domain
(B4, (-d,0),(d,0)), where By is the set of sites in H at a graph distance at most d from
the origin (see Figure 9.4). The harmonic measure of the wired arc in (£2,a,b) is smaller
than the harmonic measure of the wired arc in this new domain By, and, as before, this
harmonic measure is easy to estimate.

Let us now turn to item (9.10). Since 1,,(k) disconnects the wired arc from the origin,
the harmonic measure of the wired arc is smaller than the harmonic measure of 1,(k)
inside €2, and this harmonic measure is smaller than it is in the domain H \ [,,(k) with
wired boundary conditions on the left side of [,,(k) — right side if k£ < 0 (see Figure 9.4).
Once again, the estimates are easy to perform in this domain. O

2 Proof of Theorem 9.1

We now prove our result, Theorem 9.1. The main step is to prove the uniform lower
bound for rectangles of bounded aspect ratio with free boundary conditions. We then use
monotonicity to compare boundary conditions and obtain the desired result. In the case
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Figure 9.4: The two different upper bounds (9.9) and (9.10) of Lemma 9.8.

of free boundary conditions, the proof relies on a second moment estimate on the number
N of pairs of vertices (z,u), on the top and bottom sides of the rectangle respectively,
that are connected by an open path.

The organization of this section follows the second-moment estimate strategy. In
Proposition 9.10, we first prove a lower bound on the probability of a connection from a
given site on the bottom side of a rectangle to a given site on the top side. This estimate
gives a lower bound on the expectation of N. Then, Proposition 9.11 provides an upper
bound on the probability that two points on the bottom side of a rectangle are connected
to the top side. This proposition is the core of the proof, and it provides the right bound
for the second moment of N. It allows us to conclude the section by using the second
moment estimate method, thus proving Theorem 9.1.

In this section, two main tools will be used: the domain Markov property, and proba-
bility estimates for connections between the wired arc and sites on the free arc. We first
explain how the previous estimates on harmonic measures can be used to derive estimates
on connection probabilities. The following lemma is instrumental in this approach.

Lemma 9.9. Let (2, a,b) be a Dobrushin domain. For any site x on the free arc of (2,

we have
VHM,(W,) < & (2 < wired arc) < /HM.(B,), (9.11)

where B, s the black face corresponding to x, and W, is any closest white face that is
not on the free arc.

Proof Since x is on the free boundary of €2, there exists a white face on the free arc of
), which is adjacent to B,: denote by e the edge between these faces. As noted before,
since the edge e is along the free arc, the winding W, (e,,e) of the exploration path ~ at
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e is constant, and depends only on the direction of e. This implies that

o' (eem)=1F(e)l.

In addition, e belongs to « if and only if x is connected to the wired arc, which implies
that [F(e)| is exactly equal to ¢&°(z <> wired arc). Proposition 9.5 thus implies the claim.
O

With this lemma at our disposal, the different estimates can be proved. Throughout
the proof, the notation ¢;(/3) will be used for constants that depend neither on n nor on
sites x, y or on boundary conditions. When they do not depend on 3, they are denoted
by ¢ (it is the case for the upper bounds). Recall the definition of Rj:

R? =[-Bn, Bn] x [0,2n]. (9.12)

Let 8, RS (resp. 8_R%) be the top side [-Bn, fn]x{2n} (resp. bottom side [-fn, Sn]x{0})
of the rectangle R, We begin with a lower bound on connection probabilities.

Proposition 9.10 (connection probability for one point on the bottom side). Let 5> 0,
there exists a constant c(f8) >0 such that for any n > 1,

o(p
¢%£¢n«+u)z-1;2 (9.13)
for all x = (21,0) € O_R5, w = (uy,2n) € 8, RS, satisfying |1, |uy| < Bn/2.

Proof The probability that x and u are connected in the rectangle with free boundary
conditions can be written as the probability that x is connected to the wired arc in
(RS, u,u) (where the wired arc consists of a single vertex). The previous lemma, together
with the estimate of Lemma 9.6, concludes the proof. O

We now study the probability that two boundary points on the bottom edge of RY
are connected to the top edge, with boundary conditions wired on the top side and free
on the other sides.

Proposition 9.11 (connection probability for two points on the bottom side). There
exists a constant ¢ > 0 (uniform in B,n) such that for any rectangle RS and any two
points x,y on the bottom side &Rﬁ,

C
NI

where a,, and b, denote respectively the top-left and top-right corners of the rectangle RS,

(9.14)

gbgg’b”(x, y < wired arc) <

The proof is based on the following lemma, which is a strong form of the so-called
half-plane one-arm probability estimate (see Subsection 3.1 for a further discussion of this
result). For 2 on the bottom side of RS and k > 1, denote by By (z) the box centered at
x with diameter k for the graph distance. The require lemma can be stated:
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7 26n 7

Figure 9.5: The Dobrushin domain (Rﬁ, Cn,dy), together with the exploration path up to
time 7.

Lemma 9.12. There ezists a constant c5 >0 (uniform in n,  and the choice of x) such
that for all k >0,

k
qbaR"g’b"(Bk(a:) < wired arc) < 05\/;. (9.15)

Proof Consider n,k, 3 > 0, and the box RS with one point = € O_R5. (9.15)) becomes
trivial if k£ > n, so we can assume that k < n. For any choice of 8’ > 3, the monotonicity
between boundary conditions implies that the probability that By (z) is connected to the
wired arc 9, RS in (R2,a,,by,) is smaller than the probability that By(xz) is connected to
the wired arc in the Dobrushin domain (Rg,7 Cn,dy), where ¢, and d,, are the bottom-left
and bottom-right corners of RY. From now on, replace 8 by 8+ 1, and consider the new
domain (Rﬁ, Cn,dy,). Notice that By is then included in RQ and that the right-most site
of B, is at a distance at least n from the wired arc.

Let T denote the hitting time — for the exploration path naturally parametrized by
the number of steps — of the set of medial edges bordering (the black faces corresponding
to) the sites of By (x); set T' = oo if the exploration path never reaches this set, so that By,
is connected to the wired arc if and only if T" < co.

Let z be the right-most site of the box Bg(x). Consider now the event {z <> wired arc}.
By conditioning on the curve up to time 7' (and on the event {Bj(z) < wired arc}), we
obtain

gbc"’d"(z < wired arc) = pertn []IT<<><> : ¢C"’dn(z < wired arc | [0, T])]

Ry R}, RS
n>dn T),d .
= ¢;£ [T coo - ¢A}/%(E\L[S7T] (z < wired arc)],

where the second inequality used the domain Markov property and the fact that it is
sufficient for z to be connected to the wired arc in the new domain (since it is then
automatically connected to the wired arc of the original domain).

On the one hand, since z is at a distance at least n from the wired arc (thanks to the
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Figure 9.6: This picture presents the different steps in the proof of Proposition 9.11: we
first (1) condition on [0, 7, ] and use the uniform estimate (9.9) of Lemma 9.8, then (2)
condition on [0, T}, ] and use the estimate (9.10) of Lemma 9.8, in order to (3) conclude
with Lemma 9.12.

new choice of ), Lemma 9.9 can be combined with Item (9.9) of Lemma 9.8 to obtain

c
¢ (2 o wired arc) < —=.
Rn n

On the other hand, if v(7") can be written as v(7') = z + (-r,7), with 0 < r < k, then
the arc z + I,(—r) disconnects the free arc from z in the domain Ri \ 4[0,T], while if
Y(T) = z+ (-r,2k—r), with k+1 <r < 2k, then the arc z+[,(-r) still disconnects the free
arc from z. Using once again Lemma 9.9, this time with Lemma 9.7, we obtain that a.s.

> G

N

This estimate being uniform in the realization of [0, T'], we obtain

<b'Y(T) ,dn

RO0T] (z < wired arc) >

a\s

“ ¢ (T < 00) < qbc" (7 < wired arc) < =

Vorad: v

which implies the desired claim (9.15)). O

Proof of Proposition 9.11 Let us take two sites x and y on O_RY. As in the previous
proof, the larger the (3, the larger the corresponding probability, S can thus be chosen in
such a way that there are no boundary effects. In order to prove the estimate, we express
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the event considered in terms of the exploration path ~. If x and y are connected to the
wired arc, v must go through two boundary edges which are adjacent to x and y, which
are denoted by e, and e,. Notice that e, has to be discovered by « before e, is.

Now, define T, to be the hitting time of e,, and Ty to be the hitting time of the
set of medial edges bordering (the black faces associated with) the sites of By (y), for
k < ko = |logsy |z — y|| — where |-] is the integer part of a real number. If the exploration
path does not cross this ball before hitting e,, set T, = co. With these definitions, the
probability that e, and e, are both on v can be expressed as

2%’17"(% y < wired arc) = ¢a"’b” (ez:ey€7) (9.16)
Z 9" (ey €7, Ty < 00, Ty < T = 00) (9.17)
= Z ¢a"’b” [I7,.,, <700 * Iy <00 - “’g’b”(ey ev[v[0,7:])], (9.18)

where the third equality is obtained by conditioning on the exploration path up to time
T,. Recall that e, belongs to v if and only if ¥ is connected to the wired arc. Moreover,
if {T}, =00}, y is at a distance at least 2* from the wired arc in RS~ v[0,T,]. Hence, the
domain Markov property, item (9.9) of Lemma 9.8 and Lemma 9.9 give that, on {7}, = oo},

a"’b”(ey e vv[0,T,]) = ¢™5" (y < wired arc) < a.s.

RB\'y 0,7T%] \/_

By plugging this uniform estimate into (9.18), and removing the condition on T} = oo, we
obtain

C3
G " (earey €7) < Z — Oy (Moo - 05" (T < 00 1[0, Ty ]) .
" k=0

where we conditioned on the path up to time T,;. Now, e, belongs to v if and only if
x is connected to the wired arc. Assuming {7},; < oo}, the vertical segment connecting
Y(Tks1) to Z — of length at most 2#+! — disconnects the wired arc from x in the domain
Rﬁ N[0, Tk41]. For k+ 1 < ko, this vertical segment is at distance at least %|x - y| from

x. Applying the domain Markov property and item (9.10) of Lemma 9.8, we deduce that,
for k+1 < ko, on {Tj41 < 0},

./2k+1

an,bn 'Y(Tk-%—l)vbn .
€y € 0,7, = x ired arc) < 2c
(bRﬁ (ex € v[Y[0, Ths1]) ¢R§\W[O7Tk+1]( < W ) 4 iz~
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Making use of this uniform bound, we obtain

gbaR’g’b"(x, y < wired arc)
2k+1 ambn(T < 00)

anybn

IN

\/5636465 OZ:Q\/Q_k + 26365

|z —ylv/n (2 V/n2ko-1
< <
Vnlr -yl

using also Lemma 9.12 (twice) for the second inequality. ]

We are now in a position to prove our result.

Proof of Theorem 9.1 Let >0, n>0, and also RS defined as previously.
Step 1: lower bound for free boundary conditions. Let N,, be the number of
connected pairs (z,u), with z € O_RY. and ue d,R’. The expected value of this quantity

is equal to
e [V Z P (o ).

ueds R,

xeo- R’6
Proposition 9.10 directly provides the following lower bound on the expectation by sum-
ming over the (n)? pairs of points (x,u) far enough from the corners, i.e. satisfying the
condition of the proposition:

s [Nn] 2 c(B)n

for some cg(3) > 0.

On the other hand, if z and w (resp. y and v) are pair-wise connected, then they
are also connected to the horizontal line Z x {n} which is (vertically) at the middle of
RE. Moreover, the domain Markov property implies that the probability — in R? with
free boundary conditions — that x and y are connected to this line is smaller than the
probability of this event in the rectangle of half height with wired boundary conditions
on the top side. In the following, assume without loss of generality that n is even and set
m =n/2, so that the previous rectangle is R , and define a,, and b,, as before. Using the
FKG inequality, and also the symmetry of the lattice, we get

am,bm

20 (z,y <> wired arc) gbam’ "™ (u,v <> wired arc),

P (o uy o) < ¢

where u and ¥ are the projections on the real axis of v and v. Summing the bound
provided by Proposition 9.11 on all sites z,y € O_R% and u,v € 9, R5, we obtain

Rﬁ[N2] < erm? < e
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for some constant ¢; > 0. Now, by the Cauchy-Schwarz inequality,
AL

NN > c6(8)?/er,
R? n

%5 (CU(RQ)) = ¢(;%£(Nn > O) = ¢0Rg[(HNn>O)2] 2

since gb(l)%B[Nn] = gbORﬁ [ N.In, >0]. We have thus reached the claim.

Stepn2: lower and upper bounds for general boundary conditions. Using the
ordering between boundary conditions, the lower bound that was previously proved for
free boundary conditions actually implies the lower bound for any boundary conditions &.

For the upper bound, consider a rectangle R with dimensions nxm with m € [f1n, fan]
and with boundary conditions £. Using once again (3.11)), it is sufficient to address the
case of wired boundary conditions, and in this case, the probability that there exists a
dual crossing from the left side to the right side is at least ¢_ = ¢_(1/52,1/51), since the
dual model has free boundary conditions. We deduce, using the self-duality property, that

$H(Co(R)) < 1= ¢h(Cr(R)) = 1- 6% (Cu(R*)) <1-c., (9.19)

where the notation C; is used for the existence of a horizontal dual crossing, and R* is as
usual the dual graph of R (note that the invariance by 7/2-rotations was implicitly used).
This concludes the proof of Theorem 9.1.

O

3 Consequences for the FK-Ising and the (spin) Ising
models

In this section gathers several implications of the previous theorem. We would like to
emphasize the fact that uniformity on boundary conditions is crucial for all these appli-
cations, and Theorem 4.4 would not suffice in these case.

3.1 Ciritical exponents for the FK-Ising and the Ising models
Power-law decay of the magnetization at criticality

Let us start with stating an easy consequence of Theorem 9.1. Consider the box A,, =
[-n,n]?, its boundary being denoted as usual by dA,,. Let us also introduce the annulus
Apn = Ay N Ay, of radii m < n centered on the origin, and denote the event that there
exists an open circuit surrounding A,, in this annulus by C(A,, ).

Corollary 9.13 (circuits in annuli). For every § < 1, there exists a constant cg >0 such
that for all n and m, with m < fBn,

¢?4m,n (C(Am,n)) 2 Cg.
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Proof This follows from Theorem 9.1 applied in the four rectangles Rp = [-n,n] x
[-n,-m], Ry = [-n,-m] x [-n,n], Ry = [-n,n] x [m,n] and Rg = [m,n] x [-n,n].
Indeed, if there exists a crossing in each of these rectangles in the “hard” direction, one
can construct from them a circuit in Sy, .

Now, consider any of these rectangles, Rp for instance. Its aspect ratio is bounded by
2/(1-73), so that Theorem 9.1 implies that there is a horizontal crossing with probability
at least

0%, (Ca(Rp)) 2 c>0.

Combined with the FKG inequality, this allows us to conclude: the desired probability is
at least cg =c* > 0. ]

Proposition 9.14 (power-law decay of the magnetization). For p = py, there exists a
unique infinite-volume FK-Ising measure. For this measure, there is almost surely no
infinite open cluster. Moreover, there exist constants o, c >0 such that for alln >0,

Fpus2(0 < ON) S (9.20)

This result also applies to the Ising model: the magnetization at the origin decays at
least as a power law.

Remark 9.15. It is known from Onsager’s work that the connection probability follows
a power law as n — oo, described by the one-arm plane exponent oy = 1/8. It should be
possible to prove the existence and the value of this exponent using conformal invariance,
as well as the arm exponents for a larger number of arms. More precisely, one would need
to consider the probability of crossing an annulus a certain (fized) number of times in the
scaling limit, and analyze the asymptotic behavior of this probability as the modulus tends
to co. Theorem 9.1 then implies the so-called quasi-multiplicativity property, which allows
one to deduce, using concentric annuli, the existence and the value of the arm exponents
for the discrete model.

Proof First note that it is classical that the non-existence of infinite clusters implies the
uniqueness of the infinite-volume measure: it is thus sufficient to prove (9.20)). Consider
the annuli A,, = Agn 9ne1 for n > 1, and C*(A4,,) the event that there is a dual circuit in Aj.
Corollary 9.13 implies the existence of a constant ¢ > 0 such that

$4,(C*(An)) 2

for all n > 1. By successive conditionings, we then obtain

(0 < DAyy) < H 6l ((C7(AL))) < (1= )Y,

and the desired result follows. m|
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n-point functions for the FK-Ising and the Ising models

Since the work of Onsager [Ons44], it is known that for the Ising model at criticality, the
magnetization at the middle of a square of side length 2m with (+) boundary conditions
decays like m~1/8. It is then tempting to say that the correlation of two spins at distance
m in the plane (in the infinite-volume limit, say) decays like m~'/4, and this is indeed what
happens. To the knowledge of the authors, there is no straightforward generalization of
Onsager’s work that allows us to derive this without difficult computations. However, this
result can be made rigorous very easily with the help of Theorem 9.1. Here, the result is
given for two-point correlation functions only, but exponents for n-spin correlations, for
instance, can be obtained using exactly the same method.

Let us first use Theorem 9.1 to interpret Onsager’s result in terms of the random-
cluster representation.

Lemma 9.16. Let A,, be the square [-m, m]? with arbitrary boundary conditions £&. Then
there exist two constants ¢; and ¢y (independent of m and &) such that

cm M8 < gbim(O < OA,,) < com™ UV,

Proof This is a consequence of Onsager’s result for wired boundary conditions (since
it is derived in terms of the Ising model with (+) boundary conditions), which provides
the upper bound by monotonicity. Using Theorem 9.1, a lower bound independent of the
boundary conditions can be obtained by enforcing the existence of a circuit in the annulus
Apj2,m, and using the FKG inequality. For that, we just need to lower the constant, using
monotonicity: the connection probability conditionally on the fact that there is a wired
annulus around the origin is indeed larger than the connection probability with wired
boundary conditions on JA,,. O

The result for two-point correlation functions in the infinite-volume Ising model can
now be stated.

