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Abstract. We study internal diffusion-limited aggregation with uniform starting points on 74 In this model, each new particle starts
from a vertex chosen uniformly at random on the existing aggregate. We prove that the limiting shape of the aggregate is a Euclidean
ball.

Résumé. Nous étudions le modele d’agrégation limitée par diffusion interne avec points de départ uniformes sur 74 Dans ce modele,
chaque nouvelle particule est ajoutée a un point choisi uniformément au hasard parmi ceux de 1’agrégat existant. Nous prouvons que
I’agrégat normalisé admet comme forme limite la boule euclidienne.
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1. Introduction
1.1. Historical introduction and motivation

Internal diffusion-limited aggregation (IDLA) was introduced by Diaconis and Fulton in [6], and gives a protocol for
recursively building a random aggregate of particles. At each step, the first vertex visited outside the current aggregate
by a random walk started at the origin is added to the aggregate. In a number of settings, this model is known to have
a deterministic limit-shape, meaning that a random aggregate with a large number of particles has a typical shape. On
72, Lawler, Bramson and Griffeath [17] were the first to identify this limit-shape, in the case of simple random walks,
as the Euclidean ball. Their result was later sharpened by Lawler [16], and was recently drastically improved with the
simultaneous works of Asselah and Gaudillere [1,2] and Jerison, Levine and Sheffield [12—-14], where logarithmic bounds
are proved for fluctuations of the boundary.

The IDLA model has been extended in several contexts including drifted random walks [20], Cayley graphs of finitely
generated groups [3,4,7,11] and random environments [8,22].

Another interesting growth model is provided by Richardson’s model [21], which is defined as follows. At time O,
only the origin is occupied. A vacant site becomes occupied at an exponential time with a rate proportional to the number
of occupied neighbours, and once occupied a site remains occupied. The set of vertices occupied by time ¢ is the ball of
radius ¢ centered at the origin in first passage percolation with exponential clocks (see [15]). Eden [9] first asked about
the shape of this process on Euclidean lattices and Richardson proved that a limiting shape exists. It is believed that the
convex centrally symmetric limiting shape is not a Euclidean ball. This was established by Kesten in high dimensions
(unpublished, but see [5]) together with the fact that the boundary has t1/3 fluctuations, a long standing conjecture.

Internal diffusion-limited aggregation with uniform starting points (from here on shortened to uIDLA) is a growth
model interpolating between standard internal diffusion-limited aggregation and Richardson’s model. In uIDLA, particles
are born uniformly on the shape and relocate to the outer boundary according to harmonic measure seen from the site they
appeared at. While usual IDLA approaches rely on estimating the number of visits to a given point by particles starting
from the origin, either directly or as the solution to a discrete partial differential equation, the study of uIDLA is more
difficult because of the self-dependence involved in the construction.
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Fig. 1. Symmetric difference between the two-dimensional uIDLA aggregate and the Euclidean ball, with 100 particles. Blue points are present in the
aggregate but not the ball, whereas it is the other way around for red points.

Another related model is excited to the center. In this model a single particle walks around the lattice Z¢ doing simple
random walk, except when it arrives at a vertex it never visited before (“a new vertex”), in which case it gets a drift towards
the point 0. To compare excited to the center to the models described so far, think about standard IDLA as a single particle
which, upon reaching a new vertex, is teleported to 0; and about uIDLA as a single particle which, upon reaching a new
vertex, is teleported to a random location in the visited area. Very little is known about random walk excited to the center
— there is an unpublished result showing that it is recurrent in all dimensions, but the shape of visited vertices is very far
from being understood. Simulations and some heuristics indicate that at time ¢ the set of visited vertices should be a ball
with radius approximately ¢!/@+D,

For uIDLA, we show that the limiting shape is a Euclidean ball, hence showing a behaviour close to the standard
IDLA behaviour. Yet, the boundary fluctuations are expected to be slightly stronger than that of standard IDLA. This is
not surprising, since part of the growth is due to particles emerging near the boundary thus behaving very roughly like
the Richardson model. This suggests that the local regularity will be determined by some competition between particles
born locally a la Richardson and particles arriving from far away as in standard IDLA. Furthermore, simulations like the
one we present below seem to indicate a mesoscopic shift in the center of mass of the cluster, which occurs in a random
direction. This paper deals with the limiting shape and not the fluctuations.

1.2. Definition of the model and statement of the main theorem

We consider the lattice Z¢ with d > 1. Let S € Z be a finite subset of Z.

In order to define both standard and uniform starting point IDLA, first define the action of adding a particle to an
existing aggregate S. Let £ = (£(0), £(1),...) be a random walk on 74 and let ts be the first time this walk is not in S.
By random walk we mean the simple random walk choosing one of its 2d neighbours uniformly and independently at
random at each step. Define

Add[g, S1:= S U {£@s)).

Standard IDLA. Fix an integer n > 0. Let DA, be the aggregate with n particles started at 0, constructed inductively
as follows: DAg = @ and

DApt1 :=Add[g), DA, |

where E,? is a random walk starting at 0 which is independent from E(()), RN Er?_l. This process is referred to as IDLA.
Note that the equivalent initialisation DA = {0} is sometimes used.
IDLA with uniform starting point. Fix an integer n > 0. Let A, be the uniform starting point aggregate with n particles
constructed inductively as follows: A1 = {0} and

Aps1 = Add[£1 A, ]
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where X, is a point chosen uniformly on A,,, and é,f(” is a random walk starting at X,, and independent of Eé{o, e, éf_”f' .

