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From Isometric Embeddings to Turbulence
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The following dichotomy concerning isometric embeddin§she shere is well-
known: whereas the oni@? isometric embedding dB? into R3 is the standard em-
bedding modulo rigid motion, there exist ma@y isometric embeddings which can
"wrinkle” S? into arbitrarily small regions. The latter "flexibility”,iown as the Nash-
Kuiper theorem [8, 7], involves an iteration scheme calledvex integration which
turned out to have surprisingly wide applicability.

More generally, this type of flexibility appears in a varietydifferent geometric
contexts and is known as the "h-principle” [6]. But one hagligtinguish two con-
trasting cases: in problems which are formally highly ued®ined, such as isometric
embeddings into Euclidean space with high codimension, might expect to find
flexibility among smooth solutions. On the other hand in peois which are formally
determined, like embedding a surface ifit4 the flexibility can only be expected at
very low regularity. In these lectures | will focus on thistéa case and in particular
show how the same ideas can be applied to the Euler equatifingi mechanics.

After a discussion of the proof of the Nash-Kuiper theorem slvow that - at least
if we relaxC? to Lipschitz -, the ideas can be applied in a general framkewoginally
due to L. Tartar [12], which consists of a wave-plane analysihe phase space. We
then show that with this framework at hand, the celebratedlt® of Sché&er and
Shnirelman [10, 11] concerning the existence of weak smhstio the Euler equations
with compact support in space-time, can be recovered [4, 5].

Finally, we take another look at the Nash-Kuiper theorem analyse whether
the construction can be extended to produce more regulatiea [1, 2, 3]. The
motivation for this comes from Onsager’s theory of turbekef], which predicts the
existence of certain weak solutions of the Euler equations.

Prerequisites Familiarity with basic PDE theory, conservation laws anfliedential
geometry is assumed.
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