Proposition 9.17. Consider the Ising model jg, on Z* at critical temperature. There
exist two positive constants Cy and Cy such that

|—1/4 |—1/4’

Cilz -y Sﬂﬁc[away] <Colw —y

where for any x,y € Z?, 0, and o, denote the spins at x and y.

Proof The 2-spin correlation g, [0,0,] can be expressed, in the corresponding random-
cluster representation, as the probability of the event {z < y}. Let now m be the integer
part of [x—y|/4. The upper bound is easy and does not rely on Theorem 9.1: the event that
x is connected to y implies that x is connected to z+0A,,, and that y is connected to y+IA,,.
Using the domain Markov property, these two events are independent conditionally on
the boundaries of the boxes being open: together with the previous lemma, this provides
the upper bound.
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Let us turn now to the lower bound. We can enforce the existence of a connected “8”
in
[(z + Agma2) U (Y + Agmea) | N [(7+ A U (Y + A ]
that surrounds both z and y and separates them: this costs only a positive constant «,

independent of m, using Theorem 9.1 in well-chosen rectangles and the FKG inequality.
Using once again the FKG inequality, we get that

Dpoa2(T < Y) 2 adp ,2(x <+ O\amia) - Gpu2(y < Y + ONoi2),
and combined with the previous lemma, this yields the desired result. O

Recently, Chelkak and Izyurov [CI11] introduced a modification of the fermionic ob-
servable which permits an explicit computation of the scaling limit of two-point functions
in a finite domain. It appears that they are indeed conformally invariant. Chelkak, Hon-
gler and Izyourov also announced a computation of the n-point functions using the same
observable.

Half-plane one-arm exponent for the FK-Ising model and boundary magneti-
zation for the Ising model

As a by-product of our proofs, in particular of the estimates of Section 1, one can also
obtain the value of the critical exponent for the boundary magnetization in the Ising
model, near a free boundary arc (assuming it is smooth), and the corresponding one-arm
half-plane exponent for the FK-Ising model.

Let us first consider the one-point magnetization u?z’b[ax] for the Ising model at criti-
cality in a discrete domain (€2, a,b) with free boundary conditions on the counterclockwise
arc (ab), and (+) boundary conditions on the other arc (ba).

Proposition 9.18. There exist positive constants ¢, and co such that for any discrete
domain (§2,a,b) with a = (-n,0) and b = (n,0) (n > 0), containing the rectangle R, =
[-n,n] x [0,n] and such that its boundary contains the lower arc [-n,n] x {0}, we have

-1/2 1/2

cn =< ,u?z’b[ao] <con”

uniformly in n.

Proof The magnetization at the origin can be expressed, in the corresponding random-
cluster representation, as the probability that the origin is connected to the wired coun-
terclockwise arc (ba). By Lemma 9.9, this probability can be compared to the harmonic
measures HM, and HM,, for which estimates similar to the estimates in Lemmas 9.7
and 9.8 hold. O

This result can be equivalently stated for the one-arm half-plane probability for
random-cluster models:
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Proposition 9.19. Consider the rectangle R, = [-n,n] x [0,n]. There exist positive
constants ¢y and co such that for any boundary conditions & such that the bottom side
0~ R,, is free, one has

en % < ¢§2n(0 < "R, < o2,

uniformly over all n.

Proof The upper bound can be obtained using monotonicity and the previous propo-
sition, since (+) boundary conditions in the Ising model correspond to wired boundary
conditions in the corresponding random-cluster representation. For the lower bound, by
Theorem 9.1 and the FKG inequality, we can enforce the existence of a crossing in the
half-annulus R, \ R,,j» that disconnects 0 from R, \ 0"R, to the price of a constant
independent of £. Using monotonicity and FKG, the probability that 0 is connected by
an open path to this crossing (conditionally on its existence) is larger than the probability
that 0 is connected to the boundary with wired boundary conditions on 0R,, \ 0~ R,,, with-
out conditioning. Hence, the lower bound of the previous proposition gives the desired
result. O

Remark 9.20. Note that contrary to the power laws established using the SLE technology,
there are no potential logarithmic corrections here — as is the case with the “universal” arm
exponents for percolation (corresponding to 2 and 3 arms in the half-plane, and 5 arms in
the plane). Furthermore, one can follow the same standard reasoning as for percolation,
based on the RSW lower bound, to prove that the two- and three-arm half-plane exponents,
with alternating “types” (primal or dual), have values 1 and 2 respectively, see Chapter 10.

3.2 Spatial mixing at criticality

Theorem 9.1 also provides estimates on spatial mixing for both the FK-Ising and the Ising
models. In the following proposition, an example of decorrelation between events for the
FK-Ising model is given.

Proposition 9.21. There exist ¢, >0 such that for any k <n,

kj «
600240 B) = 60,02(Dbpia(B) < () bpua(Donua(B)  (021)

for any event A (resp. B) depending only on the edges in the box Sy (resp. outside B, ).

Proof First, it is sufficient to prove

k 6
6 2 () = B an (] <0(5) 6,00, ()

for any boundary conditions £ and any event A depending on edges in Ay.
CLAIM: There exists a coupling P on configurations (wg,w;) with the following prop-
erties:
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e we (resp. wy) has law ¢isd727An (resp. ¢11,Sd,2,/\n>‘

e if w; contains a closed circuit in A,, N A, let I' be the exterior most such circuit.
Then I is also closed in we and w; and we coincide inside I'.

Proof of the claim Consider uniform random variables U, for every edge e and
index the edges in an arbitrary way. Sample both configurations based on the same ran-
dom variables U, from the exterior, meaning that after k steps, consider the edge with
one end-point connected to the boundary of A,, by an open path which has the smallest
index. If there are no such edges, pick the edge with smallest index (this will happen
only if you discover a closed circuit). This edge is declared open if U, is smaller than
the conditional probability to be open knowing the boundary conditions and the already
determined edges. Note that w; is larger than we by comparison between boundary con-
ditions. Therefore, any closed circuit in w; will also be closed in we. The configurations
inside a closed circuit of w; coincide since they have been constructed from the same uni-
form random variables, with the same free boundary conditions in the restricted domain.

a

Now, since A depends only on the edges in Ay, we can prove that conditionally on A,
there exists a dual circuit in ¢} ,, with probability 1 - c(k/n)*. Let E be this event.
We deduce

¢,§)Sd,2,An(A nk)
Plwee AnE)
P(wl eAn E)
pes2hn (AN E)

(1= c(k/n)*) 8,24, (A)

where in the third line, we used the fact that if w; belongs to £, then w, belongs to £
and both configurations coincide in A;. In particular, if w; € A then we € A.

Similarly, there exists a coupling P on configurations (we,w;) with the following prop-
erties:

¢§Sd721ATL (A)

[\

v

e we (resp. wy) has law ¢§ Lo, (resp. @l o) ).
e if w, contains an open circuit in A, \ Ay, let T be the exterior most such circuit.
Then T is also open in w; and w; and wg coincide inside T
If F' denotes the event that there is an open circuit in A, \ A, we find
psd,Z,A (A n F)
P(wy e AnF)
p(w§ cAn F)
- ¢§5d727An (A n F)
> (1= c(kfn))5 o0, (4)

v

psd,2 An ( )

v
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where once again, we used in the third line that if we € F', then w; € F, and both
configurations coincide on Ay so that we € A implies that w; € A. We also used the fact
that conditionally on A, there is an open circuit in A, ~ Ay with probability 1 - c(k/n)«.
O

More generally, Theorem 9.1 would lead to ratio mixing properties, with an explicit
polynomial estimate. Away from criticality, estimates of this type can be established
by using the rate of spatial decay for the influence of a single site. At criticality, the
correlation between distant events does not boil down to correlations between points and
a finer argument must be found. Crossing-probability estimates which are uniform in
boundary conditions are perfectly suited for these problems.

3.3 Polynomial bounds on mixing-time

Recently, Lubetzky and Sly [LS10] used spatial mixing properties of the Ising model in
order to derive an important conjecture on the mixing time of the Glauber dynamics of
the Ising model at criticality:

Theorem 9.22 (Lubetzky and Sly [LS10]). There ezists o > 0 such that the mixing time
of the Glauber dynamics on a nxn box is bounded by n® for everyn >0 and every boundary
conditions.

As a key step, they harness Theorem 9.1 in order to prove a suitable analogue of
Proposition 9.21. Together with tools from the analysis of Markov chains, the spatial
mixing property provides polynomial upper bounds on the inverse spectral gap of the
Glauber dynamics (and also on the total variation mixing time).

4 Russo-Seymour-Welsh for the Ising model

Proof of Theorem 9.2 We consider the Edward-Sokal coupling. The boundary con-
ditions related to the — boundary conditions are wired.

Events A, 2,, A” 2. and Aj, 4, occur simultaneously with probability larger than c
using Corollary 9.13. Now, the occurrence of these three events guarantee the existence
of at least one circuit in Amzn not connected to the boundary. Therefore, the random
coloring of the clusters gives pluses to this circuit with probability 1/2. All together, we
find that

MBCyAn/QAn (C(ATL,QW,)) Z 63/2
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Proof of Theorem 9.3 This proof follows the same lines as the one of Theorem 4.4,
therefore we only sketch it now. Let us first fix @ = 1. Exponential decay of correlation
for subcritical random-cluster model implies (via the Edward-Sokal coupling)

‘NZ,R% (A) - MZR{L{”(AH < ene N8 g pic (A) (9.22)

for some € small enough and for any event A depending only on sites inside R,,. Therefore,
using the usual symmetry arguments, we obtain

S, (Cu(Ro)) > ¢

for every boundary condition £, where ¢ = ¢(1) is small enough and K large enough.
Now, fix a = 3/2. Running along the lines of the proof of Proposition 4.8, the event
A has also a probability bounded away from 0 uniformly in n. Now, the construction of
the domain Go(I'1,T's) can be adapted (one must be careful about the geometry specific
to the triangular lattice, but a simple modification yields the result). Observing the
boundary conditions on Go(I'1,I'2), two arcs are already +, and the others are in the worse
case —. Therefore, there is a crossing of pluses between the two + arcs with probability
larger than 1/2, using the comparison between boundary conditions and the fact that
pluses and minuses have the same law (this replaces duality). In conclusion, the proof of
Proposition 4.8 works mutatis mutandis, and Theorem 9.3 follows. O



Chapter 10

Crossing probabilities in topological
rectangles

Abstract: We consider the FK-Ising model in two dimension at criticality. We obtain
RSW-type crossing probabilities bounds in arbitrary topological rectangles, uniform with
respect to the boundary conditions, generalizing results of Chapter 9 and [CS09|. Our
result relies on new discrete complex analysis techniques, introduced in [Chell].

We detail some applications, in particular the computation of so-called universal expo-
nents and crossing bounds for the classical Ising model. It is based on the article Crossing
probabilities in topological rectangles for the planar FK-Ising model, written with Dmitri
Chelkak and Clément Hongler [CDCH11al.

Given a topological rectangle (€2, a, b, ¢,d) (i.e. a bounded simply connected subdomain
of Z? with four marked boundary points) and boundary conditions &, denote by gbg the
critical FK-Ising probability measure on 2 with boundary conditions £ and by (ab) < (cd)
the event that there is a crossing between the arcs (ab) and (cd), i.e. that (ab) and (cd)
are connected in the FK configuration.

Let us denote by fq[(ab), (cd)] the discrete extremal length between (ab) and (cd)
in 2 with unit conductances (see Section 1 for a precise definition). Informally speak-
ing, lo[(ab), (cd)] measures the distance between (ab) and (cd) from a random walk or
electrical resistance point of view.

Our main result is a bound for FK-Ising crossing probabilities in terms of discrete
extremal length only:

Theorem 10.1. Let M > 0. There exists d € (0, %) such that
5 < ¢% [(ab) < (cd)]<1-6

for any boundary conditions £ and for any topological rectangle (2, a,b,c,d) with

lo[(ab), (cd)] e [%M] |

181
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Such crossing probabilities bounds, uniform with respect to the boundary conditions,
have been obtained in a (straight) rectangle in Theorem 9.1; asymptotic exact compu-
tations of crossing probability in arbitrary domains with specific boundary conditions
have been derived in [CS09, Theorem 6.1]. In this paper, the crossing bounds hold in
general topological rectangles with general boundary conditions, and are independent of
the local geometry of the boundary. Roughly speaking, the result is a generalization of
Theorem 9.1 to possibly “rough” discrete domains; this is for instance needed in order
to deal with domains generated by random interfaces (which usually have fractal scaling
limits).

As in [DCHN10|, our result relies on discrete complex analysis: to connect the FK-
Ising model with discrete complex analysis objects, we use the discrete analytic observable
for the FK-Ising model introduced by Smirnov [SmilOa| and crossing probability repre-
sentation (in terms of harmonic measure) introduced by Chelkak and Smirnov [CS09]. To
obtain the desired estimate, we adapt these results and use the new harmonic measure
techniques developed by Chelkak in [Chell].

Crossing probabilities estimates play a very important role in rigorous statistical me-
chanics, in particular for percolation models. They constitute the key argument enabling
the use of the following techniques:

e Spatial decorrelation: probabilities of certain events in disjoint 'well separated’ sets
can be factorized at the expense of uniformly controlled constants. The main in-
gredients to do so are the spatial Markov property of the model and the crossing
probabilities.

e Regularity estimates and precompactness: the crossing probabilities are instrumen-
tal to pass to the scaling limit, by obtaining a priori regularity estimates on the
discrete random curves arising in the model.

e Discretization of continuous results: thanks to uniform estimates, one can connect
the discrete models (at finite scales) to their continuous limits, and transfer results
from the latter to the former.

While the RSW bounds given by Theorem 9.1 already allow for a number of interesting
applications of these techniques (see for instance [CN09, LS10, CGN10, GP]), the stronger
version of the RSW-type estimates provided by Theorem 10.1 increases the scope of
applications. In particular, we get the following consequences:

e Arm exponents: thanks to crossing probabilities, the (microscopic) arm exponents
for the FK-Ising model can be related to the (macroscopic) SLE arms exponents,
which in turn can be computed using stochastic calculus techniques. The micro-
scopic arm exponents are crucial to understand the fine structure of the phase tran-
sition of percolation [Kes87, Nol0§|, as well as as for interface regularity [AB99] and
noise sensitivity [GP| questions. In Section 3 below, a number of results concerning
the microscopic arm exponents are obtained (notably the universal arm exponents).
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e Crossing probabilities for the spin Ising model: their conformal invariance was in-
vestigated numerically in [LPSA94|. Theorem 10.1 allows us to get RSW bounds for
the critical Ising model with certain boundary conditions (that imply non-triviality
of those in [LPSA94|). Such crossing probabilities can be used to understand the
spin-Ising interfaces, in particular in presence of free boundary conditions. See
Corollary 10.22 below.

e Coupling of discrete and continuous interfaces: it is useful to couple the critical FK-
Ising interfaces and their scaling limit SLE(16/3), in such a way that they are close
to each other and that whenever the SLE(16/3) interface hits the boundary of the
domain, so does the discrete interface with high probability. Such couplings are in
particular useful in order to obtain the full scaling limit of discrete interfaces| CNOG,
KS10].

1 Discrete complex analysis

In the section, we introduce the discrete harmonic measures and random walk partition
functions that will be used in this chapter. A number of their properties are provided,
namely factorization properties and uniform comparability results, obtained in [Chell].
Finally, we relate certain elementary critical FK-Ising model probabilities to discrete har-
monic measure, notably using the fermionic observable (see [CS09] for details on how to use
fermionic observables to obtain bound on crossing probabilities with free/wired /free /wired
boundary conditions). These results will be brought together in the next section to prove
Theorem 10.1.

In the rest of this paper, for two real-valued functions f, g (generally defined on discrete

domains), we will use the notation f < g if there exists a constant ¢ > 0 such that f < cg
and f x g if there exists two constants ¢, co > 0 such that ¢; f < g <eof.

1.1 Graph

For a planar graph G, we denote by £ (G) the set of its edges. Most of the time G will
be identified with the set of its vertices, which we will also call sites. For any two vertices
x,y € G, we write x ~ y if they are adjacent and we denote by xy € £ (G) the edge between
them.

In this paper, we will consider finite connected and simply connected graphs that are
made of the union of faces of the square grid Z? (vertices are points of Z? and vertices at
distance 1 are linked by an edge). We will call these discrete domains.

For a discrete domain €2, we denote by 0€2 c € its boundary (when we view €2 a domain
consisting of the union of its faces); most of the time, we will identify 92 with the set of
its vertices, called the boundary vertices. We denote by Int (€2) the interior of the graph,
defined as © \ 9€2. We denote by 0et& (€2) the set of external edges of 2, defined as the
set of edges of £ (Z?) ~ £ () incident to a vertex of Q, counted with multiplicity: if an
edge of £ (Z?) \ € () is incident to two vertices of ), it appears as two distinct elements
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o2 y

Figure 10.1: A domain Q with two points x and y on its boundary. The set (xy) and
(zY)ext are depicted. The edge e appears twice in Euy.

of Oext€ (2). We identify the edges of D& (2) with the set 0ey ) of external boundary
vertices, they are the formal endpoints in Z? \ Q) of the edges of 9 (2).

For two points z,y € 9§, we denote by (zy) c 92 the counterclockwise arc of 92 from
x to y (including x and y); as usual we identify (xy) with the set of the vertices located
on it; we will frequently identify x € 9 with the arc (zz); we denote by (zy),,, the set of
vertices of 0.2 adjacent to (xy). We call a discrete domain € with four marked vertices
a,b,c,d e 0f2 in counterclockwise order a topological rectangle.

We denote by (Z2?)* the dual of Z2: the vertices of (Z2)" are the (centers) of the faces
of Z? and vertices at distance 1 are linked by an edge. Given a discrete domain 2, the
dual domain Q* is the induced subgraph of (Z2?)" whose vertices are the faces . We
denote by 9€Q2* the set of vertices of 2* corresponding to faces of {2 sharing an edge with
09). We denote by O 2* the set of external dual vertices, corresponding to the faces of
72\ Q adjacent to 02, with multiplicity: it is in bijection with the edges of 0.

