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Local and global in geometry 
 

The main paradigm of the classical physics is non-existence of non-local 
interactions: one object cannot influence another one removed from it without 
involving intermediate agents located one next to another and making a continuous 
chain joining the two objects in space. Non-locality would be perceived as a magic, by 
René Thom’s expression, and we do not accept magic in science (reluctantly making an 
exception for the quantum mechanics paying the price by modifying the ideas of 
causality and correlation). Thus the fundamental laws of classical physics (including 
relativity) are local, pertaining to infinitesimally small parts of the space where 
microscopic rules determine the global features of the macroscopic world. For example, 
the motion of planets around the sun is determined by gravitational forces acting on 
all material points in space. A flow of a viscous fluid is bound by the friction between 
small parts of the fluid across common boundaries. Movements of our own body start 
with electrochemical currents in the neurons in the brain, expressing our will to move, 
and the resulting spatial motion propagates from one atom to another via the 
electromagnetic interactions between the atoms constituting the body. Non-
surprisingly, we expect observable physical patterns, e.g. the positions of moving 
particles after a given time interval, to be predictable in terms of the local laws and a 
presence of a particular microscopic law should be manifested by a specific global 
behaviour. Conversely, if a certain medium exhibits all possible kinds of shapes and 
motions, we conclude it is not restricted by any conceivable microscopic rule. If we see 
that various particles, for instance, propagate in the same direction, e.g. vertically 
down, we look for a force field oriented in the direction of the motion. On the other 
hand, if there is no predominant direction (or directions) of moving particles, then we 
may assume that there is no field acting on the particles in the observable region of 
space. (This is an oversimplification: a force field determines not a direction but rather 
the acceleration vector of a system.) 

It happens sometimes that the local rule does not completely determine the 
global behaviour but just excludes certain possibilities. For example, many objects on 
the surface of Earth move in the horizontal plane, with no preferred direction, with 
the (local) constraint on the vertical displacement.  

In geometry, the locality comes under the name of the “local-to-global principle”. 
Start with the notion of the length of a curve in space. If we divide a curve into small 
pieces, we can recapture the global length by just adding the lengths of these pieces, 
where the pieces can be microscopically (or infinitesimally, as mathematicians say) 
small. Thus the familiar notion of length incorporates the local-to-global principle. 
Next, imagine the curve moves in space and we record the positions of points on the 
curve at different moments. If the curve is represented by a thin string made of elastic 
rubber the length does not have to be preserved: two very close points on the curve 



may come closer or further apart than they originally were. On the other hand, if we 
think of a flexible thread that can be bent but not stretched or compressed, then the 
distance in space between infinitesimally close points remains constant in so far as the 
curve remains smooth, i.e. does not develop creases. 
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All this is simple and you do not have to learn any mathematics to get a grasp of 
the picture. But if you turn to the similar problem of bending surfaces in space 
(important in the actual engineering) you face difficult mathematical questions (some 
of them remaining unsolved at the present time). We think of a surface as a thin film 
positioned in space that cannot be internally stretched or compressed, yet can be 
freely bent. A sheet of paper is an example of such a surface. The paper we usually 
deal with comes flat and then can be bent, if we wish, but there are limitations to the 
bending. We cannot, for example, perfectly wrap a ball into a flat paper sheet without 
making creases, though we can wrap a flat paper around a cylinder. On the other 
hand, it is possible to manufacture paper following the shape of a given surface, e.g. 
the round sphere can be made of paper. If you take such a paper sphere in your hand 
you will feel it resists your (not too vigorous) attempts to bend it, remaining perfectly 
spherical under the (not too strong) pressure, very much unlike a flat sheet or a small 
piece of the sphere paper which can be bent a little.  