This process is referred to as uIDLA. Let | - | be the Euclidean distance in R?. For n > 0, let B[n]:={y € z4 - ly] <n}
and b, := |B[n]|.

Theorem 1.1. Let d > 2. There exists positive constants c1, ¢, C1 and Cy depending only on the dimension, such that
almost surely,

B[n(l - C]n_cl)] C Ap, C B[n(l + Czn_cz)]
for n large enough.

Remarks. In dimension 1, the uIDLA aggregate with n points is a set of consecutive integers of length n, therefore it
is entirely determined by the position of its middle point (called M,,). It is clear, either from a quick computation using
the gambler’s ruin or from a symmetry argument, that the probability for the cluster to grow on either of the two sides is
exactly 1/2. Therefore the process M, is exactly a simple random walk on integers and half-integers, and the behaviour
of the cluster is obvious, with a law of large numbers and CLT fluctuations.

In dimensions bigger than 2 we expect much smaller fluctuations, and our theorem is not satisfactory in this regard.
We have chosen not to optimize the ¢, mainly in order to help alleviate notations, but also because we do not hope to
capture the true order of the error term with our method.

1.3. Structure of the paper

The first section contains five lemmas. They provide useful information on comparing uIDLA to IDLA. As they are of
interest on their own, we isolate them from the proof of the theorem.

The second section of the article deals with the stability properties of the Euclidean ball under the uIDLA process.
We first investigate the claim that the process started from a configuration that includes a ball will contain a growing
ball with high probability. Then we take the converse and prove that the process started from any configuration inside a
ball will stay contained in a slightly bigger growing ball. To prove this statement we examine the cluster together with
the genealogical tree describing the starting points of the random walks. Our proof involves a comparison with a First
Passage Percolation process on random trees.

In our third section, we bring these elements together for a proof of our theorem. The inner bound is proved first, using
a refinement method that relies heavily on our coupling properties. The outer bound is then proved using the genealogical
construction from the previous section.

Further notation. For every y € Z¢, let P, denote the law of a simple random walk on 74 starting from y. For a set
S ¢ Z¢ we will denote by 3 the set of vertices in Z¢ \ S with a neighbour (or more than one) in S.

2. Comparison lemmas

We start with the following notations which will enable us to state our lemmas more easily. Given vertices xi, ..., Xk
in Z4, define DAy, .. x (S) to be the IDLA aggregate formed by launching additional particles from points xp, ..., xk.
Note that x; need not be in the set S. Naturally, for x ¢ S, DA, (S) = S U {x} deterministically. Recall that, classically,
the law of the aggregate does not depend on the order in which these particles are added. Therefore, we also define
DAx(S) = DAy, x(S), where X is the multi-set X = {x1, ..., x¢}. If the multi-set X is just k repetitions of the origin,
we denote for conciseness DAy (S) := DAx(S). Remark that this notation is consistent with our initial definition, in that
DA, = DA, (9).

Similarly, for the uIDLA process, we denote A1(S) the result of adding a particle started uniformly on S to the set S.
We also denote Ay (S) for k € N the result of the recursive process of adding k particles to the aggregate S, where the first
one starts uniformly on S, and the jth particle starts uniformly on A;_1(S).

We start with the following lemma. It states that the aggregate obtained by launching k particles from arbitrary points
in B[n/2] is bigger than the aggregate obtained by launching a smaller yet comparable number of particles from the
origin.

Lemma 2.1. There exists n > 0 (depending only on the dimension) such that for any multi-set X of cardinality k in
B[n/2], DAx(B[n]) stochastically dominates D A, (B[n]), where k follows a binomial distribution B(k, n).
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Proof. Let x be a point in B[n/2] and A a set containing B[n]. We consider the function evaluating the probability that
the random walk starting at x exits A through a point y. We consider the stopping time 74 = inf{t : £¥(¢) ¢ A} and the
function

hy(x) =Py (" (ta) = y).

This function is harmonic in x on B[n — 1], hence the Harnack inequality [18, Theorem 6.3.9] implies that there exists
n > 0 such that for all A D B[n],x € B[n/2]and y ¢ A,

hy(x) = nhy(0).

This inequality allows to construct a coupling between DAy and D A, as follows. Let E; and Fj be constructed recur-
sively. Set Eg = Fp = B[n]. Index sites of X by {xi, .. x\ x|}. Assume that Fy C Ej have been constructed. Construct
Eip1 = Add[ék_’ﬁl‘ , E¢]. Consider a killed random walk Sk .| coupled with &% "1 in such a way that:

° §k+1 is killed at O with probability 1 — 7,

o if 51?+1 exit Ey through y, so does &'

The existence of this coupling is guaranteed by A, (x) > nh,(0). After exiting B[n] we couple the walks in the usual way:
they walk together until exiting their respective aggregates (since Fy C Ey, the walk on Fj would exit first). Construct
Fry1 = Add[&',&_l, Fy] if the particle is not killed. Note that Fy1 € Ex41, since either E,9+1 exits Fi throughout a point
of Ey, or it does through a point not in Ey, but in this case the coupling guarantees that the exiting point is in Ey1. The
total number of coupled particles, «, follows a binomial distribution with parameters (k, ). ([

The following lemma controls the behaviour of a standard IDLA with M points started with a Euclidean ball B[n]
already occupied. It closely follows the spirit of [1], but instead of pushing the precision to get the best almost sure
bound, we only look at points that are far enough from the edge of the theoretical shape to keep the probability of
inclusion exponentially close to 1.