1.2 Laplacians, harmonic measures and random walks

Let € be a discrete domain, with boundary vertices 0€2 and external boundary vertices
Oext§2. Consider a collection of nonnegative conductances C = (c.), defined on the set
of the edges £ and the set of external boundary edges O0e& (€2); we call the conduc-
tances on & () the bulk conductances and the conductances on O & () the boundary
conductances. In this paper, the bulk conductances are always assumed to be 1.

With this set of conductances is associated a Laplacian A¢ defined (for a function
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f: QU2 > R) by:

Bef(2) = 3= Nen(F)=F () VaeQ
A = ch

In this paper, the collection of conductances that we will consider are equal to 1 on the
edges of €2, and less or equal than 1 on the boundary edges.

For x,y € Q, we denote by Zg.c [x,y] the partition function of the random walks (RW)
w in Q with conductances C from x to y, absorbed by 0.{2. The possible realizations
are the sequences wy,...,w, of vertices such that w is adjacent to w for each 7, w; =z,

wa,...n-1 € 2N {y} and w, =y. The partition function is defined by
length(w)-1 c
ZQ;C [I‘, y] = Z H %
wir—Y k=1 Wi

= P{RW with generator A starting from z hits y before Oey {2}

When the context is clear, we will omit the set of conductances C in the subscripts.
Let (ed) c 0N be a boundary arc. We define for x € {2

ZQ [(L’, (Cd)] = Z ZQ [Ia y]
ye(cd)

= P{RW with generator A¢ starting from x hits (cd) before Oey (2} .

It is easy to check that x — Zg [z, (cd)] is a Ac-harmonic function on Q \ (ed) which has
boundary conditions 1 on (e¢d) and boundary conditions 0 on Jey (2.
If (ab), (ed) c 02 are boundary arcs, we define

Zo[(ab), (cd)]:= Y. Zq[z,(cd)].

ze(ab)

Given a discrete domain €2, we define in the same manner partition functions of random
walks on Q*, taking 0Q2* and 02" instead of 02 and Oey ) (again, we assume that the
bulk conductances are all 1).

1.3 Discrete extremal length

A very useful tool when dealing with discrete harmonic measures in topological rectangle
is a discrete version of the extremal length. It measures the distance, from the discrete
harmonic measures point of view, between two arcs of a domain, in a particularly robust
manner. In this paper, we will mostly use it to compare partition functions of random
walks on €2 and on the dual graph Q*.

Consider a topological rectangle (€2, a,b, c,d) and a collection of conductances C (bulk

conductances are always 1). Denote by C(%\’Ia’b’c’ o the set of conductances C, except that
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the conductances to the edges incident to a vertex of (bc) U (da) are set to 0: in other

words, the Laplacian Ac(DQN et is the generator of the random walk generated by Ac

reflected by the arcs (bc) and (da) (more precisely: reflected by the edges of 9€ (Q2)
incident to (bc) u (da)).
Following [Chell], we define the extremal length (g [(ab), (cd)] by

foc [(ab) , (cd)] = (Zacpy

(,a,b,c,d)

[(ab) . (e)]) .

When no set of conductances is specified, like in Theorem 10.1, all conductances are set
to 1.

The discrete extremal length is particularly powerful because of its robustness: the
discrete extremal lengths on a discrete domain with different boundary conductances are
uniformly comparable. Also, the discrete extremal length on a rectangle and its dual are
comparable (note that such a general result would not be true for partition functions of
random walks with purely Dirichlet boundary conditions):

Theorem 10.2 (|[Chell]). Let u > 1. Let (2, a,b,c,d) be a topological rectangle and
consider a set of conductances C on 0 with boundary conductances in i,u]. Let Q* be

the dual to Q2* and let C* be a set of conductances on Q* with boundary conductances in
[I—IL,;L]. Then we have

loc [(ab), (cd)] = boxc-[(ab)™, (bc) ],
where the constants in < depend on p only.

When the extremal length is of order 1 (like in the statement of Theorem 10.1), then
so are the partition functions of random walks with Dirichlet boundary conditions:

Theorem 10.3 ([Chell]). Let M > 1 and pu > 1. For any topological rectangle (2, a, b, c,d)

and any set of conductances C with boundary conductances in [i,,u], if

1

— <lacl(ah), (ed)] < M

then
loc[(be), (da)] 21, Zoc[(ab),(cd)] =1, Zac[(bc),(da)] =1,

where the constants in < depend on M and p only.

Remark 10.4. [t is actually proven in [Chell] that we have

Lo [(ab) (be)] Lac [(be) , (da)] < 1,

uniformly over all topological rectangles.
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1.4 Factorization results

In this section, we review the main results of [Chell] concerning factorization properties
of discrete harmonic measure. While in the continuum such results are rather easy to
derive (for instance using explicit expressions and conformal invariance), it requires a
much more delicate analysis to obtain them (up to uniform constants) on the discrete
level.

In this subsection, we assume that all the bulk conductances 1 and that all the bound-

ary conductances are in [i, u] for some p > 1.

Theorem 10.5 ([Chell]). For any discrete domain 2 and any boundary points a,b,c €
0f), we have

Zala, (be)] = ( Za [C;;’][bz’sz][a, ] ); |

where the constants in < depend on p only.

The following estimate will also be needed. It involves a discrete version of the cross-
ratio (the left-hand side of 10.1):

Theorem 10.6 (|Chell]). Let M > 0. Then for any (Q,a,b, c,d) with £o [(ab), (cd)] < M,
we have

\l Zo el Z0 Bl Za (@) ()] (10.1)

ZQ [CL, b] ZQ [C, d]

where the constants in X depend on M and p only.

1.5 Separators

A crucial concept in the following study is the notion of separators: they will indeed allow
us to perform some efficient surgery of the discrete domains.

Informally speaking, separators are discrete curves that separate domain in two pieces,
in a “good” manner from harmonic measure point of view: the product of partition func-
tions of random walks in the two pieces is of the same order as the partition function of
random walks in the original domain.

In this subsection, we assume again that all the bulk conductances on the discrete
domains are 1 and that all the boundary conductances are in [i, ,u] for some p > 1. If
(2,a,b,¢,d) is a topological rectangle, a separating curve between (ab) and (cd) is a
simple discrete curve I' in Q separating (ab) from (cd); we denote by Qr (4 and Qr (q)
the connected components of Q \ T containing (ab) and (cd) respectively.

Theorem 10.7 (|Chell]). Let M > 1. Take a topological rectangle (2, a,b, c,d) such that
Za[(ab),(cd)] < M. For any k €[4 2], there exists a separating curve I' c Q0 between
(ab) and (cd) such that we have

Zow iy [(ab) ,T]- Zaoy, ., [T, (cd)]
ZQF,(cd) [F, (Cd)]

) (

Zg [(ab), (cd)], (10.2)
k- ZQF,(ab) [(ab) 7F] )

¢
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where the constants in < depend on M and p only.

We will call separator a separating curve satisfying 10.2. Let us give a corollary that
will be particularly useful for us:

Corollary 10.8. Let M > 1. Then there ezists € € (0,1) (depending on M only) such that
for any topological rectangle (2, a,b,c,d) with Z := Zg [(ab), (cd)] < M and any k € [%, 6]
there exists a separating curve I' c Q between (ab) and (cd) with

ZQF,(ab) [(a’b) 7F] ’ ZQF,(cd) [P7 (Cd)] X Zg [(a’b) ) (Cd)] )
Zao [T, (ed)] € [er,k],

where the constant in X depends on M and p only.

Proof By Theorem 10.7, there exists C, Cy, C3, Cy > 0 such that for any & € [%, %] we
have

C’lZ < ZQ [(ab) ,F] . ZQ [F, (Cd)] < OQZ and Cgkf < % < O4]€

Hence, we obtain

\ 0103/{32 < ZQ [F, (Cd)] </ 0204162
Take € := min{y/C1C3/(C2C,),/CoCy/M}. 1f K € [%,e], we can choose k := #;42 €

[%, %] in Theorem 10.7 to get the result. o

We will also need the following corollary, which says that we can split a topological
rectangle in “fair” shares:

Corollary 10.9. Let M > 1. For any topological rectangle (Q,a,b,c,d) with M=t <
lo [(ab),(cd)] < M, there exists separating curve I' ¢  between (ab) and (cd) such that
we have

la,, [(ab) ,T] = bo,, [(cd) ,T] < Lo [(ab) , (cd)],

where the constants in < depend on M only.

Proof By Theorem 10.3, we have that Zqg [(ab), (cd)] %1 (where the constant depends
on M only). Applying Theorem 10.7 with k& = 1, we obtain a simple curve I' separating
(ab) from (cd) with

Zoan [(a) , (2y)] % Zay,y [(2y), (cd)] = Za [(ab), (cd)],

where the constants in X depend on M only. Applying once more Theorem 10.3, we get
the result. O
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1.6 From FK-Ising model to discrete harmonic measure

In this section, we relate critical FK-Ising crossing probabilities with free/wired /free/wired
boundary conditions to discrete harmonic measures. The main tool consists of the
fermionic observable. It has been used in [CS09| in order to obtain the scaling limit
of FK-Ising crossing probabilities under free/wired /free/wired boundary conditions.

The probability that two arcs wired arcs are connected (with free boundary conditions
elsewhere) can be bounded by above in terms of discrete harmonic measure.

Let C, denote the set of unit conductances on the edges of €1 and let Z, be the
corresponding random walk partition function. Let C, be the set of conductances on {2s,
where each bulk edge has conductance 1, the boundary edges incident to (bc) U (da) have
conductance 1 and the boundary edges incident to (ab) u (cd) have conductance ﬁ

Proposition 10.10. For any M > 0, for any (2,a,b,c,d) topological rectangle with
Za [(ab),(cd)] < M, we have

GOED(ab) « (ed)] < /Zo [(ab), (cd)],

where the constant in < depends on M only.

The proof is given below. It follows the ideas of the proof of [CS09, Theorem 6.1],
where the above crossing probability is computed in the scaling limit.

Let us recall that when we degenerate the arc (ab) to a singleton, we find the upper
bound of Proposition 9.5

Corollary 10.11. With the notation of Proposition 10.10, we have
6" [a < (cd)] < /Zala,(cd)],

where the constant in < 1s universal.

If we also degenerate the arc (cd) to a singleton, we have the following double-sided
harmonic measure estimate for the probability that two boundary vertices are connected
with free boundary conditions.

Consider a discrete domain €2 and its dual Q*. Let C* be the set of unit conductances
on 2*. Let C be the set of conductances on €2, where each bulk edge has conductance 1
and each boundary edge has conductance ﬁ

Proposition 10.12. Let €2 be a discrete domain. For any two sites a,b € OS2, we have
V Zarce [a*,0*] < ¢ (a < b) </ Zacla,b],
for any a* € 90 at distance \/75 from a and b* at distance g from b. The constants in
< are universal.

This proposition is a restatement in new notations of Proposition 9.5 when the wired
arc is degenerated to a singleton.
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Proof of Proposition 10.10 Fix a domain (€2,a,b,c,d) and consider the critical FK-
Ising model with boundary conditions (ab), (cd) (i.e wired/free/wired/free) on it. In
[CS09, Proof of Theorem 6.1], two discrete holomorphic observables F; and F» for this
model are introduced, and it is shown that there exists a unique linear combination of F'
of I, F; and a unique € R such that a discrete version H of Imm ([ F?) satisfies the
following boundary conditions:

H=0on (da),H =1on (cd) and H =k on (ab),,, U (bc)

ext *

This discrete function H is Ac-subharmonic on Q\ ((ab) U (¢d)). The constant x is shown

to be in one-to-one correspondence with ¢§;b)’(6d) [(ab) < (cd)]; from [CS09, Formula 6.6],
we get in particular that

Vi x oG D [(ab) « (cd)], (10.3)

where the constants are universal.

Let ¢, be a vertex of Int (€2) adjacent to ¢. By the construction of H (see [CS09, Proof
of Theorem 6.6]), we have that H (¢i,) > H (¢). If we now consider the function H - k,
we obtain the following estimate in terms of the discrete harmonic measure

0<H (cin) -k <(1-K)Zala,(cd)] - kZq[a, (bc)],

which leads to
< ZQ [CL, (Cd)]

" Za[a, (be)]

Using the factorization result for the harmonic measure (Proposition 10.5), we get

< Zala,(cd)] _ \l Zala,c]l Zga,d] Zg b, c] _ \l Zala,d] Zq[b,c]

" Zo[a,(bc)] ~ N Zala,b] Zg[a,c] Zg[c,d] Zgola,b] Zg[c,d]

Using the assumption Zg [(ab), (cd)] < M, we get by Theorem 10.6 that

[ Zola,d] Za[b.c]
K < J Zolab] Zale.d] - Za[(ab),(cd)].

Hence, (10.3) implies

GOED[(ab) « (ed)] = Vi < /Za[(ab), (cd)].
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2 Proof of Theorem 10.1

In this section, we will be considering partition functions of random walks on a topological
rectangles, and will omit the dependence on the domain in the notation when the context
is clear. Given two boundary arcs I'1,T'y ¢ 092, we will denote Z,[I';,T's] the partition
function function of random walks on 2 as previously defined, with unit conductances
everywhere, except on the external edges incident to I'y uT'y, where the conductances are
set to ﬁ

Lemma 10.13. Let M > 1. For any (Q,a,b,c,d) with Z,[(ab),(cd)] < M, we have

D (a < (cd),b < (cd)) < J

ZdJa, (cd)]Zd[b, (cd)]
ZJ(ab),(cd)]

where the constant in < depends only on M.

Proof Constants in x and < are depending only on M. Note that Z,[a,(cd)] <

ZJ[(ab),(ed)] < M. Fix € = ¢(M) € (0,1) as given by Corollary 10.8. Then we have
two cases:

Case 1: Z,[a,(cd)] > §Z.[(ab), (cd)] or Z,[b, (cd)] > §Z.[(ab), (cd)].
Suppose we are in the first case (the other case is symmetric). Then Corollary 10.11
implies

IN

$D(a,b < (cd)) (b (ed)) < /Za[b,(cd)]

g \l Zu[a, (cd)] Z[b, (cd)]
" Z.[(ab), (cd)]

Case 2: Z,[a,(cd)] < §Z.[(ab), (cd)] and Z,[b, (cd)] < $Z.[(ab), (cd)].
By Corollary 10.8 (setting k := s Z, [(ab), (cd)]), there exists a separator I', between
a and (cd) such that

1
3

Z.[(ab), (cd)] < Zu[Ta, (cd)] < %Z.[(ab),(cd)]. (10.4)

Denote by €2, the connected component of {2\ T', containing a.
Similarly, there exists a separator I'y, of b and (cd) such that

Z.[(ab), (cd)] < Z.[Ty,(cd)] < %Z.[(ab),(cd)]. (10.5)

Denote by €2, the connected component of €2\ I'y containing b.
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Note that the two separators do not intersect: 2, n {2, = @&. Otherwise, their union
would separate the whole arc (ab) from (cd), which is contradictory since

ZJTouTy, (cd)] < ZaTa, (cd)] + Zo[Ty, (cd)] < 2/3- Z.[(ab), (cd)].

We are thus facing the following topological picture: the two arcs I', and I', are not
intersecting and are separating a, b and (cd). Wiring the arc T';, and T, we find:

§Vabo (cd)] < ¢t [ao Taog [bo Tyl 000t [T, uTy < (cd)].

Let us deal with the first term on the right-side. Using Corollary 10.11 and the fact that
', is a separator between a and (cd), we obtain

SrlawT,] < VZ[aTd] x J Al J—Z[Wd”,

Z4[(ab), (cd)]

where in the last inequality we used (10.4). Similarly:

N [ Z.[b. (cd)]
o0 Th] < \lm

For the last term, we get

IA

puD Tl [0, UTy < (cd)]

cd),I'qul'yu(ab
QN (QaUQ) Cb( )Laulu( )[Fa uTyu (ab) < (cd)]

ON(QaUD)
VZJL,ulyu(ab), (cd)]

< \/2Z.[(ab), (cd)]

where in the second inequality we used Proposition 10.10 and in the third, (10.4) and
(10.5). Putting everything together we find

D Mg, b o (ed)] < \IZ-[C%(Cd)]Z-[b,(cd)]‘

IN

N

Z4[(ab), (cd)]

a

Thanks to the two-point function estimate given by Lemma 10.13, we can now prove
Theorem 10.1, which relies mostly on a second-moment estimate.

Proof of Theorem 10.1 Let M > 1. Once again, constants in X, < and > depend
only on M > 0. Fix a domain (Q,a,b,c,d) with Z = Z,[(ab), (cd)] € [M~', M] (Z, is as
defined before Lemma 10.13).

Using the monotonicity with respect to the boundary conditions, in order to get a
lower bound for the crossing probabilities that is uniform with respect to the boundary
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conditions, it is enough to get such a bound for free boundary conditions. Similarly, it is
sufficient to get it in the case of fully wired boundary conditions in order to get an upper
bound on crossing probabilities.

Using the self-duality of the model, we see that obtaining an upper bound for the
probability of a crossing (ab) < (cd) on Q (with wired boundary conditions) is equivalent
to obtaining a lower bound for the probability of a crossing (bc)* < (da)* for the critical
FK-Ising model on Q* (with free boundary condition). It is hence enough to bound from
below the probability ¢2.[(bc)* < (da)*] of a dual crossing from (be)” to (da)” (by a
constant depending on M only). The extremal length lo.1[(ab)*, (cd)*] is of the same
order as lq.[(ab),(cd)] by Theorems 10.2 and 10.3, so it is enough to prove the lower
bound of Theorem 10.1.

So, we only need to prove a lower bound for crossing probabilities with free boundary
conditions. As mentioned earlier, the proof consists of a second-moment estimate on the
random variable

N := Yo du e v] L. (10.6)
ue(ab), ve(ed)

Step 1: First moment of V.
Let us start with estimating the first moment:

SNl = X dolue] 2 2 Zoa(wet)

ue(ab), ve(cd) we(ab)” te(cd)”
= Zgeal(ab)", (cd)*] = Z.[(ab),(cd)],

Note that in order to obtain the first inequality, we used Proposition 10.12. For the last
one, we used the comparability of harmonic measures for neighboring dual vertices.