Let us make the notion of bending mathematically precise. A deformation of a 
surface in space is called a bending, with no internal compression and stretching, if 
every curve positioned on the surface does not change its length under the 
deformation. In other words, if we imagine a thin hair glued to the surface, the 
deformation of this hair following the surface will be as what we have seen for a 
thread and not as for a rubber string. There is a mathematical theorem, having a long 
history starting from 1813, claiming, in particular, that the full spherical surface is 
rigid, i.e. cannot be bent in the space, provided it remains convex in the course of 
deformation. This is quite different from a circular curve in the plane – this can be 
freely bent in many ways without distorting the length – but the only conceivable 
deformation of the sphere keeping the length of all curves on the surface intact comes 
from reflecting a spherical cup cut by  a moving plane  
 
 

 

 
 
 
 
 
 
 
 



as is shown in the above picture. Notice that the so “bent” sphere has a circular crease 
at the edge of the reflected cup and, intuitively, such a crease seems unavoidable for 
any bending. This was a long-standing conjecture: there is no smooth bending of a 
sphere (with no a priori convexity assumption). Amazingly, this happened to be false, 
smooth non-convex bendings of spheres do exist! They came via an intricate high-
dimensional geometric construction invented by John Nash in 1954 and implemented 
for surfaces in the 3-space by Nico Kuiper in 1955. The mathematical essence of 
Nash’s construction depends on the idea of “smooth”. There are various grades of 
smoothness in geometry reflecting what we intuitively perceive as being “truly 
smooth”. Nash’s result showed that different kinds of smoothness may lead to quite 
unsimilar mathematical models of surfaces in the physical space and indicated 
unsufficiency of the traditional “local-to-global” philosophy. But it remained unclear if 
it was an accidental phenomenon, and if not, what could be a general framework 
accounting for the “Nash paradox”. Conceptual help came from another branch of 
mathematics, differential topology, where the story started from something even more 
perplexing than Nash’s bending. Look again at the round spherical surface and 
observe that this surface (unlike the Möbius band) has two sides, the interior and the 
exterior ones. Let us paint our sphere from outside, deform the sphere in a 
complicated way and keep track of which side is which by looking at the color. We are 
not concerned now with preservation of the length of curves on the surface; yet we 
insist on smoothness, admitting no creases, as earlier. But we do admit appearance of 
selfintersection in the course of deformations as sketched below with curves 
representing surfaces.  
 
 
 
 
 
 
 

The above deformation almost turnes the circle inside out making most of the 
outside of the circle to look inside. But there is no way to complete this process and 
remove “almost” without creating two point creases in the last moment. One can not 
turn the circle in the plane inside out. However, as was discovered by Steve Smale in 
1958, the sphere can be turned inside out in the 3-space. This was achieved not by 
exhibiting a particular deformation, this is prohibitively complicated, but by 
essentially using the principles of differential and algebraic topology – a branch of 
mathematics concerned with most general qualitative properties of geometric objects 
invariant under all kinds of continuous transformations. 
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I learnt Smale’s theory, and its generalization applicable to all manifolds of 
arbitrary dimension due to Hirsch, from topologists, Sergey Novikov, and my advisor, 
professor Rochlin, in the mid-sixties. Around this time my friend and geometry 
teacher Yura Burago explained to me Nash’s construction. I was enchanted by the 
magical power of topological reasoning of Smale-Hirsch deriving intuitively 
inconceivable consequences out of basic laws of continuity. Eventually, I found a way 
to extend these laws beyond topology and apply them to other geometric structures. (I 
was not the only one trying to push further the Smale-Hirsch theory. The first step 
was made by Tony Phillips and the most general topological results were obtained by 
Eliashberg in 1972.) Later on, I realized that Nash’s geometric constructions (as well 
as his incredible analytic techniques developed in 1956 for the study of bending-like 
problems of surfaces and more general Riemannian spaces) can be incorporated into 
the topological network of Smale-Hirsch serving there as a powerdrive for the 
topological machinery. Thus enriched topology took over several domains of geometry 
and analysis replacing the classical “local-to-global” paradigm by the homotopy 
principle: the infinitesimal structure of a medium, abiding by this principle does not 
effect the global geometry but only the topological behaviour of the medium. The class 
of infinitesimal laws subjugated by the homotopy principle is wide, but it does not 
include most partial differential equations (expressing infinitesimal laws) of physics 
with a few exceptions in favour of this principle leading to unexpected solutions. In 
fact, the presence of the h-principle would invalidate the very idea of a physical law as 
it yields very limited global information effected by the infinitesimal data. But this 
may be desirable in certain situations where we need to navigate in a high-
dimensional space with a limited number of control mechanisms. For example, a 
position of a car on the street is determined by three parameters: the location of the 
center of the car given by two Cartesian coordinates, and the orientation of the car 
expressed by an additional angular coordinate. On the other hand there are only two 
control parameters: the position of the accelerator pedal and the turn of the wheel. Yet 
we can bring the car to an arbitrary position, albeit non-straightforwardly as for the 
parallel parking in a limited space, achieving which we prove (without being aware of 
it) the homotopy principle for the (non-holonomic) constraint limiting the freedom of 
movement from three to two dimensions. (The proofs of both Nash’s and Smale’s 
theorem use rather contorted geometric moves essentially similar to those we employ 
to fit a car into a small parking slot.) 