Lemma 2.2. Foranyn € R and N € N*, let us write r = Ty, N = bﬁ. Then we have
n

P(B[n(1+r— r3/2)1/d] C DAy(BInl)) = 1 —exp(—Csnr/?).

We will use this lemma in the window where nr3/2 is large but r is small, so that r — r3/2

is true but useless).

> 0 (otherwise the lemma

Proof. Our lemma is almost exclusively a consequence of the many ideas provided in [1]. Therefore, we refer the reader
to the appendix, in which we give a guide to the modifications one needs to do in [1] to get this result. (I

The next two lemmas propose stochastic dominations between standard IDLA and the ulDLA process. We start with
a lemma that compares one step.

Lemma 2.3. There exists a constant Cq4 > 0 such that, if B[n] C S C T then A(T) stochastically dominates D As(S),
where § is a Bernoulli variable with parameter %(1 — %).
Proof. First, remark that our new point falls inside B[n] with probability lllngl |, Once more, we consider the stopping

time t4 = inf{r : £*(¢) ¢ A} and the function
hy(x) =Py (5% (ta) = ).

This function is harmonic in x on B[n]. We are now interested in an averaging property for this harmonic function;
namely, is 11 (0) close t0 g7 n]l > xeBn My(¥)?

The study on this averaging property is linked to that of quadrature domains and the divisible sandpile model, and,
in particular, one shape on which a relation is known between the two terms is the shape taken by the divisible sandpile
after toplings, with all the initial mass started at the origin, as defined in [19]. Let m(x) be the final mass distribution
corresponding to an initial mass M at the origin, then we have, for all harmonic functions #,

Mh(0) =Y m(x)h(x).

xeZd
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Recall that the final mass distribution m is equal to 1 on a given shape, has value between 0 and 1 at distance one from
this shape, and is zero at distance more than one of this shape. It is hence a consequence of Levine and Peres’s shape
theorem (see [19]) that there is a constant ¢ > 0 depending only on the dimension such that

1
hy(0) = Bl de(x)hy(X),

with m(x) =1 on B[n — c] and m(x) = 0 outside B[n + c]. Combining the facts that m has values between 0 and 1
everywhere; and that Zy hy(x) =1, allows to bound the error given by replacing m with 1. We get that there is a
constant C4 depending only on the dimension, such that:

2

yeEIA

1 C
O = gy 2 |

xeB[n]

B K’I]l 1- %), which yields the result. O

Assume E is some subset of our aggregate F'. As F evolves, there is a natural increasing subset E, C A, (F) which
corresponds to E and is in fact a time change of an ulDLA started from E. Basically, one traces only particles which
started on E, and follows them only until they exit E,. Further, it is not necessary to know anything about the structure
of F, it is enough to know its size. Formally, the definition is as follows: Let Eg = E. Next, for every n define

Epy = Add[Sn +1» En]  with (independent) probability i ﬁin
E, otherwise
where X, is a point chosen uniformly on E,, andé 1 is arandom walk starting at X, and independent of 51 ey é,f k=t

Finally, the Bernoulli events which determine whether the point will be added or not are independent of the walks (and of
one another). We see that the process depends only on the size of F' and not on its structure. This leads to the following
definition

Definition. For E C Z¢ and m > |E| we let A, (E; m) be the E, defined in the previous paragraph, for some F with
|F| =m. We call A, (E; m) the subset ulDLA.

Clearly A, (E; |E]) is the same as A, (E) and, in general, if E C F, then A, (F) stochastically dominates A, (E; |F]).
A little more than that is, in fact, true:

Lemma 2.4. For any sets E C F, we have that A, (F) stochastically dominates DA p\g(An(E; | F|)).

Proof. We will colour A,(F) in 3 colours, blue, red and black, such that the blue part has the same distribution as
A, (E; | F|), the union of the red and the blue has the same disribution as DA\ g (A, (E; |F|)) and black is the rest. Here
is the colouring scheme:

We start the process with Ag = F coloured as follows: E is coloured blue and F \ E is coloured red. Suppose we
already constructed (and coloured) A,,. We choose a vertex x of A, randomly to start the random walk from.

e If x is blue, perform the random walk until the particle exits the blue set. When it does, the site where it lands is
coloured blue. If there was already a particle at that site, “wake it up” — it continues walking according to the rules in
the following clauses.

e Now assume we have a red particle walking (which can only happen if a red particle was woken by a blue one, as in
the previous clause). Perform the random walk until the particle exits the union of the red and the blue. When it does,
that site will be coloured red. If there is a black particle there, wake it up and let it continue walking according to the
rule in the next (and last) clause.

e If x is red or black, let the new particle be black. Let it perform simple random walk until the it exits the entire
aggregate, and colour that site black.

Thus, for example, a particle might start from a blue site, walk until reaching a red site, change that site to blue, continue
walking until reaching a black site, change that site to red, and then walk until exiting. This ends the description of the
colouring.
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Now, the fact that the blue part of the aggregate has the same distribution as A, (E; |F|) is evident. The fact that the
union of the red and the blue has the same distribution as DA g\ g (A, (E; | F|)) is also simple, because the red part starts
with F \ E and then each red particle does a random walk and ends outside the eventual blue part.

