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Abstract. We prove two results on the delocalization of the endpoint of
a uniform self-avoiding walk on Zd for d ≥ 2. We show that the probability
that a walk of length n ends at a point x tends to 0 as n tends to infinity,
uniformly in x. Also, for any fixed x ∈ Zd, this probability decreases faster
than n−1/4+ε for any ε > 0. When ||x|| = 1, we thus obtain a bound on
the probability that self-avoiding walk is a polygon.

1. Introduction

Flory and Orr [9, 20] introduced self-avoiding walk as a model of a long
chain of molecules. Despite the simplicity of its definition, the model has
proved resilient to rigorous analysis. While in dimensions d ≥ 5 lace expan-
sion techniques provide a detailed understanding of the model, and the case
d = 4 is the subject of extensive ongoing research, very little is known for
dimensions two and three.

The present paper uses combinatorial techniques to prove two intuitive
results for dimensions d ≥ 2. We feel that the interest of the paper lies not
only in its results, but also in techniques employed in the proofs. To this end,
certain tools are emphasised as they may be helpful in future works as well.

We mention two results from the early 1960s that stand at the base of our
arguments: Kesten’s pattern theorem, which concerns the local geometry of a
typical self-avoiding walk, and Hammersley and Welsh’s unfolding argument,
which gives a bound on the correction to the exponential growth rate in the
number of such walks.

1.1. The model. Let d ≥ 2. For u ∈ Rd, let ||u|| denote the Euclidean
norm of u. Let E(Zd) denote the set of nearest-neighbour bonds of the
integer lattice Zd. A walk of length n ∈ N is a map γ : {0, . . . , n} → Zd such
that (γi, γi+1) ∈ E(Zd) for each i ∈ {0, . . . , n−1}. An injective walk is called
self-avoiding. Let SAWn denote the set of self-avoiding walks of length n that
start at 0. We denote by PSAWn the uniform law on SAWn, and by ESAWn the
associated expectation. The walk under the law PSAWn will be denoted by Γ.
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1.2. The endpoint displacement of self-avoiding walk. The law of the
endpoint displacement under PSAWn is a natural object of study in an inquiry
into the global geometry of self-avoiding walk. The displacement is quantified
by the Flory exponent ν, specified by the conjectural relation ESAWn[||Γn||2] =
n2ν+o(1).

In dimension d ≥ 5, it is rigorously known that ν = 1/2 (see Hara and
Slade [12, 13]). When d = 4, ν = 1/2 is also anticipated, though this case
is more subtle from a rigorous standpoint. Recently, some impressive results
have been achieved using a supersymmetric renormalization group approach
for continuous-time weakly self-avoiding walk: see [1, 3, 4] and references
therein.

When d = 2, ν = 3/4 was predicted nonrigorously in [18, 19] using the
Coulomb gas formalism, and then in [7, 8] using Conformal Field Theory. It
is also known subject to the assumption of existence of the scaling limit and
its conformal invariance [15]. Unconditional rigorous statements concerning
the global geometry of the model are almost absent in the low dimensional
cases at present. In [5], sub-ballistic behaviour of self-avoiding walk in all
dimensions d ≥ 2 was proved, in a step towards the assertion that ν < 1.

1.3. Results. This paper is concerned in part with ruling out another ex-
treme behaviour for endpoint displacement, namely that Γn is close to the
origin. In [17], the mean-square displacement of the walk is proved to ex-
ceed n4/(3d). As we will shortly explain, a variation of that argument shows
that PSAWn(||Γn|| = 1) ≤ 2

3
for all n high enough. Recently, Itai Benjamini

posed the question of strengthening this conclusion to PSAWn(||Γn|| = 1)→ 0
as n → ∞. In this article, we confirm this assertion and prove uniform
delocalization for Γn.

Theorem 1.1. Let d ≥ 2. As n→∞, supx∈Zd PSAWn(Γn = x)→ 0.

In a separate investigation, we give a bound on the rate of convergence.

Theorem 1.2. Let d ≥ 2. For each ε > 0 and x ∈ Zd, there exists n0 =
n0(x, ε) such that, for n ≥ n0, PSAWn

(
Γn = x

)
≤ n−1/4+ε.