Summing up, we see that geometric infinitesimal laws come in (at least) two 
flavours: those exhibiting rigid classical “local-to-global” features and quite different 
ones following the relaxed homotopy principle. 

There are several exceptional situations where the two domains meet with most 
beautiful mathematic sparkling at the contact points. One can arrive at one of such 
meeting-points by returning to the non-bending theorem for spheres and more general 
curved convex surfaces in space. How do we measure the curvature? If it is a curved 
line in the plane, we intersect it with a straight line parallel to the tangent at the 
point where we wish to measure the curvature. The inverse size of the intersection 
(properly normalized) gives you the curvature. 
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Turning to convex surfaces and intersecting them with slightly shifted tangent 

planes we obtain tiny ellipses. 
 
 

 
   
   
   
   

   
 

  Such an ellipse is characterized by two numbers corresponding to its maximal 
and minimal widths expressing the curvatures at our point. The fundamental (and not 
at all obvious) Theorema Egregium of Gauss tells us that the product of these two 
numbers remains constant under (smooth convex) bendings: this is the starting-point 
of the proof of the rigidity which amounts to showing that not only the product of the 
widths but the curvature ellipses themselves do not change under bendings, provided 
we deal with the full spherical surface or a full (mathematicians say “closed”) convex 
surface in general. For example, if the surface is the round sphere, then all ellipses are 
circular and one must show they remain such under bending. On a general convex 
surface a (curvature) ellipse is characterized by three parameters: two widths (called 
“principal axes”) and the orientation, i.e. the angle between one of the axes with a 
given tangent line at the point where we measure the curvature. 
 
 
 
 

 

 
 
 
 
 
 
 
 

Theorema Egregium removes one degree of freedom leaving us with two 
numbers at every point of the surface: the above angle and one of the width where it is 
better to use the sum of the widths as this is more symmetric. We think of these two 
numbers geometrically, as the, so-called, polar coordinates in the plane, and thus we 
associate to each point on the surface the point in the plane with the polar coordinates 
corresponding to the curvature. 
 
 

 

 
 
 
 
 
 



This gives us a geometric transformation, a map from the surface to the plane 
and we need to understand how much the map can change (if at all) when we bend our 
surface. What happens – and this needs an analytic calculation – is that this map is 
very much similar to conformal maps in the plane, pertaining to complex, sometimes 
called imaginary numbers. 
 
 
 

 

 
 
 
 
 
 

Imaginary numbers appear in algebra when we try to take square roots of 
negative numbers. These were introduced by Gerolamo Cardano (1501-1576) in the 
study of solutions of algebraic equations, with no apparent relation to geometry. 
Geometric interpretation consists in observing that two consecutive rotations of the 
plane by 90° around a fixed point reverse the directions of the  
 
 
 

 

 
 
 
 
 
 
 
 
vectors. If we think of the 180°-degree rotation reversing vectors as the geometric 
counterpart to the multiplication of numbers by –1 reversing the sign, then we are 
inclined to accept the 90°-rotation (of the plane containing the line of real numbers) as 
the square root of –1.  
 