One might claim that, even though each red particle does simple random walk, they are stopped and woken up mixing
up their order. It is well-known that this does not affect the distribution of the final aggregate. For the convenience of the
reader, let us recall the argument. One attaches labels to each red particle, and when a particle with a lower label steps
over a particle with a higher label, they exchange labels so that the higher label continue to walk. This, of course, does
not change the red part, but now each label does simple random walk until its final resting point, and only then does the
next label start to walk. So the union of the blue and the red part has indeed the same distribution as DA p\g (A, (E; | F|))
and the lemma is proved. O

The following lemma is extracted from [8]. It states that a random walk has a small probability of passing through an
area of small density, and will be used to couple our process with a First Passage Percolation process. Rather than refer
to the proof of [8] which holds in a more general setting, we give a shorter proof specific to Z?. Recall that we defined
b, = | B[n]| the volume of the Euclidean ball of radius » intersected with 74,

Lemma 2.5. Let p > 0. There exists ¢ > 0 such that for any n,m > 1 large enough,
P, (& exits S U B[m] through d B[m +n]) < p

uniformly in x € B[m] and S C B[m + n] satisfying |S| < eb,,.

Proof. By Markov’s property, it is sufficient to bound
P, (E exits S N By[n/3] through BBy[n/3])

for starting points y € SN B[m + 2?"] \ B[m + %]. Similarly, by shifting y to zero and replacing n/3 by n, it is enough to
prove that

Py (& exits S N B[n] through 3 B[n]) < p

uniformly in any set S C B[n] such that |S| < &b, for & small enough (thus our new ¢ is multiplied by 3¢, which does
not affect the rest of the proof).

Now, if |S| < eb,, then for some r < n we must have that SNdB[r] < Cerd—1, By [18, Lemma 6.3.7], every x € d B[r]
has probability < Cr!~¢ that random walk started from O will exit B[r] at x. Summing over x € S N d B[r] gets that the
probability that random walk started from O will exit B[r] at S is less than Ce. Thus for € small enough, & exits S before
reaching d B[n] with probability greater than 1 — p. ]

3. Stability of the Euclidean ball
3.1. Inner stability of the ball

In this section (Section 3) we show that, if you start a uIDLA from a large ball, it remains an approximate ball, with high
probability. We first (Section 3.1) show inner stability, i.e. that the aggregate contains a ball of the approximately correct
size. In a formula,

Aby,—b, (Blnl) 2 B[m(1 — Cn™'/)]

with high probability. In other words, the only error is the missing Cn~!/4 in the diameter.

It will be convenient, though, to formulate the claim slightly more generally: if B[n] C S then A (S) contains a ball of
the correct size. We will use the notation A (E; N) introduced on page 395 —recall that Ay (E; N) is the way E evolves
when you embed it in some set of size N, add M particles in a ulDLA fashion to that set, and examine only particles that
landed on E. We first formulate a lemma for adding a relatively small number of particles, an n~!/? proportion:

Lemma 3.1. There exist 63, Cs > 0 such that for any M > by,
P(B[n(1+n"""2 = Csn=" /"] € Apype12(BInl; M)) = 1 — Cexp(—n®).

Remark in particular that the probability does not depend on M.
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Proof. The definition of A,,,-1,2(B[n]; M) gives that it is the same as Ak (B[n]) where K is a random variable which
stochastically dominates a binomial distribution with Mn~'/? trials and probability b, /(M + Mn~'/?) for success.

Recall that Lemma 2.3 says that adding a single particle to uIDLA stochastically dominates adding a single particle
to standard IDLA, with an appropriate probability. Applying Lemma 2.3 K times gives that Ag (B[n]) stochastically
dominates a standard IDLA with initial set B[n] and with a random number L of particles (started at the origin), where
L stochastically dominates a binomial distribution with K trials and probability (b, /(b, + K))(1 — C4/n) for success.

Combining both facts shows that A;;,—1,2(B[n]; M) stochastically dominates standard IDLA started from a ball with
the number of particles L following a binomial distribution Bin(s, p) with

b Cy
= Mn~1/? = n -
s =Mn and p= A 312 (1 . )

Since b, = wgn? + O (n¢~1), the classical Bernstein bound directly yields that L satisfies:

L — ﬂ 1— 9
(1+n-1/2)2 n
with probability larger than 1 — C exp(—2n¢~") (note that d > 2). We now assume that this bound for L is verified.
We then apply Lemma 2.2 with B[n] already occupied and L new particles started at the origin. With the notations of

the lemma, r,, y ~ n~1/2 and we get that the ball of radius n(1 +r — r3/2)1/d 5 included in the cluster DAy (B[n]) with
probability at least 1 — exp(—C3n'/4). We estimate

—-1/2 C d-3/4
n 4 n —3/4
l4r—r>14—— (1-2) - -C
T = T A a2y n by .