Step 2: Second moment of N.
Corollary 10.9 applied in (£2,a,b,c,d) gives a separator I' c §) between (ab) and (cd)
splitting €2 in two parts of comparable sizes (in terms of harmonic measure):

ZJ[(ab),T] = Z,T,(cd)] = ZJ(ab),(cd)] = 1. (10.7)
We find:
Po[N?] = > Polu < v]dg[u’ < v']gg[u < v,u < ']
u,ve(ab), u',v'e(cd)
< > PO [u < T)od[u' <> T]pd[v < T]o[v" < T]od[u, v’ < T, v,0" < T.

u,ve(ab), u',v'e(cd)
Let 1 and €, be the connected components of Q\T" containing (ab), and (cd) respectively.
Wiring the arc I', the right-hand side factorizes into the product of two terms
SQl = Z (b?ll [u Al F](b?h [U A F] gl [u7 V<= F]’

u,ve(ab)

So, = ), dn,[u © T]og,[v < Ty, [w/,v" < T].

u/ w'e(ed)
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Assume for a moment that we possess the bounds
Sa, < ZJ(ab),TP?  and  Sq, < ZJ[T,(cd)]?2 (10.8)
They imply, thanks to the definition of separators,

WV < (Z[(ab).T]- Z.[T. (cd)])™

< ZJ(ab), (cd) 2. (10.9)

Step 3: Proof of the two estimates in (10.8).
We only show the first one, since the second one is the same. Using Lemma 10.13 and
Corollary 10.11, we find

So, = ), 0n,lue Ty, [veTlog, [u,v T

u,ve(ab)
Zo(u, 1) Zo(v,T)
woe(ab) \/ Za[(w),T']

Note that for any sequence of positive real numbers (u,).s0, and « >0, a comparison
between series and integral implies

Say that u < v if v and v are found in this order when going along the arc (ab) in the
counterclockwise order. In our case, (10.10) implies that,

5 Zo|u, T Z[v,T] <2 ¥ Zdu, T Z[v,T]

woetary VZu[(uw0), T wciary V/Za[(u0),T]
Zyu,T']
= 2 Z4|v, T _—
ve%;b) [ ]ue%:v) Zo[(uv),I']
< Y ZJu,TVZJ[(aw),T]
ve(ab)
< ;b) Zou,I'|\/ Za[(ab),T']

Z[(ab), F]%,

IN

thus giving (10.8).

Step 4: Lower bound for crossing probabilities.
By the Cauchy-Schwarz inequality;,

PN ]? Z,[(ab), (cd)]?
2 ((ab d)) = ¢o(N>0) = ¢3[(Ins0)?] = > ’
¢Q((a ) < (C )) qbQ( > ) ¢Q[( N 0) ] ¢?2[N2] Z.[(Clb), (Cd)]?’/Q’
where we used the two first steps. Now, by Theorem 10.3, we get that both the numerator
and the denominator are of order 1. Our bound depends on M only. ]
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3 Arm exponents

In this section ¢ denotes the unique infinite-volume measure at ¢ = 2, p = p.(2). Define
An(z) = z+[-n,n]? and A, = A,(0). Also set S, y(z) = Ay(x) N Ap(z) and S, n =
Sn.n(0).

Fix a sequence o of "open" o or "closed" ¢. We say that a path is o-connected if it
is connected and c-connected if it is dual connected. Fix o = 0;..0;. For n < N, define
A,(n,N) to be the event that there are j disjoint paths from 9A,, to OAy with are o;-
connected, for i < j where the paths are indexed in counter-clockwise order. We set A,(N)
to be A, (k, N) where k is the smallest possible integer such that the event is non-empty.
For instance, A,(n,N) is the one-arm event corresponding to the existence of a crossing
from the inner to the outer boundary of Ay \ A,,.

A classical use of Theorem 10.1 implies that there exists 8, and (! such that

(n/N)P < ¢[A,(n,N)] < (n/N)%.
It is therefore natural to predict that there exists a critical exponent c, € (0, 00) such that
¢[As(n,N)] = (n/N) o)

where o(1) is a quantity converging to 0 as n/N goes to 0. The quantity «, is called an
arm-exponent.

Before starting, note that an important consequence of Proposition 9.21 is the fol-
lowing: the probability of arms does not really depend on the boundary conditions. In
particular,

(A (N, N) | Frznny) = 0(As(n,N)) as. (10.11)

uniformly in n, N, where Fq is the o-algebra generated by edges in (2.

3.1 Quasi-multiplicativity
The following proposition is crucial in the understanding of arm-exponents:

Theorem 10.14 (Quasi-multiplicativity). Fiz a sequence o. For every ni < ny < ng, we
have

gb[Aa(nl,ng)] X ¢[Ao(n1,n2)] : ¢[Aa(n2,n3)].

Define A,(z) = x+[-n,n]? and A, = A,(0). Also set S, n(z) = Ax(z) N A, (x) and
Sn,N = SmN(O)

Let us define the notion of well-separated arms. In words, well-separated arms extend
slightly outside the boxes and their ends are at macroscopic distance of each others, see
Fig. 10.2. More precisely, for 6 >0, j arms 71, ..., 7; paths with end-points z;, = 7, N OA,,,
Yk =Y N OA N are said to be well-separated if

e points y, are at distance larger than 20 N from each others.
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JA\N

Iy .

Figure 10.2: On the left, the five-arm event Ageooc(n, N). On the right, the event
Aoboc(n, N) with well-separated arms. Note that these arms are not at macroscopic
distance of each others inside the domain, but only at their end-points.

e points x; are at distance larger than 20n from each others.

e For every k, y; is og-connected to distance N of S, v in Asn (i),

e For every k, x;, is oj-connected to distance dn of S, n in Ag, ().

Let AP (n,N) = AP(n,N) be the event that A,(n,N) holds true and there exist
arms realizing A, (n, N) which are § well-separated. The previous definition has several
convenient properties.

Proposition 10.15. Fiz ¢ <1 small enough. For every ny <np < %,

PLAZP (n1,n3)] 2 d(AFP (1, m2)] - OLAZP (202, n3) .

This proposition has the following easy consequence. Fix p € (0,1) and 6 < 1 small
enough. There exists a = a(d) > 0 such that for every ny < ny < ng,

S[ AP (n1, )] < (%)a-qﬁ[AieP(nl,ng)] (10.12)
Pl AP (na,m3)] < (Z—j)a-qﬁ[Agep(nl,ng)]. (10.13)

To prove this inequalities, it suffices to see that ¢[ A5 (2n, N)] is also bounded from below
by a power of (n/N). This is an easy consequence of Theorem 10.1.
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Proof We have
gb[Af;ep(nl,ng) N AP (2n,, ng)] = gb[Aiep(nl, ng )| AP (2n,, ng)] . qb[Aiep(Qng,ng)]
2 ¢[A26p(n1,n2)] . gb[AieP(Qngﬂ’Lg)]
thanks to (10.11) and it suffices to prove that ¢[ A5 (n1, n2)n A5 (2n2,n3) | and ¢[ AP (n1,n3) |
are comparable. To do so, condition on A;7(ny,n2) N A57(2ns,n3) and construct j dis-
joint tubes of width & = (d) connecting (yx + Asn,) N A, 10 (Y + Aasn, ) N Ay, for every
k < j. It is simple to show that this is topologically possible when ¢ is small enough. Via

Theorem 10.1, the oy-paths connecting zj to OAss,, (Tx) N Ay, and yx to OAsn, (yk) N Ay,
can be connected by a og-path with positive probability ¢ = ¢(0,pg). Therefore,

S(AFP (n1,13)) 2 o[ AZP (ny,n2) n AFP (2n2,m3) ],

thus concluding the proof. O

Our main objective is now the following result:
Proposition 10.16. Fix 0. For every n < N,
{457 (n. N)] % o[ Ay (n, N)].

Indeed, if Ag*(n,N) and A,(n, N) have uniformly comparable probabilities, Theo-
rem 10.14 follows from the previous statement, as we can see in the following proof:

Proof of Theorem 10.14 We have for n; < ng <ns:
gzﬁ[AU(nl,ng)] < qzﬁ[AU(nl, n2)|A0(2n2,n3)] . gzﬁ[Ag(QnQ,ng)]
qb[Ag(nl,ng)] ~¢[AU(2n2, ng)]
gb[Affp(nl, n2)] ~¢[Affp(2n2, ng)]
< qb[Af,ep(nl,ng)] . gb[Aiep(nQ, ng)]
< ¢[Ao(n1, nz)] : ¢[Ao(n2, n3)]7

where in the second line we used (10.11), in the third, Proposition 10.16, and in the fourth,
(10.13). Now,

) (

) (

¢[Aa(n1,n3)] < ¢[A§6p(n1,n3)]

2 gb[Affp(nl,nQ)] -¢[A§ep(2n2,n3)]
gb[AU(nl, ng)] . QS[AU(Qng,ng)]
Cb[Aa(nl, nz)] ) ¢[Aa(n2, ns)],

where in the first and third lines, we used Proposition 10.16, in the second Proposi-
tion 10.15, and in the last, A,(n2,n3) c A,(2n9,n3). |

D¢

\v4

Therefore, we only need to prove Proposition 10.16. Let us start with the following
two lemmas:
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Lemma 10.17. For any € > 0, there exists T'> 0 such that for every n >0
gzﬁgn ,, (3T disjoint crossings of Span) < €

uniformly in boundary conditions &.

Proof It is sufficient to show that for € > 0, there exists T' > 0 such that the probability
of T disjoint vertical crossings of [0,4n] x [0,n] is bounded by & uniformly in n and the
boundary conditions. In fact, we only need to prove that conditionally on the existence
of k crossings, the existence of another crossing is bounded from above by some constant
c< 1.

In order to prove this statement, condition on the k-th left-most crossing 7. Assume
without loss of generality that 7, is a dual crossing. Construct a subdomain of [0,4n] x
[0,7n] by considering the connected component of [0,47n]x[0, 7]\, containing {4n}x[0,n].
The configuration in €2 is a random-cluster configuration with boundary conditions &
on the outside and free elsewhere (i.e. on the arc bordering the dual arc 7). Now,
Theorem 10.1 implies that €2 is crossed from left to right by a primal and a dual crossing
with probability bounded from below by a universal constant. Indeed, cut the domain €2
into two domains ; = Qn[0,4n] x [0,n/2] and Qy = Q2N [0,4n] x [n/2,n] and assume Q4
is horizontally crossed and 25 is horizontally dual crossed). This prevents the existence
of an additional vertical crossing or dual crossing, therefore implying the claim. O

The previous proof harnesses Theorem 10.1 in a crucial way, the left boundary of €2
being possibly very rough, previous results on crossing estimates would not have been
strong enough.

Lemma 10.18. For any € > 0, there exists 0 > 0 such that for every 2n < N,

qﬁg o 2N( any set of crossings of S,.n can be made well separated ) > 1-¢

uniformly in boundary conditions &.

Proof Fix n and the boundary conditions &.

Consider 7' large enough so that there exist more than 7' disjoint crossings of .S, 2,
with probability less than e.

Fix 0 > 0 such that in any subdomain of the annulus Sy, ,, OAs, is not connected or
dual connected to OA, with probability 1-¢/T, uniformly in the domain and the boundary
conditions on S, ,. This fact can be proved easily using Theorem 10.1.

We can assume with probability 1 - 8¢ that no crossing ends at distance less than 6 N
of a corner of S, n. It is thus sufficient to work with vertical crossings in the rectangle
[-N,N] x[n,N].

Now, condition on the left-crossing v; of [N, N] x [n, N] and set y to be the ending
point of 7; on the top. As before, construct the domain 2 to be the connected component
of {N}x[n,N]in [-N,N]x[n, N]\7;. We can assume with probability 1-¢/T" that no
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Q

Figure 10.3: The construction of open and closed paths extending the crossing and pre-
venting other crossings of finishing close to the path.

vertical crossing will land at distance 6N of y by ensuring that Q n Sz sn(y) contains
open and dual-open circuits. Moreover, Theorem 10.1 allows us to construct a path P in
Aszn(y)N ([N, N]x[n, N]\Q) connecting ; to the top of As2n(y) with probability ¢ > 0.
This construction costed ce/T and ~; is guaranteed to be isolated from other crossings.
[terating the construction 7" times, we find the result.

The same reasoning applies to the interior side and we obtain the result. 0

Proof of Proposition 10.16 The lower bound ¢[ A5"(n, N)] < ¢[ A, (n, N)] is straight-
forward. Let us prove the upper bound for Sy. on, first with only the separation on the

exterior. Define A5/ (27, 2%) to be the event A,(27,2%) with separation on the exterior
only. Let By be the event that crossings in Syk-1 9¢ can be made separated. Lemma 10.18

ensures that ¢(B¢) <e. Note that A,(2",2F) n By, c Aseplert(gn 9k) We thus have

N-1
o[A,(2,2M)] < Y ¢[An(2",2%), By, Bi.y, - By
k=n
N-1
< 3 ¢[A.(2".2%), Bi. By, Bi . -
k=n

Since annuli are separated by macroscopic areas, we can use (10.11) repeatedly to find

¢(AJ(2n7 QN)) < ]:Z__:l gb[AU(Zn’ 2k)7 Bk]0¢(Bk+2)O¢(Bk+4)

IN

N-1
Z gb[Affep/mt(Qn,Qk)] (C«g)(l\f—n)/2
k=n

YN

(szl(zN_n)a(CE)(N—n)/Q) ¢[Aiep/ext(2n’ 2N)]

k=n
where we used (10.12) in the third line. Choosing e small enough, we obtain ¢ such that

¢[AU(2H,2N):| < gb[Aiep/ext(QnaQN)]
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Figure 10.4: Only one site per rectangle can satisfy the following topological picture.

One can then obtain the separation on the interior in the same way. Now, fix n < N
arbitrary. define s,r by the formulee 25°! <n < 2% and 2" < N < 2"+, We have

o[A,(n,N)| < ¢[A,(2°,27)] = o[AsP(2°,27)] = ¢[AsP(n,N)]
using (10.12) and (10.13) a last time. O

We mention a classical corollary of the comparison between well-separated arms and
usual arms: one can choose a landing sequence I = (I;)x<; of disjoint areas of size J on
the boundary of the square @ =[-1,1]2, found in counter-clockwise order following 9Q).

Let AZ(n,N) be the event that there exist arms from the interior to the exterior of
Shp,n, and such that v, ends on N1j.

Corollary 10.19. Fix 7> 0. For any choice of I, 0, n < N, we have
o[As(n, N)] % ¢[As(n, N)].

3.2 Universal exponents

Theorem 10.20. For every 0 <k <n< L,

O Aocooc (k)] % (kn)*, G[ALF(k,n)] = kfn. G[ALL (k,n)] % (k[n)’.

where AHT(n, N) is the existence of j paths in [-N,N]x [0, N] ~ [-n,n] x [0,n] form
[=n,n]x[0,n] to ([-N, N]x [0, N]).
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Proof We treat the first case only, since the others are similar and actually technically
easier. We only need to look at the case k =1 via quasi-multiplicativity.

Let us first prove the lower bound. Fix n < L,. Consider the following construction:
assume there exist a horizontal crossing of [-n,n] x [-n/4,0] and a dual horizontal cross-
ing of [-n,n] x [0,n/4]. This happens with probability bounded from below by ¢ > 0
not depending on n. By conditioning on the lowest interface I' between an open and
a closed crossing of [-n,n] x [-n/4,n/4], the configuration above it is a random-cluster
configuration with free boundary conditions. Let €2 be the connected component of A, \T°
containing [-n,n] x {n}. Assume that [-n/4,0] x [-n,n] N is dual crossed horizontally,
and that [0,n/4] x [-n,n] N is crossed horizontally. The probability of this event is
once again bounded from below uniformly in n, thanks to Theorem 10.1. Note that we
need a strong form of crossing probabilities in order to guarantee the existence of the last
crossing since the boundary of €2 can be very rough.

Summarizing, all these events occur with probability larger than ¢’ > 0. Moreover,
the existence of all these crossings implies the existence of a site in A,,;, with five arms
emanating from it. The union bound implies

(7/4)?¢[ Aocooe(n/4)] 2 ¢

In order to prove an upper bound for @[ Ayeooc(n)], recall that it suffices to show it for
well-separated arms for which we choose landing sequences. Consider the event described
in Fig. 10.4. Topologically, no two sites in A,, can satisfy this event simultaneously, which
implies the claim. O

This result has an interesting corollary:

Corollary 10.21. Fiz pe (0,1). There exists o >0 such that for every 0 <k <n< Ly,
¢[Aocococ(k7n)] < (k/n)2+a
¢l Aveoc(k,m)] 2 (k[n)*.

The ’six-arm’ event will be important for convergence to SLE. The 'four-arm event’ is
important for the existence of pivotal sites (see Chapter 12).

Proof Fix n< N, we have
O (Aocococ(n, N)) X 0(Apeococ(n, N),no arm finishing at the bottom).

Conditioning on five arms (starting the exploration from the bottom for instance), it can
be shown that

A (Aoeococ(, N),no arm finishing at the bottom) < ¢°(Ac(n, N))d(Aococe(n, N)).
The result follows from Theorem 10.20 and the fact that Theorem 10.1 implies
¢"(Ac(n,N)) < (n/N)"

for some a > 0. The same proof works with ococc replacing ocococ. O
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4 Other applications

4.1 Spin-Ising crossing probabilities

Thanks to the Edwards-Sokal coupling, we can couple the FK-Ising and the spin-Ising
model, and derive from Theorem 10.1 crossing probabilities bounds for the spin Ising
model.

While it is impossible to obtain crossing probabilities for the critical spin-Ising that
would be uniform with respect to the boundary conditions (the probability of crossing of
+ spins with — boundary conditions everywhere tends to 0 in the scaling limit, as can be
seen using SLE techniques), it is possible to get nontrivial bounds that allow to deal with
spin-Ising interfaces, notably in presence of free boundary conditions (which is the setup
considered in [LPSA94].