 

 

 

 
 
 
 
 
 
All this look childishly simple, why do mathematicians make such fuss around 

it? How can one dare to compare this plain idea to profound philosophical 
pronouncements, such as “Cogito ergo sum” of Descartes? But look (as my colleague 
David Ruelle once suggested) from another perspective. “Cogito ergo sum” stayed 
unperturbed for more than three centuries, like a monument, a Greek statue, a 
magnificent piece of art, impervious to the flow of time, whilst the little speck of dust, 



the square root of –1, have been growing and developing for hundreds of years in the 
minds of mathematicians, geniuses like Cauchy, Gauss, and Riemann, and turned into 
an evergreen intensely alive vibrant tree supporting in its branches our sacred 
knowledge – quantum mechanics – ruling everything we see (and do not see) in this 
world. Whenever we trace even a shade of this tree we expect a presence of a 
mathematical structure. 

So encouraged, we turn to the complex plane: this is the ordinary plane with two 
marked points taken for zero and one. Granted these, we can interpret points in the 
plane as numbers – complex numbers – and perform the basic arithmetic operations: 
addition and multiplication. The addition does not need the marking of one, it is the 
familiar sum of vectors making sense in a space of any dimension. 
 
 

 

 
 
 
 
 
 

But the multiplication needs 1 and it is defined in several steps. First, given any 
complex number represented by a vector stemming from zero, we measure its length 
as well as the angle it makes with the unit vector. Then we consider two 
transformations of the plane: one is the scaling of all vectors by the above length and 
the second making rotation by our angle. If we apply one transformation followed by 
the other we obtain a new transformation of the plane. The effect of the latter on a 
point, i.e. a number, is what we call the product of this number with the original one 
employed for making up the whole transformation. (Look at the picture and try to see 
why the product is commutative, i.e. does not depend on the order of the numbers.) 
 
 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Given multiplication we can speak of division, in particular, we may go from 

each number to its inverse. The resulting transformation, called inversion, of the plane 
at zero (or rather of the plane minus zero as there is no room for the inverse to zero in 
the plane) preserves the unit circle and exchange points inside and outside. 
 
 
 

 

 
 
 
 
 
 
 
 
 

What one cannot see in the picture – and this is the essential property of the 
inversion – is conformality, i.e. preservation of angles between curves transformed by 
the inversion. 
 

 

 
 
 
 
 
 
 
 
Then, one can produce further maps by adding together inversions at different 

points, where inversions are regarded as complex functions of a complex variable. 
Since conformality can be expressed by a linear differential equation (this needs a 



proof, but it is easy) finite (as well as infinite) sums of inversions are conformal. This 
is the starting-point of the classical complex analysis created in the last century by 
Gauss, Cauchy, and Riemann. 

In order to comprehend the geometric nature of conformal maps and complex 
functions we mimic what we do with more familiar real functions: we “look” at the 
graphs of these functions. In the real case these are curves in the plane but the 
complex numbers themselves are two-dimensional and 2 + 2 = 4. So we need a 4-
dimensional space to contain such graphs appearing as surfaces rather than curves. 
The equations expressing conformality, called Cauchy-Riemann equations, can be seen 
in the geometry of (the tangent planes to) these surfaces and so reexpressed Cauchy-
Riemann equations can be written down and geometrically studied on every 4-space. 