>1 +n 12— C5n_3/4

< pd=3/4

where the first inequality is the lower bound on L, and these inequalities hold with probability 1 — C exp(—n??). ]
The case where the number of particles we add is proportional to the volume (or more) is a corollary:

Corollary 3.1. There exist 83, C¢ > 0 such that for any M > b,,,
P(Ya > 1B[na'(1 — Con™"*)] € A@—1yu (BInl; M))
>1— Cexp(—n‘33).
Proof. Examine first the case that a < 2. We apply the previous lemma repeatedly K times, i.e. define
So = B[n], Mo=M,
Sit1 = Apn12(Sis Mi), Mg =M;(1+n7"?2),

with K chosen in such a way that we obtain additional |S| particles. Since each time we add M;n~'/? particles and
M; > M, we deduce that K < nl/2 Therefore, with probability larger than

1—n'/? exp(—n‘Sz)
the aggregate A —1ym (B[n]; M) contains the Euclidean ball of radius
nal/d(l — Cn_3/4)K > nal/d(l — Cn_3/4)nl/2
znal/d(l—Cnfl/“). 3.1
This takes care of a along a sequence. For a general a € [1, 2], we find some i such that M; < (@ — 1)M < M;41 and

the inequality still holds from monotonicity of the aggregate (we lose Cn~1/2 particles from the approximation, but this
only changes the value of the constant in (3.1)).
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For general a (i.e. a > 2) we repeat the last calculation for 2n, 4n etc. We get that the claim holds for all a except for
an event whose probability is smaller than

n
C Z(2in) 12 exp(—Zin‘sz).
i=0

Since this sum converges exponentially, we may bound it by C exp(n~%) for an appropriate 83. Similarly, the errors in
(3.1) converge exponentially, so they only change the constant. So we get that the radius is bounded by

nal/d(l — C6n_1/4)
for a suitable constant Cg. ]

3.2. Genealogical construction and outer stability

Our aim in this section is to prove a converse to Corollary 3.1 for the outer stability of the ball. We begin by comparing
the process started from any set S C B[n] with the process started from B[r], on an event of high probability. Here we
are comparing ulDLA to another uIDLA (and not to standard IDLA, as in the previous section), so the argument is much
simpler.

Lemma 3.2. There exist 65 > 0 and C7 > 0 such that for any set S with S C B[n], and for any 1 <a <2, there is a
COupllng OfA(afl)‘S|(S) and A(a_l)bn(1+c7|5|—l/4)(B[n]) such that

P(A@-1151(S) € Ay, (1+cy1s-17%) (Blnl)) = 1 = Cexp(—IS1%).

Proof. We may assume |S] is sufficiently large. Recall the definition of subset uIDLA on page 395 and the natural
coupling of A;(S;b,) and A;(B[n]), with the property that A;(S; b,) € A;(B[n]). Examine first the first b,,|S|_1/2
particles added to A; (B[n]). Each of these is added to A; (S; b,,) with probability at least | S|/ (b, + b, |S| ~1/2)_ A Chernoff
bound therefore shows that

|S|l/2

po%ﬂwm&mn—m>T:m:ﬁ

— |S|3/8> > 1 — Cexp(—c|S|'/®).

By repeating this procedure at most |S|!/? times (here we use the assumption that ¢ < 2), we get that on an event of
probability at least

1= CISI"exp(=CIS|"/%) = 1 = Cexp(—1S]'"),
we have |A,_1)p, (14515173 (S3 bp)| > (a — 1)|S|. This finishes the lemma: we construct the coupling by letting A; (S) =
Aji)(S; by) where j (i) is the first time that |A ;) (S; b,)| = | S| +i and then with probability at least 1 — C exp(—|S|'/?)
we have j((@a — DIS]) < (@ — Db, (1 + C7]S]'/8) so

A@-1)51(5) = Aja-1)1sn(S; bn) S A 1)b, (14+C51511/%) (S5 bn)
C A= 1)by (141518 (Blnl).

As needed. ]
We will now prove that the ulDLA started from a ball is contained in a suitable ball with high probability.

Proposition 3.1. There exist Cg > 0 such that for any 1 < a <2 the event
Ata—nyp, (BIn]) € B[na"/4 (1 + Cgn="/%)]

occurs with superpolynomially large probability.
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Here and below, when we say about a sequence of events E,, that they “occur with superpolynomially large probability”
we mean that there exists a function ¢ decreasing to O faster than any power of n such that P(E,) > 1 — ¢ (n). We might
also use the phrase “IP(E,) grows superpolynomially” (and we do not insinuate by that the the probabilities increase as a
function of #, just the bound above).

In order to prove this proposition, we first remark that as a consequence of Corollary 3.1, the ball of radius na'/4(1 —
Cen~ /%) is included in the uIDLA cluster A(a—1)b, (B[n]) with stretched exponentially small probability. Hence we only
need to control a number of particles of order an?~!/#. However, these particles could in principle cover a thin spike
that would reach very far. We know this cannot happen in regular IDLA, but in our case, a new particle may start on
the furthermost point of the cluster, which complicates the situation. We therefore need to consider the genealogy of the
particles in the process.

Recall that a rooted tree is a graph with no cycle and one marked point called the root. A rooted forest is a family of
disjoint rooted trees.

We construct the ulDLA starting from a set S in a new fashion. Consider a rooted forest whose vertices are indexed
by integers and constructed as follows. At time 0, 7p(S) is given by |S| isolated sites indexed by 1,2, ...,|S|, which
are the roots of the trees. At each step the vertex set of Tx is Ax(S) and the edges of T; are constructed inductively as
follows: Ti+1 has all the edges of Ty and one more, from the starting point of the random walk which constructed Ay
to its end i.e. to Ag4+1 \ Ax. We will call this construction the genealogical construction of the uIDLA cluster, and 7
the genealogical tree encoding it. We will look closely at the forest structure of 7, not at its embedding in Z¢: rather,
we think of a particle in the cluster as having both a position in Z¢ and a position in the genealogical tree (or forest)
associated with the cluster.