Corollary 10.22. Let M > 1. Then there exists ¢ € (O, %) such that the following holds:

Let (Q,a,b,¢,d) be a topological rectangle with 57 < lo[(ab), (cd)] < M. Consider the
critical Ising model on (€, a,b,c,d) with free boundary conditions on (ab) U (cd) and +
boundary conditions on (bc) u (da). Then we have

d <P[There is a crossing of — spins (ab) < (cd)] <1-0.

Remark 10.23. By monotonicity of the spin-Ising model with respect to the boundary
conditions, this result implies that the probabilities of — crossings in topological rectangles
with free boundary conditions (the setup considered in [LPSA94]) are also bounded away
from below. By self-duality (for topological reason there cannot be both a — crossing between
(ab) and (cd) and a + crossing between (bc) and (da)) and symmetry between — and +
spins, such crossing probabilities are also bounded from above.

Proof of Corollary 10.22 Let us show a lower bound only (the upper bound can be
obtained by self-duality arguments).

The Edwards-Sokal coupling enables us to couple this Ising model with an FK-Ising
model with boundary conditions (bc) u (da) (the sites on (bc) U (da) are wired, and
the sites on (ab) U (cd) are free). Use Corollary 10.9 to split §2 into three “fair shares”
(Q1,a,z4,xp,b), (Q2, 24, Ty, Te, xq) and (3, ¢,d, x4, z.), With

oy [(aza) , (a3b)] % Lo, [(w62a) , (woa)] = Ly [(cd) , (was)] = 1

(the constants depend on M only). By Theorem 10.1 there exists o > 0 such that with
probability at least a, there is no FK crossing (az,) <> (z,b) in Qq, with probability at
least « there is no FK crossing (cd) < (x4x.), with probability at least « there is an
FK-Ising crossing (zpz,) < (x4x.). So, with probability at least a3, we can ensure that
there is an FK-Ising crossing (ab) < (cd) in 2, that does not touch (bc)u (da). Sampling
a spin-Ising configuration from the FK-Ising model, we get that with probability at least
1a3, there is an FK-Ising crossing will take sign — (since it is not connected to (bc)u(da)),
hence a — spin crossing (ab) < (cd). O



Chapter 11

Convergence to chordal SLE(3) and
chordal SLE(16/3)

Abstract: This chapter presents a proof of convergence of interfaces for FK-Ising and
Ising to the chordal Schramm-Loewner Evolutions of parameters x = 16/3 and 3 respec-
tively. It is inspired of the article Convergence of Ising interfaces to Schramm’s SLEs,
written with D. Chelkak, C. Hongler, A. Kemppainen and S. Smirnov [CDCH*11b|. Let us
mention that the proof of convergence to SLFE;4/3 was first published in [Kem09, SmilOb].
Section 4 sketches an alternative proof of the main technical step in [Kem09, SmilOb]| based
on the previous chapter and Section 7 is a new result.

There are many different ways of defining conformal invariance. In Chapter 7, a model
was said to be conformally invariant if there exists a family of conformally covariant
‘relevant observables’ in the scaling limit. Following Aizenman’s suggestion to look at
interfaces, we show that FK-Ising and Ising interfaces are conformally invariant. For both
models, the Dobrushin boundary conditions allow us to isolate a single interface (in the
Ising case, between +1 and —1, and in the FK-Ising, between open and dual-open clusters)
and we thus restrict ourselves to this context. Our aim is to prove that these interfaces,
in the scaling limit, form a family of conformally invariant curves in the following sense:

Definition 11.1. A family of random continuous curve vyq..p) defined on simply con-
nected domains ) with two marked points a and b on the boundary is conformally invariant
if for any (Q,a,b) and any conformal map* ¢ : Q - C,

Y o Y(@,ab) has the same law as V() b(a) b (b)) -

In 1999, Schramm proposed a natural candidate for the possible conformally invariant
families of non-intersecting curves. He noticed that interfaces of models further satisfy
the domain Markov property (see Definition 11.6) which, together with the assumption of

conformal means holomorphic and one-to-one.

203
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conformal invariance, determine the possible family of curves. In [Sch00], he introduced
the Schramm-Loewner Evolution — SLE in short. The SLE(k), for x > 0 is a (random)
Loewner chain with driving process \/k By, where B; is a standard Brownian motion. Such
a definition is note completely straightforward.

The fact that SLEs can be ’encoded’ via Brownian motions paves the way to the use
of standard techniques such as stochastic calculus in order to study the properties of the
model. Consequently, SLEs are now fairly well understood: path properties have been
derived in [RS05], their Hausdorff dimension can be computed [Bef04, Bef0O8a], etc... In
addition to this, several critical exponents can be related to properties of the interfaces,
and thus be computed using SLE. Therefore, proving convergence of interfaces of a model
of statistical physics towards an SLE leads to a deep understanding of the phase transi-
tion. We refer to |[Law05, Wer40, Wer05] for complete expositions on Schramm-Loewner
Evolutions and related conformally invariant processes.

One of the first and most fundamental model for which convergence to SLE is known
is site percolation on the triangular lattice [Smi01, Smi05, CNO7] (it converges to SLE(6)).
The convergence result enables us to compute of several exponents such as polychromatic
arm-exponents [LSWO01b, LSWO01a|, the monochromatic one-arm exponent [LSW02]|, the
exponent (3 of the infinite-cluster density 6(p) (the polychromatic four-arm exponent and
the one-arm exponent can be related, via Kesten scaling relations [Kes87] to the exponent
for 6(p), see Chapter 12 for further details), etc... In [LSWO04a|, loop-erased random
walks were shown to converge to SLE(2). In [SS05], an ad-hoc model, called the harmonic
explorer, was shown to converge to SLE(4).

The FK-Ising and Ising models are conformally invariant in the sense that they possess
conformally covariant families of observables. As mentioned earlier, this a prior: weaker
result should in fact be sufficient to prove conformal invariance of interfaces. The goal of
this section is to explain this step.

Convergence of random parametrized curves (say with time-parameter in [0,1]) is in
the sense of the weak topology inherited from the following distance on curves:

d(71,72) = igf sup |vi(u) = v2(o(u))l, (11.1)

u€[0,1]

where the infimum is taken over all reparametrizations (i.e. strictly increasing continuous
functions ¢:[0,1] - [0,1] with ¢(0) =0 and ¢(1) =1).
Let us begin with the FK-Ising model.

Theorem 11.2 (Smirnov-Kemppainen [SmilOb, Kem09|). Let Q be a simply connected
domain with two marked points a,b on the boundary. Let s be the interface of the critical
FK-Ising with Dobrushin boundary conditions on (S5, as,bs). Then the law of vs converges
weakly, as 6 — 0, to the chordal Schramm-Loewner Evolution with k = 16/3, for the
topology associated to the curve distance.

A similar statement holds for the spin-Ising model, with a different value of x:

Theorem 11.3. Let (2,a,b) be a simply connected domain with two marked points on
the boundary. Let s be the interface of the critical Ising model with Dobrushin boundary
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conditions on the Dobrushin domain (Ss,as,b5). Then (vs)ss0 converges weakly, as § —
0, to the (chordal) Schramm-Loewner Evolution with parameter k = 3 for the topology
associated to the curve distance.

The strategy to prove that a family of parametrized curves converges to SLE(k) follows
three steps:

e First, prove that the family of curves is tight.

e Then, show that any sub-sequential limit is a time-changed Loewner chain with a
continuous driving process.

e Finally, show that the only possible driving process for the sub-sequential limits is
VKkB; where B; is a standard Brownian motion.

The main step is the third one. In order to identify the Brownian motion as being the
only possible driving process for the curve, we find computable martingales expressed in
terms of the limiting curve. In our case, these martingales will be the limits of fermionic
observables. The fact that these (explicit) functions are martingales allows us to deduce
martingale properties of the driving process. More precisely, we aim to use Lévy’s theorem:
a continuous real-valued process X such that X; and X?—at are martingales is necessarily
VabB;.

The chapter is organized as follows. The first section is a crash course on SLE. The
second one deals with precompactness of FK-Ising interfaces. The third one presents a
criterion to prove that these sub-sequential limits are Loewner chains. The fourth one
contains the proof that FK-Ising interfaces converge to SLE(16/3). The fifth one contains
the convergence result of Ising interfaces. The sixth section explains the first step of the
program for general random-cluster models with cluster-weight ¢ > 1.

1 Crash course on Schramm-Loewner Evolution

We do not aim for completeness (see |[Law05, Werd0, Wer05] for details). We simply
introduce notions needed in the next sections. Recall that a domain is a simply connected
open set not equal to C.

Set H to be the upper half-plane. Fix a compact set K c H such that H = H\ K is
still simply connected. For such a domain H, Riemann’s mapping theorem guarantees
the existence of a conformal map from H onto H. Moreover, there is a priori three real
degrees of freedom in the choice of the conformal map, so that it is possible to fix its
asymptotic when z goes to oo. Let g be the unique conformal map from H onto H such
that o

g(z) = z+—+0(i2).
z z
The proof of the existence of this map is not completely obvious and requires the reflexion
principle. The constant C' is called the h-capacity of H. It acts like a capacity: it is
increasing in the domain and the h-capacity of AK is A? times the h-capacity of K.
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There is a natural way to parametrized continuous curves v : R, - H with 7(0) = 0
and with v going to co when ¢t - co. For every s, let H; be the connected component of
H \ ~[0, s] containing co. We denote by K, the hull created by [0, s], i.e. the compact
set H\ H,. From the previous paragraph, K has a certain h-capacity C,. The continuity
of the curve guarantees that C, grows continuously, so that it is possible to parametrize
the curve in such a way that C; = 2¢ at time ¢. This parametrization is called the
h-capacity parametrization. Note that in general, the previous operation is not a proper
reparametrization, since any part of the curve hidden from oo will not make the h-capacity
grow, and thus will be mapped to the same point for the new curve.

From now on, assume the curve is parametrized vian h-capacity. In particular, the
curve can be encoded? via the family of conformal maps ¢; from H; to H, such that

2t 1
gi(z) = z+—+0(—2).
z z
Under mild conditions, the infinitesimal evolution of the family (g;) can be studied and

it implies the existence of a continuous real valued process W; such that for every ¢ and

ZEHt,
2

9:(2) =Wy
The process W; is called the driving process. This equation can be derived for general

growing hulls, the typical required hypothesis in order to do so is the following ’local
growth’ condition:

Dgi(2) =

Local Growth Condition: for any t >0 and for any €, there exists § > 0 such that for
any s < t, the diameter of gs(Ksws ~ Ks) is smaller than e, where Ky =H ~ Hy is the hull
created by ;.

It is important to notice that the procedure is revertible. If a continuous function
W, is given, it is possible to reconstruct the hull K; as the set of points z for which the
previous differential equation already blew up.

We are now in a position to define Schramm-Loewner Evolutions:

Definition 11.4 (SLE in the upper half-plane). The chordal Schramm-Loewner Evolution
in H with parameter k >0 is the (random) Loewner chain with (random) driving process
W, := \/kB;, where B; is a standard Brownian motion.

Loewner chains in other domains are easy to define via conformal mapping.

Definition 11.5 (SLE in general domains). Fiz a domain Q with two points on the
boundary a and b and assume it has a nice boundary (for instance a Jordan curve). The
chordal Schramm-Loewner Evolution with parameter k>0 in (2, a,b) is the image of the
Schramm-Loewner Evolution in the upper half-plane by a conformal map from (H,0, c0)

onto (,a,b).

2In fact only the hull associated to the curve can be encoded via conformal maps.
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To conclude this paragraph, let us mention the fact that these curves are natural
scaling limits for interfaces of conformally invariant models. In order to explain this fact,
let us introduce the notion of domain Markov property for a family of random growing
curves.

Definition 11.6. A family of random continuous curves vy(qap) (parametrized vian h-
capacity) in simply connected domains is said to satisfy the domain Markov property if
for every (Q,a,b), and every t >0, the law of the curve v[t,o0) conditionally on [0,t] is
the same as the law of vy, . b), where §; is the connected component of A\, containing

b.

Discrete interfaces in models of statistical physics naturally satisfy this property, and
therefore their limit also do. Schramm proved the following result in [Sch00]|, which in
some way justify SLEs as natural candidates for limits of interfaces.

Theorem 11.7 (Schramm, [Sch00]). Every family of Loewner chains v(q.qp) which

e is conformally invariant,
o satisfies the domain Markov property,

e satisfies that Y 0,.0) @S scale invariant,

is a chordal Schramm-Loewner Evolution with parameter k € [0, 00).

2 Tightness of interfaces for FK-Ising

In this section, the following theorem is proved:

Theorem 11.8. Fixz a domain (2, a,b), the family (7s)sso of random interfaces for critical
FK-Ising in (€2, a,b) is tight for the topology associated to the curve distance.

The question of tightness for curves in the plane has been studied in the groundbreak-
ing paper [AB99]. In that paper, it is proved that a sufficient condition for tightness is
the absence, at every scale, of annuli crossed back and forth an unbounded number of
times.

More precisely, for x € Q and r < R, let S, g(z) = (z + [-R, R]?) \ (z + [-r,7]?) and
define Ai(x;r, R) to be the event that there exist k crossing of the curve 5 between outer
and inner boundaries of S, gr(z).

Theorem 11.9 (Aizenman-Burchard [AB99]|). Let 2 be a simply connected domain and
let a and b be two marked points on its boundary. Denote by Ps the law of a random curve
s on Qs from ag to bs. If there exist k € N, Cy, < oo and Ay > 2 such that for all ) <r < R
and x €1,
r\Ak
P&(Ak(xaraR))SCk(E) ;
then the family of curves (qs) is tight.

We now show how to exploit this theorem in order to prove Theorem 11.8. The main
tool is Corollary 9.13 (which follows from Theorem 9.1).
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Proof of Theorem 11.8 Fix x €€, § <r < R and recall that the lattice has mesh size
0. Let k to be fixed later. We first prove that
G2 (Agp(a;7,2r)) < * (11.2)

Q& Psd»2

for some constant ¢ < 1 uniform in z, k,r, ¢ and the configuration outside of S, o, ().

If Aox(x;7r,2r) holds, then there are (at least) k open paths, alternating with & dual
paths, connecting the inner boundary of the annulus to its outer boundary. Since the paths
are alternating, one can deduce that there are k£ open crossings, each one being surrounded
by closed crossings. Hence, using successive conditionings and the comparison between
boundary conditions, the probability for each crossing is smaller than the probability that
there is a crossing in the annulus with wired boundary conditions (since these boundary
conditions maximize the probability of the event). We obtain

k
QZS?)‘;’Zfsd(Agk(x; r,2r)) < [¢}?r,21~(:c),psd,2(57“72f is crossed))] .

Using Corollary 9.13, ¢ oo (@) P ,(S,2, is crossed) <1-c; < 1, and (11.2) follows.
One can further fix k large enough so that c* < %. Now, one can decompose the annulus

Sy r(x) into roughly Ins(R/r) annuli of the form S, 5.(x), so that for the previous k,

0,2 (A2 (237, R)) <( )3. (11.3)

Hence, Theorem 11.9 implies that the family (7s) is tight. O

3 sub-sequential limits of FK-Ising interfaces are Loewner
chains

In the previous paragraph, traces of interfaces in Dobrushin domains were shown to be
tight. We would now like to parametrize any sub-sequential limit curve as a Loewner
chain, 7.e. via its h-capacity. In this case, we say that the curve is a time-changed
Loewner chain.

Theorem 11.10. Any sub-sequential limit of the family (7s)sso of FK-Ising interfaces is
a time-changed Loewner chain.

As emphasized in the first section of this chapter, not every continuous curve is a
time-changed Loewner chain, therefore an additional argument is needed, especially since
the limiting curve of FK interfaces is fractal-like and has many double points. A general
characterization for a parametrized non-selfcrossing curve in (€2, a, b) to be a time-changed
Loewner chain is the following:

e its h-capacity must be continuous,
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a

Figure 11.1: Left: An example of a fjord. Seen from b, the h-capacity (roughly speaking,
the size) of the hull does not grow much while the curve is in the fjord. The event involves
six alternating open and closed crossings of the annulus. Right: Conditionally on the
beginning of the curve, the crossing of the annulus is unforced on the left, while it is forced
on the right.

e its h-capacity must be strictly increasing

e the curve grows locally seen from infinity in the following sense: for any ¢ > 0 and
for any ¢, there exists 6 > 0 such that for any s < ¢, the diameter of g,( K. s\ K) is
smaller than ¢, where K, = H \ H, is the hull created by [0, s].

The first condition is automatically satisfied by continuous curves. The third one follows
from the other twos when the curve is continuous, so that the only condition to check is
the second one. This condition can be understood as being the fact that the tip of the
curve is visible from b at every time. In other words, the family of hulls created by the
curve (i.e. the complement of the connected component of {2\ v; containing b) is strictly
increasing. This is the case if the curve does not enter long fjords created by its past at
every scale, see Fig. 11.1.

In the case of FK interfaces, this corresponds to so-called six-arm events, and it boils
down to proving that Ag > 2. We already proved this result in 10, and we show at the end
of this subsection how it indeed implies that scaling limits are Loewner chains. Before
that, we present a more general criterion characterizing Loewner chains.

Recently, Kemppainen and Smirnov [KS10] proved a ’structural theorem’ characteriz-
ing random continuous curves that can be parametrized as Loewner chains. We describe
it now.

For a family of parametrized curves (7s)ss0, define Condition (*):

Condition (x): There exist C > 1 and A > 0 such that for any 0 < § <r < R/C, for
any stopping time T and for any annulus S, g(x) not containing ., the probability that
Vs crosses the annulus Sy r(x) (from the outside to the inside) after time T while it is
not forced to enter S, p(x) again is smaller than C(r/R)%, see Fig. 11.1.

Roughly speaking, the previous condition is a uniform bound on unforced crossings.
Note that it is necessary to assume that the crossing is unforced.
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Theorem 11.11. If a family of curves (vs) satisfies Condition (x), then it is tight for
the topology associated to the curve distance. Moreover, any sub-sequential limit v is a
time-changed Loewner chain and 7y is the trace of the family of hulls generated by ~y.