Now we can return to our point of depart, convex surfaces. The relevant 4-space 
is built out of the original surface with extra two parameters coming from the 
curvature. Altogether we have a 4-dimensional counterpart of a cylinder. If we bend 
our surface, we distort curvatures and the “graph” of this distortion given by a 
complex function (encoding two real functions) can be seen as a surface in our 
cylinder. Furthermore, the “preservation of length” property, when translated to the 
language of curvature, becomes an equation imposed on the surface having the same 
(Cauchy-Riemann) structure as we had for graphs of complex functions. (Strictly 
speaking, there is no true complex function in our case but the graph makes sense all 
the same.) When all this is fully formalized and clarified, we arrive at a general theory 
encompassing a variety of geometric situations where bent surfaces appear on an 
equal footing with conformal maps and where rigidity comes from an extension of the 
theorem about d roots of algebraic equations of degree d. 

Generalized analytic or pseudoholomorphic functions have been extensively 
studied by analysts since 1941. This (rather formalistic) theory was used by the 
Russian geometer Pogorelov for a proof of rigidity of surfaces. Reading his book and 
defeated by formulas I suddenly realized that the 4-dimensional geometric 
interpretation of Pogorelov’s equations solves the problem without a single line of 
calculation. Then I looked around and found out that high-dimensional Cauchy-
Riemann equations neatly fit into the geometric framework of symplectic geometry. 

The symplectic geometry, which studies oriented areas of surfaces in spaces 
(rather than lengths of curves) originated in classical mechanics. Recall that an 
evolution of a mechanical system, e.g. a configuration of several particles in space, is 
determined by the initial conditions comprised of the positions and velocities of the 
particles. These change with time under some force field, e.g. electromagnetic or 
gravitational field. For example, if we have three celestial bodies, say the Sun, the 
Earth, and the Moon, then the system is described by 18 coordinates: three points 
with three coordinates each and three velocity vectors, where the evolution can be 
encoded by a transformation of the 18-space driven by Newton’s inverse square law of 
gravitation. The two groups of coordinates, 9 corresponding to the positions of the 
bodies and 9 accounting for their velocities, seem quite different. But there is an 
invisible symmetry in this 18-space making the coordinates equivalent and this 
symmetry is preserved under the transformations induced by all possible force fields 
defined via potentials, referred to as Hamiltonians in this context. Geometrically, 
there is something like area (but not the usual area) assignment to the 2-surfaces in 
this space, called the symplectic structure and this is conserved by all Hamiltonian 
(sometimes called canonical) transformations. Thus the Hamiltonian systems satisfy a 
certain hidden infinitesimal geometric constraint and one is faced with the dilemma: 



is this constraint of the classical “local-to-global” kind or is it subjugated by the 
homotopy principle? Prior to the homotopy principle, everybody (tacitly) assumed the 
existence of non-trivial “local-to-global” symplectic geometry with a specific list of 
conjectures proposed by Arnold in the early sixties. On the other hand, when a chunk 
of the symplectic geometry was taken over by this principle, one could equally expect 
the finite outcome to be in the favour of homotopy rather than geometry. Eventually, 
geometry won, the symplectic homotopy principle was dislodged by Eliashberg and 
later on several Arnold’s conjectures were established with a new variational method 
of Rabinowitz. But what has this to do with the complex numbers? One knows from 
algebra (of Lie groups) that “symplectic” and “complex linear” are in a close kinship; 
this allows one to “write down” the Cauchy-Riemann equations on each symplectic 
space and then the solution to these equations reveals symplectic features invisible 
without the “pseudoholomorphic glasses”. (I cannot be more explicit as the symplectic 
geometry cannot be truly seen below dimension 4.) And as time goes one discovers 
more and more structure growing at the cross-road of “soft” symplectic and “rigid” 
holomorphic.  

Finally, I want to say a couple of words on more general aspects of the “local-to-
global” idea. Any time we encounter a complicated logical, mathematical, physical or 
biological structure, we regard strongly interacting components as being close to each 
other with the distance growing as the interaction decreases going through longer and 
longer chains of intermediaries. A combinatorist will describe this in the language of 
graphs, and a geometer will speak about the distance or metric. But still there is no 
general perspective in the study of such structures. We have a long road ahead of us in 
developing a flexible language able to encompass and analyse the bewildering variety 
of structural patterns appearing in science and mathematics. 
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