We start by an elementary lemma which is a generalisation of [10, Lemma 2.1]. As in First Passage Percolation, we
attribute to every edge of the forest a geometric random variable with parameter 1/2, independent of the random variables
of other edges. We define the passage time between two vertices as the sum of the random variables over edges on the
geodesic between those two vertices (note that in this case, there is only one choice for the minimal path). The reaching
time of a vertex is the passage time between the root and this vertex.

Lemma 3.3. Let n, h > 0. Consider T, ({0}) constructed as above when starting from A = {0}. There exist ¢, C > 0 such
that for any h > Clogn, then

P[3 a vertex with reaching time larger than h] < e,

Proof. Let us first consider a slightly different model. Let 7; be the tree obtained from the same rule as for 7, but in
continuous time (meaning that a new edge appears on each vertex accordlng to an exponential clock of mean 1). Rather
than explicitly writing the coupling between 7; and T, we embed 7; in our probability space so that it is independent
from 7. This model is exactly the model studied in [10]. In particular, if X, (k) is the number of vertices at graph distance
k from the root, Lemma 2.1 of [10] shows that

k

E[X: (k)] = O

Choose Cy > 1 large enough and c7 > O~small enough so that E[ X, (k)] < 7% for k > Cor. Let [)t (h) be the number of
sites with passage time larger than 4 in 7;. We find

B 00 00 k
E[Di0] =Y peaB[X: 0] = 3 prany,
k=0 ’

k=0

where py  is the probability that the sum of k independent geometric random variables of mean 1/2 is larger than & — k.
There exists cg > 0 such that py , < e~" for any k < h/3. For simplicity, let us assume that cg < 2/3. By dividing the
sum between k < cgh/2 and k > cgh/2, we find that for & > 2Cot /cg,

cgh/2

E[D;(h)] = Zpkh—_—i- Z th

k=cgh/2
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cgh/2
= Pk h— + Z

' k= cgh/Z

—c7cgh/2

< @ecxhﬂcoeﬂxh Lo
2 1 —e 7

In the second line, we used that pk » <1, and in the third line both the bound on k < e~ 7% obtained by assuming that

k > cgh/2 > Cot, and the bounds &7 < e’ < e"/2% and py j, < ™" when k < cgh/2.

It only remains to go back from contmuous time to discrete time. Let D, (h) be the number of sites with reaching time
larger than £ in 7,. From our construction, conditionally on the event {7; has k sites}, D, has the same law as Dy.

Since with probability at least 1/2, the aggregate Tzlogn has more than n particles, we deduce that

P[D,(h) > 0] <E[Dy(h)] < 2E[ Dy (1) |P(T210g» has more than n sites)

< ZZE[Dk(h)]P(filogn has k sites)

k>n

<2 Z]E[ﬁzlogn(h)ﬁ'zlogn has k sites]]P)(ﬁlogn has k sites)

k>n

< 2E[Daiogn(h)] < exp(—coh)
for any h > (4Cq/cg) logn, and c9g sufficiently small. O

We are now ready to prove Proposition 3.1. Recall that it stated that with superpolynomially large probability,
Aa—1y, (Bln]) C Bla'/dn(1 + Cgn=1/%)],.

Proof. By Corollary 3.1, we know that with stretched exponential probability, A —1)p, (B[n]) contains B[a'/ dn(l —
Cen~/%)]. But that leaves only Cjon?~!/* particles unaccounted for. Consequently, there are at most Cjon>?/* particles
outside B[a!/?n] at the end of the construction and therefore also at every previous step.

Recall that Lemma 2.5 states that it is difficult to traverse any annulus B[m]\ B[n] containing less than ¢b,,_,, vertices.
In our setting, this means that there exists some constant 8, such that for each of the annuli

R = B[n + (k + D pan**]\ B[n + kBan’*],
the conclusion of Lemma 2.5 holds in this annulus, with pemma2.5 = 1/2, if it is filled with less than C 10nd_1/ 4
(note that 3d /4 <d — 1/4 since d > 2). Remark that B, is a constant that depends only on the dimension.

Since all the Ry’s are outside B[n], each of them contains at most Cjond—1/4 particles at any point in the construc-
tion of the cluster. Hence, the number of annuli that a particle can cross between its starting point and its exit point is
stochastically dominated by a geometric variable of parameter 1/2, and all these geometric variables can be taken to be
independent.

The above discussion shows that a single particle may not go further than C logn annuli from its starting point. To get
from this a bound on the size of the aggregate is a question about the forest 7. Precisely, the maximum k that we consider
is stochastically dominated by the maximum reaching time in the forest 7,—1yp, (B[n]).

We now apply Lemma 3.3. Recall that it stated that for 7, ({0}), the probability that it has a vertex with reaching
time bigger than log(n)2 is smaller than exp(—clog(n)z). For every x € B[n], the corresponding tree in T(,—1yp, (B[n])
is stochastically dominated by 75, ({0}) (recall that a < 2) so we get that, with superpolynomially large probability, the
reaching time of every x in every tree of T(,—1ys, (B[n]) is smaller than log(n)z.

Now, the reaching time was defined using geometric random variables independent of the forest T, —15, (B[n]), so we
can use the number of Ry crossed by the corresponding particles, because the events that “there are at most Cjon¢~1/4
particles outside B[a'/?n] and yet our particle crossed annulus i” have probability bounded above by %, independently
of the tree structure.