Tightness is almost obvious, since Condition (*) implies the hypothesis in Aizenman-
Burchard’s theorem. The hard part is the proof that Condition (*) guarantees that the
h-capacity of sub-sequential limits is strictly increasing and that they create Loewner
chains. The reader is referred to [KS10] for a proof of this statement.

Proof of Theorem 11.10 Corollary 9.13 implies Condition () without difficulty. O

4 sub-sequential limits of FK-Ising interfaces are Loewner
chains (alternative proof)

Let us now sketch another way of proving Theorem 11.10. It does not require Theo-
rem 11.11 and it harnesses Theorem 10.1 only. More precisely, we will be using Theo-
rem 10.1 and two of its corollaries: the 6-arm exponent in the plane is greater than 2 and
the three arm exponent on the boundary is equal to 2. We refer to [Wer07| for additional
details on this method.

We need to prove that the h-capacity is strictly increasing. Let us consider the dis-
crete explorations directly in the upper half-plane, and already parametrized by their
h-capacity. The idea is to proceed in three steps. Let os(z) (resp. o(z)) be the time at
which z is disconnected from infinity by the discrete curve -5 (resp. the continuous curve
)

STEP 1: SIMULTANEOUSLY FOR EVERY 2z, 05(z) CONVERGES TO o(z) ALMOST
SURELY. This is due to the fact that if one point z does not satisfy this property, the
discrete model has to possess six arms of alternative colors (or three arms on the boundary
of alternative colors). Yet, the six arm event has exponent larger than 2 and does not
happen anywhere in the domain with probability going to 1.

STEP 2: FOR ANY u </, THERE EXISTS v € (u,u’) SUCH THAT y(v) ¢ [0, u] u OH.
Fix a dense family of points on 7[0,u] u OH. FEach of these points does not belong
to the curve v[0,00] almost surely, thanks to Theorem 10.1. Therefore, none of these
points belongs to [0, co] almost surely. This implies that y[u,u'] cannot be included in
[0, u] u OH.

STEP 3: FOR EVERY RATIONAL u < v/, K, # K. Recall that K, is the hull created by
7[0,u]. It is thus sufficient to prove that there exists v € (u,u’) such that v(v) ¢ K, udH.
We already know from the second step that there exists v(v) ¢ v[0,u] u OH. Thus ~(v)
is in one of the connected components of H \ [0, u]. Assume it is not in the unbounded
one. The first step implies that

v+aly(v)]

osly(v)) « LI
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with probability going to 1. It immediately implies that o5[vs(v)] < v for § small enough,
which is impossible since discrete curves vs5 do not have triple points.

5 Convergence of FK-Ising interfaces to SLE(16/3)

The FK fermionic observable is now proved to be a martingale for the discrete curves and
to identify the driving process of any sub-sequential limit of FK-Ising interfaces.

Lemma 11.12. Let § > 0. The FK fermionic observable M3(z) = Fa,yon]ymbs(2) 05 @
martingale with respect to (F,) where F,, is the o-algebra generated by the FK interface

~[0,n].

Proof For a Dobrushin domain (€23, as,b5), the slit domain created by “removing” the
first n steps of the exploration path is again a Dobrushin domain. Conditionally on v[0,n],

the law of the FK-Ising model in this new domain is exactly ¢;’;’f‘; (0] This observation
S5 )

implies that M?2(z) is the random variable 12%(3%75”/76(2’1’) conditionally on F,,, therefore
it is automatically a martingale. O

Proposition 11.13. Any sub-sequential limit of (7s5)sso which is a Loewner chain is the
(chordal) Schramm-Loewner Evolution with parameter k = 16/3.

Proof Consider a sub-sequential limit v in the domain (2, a,b) which is a Loewner
chain. Let ¢ be a map from (€2, a,b) to (H,0, c0). Our goal is to prove that 7 = ¢(7) is a
chordal SLE(16/3) in the upper half-plane.

Since 7 is assumed to be a Loewner chain, 7 is a growing hull from 0 to co parametrized
by its h-capacity. Let W, be its continuous driving process. Also define g; to be the
conformal map from H \ 4[0,¢] to H such that g,(z) = z + 2t/z + O(1/22) when z goes to
Q.

Fix 2/ € Q. For ¢ > 0, recall that M2(z") is a martingale for vs5. Since the martingale
is bounded, M?(z') is a martingale with respect to F,,, where 7, is the first time at
which ¢(+s) has an h-capacity larger than ¢. Since the convergence is uniform, M;(z') :=
lims_,o M2 (2') is a martingale with respect to G;, where G, is the o-algebra generated by
the curve 4 up to the first time its h-capacity exceeds t. By definition, this time is ¢, and
G, is the o-algebra generated by 7[0,t].

Recall that M;(z") is related to ¢(z") via the conformal map from H~5[0,¢] to Rx(0, 1),
normalized to send 7; to —co and oo to oo. This last map is exactly %hl(gt - W;). Setting
z=¢(z"), we obtain that

VAM =AM = Vn(a(5) - W] - \‘ e (11.4)
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is a martingale. Recall that, when 2z goes to infinity,

a(z) = z+%+0(3) and  gl(2) = 1_—+o(—) (11.5)

For s <t,

|
=

ﬁ'E[MtZ|g5]

N 1-2t/22+0(1/2?) ‘g]
z- Wt+2t/z+0 1/22) 177

E [1 - —Wt/z + = (3Wt2 -16t) /22 + O (1/7*) \ gs]

D=5l

(1+ E[Wt|gs]/z+1E[3W2 16t|gs]/z2+0(1/z3)).

Taking s =t yields
1
\/E

Since E[M?|Gs] = MZ, terms in the previous asymptotic development can be matched
together so that E[W;|G,] = W, and E[W? - £¢|G,] = W2 - 2s. Since W, is continuous,

s

Ve M

(1+ —Ws/z+ = (?)I/V2 163)/22+O(1/z3)).

Lévy’s theorem implies that W, = \/ngt where B, is a standard Brownian motion.

In conclusion, « is the image by ¢=! of the chordal Schramm-Loewner Evolution with
parameter x = 16/3 in the upper half-plane. This is exactly the definition of the chordal
Schramm-Loewner Evolution with parameter = 16/3 in the domain (£, a,b). ]

Proof of Theorem 11.2 By Theorem 11.8, the family of curves is tight. Using The-
orem 11.10, any sub-sequential limit is a time-changed Loewner chain. Consider such a
sub-sequential limit and parametrize it by its h-capacity. Proposition 11.13 then implies
that it is the Schramm-Loewner Evolution with parameter x = 16/3. The possible limit
being unique, the claim is proved. O

6 Convergence to SLE(3) for spin Ising interfaces

The proof of Theorem 11.3 is very similar to the proof of Theorem 11.2, except that we
work with the spin Ising fermionic observable instead of the FK-Ising one.

First, let us mention a slight simplification compared to the FK-Ising case. Theo-
rem 9.2 implies tightness. Interestingly, it is not necessary to prove that possible scaling
limits are Loewner chains. Indeed, the only interest of Theorem 11.10 is to prove that
the h-capacity increases strictly. If one forgets about this condition, it is still possible to
describe the hull created by the interface. If one identifies it to be the same as SLE(3), it
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immediately implies that the interface hull is a simple curve, since SLE(3) is simple. As
a corollary, the interface itself converges to SLE(3). It is therefore sufficient to prove that
the driving process is the same as v/3B;.

The only point differing from the identification of the driving process in the FK-Ising
is the fact that the spin fermionic observable is a martingale for the curve. We prove this
fact now and leave the remainder of the proof as an exercise. Let v be the interface in
the critical Ising model with Dobrushin boundary conditions.

Lemma 11.14. Let 6 > 0, the spin fermionic observable M2(z) = FQE\,Y[O’n]’,Y(n)ybé(Z) is
a martingale with respect to (F,) where F, is the o-algebra generated by the exploration
process [0, n].

Proof It is sufficient to check that Fs(z) has the martingale property when v = v(w)
makes one step ;. In this case Fj is the trivial o-algebra, so that we wish to prove

Koo [Fogtasmions ()] = Fagasss (2)- (11.6)

Write Zg;aé,bé (resp. ZQO\[QNLLZ,(S) for the partition function of the Ising model with
Dobrushin boundary conditions on (€25, as, bs) (resp. (2°\[asz],7,bs)), i.€. Zao\[asalzps =
¥, (V2 -1)l. Note that Zqo.[asz] ., is almost the denominator of Fao[asa)wns (25)- BY
definition,

Zﬂg,ag,bg /Ibaﬁ;b,g (71 = ZL‘) = (\/5_ ]-)ZQ°\[a(;x],x,b5
-1 €,z w
](:C,za)e eMERS 5)(\/5_ 1)‘ |

Fﬂgx[a(g:v],x,b(; (Z(S)

ZWESQO NI

asx

= (\/§ — 1)eZ%W’Y($»b5)

1

Zweggg(ag,%) 6_i2W7(a6726) (\/§ - 1)\&1\ 1{71=x}

FQg\[a(;:v],;r,b(s (25)

- ei%Ww(as,ba)

In the second equality, we used the fact that Eqs[aga] (z, z5) is in bijection with configura-

tions of (S'Qg((lg, z5) such that +; = x (there is still a difference of weight of \/2 - 1 between
two associated configurations). Thus giving:

Zweg(a5,25) e—i%WW(as,Zé)(\/ﬁ _ 1)|w|1{71:x}
e_i%W’Y(a&bé)ZQO '
5

a,b
MﬁC7Q (/}/1 = ZLI) Fﬂg\[aémvabé(Z(S) =

,a8,bs

The same holds for all possible first steps. Summing over all possibilities, we obtain the
expectation on one side of the equality and Fg;aa,bé(z(;) on the other side, thus proving
(11.6). 0
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7 Precompactness of interfaces in random-cluster mod-
els with ¢ > 1

This section is devoted to the first step of the program in the case of general random-
cluster models with ¢ > 1. Condition () seems difficult to prove for ¢ # 1,2 since we
do not possess crossing estimates which are valid uniformly in the boundary conditions.
Nevertheless, it is still possible, using arguments similar to those in chapter 4, to prove
the criterion of Theorem 11.9. We deduce the following result:

Theorem 11.15. Fiz a domain (2, a,b), the family (vs)sso of random interfaces for the
critical random-cluster model in (2, a,b) with cluster weight q > 1 is tight for the topology
associated to the curve distance.

Proof We fix ¢ > 1 and p = psy(q) and we drop them from the notations. We must
prove that there exists k£ > 0 such that, uniformly in x € €2, 0 < § <r < R and boundary
conditions &,

S (Aulr ) < O )

for some universal Cj and A, > 2. In order to do so, it is sufficient to show that for any
€ >0, there exists k£ > 0 such that

5, . (Ae(0;n,2n)) <&

uniformly in n and . Simplifying one more time, it is in fact sufficient (make a picture)
to show that for any € > 0, there exists k£ > 0 such that

gbfo 3n]x[0 n](EIkJ alternating closed /open vertical crossings) < ¢

uniformly in n and £. The final simplification is slightly more complicated. When condi-
tioning on the existence of /-1 alternating closed /open vertical paths, the event that there
exists an additional (say open) crossing takes place in a random domain D; c [0,3n]x[0,n]
with boundary conditions £ on 0D; n9[0,3n] x [0,n] and free boundary conditions else-
where?. In particular, the boundary conditions are dominated by wired boundary condi-
tions on 0D;NA[0,3n] x[0,n] and free elsewhere. Then, if & is large enough, we must find
some [ < k for which 9D; n9[0,3n] x [0,n] is very narrow (say smaller than 2n/k on each
side). Therefore, it is sufficient to prove that there exist ¢,e > 0, such that the following
holds true for every n and every a, b two sites on the bottom side at distance en of each
others, and ¢, d two points on the top side at distance en of each other
Pl [(ab) < (cd)] <e<1,

[0,3n]x[0,n]

where boundary conditions (ab), (cd) are wired on (ab) and (cd) and free elsewhere.

3Since it boils down to conditioning on the right-most crossings on the left, and the left-most on the
right
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Note first that if (ab) and (cd) can be separated by a vertical line, the result is then
easy, since duality and symmetry imply that the previous probability is smaller than 1/2
(we leave this as an easy exercise). Therefore, one can assume that (ab) and (cd) cannot
be separated. Making the two intervals slightly bigger, we can even assume that they are
on top of each others.

At the end, the following result would be sufficient to imply the theorem: there exists
¢ < 1 such that uniformly in n,

0,n/4],[in,(i+1/4)n . .
Do ([0, /4) > [in, (i + 1/4)n]) S e < L

Let ¢(n) be the probability that [0,n/4] x [0,n] is dual-crossed horizontally.

CASE 1: ¢(n) 1S SMALLER OR EQUAL TO 1/2: The probability that [n/4,n/2] x [0,n]
and [-n/4,0] x [0,n] are dual crossed vertically is larger than 1-c¢(n) > 1/2, using duality
and the comparison between boundary conditions. We deduce that with probability
1/22, [n/4,n/2] x [0,n] and [-n/4,0] x [0,n] are dual-crossed vertically simultaneously.
Conditionally on this event, boundary conditions in the area between the left-most dual
crossing of [-n/4,0]x[0,n] and the right-most crossing of [n/4,n/2]x[0,n] are dominated
by the free/wired/free/wired boundary conditions on [-n/2,n/2] x [0,n]. Therefore, the
area between the two vertical dual-crossings is dual-crossed horizontally with probability
larger than 1/2 using duality. Overall, we find that [0,n/4] and [in, (i + 1/4)n] are
disconnected with probability 1/8 and the claim is proved.

CASE 2: ¢(n) 1S LARGER THAN 1/2: Define u,, in such a way that the probability to
dual-cross [0, u,] x [0,n] horizontally equals 1/2. Note that u, > n/4 by definition.

Consider the event B that [0, u, |x[0,n] is dual-crossed horizontally, and that [-u,, 0]x
[0,n] and [u,,2u,] x [0,n] are dual-crossed vertically. This event has probability larger
than 1/8 thanks to the FKG inequality and the definition of u, (here again we used
duality and the comparison between boundary conditions).

Condition on the left most closed path crossing [-u,,0]x[0,7n] and the top most closed
path crossing [0, u, | x[0,n]. Following the proof of Proposition 4.8, the construction of a
symmetric domain is then straightforward and we can say that with probability bounded
away from 0, see Fig. 11.2, these two closed paths are dual-connected. Now, condition
on the top/left-most connection between these two closed paths, and on the right-most
closed vertical crossing of [u,,2u,]| x [0,n], one can once again construct a symmetric
domain and prove that these closed paths are connected with positive probability. At the
end, we constructed with positive probability a closed path from [-u,,0] to [u,,2u,].
This path prevents the existence of a path between [0,n/4] and [in, (i + 1/4)n], which
concludes the proof. ]



CHAPTER 11. CONVERGENCE TO SLE(3) AND SLE(16/3) 216

Figure 11.2: The two symmetric domains considered in the proof.



Chapter 12

Near-critical planar FK-Ising model

Abstract: We study the near-critical FK-Ising model. First, a determination of the
correlation length defined via crossing probabilities is provided. Second, a striking phe-
nomenon about the near-critical behavior of FK-Ising is highlighted, which is completely
missing from the case of standard percolation: in any monotone coupling of FK configu-
rations w, (e.g., in the one introduced in [Gri95]), as one raises p near p., the new edges
arrive in a fascinating self-organized way, so that the correlation length is not governed
anymore by the amount of pivotal edges at criticality. In particular, it is smaller than the
heat-bath dynamical correlation length determined in the forthcoming [GP|.

We also include a discussion of near-critical and dynamical regimes for general random-
cluster models. For the heat-bath dynamics in critical random-cluster models, we conjec-
ture that there is a regime of ¢ values where there exist macroscopic pivotals yet there
are no exceptional times. These are the first natural models that are expected to be
noise sensitive but not dynamically sensitive. This chapter is inspired by the article The
near-critical planar FK-Ising model, written with Christophe Garban and Gabor Pete.

Near-critical regime and correlation length. Beyond the understanding of the crit-
ical and non-critical phases (which was the subject of previous chapters), the principal
goal of statistical physics is to study the phase transition itself, and in particular the
behavior of macroscopic properties (for instance, the density of the infinite-cluster for
p > pe(q)) near the critical point. It is possible to relate the critical regime to these ther-
modynamical properties via the study of the so-called near-critical regime. This regime
was investigated in [Kes87| in the case of percolation. Many works followed afterward,
culminating in a rather good understanding of dynamical and near-critical phenomena in
standard percolation [SS10, GPS10a, NW09, GPS10b, GPS|. The goal of this chapter is
to discuss the near-critical regime in the random-cluster case, and more precisely in the
FK-Ising case.

The near-critical regime is the study of the random-cluster model of edge-parameter p
in the box of size L when (p, L) goes to (p., o). Note that, on the one hand, if p goes to

217
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p. very quickly the configuration in the box of size L will look critical. On the other hand,
if p goes to p. (from above) too slowly, the random-cluster model will look supercritical.
The typical scale L = L(p) separating these two regimes is called the correlation length
(or characteristic length). In rough terms, if p is slightly above p.(2) = v/2/(1 + /2),
the correlation length L(p) is the scale below which things still look somewhat critical
and above which the infinite cluster starts being wvisible. In the subcritical regime, it
corresponds to the scale above which the fact that p is subcritical becomes apparent.