We conclude that with superpolynomially large probability, the annulus Ry, )2 is not reached by any particle, so that

Aa—1)b, (B[n]) € Blna'/4(1 + B4log(n)*>n="/4], which concludes the proof. O

particles

Proposition 3.1 and Lemma 3.2 together imply the following corollary, which is a converse to Corollary 3.1:
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Corollary 3.2. There exist C1y > 0 such that for any set S C B[n],
P(Va > 1A(—1y5/(S) € B([na'/?(1+ C1in~'77]))
grows superpolynomially in |S|.
This follows from Lemma 3.2, which states that

A@-1)51(S) C A(a—l)bn(l—i-Cn*l/z)(B[n])

and Proposition 3.1 for @ < 2. Iterating (as in the end of the proof of Corollary 3.1) gives the result for general a. We omit
the details.

4. Proof of Theorem 1.1
4.1. Inner bound

Our proof requires rough initial bounds before better bounds can be proved. Our rough outer bound is the obvious remark
that A,, C B[n] because it is connected. For a rough inner bound, we have the following lemma:

Lemma 4.1. There exists 8¢ > 0 such that or all n big enough,
P(B[n/2]1 S A ) = 1 — exp(—n%).

Proof. We consider the particles that start from the origin. At step k, the event that the new particle starts from the origin
has probability 1/k, hence the number of particles started from the origin by time e” has expected value b, and is bigger
than 2b, /3 with probability e~?»/18 from a Chernoff bound. Classical IDLA results (in particular, the explicit bound in
[2, paragraph 3.1.3] is much stronger than what is needed here) guarantee that the standard IDLA with 2b,,/3 particles
started from the origin covers at least B([n/2]) except on an event of stretched exponentially small probability. ]

Now that we have a rough bound, we are in a position to improve it. The following proposition states that a rough
inner bound can always be improved, provided we have an outer bound as well.

Proposition 4.1. Let A > 1 and ¢ > 0 be two parameters. Suppose that B[n] C S C B[An] and that |S| > (1 + ¢)b,,. For
a constant 1y depending only on the dimension, and uniformly in S,

me\ /4
B|3in| 1+ YA S A@Gud—1)s(S)

with superpolynomially large (in en) probability.

There are two steps in the proof. We first look at the growth of B[r] while ignoring completely the sites in § \
B[n]. Then, we use sites of S\ B[r] (which are not too far from the origin). These sites represent a tiny proportion of
A3ryd—1)s/(S), but it is more than sufficient to counter the loss of the first step. Lemma 2.4 is crucial in this argument.

Proof. We know from Corollary 3.1 that the ball of radius 3An(1 — Cen~'/4) is included in the subset uIDLA aggregate
A((3A)d71)‘5|(3[n]; |S|) with probability greater than 1 — exp(—n83).

Lemma 2.4 now yields that the aggregate we are interested in stochastically dominates the one built by adding the
particles of S\ B[n] to the subset ulDLA aggregate A(m)d_ DIs| (B[n];|S]). In a formula,

> P(E S DAs\Bin) (A aryi—1)s (BIPI: 1S1)))

> P(E - DAS\B[,,](B[?)AH(I — Cﬁn_l/4)])) — exp(—n‘s3)

(this holds for any set E but, for the curious, we will eventually use it for E = B[3An(1 + n2¢e/ AH1/4] je. the set from
the statement of the lemma).
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Next, since S C B[An], all the points in S \ B[n] are inside the half-radius of B[3An(1 — C¢n~'/#)], and we are in a
position to apply Lemma 2.1. It yields the following:

ED(E C DAg\B) (B[S)»n(l — Cén_l/4)]))
>P(E € DA((B[3an(1— Cen™'*)])).

where k is a random variable following a binomial law with |S| — b,, > €b,, trials and probability of success n, and n > 0
is the constant defined in Lemma 2.1.

Now, applying Chernoff’s bound yields that ¥ > %nsbn with probability higher than 1 — exp(—ceb,,). This means that
the number of particles added is not too small. This fact, together with the inner bound for standard IDLA (from [2,12]
once again), guarantees that with exponentially high probability, DA, (B[3An(1 — Cen~ ")) contains a ball of radius
3an(1 +ne/(8-397129))1/4_ The lemma thus holds with the value 7, = /(8 - 3¢~ 1). O

This method for improving inner bounds enables us to prove the inner part of Theorem 1.1.

Proposition 4.2. Let d > 2. There exists constants c1, C1 depending only on the dimension such that almost surely,
B[n(1—Cin~1)] € A,,,
for n large enough.

Proof. Lemma 4.1 and the remark before it provide us with the following bounds: for arbitrarily large m¢, with probability
at least 1 — exp(—mgﬁ), B[mg] C AemeO C B[emeo].

Corollary 3.2 then guaranties that conditionally on the previous event, with superpolynomially (in m) large probabil-
ity,

A _nyemo < Blae*mo (1+ Cyre=2Pm/>)]

for any a. In other words, for some T = t(mo), A, C B[tn!/4] for all n. Let us also assume that t is sufficiently large so
that b1/« > 2n (though it would have probably held even if we had not assumed it explicitly).

We now repeatedly apply Proposition 4.1, starting from mg. Recall that it states that if B[r] € Ay € B[Ar] and if
M > (1 + €)b,, then with high probability, for some other ' and M’ we have B[r’] C Ay . So applying the proposition
repeatedly gives sequences r; and M; such that, with high probability, B[r;] C A, . Let us list all relevant parameters:

1/d
&:
ro =mog Vi+1 :3)»[7‘,’(1-’- 77;({1)
i

Mo=e*m My =(Gr)"M;

e =Mi/b,, —1  ri=tM"r

1

1
E .

Let us now analyse these parameters. We first note that A; is decreasing — indeed, Ml.l/ ? is increased at each step by
3A; while r; is increased by more. On the other hand, we always have B[r;] C Ay, and br yld = 2M; so

The constant 1 comes from Proposition 4.1, but we may assume that it is small enough, so let us assume 1, <

2=

1

TMil/d d N brMil/d < 2Ml‘
ri - B

so A; > 214 forall i.