Definition of correlation length in the case of percolation (¢ =1). The critical
regime is often characterized by the fact that crossing probabilities remain strictly between
0 and 1. Formally, consider rectangles R of the form [0,n] x [0,m] for n,m > 0, and
translations of them. We denote by C,(R) the event that there exists a vertical crossing
in R, a path from the bottom side [0,n] x {0} to the top side [0,n] x {m} that consists
only of open edges. The celebrated Russo-Seymour-Welsh theorem shows that in the case
of critical percolation, crossing probabilities of rectangles of bounded aspect ratio remain
bounded away from 0 and 1. A natural way of describing the picture as being critical is
to check that crossing probabilities are neither near 0 nor near 1. Mathematically, it is
thus natural to define the correlation length for every p < p.=1/2 and € > 0 as

L.(p) := inf{n>0: P,(C,([0,n]*)) <e},

and, when p > p. = 1/2, as L.(p) := L.(1 - p), where 1 —p is the dual edge-weight. The
dependence on ¢ is not relevant, since it can be proved ([Kes87, Nol08|) that for any € > 0,

Lyys(p) x Le(p)

where < means that there exist constants 0 < A,, B. < oo such that

AcLyys(p) < Lo(p) < BeLyua(p).

The correlation length was shown to behave like |p — p.(1)[#/3+() in the case of
percolation [SWO01].

Definition of the correlation length for FK-Ising (¢ =2). The first result of this
chapter is the determination of the behavior of L(p) when p goes to p. for ¢ = 2. Before
stating the main result, let us give a proper definition of correlation length in this setting.
Since the Russo-Seymour-Welsh theorem has been generalized to the FK-Ising case in
Chapter 9, it is natural to characterize the critical regime once again by the fact that
crossing probabilities remain strictly between 0 and 1. An important difference from the
q =1 case is that one has to take into account the effect of boundary conditions:

Definition 12.1 (Correlation length). Fiz ¢ =2 and p>0. For any n > 1, let R, be the
rectangle [0,n] x [0, pn].
If p<p.(2), for every e >0 and boundary condition £, define
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L5 (p) = inf{n>0: ¢S, 5 (Co(R)) <}
If p>p.(2), define similarly
L5 (p) = inf{n>0:¢5,, (Co(Ry))21-¢}.
Our main result on the correlation length can be stated as follows.

Theorem 12.2. Fiz q=2. For everye,p >0, there is a constant ¢ = c(&, p) such that

1 1 1
<LS.(p)<c! log
P — el ’ lp—pel " |p-pel

C

for all p # p. whatever the choice of the boundary condition £ 1is.

Note that the left-hand side of the previous theorem has the following reformulation,
which we state as a theorem of its own (this result is interesting on its own since it provides
estimates on crossing probabilities which are uniform in boundary conditions away from
the critical point):

Theorem 12.3 (RSW-type crossing bounds). For A >0 and p > 0, there exist two con-
stants 0 < c_ < ¢y <1 such that for any rectangle R with side lengths n and m € [%n,pn],

any p € [pe — %,pc + %] and any boundary condition &, one has

- <%, 0(Co(R)) <c. .

The main ingredient of the proof of the latter theorem (and the most interesting one)
is Smirnov’s fermionic observable. This observable is defined in Dobrushin domains (with
a free and a wired boundary arc), and is a key ingredient in the proof of conformal
invariance at criticality. Nevertheless, its importance goes much beyond that proof, in
particular because it can be related to connectivity properties of the FK-Ising model. We
study its properties away from the critical point, and estimate its behavior near the free
arc of Dobrushin domains. It implies estimates on the probability for sites of the free arc
to be connected to the wired arc. This in turn allows us to perform a second-moment
estimate on the number of connections between sites of the free arc and the wired arc,
therefore implying crossing probabilities in Dobrushin domains. All that remains is to get
rid of Dobrushin boundary conditions (which is not as simple as one might hope) in order
to obtain crossing probabilities with free boundary conditions.

In [CHI11], Chelkak, Hongler and Izyurov show that

¢pc,q=2(0 < 3[—71,77,]2) x nf (12.1)
using conformal invariance techniques. Together with Theorem 12.2, this implies:
Theorem 12.4. Assuming (12.1), there exists a constant ¢ >0 such that if p > p.(2),

1/8
|p _pc|

Op,2(0 <> 00 Zc(
p2(0 o) 2 e\
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The result
<00>E = ¢p72(0 - oo) = |B - Bc|l/8a
as (> B, tends to S, goes back to Onsager [Ons44|. Nevertheless, the proof of Theo-
rem 12.4 is of some value, since the result of [CHI11| and the techniques in this chapter
extend to isoradial graphs (with additional work) while Onsager’s technology is restricted
to the square lattice.

The random-cluster model through its phase transition The previous way to look
at the near-critical regime may seem slightly artificial. It is more natural to study the
random-cluster model through its phase transition by constructing a monotone coupling of
random-cluster models with fixed cluster-weight ¢ > 1. Then, properties of the monotone
coupling (which can be thought of as a dynamics following the evolution of p between 0
and 1) near p, will describe the near-critical regime.

In the case of standard bond percolation (¢ = 1), such a monotone coupling simply
consists of 1.i.d. Uniform[0,1] labels on the edges, and a percolation configuration w, of
density p is the set of bonds with labels at most p. It is straightforward to interpret this
coupling as an asymmetric dynamical percolation: starting from critical percolation at
time zero, as time goes on, whenever the clock of a bond rings, we open that bond; we
can also run time backwards and close the bonds that ring. Now, the question is: in
this monotone coupling, how fast does the system enters the supercritical and subcritical
regimes as p changes near p.?

This near-critical window in percolation was studied by Kesten in [Kes87|, then
by [BCKSO01, Nol08, NW09, GPS10b, GPS|. It turns out that its size is governed by
the expected number of macroscopically pivotal edges, i.e. edges having four alternative
(dual-primal) open paths starting from them and going to macroscopic distance. In
Subsection 2.1, we will describe in more detail the mechanism governing this near-critical
window, but let us introduce roughly the main reasons for macroscopic pivotals to govern
the near-critical behavior. Let us set ay(n) to be the probability at criticality that an
edge has four alternative dual-primal open paths going to a distance n. Getting from w,,
t0 W+, In the box of size L, the system is moving out of stationarity, and roughly L?|A,)|
edges are switched from closed to open. If one assumes that the configuration still looks
critical at p. + A, then the probability of an edge being pivotal is roughly a,(L) during
the whole process and the number of pivotal edges which are switched between p. and
pe+A, is roughly L2y (L)|A,|. Now, Kesten proved the following stability result: as long
as L?ay(L)|Ap| = O(1), there are not much more pivotal points in w, than at criticality,
hence, despite the monotonicity of the dynamics, changes do not speed up significantly
(compared to symmetric dynamical percolation), and the macroscopic geometry starts
changing significantly only at L2a4(L)|Ap| =< 1. On the opposite, L2a4(L)|Ap| > 1 means
that we have really left the near-critical regime, i.e., the window of size L has become
well-connected since many closed pivotal points (they were preventing macroscopic open
paths) have switched to open.

Summarizing, the scale at which the critical regime becomes the supercritical regime
is given by L2ay(L)|A,| = 1. The same reasoning can be applied for the subcritical regime.
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In particular, the correlation length is given (up to constants) by the relation

(L)) au(Le(p))p-pe| = 1. (12.2)

In the previous equality, we did not specify p since it is irrelevant, see the discussion in
the previous paragraphs. The main principle we shall extract from this discussion can be
stated as follows:

Phenomenon 12.5. In percolation (q=1), the near-critical behavior is governed by the
amount of pivotal points at criticality.

To our knowledge, it has been widely believed in the community that basically the
same mechanism should hold in the case of random-cluster models. Namely, once we
understand the geometry of the set of pivotal points, we may readily deduce information
on its near-critical behavior. In fact, this is not the case.

Let us consider the case of the FK-Ising. It has been shown in [Garll] that the critical
FK-Ising probability af(n) for a site to be pivotal behaves like n=35/24+(1) when n goes
to infinity. If pivotal points were governing the near-critical regime, the correlation length
should satisty

2
(LER(p)) cu(LEX(p)lp-pe| = 1
which would give b
LEX(p) = p=pe2 =0 > |p—pe(2)[. (12.3)

This brings us to the following observation.

Phenomenon 12.6. The correlation length in FK-Ising is much smaller than what the
intuition coming from standard percolation (q = 1) would predict. In other words, as
one raises the parameter p, the supercritical regime appears “faster” than what would
be dictated simply by the amount of pivotal edges at criticality: new edges arrive in a
very non-uniform, self-organized manner. Pivotal edges are still an important aspect of
the mechanism that governs the near-critical behavior, yet, as we shall discuss more in
Sections 2 to 2.2, a striking self-organized near-criticality appears.

Let us mention possible explanations for this phenomenon. First, there is a basic
phenomenon in the FK(p, ¢) models for ¢ > 2 that is very relevant to the above discussion:
the difference between the average densities of edges for p = p.(¢q)+Ap and p = p.(q) is not
proportional to Ap, but larger than that, with an exponent given by the so-called specific
heat of the model. (We will discuss this in more detail in Section 2.3.) A first guess could
be that the discrepancy in (12.3) is a result of the fact that Ap is not the density of the
new edges arriving, and this should have been taken into account in the computation
using the pivotal exponent. Nevertheless, this is only partially right: the specific heat
exponent itself is not large enough to account for this discrepancy (in fact, for ¢ = 2 it
equals 0). In fact, a self-organizational mechanism kicks in. In standard percolation, when
Ap <« 1, on the way from w,,, to w,.+ap, new points arrive in a “Poissonian” way. This is
no longer the case with FK-Ising: the arriving edges tend to prefer “strategic” locations,
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i.e., edges which are pivotal at large scales. In other words, near p., the arriving edges
depend in a very sensitive way on the current configuration. This subtle balance between
the current configuration and the conditional law of the arriving edges is representative
of a self-organized mechanism. In Sections 2 to 2.2, we will discuss the reasons for this
self-organed mechanism and the consequences of this observation. Besides some facts that
can be rigorously proved, most of the underlying self-organization scheme remains to be
understood.

Another point of view on the problem, which might explain the discrepancy, is the
fact that for ¢ > 1 Russo’s formula has to be modified. The probability to be pivotal
must be replaced by the influence of an edge on the event that a box of size n is crossed.
This influence should then behave like n=4(@) at criticality. Then, Kesten’s scaling relation
(2-¢&4(q))v(q) =1, where &(q) and v(q) are the critical exponents of the pivotal events
and the correlation length respectively, coming from (12.2) is still valid with the critical
exponent &;(q) replaced by the exponent i(q) governing the behavior of the influence.
This subtlety and the fact that £4(q) # ¢(¢) seem to be new.

On the dynamical and near-critical behavior for other values of ¢q. Finally, we
investigate what happens for other values of ¢q. Since the mathematical understanding of
critical FK(¢) models is very limited when ¢ ¢ {0,1,2}, the study relies on predictions
from physics. We will mostly focus on the case ¢ € [1,4], where the FKG inequality
holds and the phase transition is conjectured to be continuous (i.e. there is a unique
infinite-olume measure at criticality, having no infinite cluster). It is therefore natural to
consider the near-critical regime. In this case yet again, pivotal points do not seem to
control the behavior of the near-critical regime. Critical exponents are indeed violating
Kesten’s relations.

We will also discuss briefly noise-sensitivity and dynamical sensitivity of random-
cluster models with ¢ € [1,4]. Indeed, the study of the near-critical regime of percolation
(especially in [GPS10b, GPS|) was conducted in parallel to the study of the dynamical
percolation. It is also possible to define dynamical critical random-cluster models and to
study the influence of pivotal edges on the existence of exceptional times (times for which
an infinite-cluster exists). As for the near-critical regime, the situation seems much more
complicated than the percolation one. In particular, the existence of pivotal edges is not
equivalent to the dynamical sensitivity of the model (it is expected to be equivalent to the
noise sensitivity though). We refer to this section for further details on these phenomena.

Random-cluster models with ¢ > 4 are not as interesting as those with ¢ < 4. Indeed,
the phase transition is of first order and no near-critical regime exists. In addition, the
models are not expected to be noise-sensitive or dynamically sensitive. The last subsection
of this chapter is devoted to their study.

Organization of the chapter. The chapter is organized as follows. In the first section,
we prove Theorems 12.3 and 12.2.

In the second section, we study the self-organized phenomenon in detail. We start with
explaining why pivotal points are crucial in the understanding of the near-critical regime
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of percolation. Then, we present Grimmett’s monotone coupling, allowing to follow the
evolution of the random-cluster model through its phase transition. Finally we explain
how the self-organized phenomenon acts concretely.

The third section contains a discussion of other values of q.

The last one mentions the interesting case of dynamical random-cluster models.

1 Proofs of the main results on the correlation length
(Theorems 12.3, 12.2 and 12.4)

In this section, a point will be identified with its complex coordinate. We will be working
with the fermionic observable F'. Recall from Chapter 8 that the observable satisfies the
following relations inside the domain:

Proposition 12.7. Let pe (0,1) and X with four neighbors in G ~ 0G, we have
A,F(ex) = 0, (12.4)
where the operator A, is defined by

cos[2a/]

Augten) = SR 5 gte)) = atex) (125)

eiﬂ/4R R
R 6—2’77/4R

argument of F’

Figure 12.1: Left: An edge inside the domain: it has four edges oriented the same way
at distance two. Right: An edge on the free arc with the associated indexation.

Observe that a(p) = 0 if and only if p = p.. In this case, the observable is discrete
harmonic inside the domain. As mentioned before, this is one of the main ingredients of
Smirnov’s proof of conformal invariance: when properly rescaled, the observable converges
to an harmonic map. Boundary conditions for F' correspond to discretizations of the
Riemann-Hilbert problem. These boundary conditions are quite complicated to study at
a discrete level, and Smirnov used a discrete primitive H of the (imaginary part of) F?
to handle them. The function H was then solving an approximated Dirichlet problem.
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In particular, the use of H made the estimation of F' on the free arc possible. More
precisely, F' was related to the square root of modified harmonic measures (see Proposi-
tion 9.5). This fact was crucial in the proof of Theorem 9.1. Omitting the details, let us
say that in 'Dobrushin domains’ (G, a,b), the probability at criticality for a site x on the
free arc to be connected to the wired arc (which is the modulus of the observable, thanks
to Lemma 5.9) is of the order of the square-root of the harmonic measure of the wired
arc seen from x. Equivalently, for a dual site v on the wired arc, the probability of being
dual-connected to the free arc is of order of the square-root of the harmonic measure of
the free arc seen from u.

We will be using this fact for two nice infinite Dobrushin domains:

e The infinite strip S,, = Z x [0,n] of height n. Denote by ¢S the random-cluster
measure with parameter p, free boundary conditions on the bottom and wired
boundary conditions on the top. The probability at criticality for a dual-site on
the top to be dual-connected to the free arc is of order 1/\/n (since the harmonic
measure of the free arc is 1/n via the Gambler’s ruin).

e The upper half-plane H. Denote by ngH the random-cluster measure with parameter
p, free boundary conditions on Z, = {0, 1,--} and wired boundary conditions on
Z_ ={-,-2,-1,0}. The probability at criticality for the dual site adjacent to —n
to be dual-connected to the free arc is of order 1/y/n for the same reason as for the
strip.

)& SS9 S¢ )

B /
site inside
S s

free arc

wired are

Figure 12.2: Left: The strip. Right: The upper half-plane. In this case, 7 is the hitting
time of grey edges.

1.1 Integrability relations of the fermionic observable away from
criticality
Away from the critical point, the primitive A is not available anymore. Nevertheless, F),

is massive harmonic inside the domain. In fact, F, satisfies very explicit relations on the
free arc of the domain as well. Precisely, Lemma 8.6 shows that

cos 2 cos(m/4+ )
2(1+cos(m/4-a)) [y (ew) + Fyplen)] + 1+ cos(m/4 - )

ApFp(ex) = Fp(eg) - Fp(ex) =
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for X on the free arc. When p = p,, the sum of the coefficients on the right equals 0, which
means that the observable has an interpretation in terms of reflected random-walks. This
relates to the discretization of the Riemann-Hilbert boundary problem. It provides an
alternative strategy to handle the scaling limit of the observable.

Away from criticality, we can also interpret these relations in terms of a random
process. Define the Markov process with generator A,, which one can interpret as the
random walk of a massive particle. We write this process (Xép ),m%p )) where Xy(Lp ) is
a random walk with jump probabilities defined in terms of A, — the proportionality
between jump probabilities is the same as the proportionality between coefficients — and
m%p ) is the mass associated to this random walk. The law of the random walk starting at

an edge x is denoted P}. In order to simplify the notation, we drop the dependency in p

in (X, m{) and simply write (X,,m,). Note that the mass of the walk decays by a
factor cos2a at each step inside the domain (on the free arc, it decays by some constant
that we do not explicit here).

Define 7 to be the hitting time of the wired arc, more precisely, of set 0 of medial
edges pointing north-east and having one end-point on the wired arc (the grey edges in
Fig. 12.2). The fact that A,F, = 0 for every edge x ¢ 0 implies for any ¢ >0

Fp(x) = Eg[Fp(Xt/\T)mt/\r]' (12.6)
Since m¥ <1, F,(X¢ar )My, is uniformly integrable and (12.6) can be improved into
Fy(x) = ES[Fp(Xr)m:]. (12.7)
This will be the principal tool in our study.

Proposition 12.8. Let A > 0. There exists C; = C1(\) such that for every n > 0 and
A
Pe 2 P> DPc— n’

e Cy
¢Sn,p (O <> Zn+Z) > ﬁ (128)
There exists Cy = Cy > 0 such that for every n >0 and p < p. — @,
e C,
Ggn (0 in+Z) < vy (12.9)

Proof In both cases, we study the probability for a point on the free arc to be connected
to the wired arc. In particular, Lemma 5.9 implies that quantities on the left of (12.8)
and (12.9) are equal to |F'(eg)| (or F(ep) in this case, since the winding is fixed on the
boundary). Moreover, (12.7) allows us to write

bgn (0 in+Z) = F(eo) = EJ[F,(X;)m,]

Yet, recall that F},(X;) = ¢ " (X~ & 7) by duality and Lemma 5.9 again. We deduce

do (0 in+Z) = B¢ (X, < Z)m,]

= ¢g(in < Z)E)[m,]
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Let us first deal with (12.8). Since p > p.—2, m,, is larger than 1-c(A\/n)? for some ¢ > 0.
We deduce that
E*[m.]>C

for some C' = C'(\). In addition to this,

C

V'

where we used the estimate of the probability at criticality for a dual site of the wired arc
to be connected to the free arc, together with the fact that p < p. implies that the dual
model is supercritical. Plugging both inequalities together, we obtain (12.8).