More important is the behaviour of ¢;. Putting together the formulas for r;+; and M, gives
Misi _ (31 M; _ &t
brigy  Gh)by (1 +mei/a{) 1+ mei /A

gi+1+1=

rearranging gives

CcE&j
i+l =& — od
i

and since A; is bounded above, we get that ¢; decreases exponentially in i.
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On the other hand, ¢; does not decrease too fast: since we assumed 7> < 4, and since Af > 2 we get that g;41 >
min{1, %si}. Since M;11 > 3M;, we get that M; increases faster than ¢; decreases. This is important because the bad
event of Proposition 4.1 happens with probability superpolynomially small in M;¢;. Thus we have just shown that these
bad events have summable probabilities, and further, the sum is superpolynomially small in m.

This establishes the proposition on a sequence. Indeed, since M; increases no more than exponentially, then we get
g =<C Mi_c_ So we get B[r;] C A by, (1—r ) which is equivalent to the claim. To extend from a subsequence to all integers,
we use Corollary 3.1. We get that between M, ; and M,y the contained ball still follows the volume of the aggregate up
to a polynomial probability, with superpolynomially large probability (in M;). These probabilities may be summed.

All in all we get that for some cg independent of m( and some C (mg), the event

B[n(l — C(mo)n_c'o)] CAp, Vn

holds with superpolynomially large probability. This means that almost surely, it does indeed hold for some m, and this
means that the proposition holds with ¢; = %Clo, and an arbitrary Cj. |

4.2. Outer bound
Proposition 4.3. Almost surely, Ap, < B[n(1 4+ Cn™°)].

Proof. The proof is identical to the proof of Proposition 3.1, but using the inner bound (Proposition 4.2) as a basis. Let
us recall quickly the argument. Proposition 4.2 ensures that B[n(1 — Cn'=¢)] C Ay, but that leaves only C n?=¢ particles
unaccounted for (and possibly outside B[n]). Hence the same holds during the entire process up to time b,,. Lemma 2.5
then ensures that annuli of width Cn!—¢ around B[n] are difficult to cross for a random walker, hence none of the particles
cross more than logn of them. Finally, Lemma 3.3 ensures that none of the trees of 73, ({0}) has depth larger than log’n,
s0 no particle may end up further than Cn'~¢log? n. This ends the proof. ]

Appendix: Proof of Lemma 2.2

The following is a guide on how to read [1] and modify the authors’ proof to obtain the desired result. Note than any
reference used in the following is to be found inside [1]. First, we start with an already occupied region B[n]. The
flashing process introduced by the authors is the same, except it only starts flashing after exiting B[n], and the coupling
they describe holds true in our setting. Therefore an interior bound like the one we wish to prove can be proven in the
flashing process setting. Then, in Section 4.2, we will use £ = nr3/2 (instead of log(n)) in Eq. (4.10). Moreover we follow
the authors’ recommandation to use a constant 4y = h when dealing with IDLA.

Recall that Wy (7) is the number of unsettled explorers (out of our N initial explorers) that stand in a cell 7 when the
cluster is built up to radius r¢, and that My (7T) is the number of explorers that exit B[r] through 7. Bounding the number
of settled explorers that exit B[ry] through 7 by saying at most one can have settled on each site of B[ry — h]\ B[n], we
get the usual equation:

Wi (T) + Li(T) = Mi(T),

with Ly (7) the number of particles that exit B[ry] through 7 when one is started on each site of B[ry — h]\ B[n]. Note
that here we stray from the authors’ proof since our Ly is not the same as theirs. Hence we need to check that we still have
the desired value for E[ My (7)) — Lx(T)]. The computation is done in a subparagraph called Step I which we emulate here.
Recall that for an integer-valued function f, M(f, ri, T) is the number of particles that exit B[rg] through 7 when f(x)
particles are started at each point x independently. We follow the authors in also denoting M (A, ry, T) = M4, g, T)
when A is a subset of Z¢.

E[Mi(T) — Li(T)| =E[M(N1o, ri, T)] — E[M(B[rx — h1\ Bln], r, T)]
=E[M((by+ N = by—n)lo.r%. T)]
+E[M(Bnl, rx, T)] — E[M (a0, 1, T)]
+E[M (br—nlo, i, T)] — E[M(Blri — k1, 7, T)]
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The absolute values of the differences on the second and third lines are then each bounded using Corollary 5.4, so that
we get for some constants C, k depending only on the dimension,

E[Mi(T) = Li(T)] = (by + N — by p)Po(S(H) € T) — C

K
a—1-
Tk

= bn+N—=byn)—=

Note thataslongasry —h <n(1+r — r3/ 2)1/ 4 the first factor on the right hand side (that is, the difference in volumes)
is bigger than kgn¢r3/? for a constant k; depending only on the dimension.
We then resume the course of the authors’ proof, noting that the bound (4.14) does not concern us since the order of

the left-hand-side is at most logarithmic (see (4.18)). Finally, we conclude in (4.15) by replacing the authors’ log(n) with
3/2
nr2/<,
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