Let us no turn to (12.9). When p < p.— C(logn)/n, we use the expansion of « near p,
and cos2a < 1 - c(logn)/n (for some constant ¢ = ¢(C')) to deduce

sy (N L)

!

G (0= in+Z) < Ejlm,] < EJ[(1-cy(logn)/n)7] ~ n°
for ¢/ = ¢/(C). In order to conclude, ¢’ can be chosen larger than 4 by tuning C. m]

The previous proof of (12.8) was based on a comparison with the estimates at criti-
cality: when p > p.— A\/n the connection probabilities are of the same order as the critical
ones. We push further this reasoning in the following proposition.

Proposition 12.9. For any A > 0, there exists C3 = C3(\) > 0 such that for every n >0
and p> pe- 2,
Cs
NG

Let us first prove a straightforward yet technical result. It should be compared to
Lemma 5.9.

e (n o L.) > (12.10)

Lemma 12.10. Let u be a dual vertexr adjacent to the wired arc of H,
0,00 *
Fplew) X oy, (u = Zy),

where e, is the edge pointing north-east and adjacent to u, and < means that the ratio is
uniformly bounded away from 0 and oo.

Proof If v is the vertex of the medial lattice on the left of u, the relation around v (5.6)
gives F(NW) + F(SE) = e (F(NE) + F(SW)), where edges are indexed with respect
to the direction they are pointing to (see Fig. 12.2). Since we know the complex
argument modulo 7 of the observable, we can project the relation on e “/4R. Then,
the argument modulo 27 of the observable at NW and SW is in fact determined, since
the winding on the boundary is deterministic (it equals —7/2 for NW, and —= for SW).
Therefore, we find

e E(NW) = cos(m/4 - a)iF (SW) = cos(n/4+a) F(NE).
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Lemma 5.9 then implies

ME(NW) = [F(NW)| = 647 (u < Z.)
iF(SW) = [F(SW)| = ¢g5(u-151Z,).
Using the fact that NE =e,, we deduce
cos(m/d+a)F(e,) = ¢p(u< Zy) - cos(m/d - a)dy (u-1<Z.).

Now, QSEH’?(U -15 7)< gb]%i‘: (u < Z,) thanks to the comparison between boundary
conditions. We deduce

l-cos(m/d-a) o, = 1 000,  *
S T7) < Fley) € ——— 60 (0 S 7
cosCnfavay Ve (4 Be) < Flen) € Comrsy duy (u e 2
which is the claim. ]

We are now in a position to prove the proposition.

Proof of Proposition 12.9 Fixn >0andp > pc—% and denote the fermionic observable
in (H,O0,00) by F,. Lemma 12.10 implies

Fy(n) = Bp[F(X)m-] 2 By (655 (X & Z,)m,].

We know that
Suigy (= L) 2 Cy/\/lul,
thus implying

Fy(n) 2 CiER[ 657 (X & Zy) m.] 2 C4Cs Ep[ m2/\/|X[] (12.11)

for two universal constants Cs, Cy > 0. Therefore, it is sufficient to prove that |X,| is not
larger than n and that m, is larger than some constant € > 0 with probability bounded
away from 0 uniformly in n. The second condition can be replaced by the fact that 7 < n?
for instance.

First, note that it is sufficient to prove that X; exits [0, 2n]x[0,n] through [0,2n]x{n}
in less than n?/2 steps with probability larger than some constant ¢ > 0 not depending on
n. Indeed, the walk has then a uniformly positive probability to exit the domain in less
than n? steps, and that |X,| <n.

Consider (X¢)icn2/2 = (At, Bt)ten2j2 conditioned on the event that (X;)c,z2/o visits the
free arc less than n times. The probability that the first coordinate is less than n for every
t <n?/2 is bounded away from 0 uniformly in n (since the number of visits of (X;) to 0 is
less than n, A; can be compared to a symmetric random walk with a deterministic drift
of order rn for r < 1). Now, conditioned on the visits of (X;) to the free arc, (A;) and
(B;) are independent. Thus, (B;) is a reflected random walk at the origin conditioned on
the fact that it does not visit 0 more than n times. In time n?/2, it reaches height n with
probability bounded away from 0 uniformly in n. The claim follows. 0
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1.2 Proof of Theorem 12.3

We first prove crossing probabilities in rectangles with specific boundary conditions. Then,
we use these crossings to construct crossings in arbitrary rectangles with free boundary
conditions.

Crossing in rectangles with Dobrushin boundary conditions. Let us first use
the estimates obtained in the previous section to prove crossing probabilities in the strip
and the half-plane. The proof follows a second moment argument.

Proposition 12.11. Fiz A > 0. There exists Cg = Cg(\) > 0 such that for everyn >0 and

A
CVETY P > Pe — %,

dg([-n,n] < in+Z) > Cy

and

Gy ([3n,4n] < Z.) 2 Cy.

n

—-n n 3n dn~
Figure 12.3: The two crossing events of Proposition 12.11.

Proof We present the proof for S, (a similar argument works for H). Let N be the
(random) number of sites on [-n,n] which are connected by an open path to in + Z.
Proposition 12.8 implies that

SN = Y G (v e intZ) > (2n+1)% > 201/, (12.12)
). [7”‘7”] mns. n

Moreover,

D™ (N3) < 65 (N2),
The right hand side is a quantity at the critical point and was already studied in Chapter 9
(in fact, only very related quantities were studied, but the generalization is straightfor-
ward). In particular, it was proved in this chapter that

¢;':<:],;:<>(N2) < 0671.
Cauchy-Schwarz thus implies that
doo([-n,n] < in+Z) > ¢ (N > 0) > 2C3/Cg

uniformly in n. 0
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It is now easy to reduce crossing probabilities in the strip and the half-plane to crossing
probabilities in (possibly very large) rectangles. The idea is that a crossing cannot explore
too much of the strip or the half-plane, since there exist slightly supercritical dual crossings
preventing it.

Proposition 12 12. Fix A > 0, there exist C; > 0 and M > 0 such that for every n > 0
and pe > p > pe -

v DM

[—Mn,Mn]x[o,n],p([_n7 n] <~ in+ Z) >Cy

and
-Mn,0
gb[an,Mn]x[O,Mn],p([gn’4n] < Z_) 2 07'

Proof As before, we do it in the case of the strip. Fix M large enough so that at
criticality, the probability that there exists a vertical dual crossing with free boundary
conditions of [n, Mn]x[0,n] exceeds 1-Cs/3 (use Theorem 9.1 to prove this fact). Then,
with probability Cg/3, there will exist a crossing of [-n,n] to in+Z and two dual vertical
crossings in [n, Mn] x [0,n] and [-Mn,-n] x [0,n]. The domain Markov property and
the comparison between boundary conditions imply the result. 0

Crossing in rectangles with free boundary conditions. A consequence of Propo-
sition 12.12 is the existence of crossings inside a box with free boundary conditions ev-
erywhere. Indeed, the previous result only deals a priori with domains where a part of
the boundary is already wired but this condition can be removed.

Proposition 12.13. Fix A > 0. There exist Cs, M > 0 such that for every n > 0 and
D> Pe— n;
qﬁ?_Mn’Mn]X[o’n]’p([—Mn, Mn] x [0,n/2] is cross. Uert.) > (k.

Proof Fix M so that the Proposition 12.12 holds true. Let A, be the event that
[-Mn, Mn] x[0,n/2] is crossed vertically. We have for every n > 0,

i+M)n,(i-M)n
O Mt (om () 2
Let B, be the event that [-Mn, Mn] x [n/2, n] is dual crossed horizontally. Theorem 9.1
implies that

(t+M)n,(i-M)n
¢[ Mn,Mn]x On,p(B |A )

for some constant ¢ > 0 uniform in n and p < p.. Now,

+M)n,(i-M)n
¢?—Mn,Mn]x[0,n],p(An) 2 (bE -;\/[n)M(n ) (A |B)
¢(1+M)n ,(i— M)n (A B )

[-Mn,Mn]x

_ ¢(Z+M)n ,(i— M)n (B |A ) ¢(2+M)n ,(i— M)n (A )

[-Mn,Mn]x[0,n],p Mn,Mn]x

C'C7.

v

v
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We now prove that crossings of rectangles of any aspect ratio do exist.

Lemma 12.14. Fiz A > 0 and k > 0, there exists Cy = Co(k) > 0 such that for every n
and p > pe— 2,

n

Qb([)_n,(ml)n]x[oﬁn]’p([(), kn] x [0,n] is crossed horizontally) > Cy.

event A event By,

g ‘%(“(\ A

0 KN (k+1)n

ekn  e(k+1)n

Figure 12.4: The intersections of events A and Bj create a crossing of the rectangle
[-n,n] x [0, kn].

Proof Fix M = M(\) as in Propositions 12.12 and 12.13. Let ¢ = 1/(2M)2. Let A be
the event that there exists a crossing from [-en,en] to iMen + Z. Now, let By be the
event that there exists a path in Zx [0, Men] from [(k+1)en, (k+2)en] to [(k—1)en, ken].
We have

¢?—n,(n+l)n]x[0,n],p([_n7 n] x [0,kn] is crossed horizontally)

Kle-1
0
2 ¢[—n,(n+1)n]x[07n]7p (Aﬂ m Bk)

k=0
kle-1

= O testynixion]o(A) TT O estynixton) p(Beld Brir < k).

k=0

Yet,
0 0
¢[—n,(m+1)n]x[0,n],p(‘4) 2 ¢[—n,n]x[0,n/(2M)],p(A) :



CHAPTER 12. NEAR-CRITICAL PLANAR FK-ISING MODEL 231

Now, the event A in [-n,n]x[0,n/(2M)] correspond to the existence of a crossing from the
bottom to the middle, but with the additional constraint that it starts between [—en,en].
The union bound and the comparison between boundary conditions implies that

- mixtomt@an]p(A) 2 €O o[- n] x [0,n/(AM)]) > e Cs.
Moreover, since 1/(4M) = Me, we find
ken, o0
Do (e tynlp (Bl Brom < K) 2 S0 T e e atyeng o, vren) p (Bi) 2 C

using the comparison between boundary conditions and Proposition 12.12. Altogether,
we obtain that

qﬁ([)_n’(ml)n]x[()?n],p([—n,n] x [0, kn] is crossed horizontally) > C'E;C"{/E

O
event Ciop
m o1 -
(p—en |
|
(0—20m ;
|
|
|
|
|
|
|
|
|
|
|
i l
|
: event B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
2en ! event Apottom
en |
|
0 -

event Cbottom

Figure 12.5: The five events involved in the proof of Theorem 12.3.

Proof of Theorem 12.3 Fix ¢ < 1/(4M). Let Apottom and Az, be the events that
[en, (1 —e)n] x [e,2en] and [en, (1 —e)n] x [(p—2¢e)n, (p —€)n] are crossed horizontally.
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Let B be the event that [en, (1 —e)n] x [en, (p —e)n] is crossed vertically. Let Chporrom
and Cy,, be the events that [en, (1 - e)n] x [0,2en] and [en, (1 —e)n] x [(p — 2¢)n, pn]
are crossed vertically. By Lemma 12.14, the events Apottom, Aiop and B have probability
bounded away from 0 uniformly in n. The FKG inequality implies that their intersection
also has this property. Now, conditionally on Apyitom, Chottom has probability larger than
the probability that there exists a crossing in [en, (1-¢)n]x [0, 2en] with wired boundary
condition on the top and free boundary condition on the bottom. Proposition 12.12
implies that this probability is larger than C7 since (1 - 2¢)/(2¢) > 2M (the important
thing is that the rectangle is [en, (1 -¢)n] x [0,2en] is wide enough). The same reasoning
can be applied to Cy,, ergo the claim follows. ]

1.3 Proofs of Theorems 12.2 and 12.4

Let us start with the following lemma:

Lemma 12.15. There exists Ci1 > 0 such that
¢p(0 < 9[-n,n]*) < Cyn™ (12.13)

for every n large enough and every p < p.— Cnlo%-

Proof Equation 12.9 implies the existence of C'y > 0 such that

— 00,00 . C
Oy (0 in+Z) < —2

105 2. The reasoning described in the proof of Theorem 8.1 applies here and

for p < p.—Cho
gives

Ch

n3

which implies readily the claim. ]

¢,(0 < 9[-n,n]?) <

Proof of Theorem 12.2 Fix C;; > 0 as defined in Lemma 12.15. Theorem 12.3 implies
the lower bound trivially. For the upper bound, it suffices to show that for any x > 0,

<z5%_n7n]x[_m’m]7p([—n, n] x [-kn, kn] is crossed horizontally) — 0

logn

whenever (n,p) = (c0,0) with p <p. - C1;=2%. Fix ¢ >0 and x> 0.

Theorem 9.1 implies the existence of § > 0 such that the probability that there exists
a crossing of [-n,—(1-20)n] x [-xn, kn] with wired boundary conditions is smaller than
/3 for any p < psq and n > 0.

Define A,, to be the event that the annulus

Sp = [-n,n] x [-&n,kn] N [-(1-0)n,(1-dn)] x[-(k-d)n, (k- I)n]
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contains a close circuit surrounding the inner box. Note that there exists 1 > 0 such that

pSn(A )

thanks to Theorem 9.1 again. Now, let B,, be the event that [-(1-0)n, (1-0)n] x[-(k-
d)n, (k —0d)n] contains a cluster of diameter dn. Since A, is decreasing and B,, depends
only on edges inside [-(1-0d)n, (1 -0)n] x [-(k = 0)n, (k- J)n], we obtain

1(AnlBr) 2 dy5,(An) 2 1.

1
¢p,[—n,n —kn,kn]

In particular,

IN

1(Bnn Ap)
gb}l?v[—nﬂl —Kn, nn (B |A )
¢27[*n,n]x[7.‘£n,/{n](3n)'

Lemma 12.15 and the definition of C; implies that

1
77gbp,[—n,n] x[~Kmn,kn] (Bn)

1
¢p,[—n,n —Kkn,kn]

IN

IN

1(Bn) — 0 when n - 0. (12.14)

(bO
p,[-n,n]x[-kn,kn]

Therefore, ¢1197[_n n]x[—m,m](Bn) - 0.

In order to conclude, notice that if the rectangle is crossed horizontally, then [-n, —(1-
20)n]x[-kn,kn] or [(1-2d)n,n]x[-kn, kn] are crossed horizontally, or B,, occurs. Since
the first two events have probability less than £/3, and the last one has probability less
than e for n large enough: it implies the claim readily. 0

Let us now turn to the proof of Theorem 12.4. We have just proved that, for p > 0

pp’

01 oo (Cr([0,m] % [O,pn])) < e

The next lemma asserts that crossing probabilities in fact converge to 0 very quickly as
soon as n is larger than the correlation length.

Lemma 12.16. For any p < p,, there exists L(p) such that

1 1
£ < L(p) < log
Pe—D c(pe=p) " pe-D

and
_ok
¢;,[O,2kL(p)]x[O,Qk“L(p)](Ch([o’2kL(p)] X [OanHL(p)])) < e?

for any k > 0.
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Proof For n >0, let

w, = maX{¢;7[o,n]x[0,2n]<ch([0’ n] x [0, 2n])) , ¢;7[0,n]2(6h([0, n]2))} :

We are going to show that
Ugp < 25U2 (12.15)

First, cutting vertically the domain [0,2n]? into two rectangles, together with com-
parison between boundary conditions, imply that

2
0% 10202 (Ch(10,201)) < 6L g efo.2 (Ca([0,m] x [0,20]) ) < 2. (12.16)

Second, cutting vertically the domain [0,2n] x [0,4n] into two, together with compar-
ison between boundary conditions again, imply that

2
O 10 amw0.4n1 (Cn([0,20] < [0,40) ) < 82 (0110 40y (G ([0, 2] x [0, 4n]))

Now, consider the rectangles

Rl = [O,TL] X [0,271]
Ry = [0,n] x [n,3n]
R3 := [0,n] x [2n,4n]
Ry = [0,n] x[n,2n]
Rs := [0,n] x[2n,3n]

These rectangles have the property that whenever [0,n] x [0,4n] is crossed horizontally,
at least one of the rectangles R; is crossed (in the horizontal direction for Ry, Ry and Rs,
and vertically otherwise). We deduce, using the comparison between boundary conditions,
that

¢;7[0,n]x[0,4n](ch([07n] x [0,4’”])) < Dy,

and hence

¢113,[0,2n]x[0,4n](ch([07Qn] X [0,471])) < (5un)2 (1217)

Combining (12.16) and (12.17), we obtain (12.15). Iterating that, we easily obtain
that, for every k£ >0,

25 gk, < (25un)” .

By Theorem 12.2, if p < p. and n > —<log p%p, where ¢ = max{c(1/100,2),¢(1/100,1)},
then wu,, satisfies

25u, <1/e.

c
Pc—P

Therefore, the lemma follows for L(p) = log

1
Pe—p’
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Proof of Theorem 12.4 Fix p > p.. Let
Ry = [0,L(p)2"] x [-L(p), L(p)(2*" =1)] if k is even,
and
Ry = [0,L(p)2""'] x [-L(p),L(p)(2¥-1)] if it is odd.
Define Ej. to be the event that Ry is crossed in the 'long’ direction. The FKG inequality
implies that

(0 <= {L(p)} x [-L(p). L(»)]) - [T 6p(Ew)

k>0

L0 012G L)) TT(1- )

k>0

$p(0 <> 00)

v

v

~1/8

> c¢(L(p)) ",

where ¢ > 0. We used Lemma 12.16 to get the second line, and the lower bound of
Theorem 12.2 and (12.1) to get the third inequality. O

2 Near-critical behavior: a fascinating self-organized
near-criticality emerges

As promised, we start the discussion with the near-critical regime in standard percolation.
Our goal here is to provide a self-contained explanation of the fact that the near-critical
correlation length and the behavior of the perco