Note that neither theorem implies the other.
Our quantitative answer to Benjamini’s question – informally, an upper

bound on the probability that a self-avoiding walk is a polygon – is given
by taking ||x|| = 1 in the second theorem. This case will be explicitly ad-
dressed in Theorem 5.1. We mention that, in the case of Z2, the conjecture
PSAW2n+1

(
||Γ|| = 1

)
= n−59/32+o(1) follows from well-known predictions. (Nat-

urally, a walk of even length may not end one step from the origin.) Indeed,
this probability equals npn/cn, where pn and cn denote the number of length
n self-avoiding polygons and self-avoiding walks (such polygons will be for-
mally introduced in Section 5, and are considered up to translations). The
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two relevant predictions are pn = n−5/2+o(1)µnc and cn = n11/32+o(1)µnc , where
µc = limn |cn|1/n is the connective constant. The first of these may be derived
from a conjectural hyperscaling relation [16, 1.4.14] linking its value to that
of the Flory exponent ν; the second was first predicted by Nienhuis in [18];
for relations to SLE8/3, see Prediction 5 in [15].

The rest of the paper is structured as follows. In Section 2, we lay out
some of the tools used in the proofs, namely the multi-valued map principle,
unfolding arguments and the Hammersley-Welsh bound. The proofs of The-
orems 1.1 and 1.2 may be found in Sections 4 and 5. In spite of the similarity
of the results, the two proofs employ very different techniques, and indeed
Sections 4 and 5 may be read independently of each other.

In Section 3 we define and discuss notions revolving around Kesten’s pat-
tern theorem. Although the material in this section is not original per se,
our presentation is novel and, we hope, fruitful for further research. An
example of a consequence is the following delocalization of the midpoint of
self-avoiding walk.

Proposition 1.3. There exists a constant C > 0 such that, for n ∈ N,

sup
x∈Zd

PSAWn

(
Γbn

2
c = x

)
≤ Cn−

1
2 .

A comment on notation. The only paths which we consider in this paper
are self-avoiding walks. Thus, we may, and usually will, omit the term “self-
avoiding” in referring to them. In the course of the paper, several special
types of walk will be considered – such as self-avoiding bridges and self-
avoiding half-space walks – and this convention applies to these objects as
well.

Acknowledgments. We thank Itai Benjamini for suggesting the problem
to us. The first, second and fourth authors were supported by the ERC
grant AG CONFRA as well as the FNS. The third author was supported by
EPSRC grant EP/I004378/1 and thanks the Mathematics Department of the
University of Geneva for its hospitality during the year 2012–13.

2. Preliminaries

2.1. General notation. We denote by 〈·|·〉 the scalar product on Rd, and
recall the notation ||·|| for the Euclidean norm on this space. Let e1, . . . , ed be
the natural basis of Zd. We will consider e1 to be the vertical direction. The
cardinality of a set E will be denoted by |E|. The length of a walk γ, being
the cardinality of its edge-set, will be denoted by |γ|. For 0 ≤ i ≤ j ≤ n, we
write γ[i, j] = (γi, . . . , γj).

For m,n ∈ N, let γ and γ̃ be two walks of lengths m and n, respectively,
neither of which needs to start at 0. The concatenation γ ◦ γ̃ of γ and γ̃ is
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given by

(γ ◦ γ̃)k =

{
γk k ≤ m,
γm + (γ̃k−m − γ̃0) m+ 1 ≤ k ≤ m+ n.

2.2. The multi-valued map principle. Multi-valued maps and the multi-
valued map principle stated next will play a central role in our analysis.

A multivalued map from a set A to a set B is a map Φ : A → P(B). For
b ∈ B, let Φ−1(b) =

{
a ∈ A : b ∈ Φ(a)

}
and

(2.1) ΛΦ(b) =
∑

a∈Φ−1(b)

1

|Φ(a)|
.

The quantity ΛΦ(b) may be viewed as a (local) contracting factor of the map,
as illustrated by the following statement.

Lemma 2.1 (Multi-valued map principle). Let A and B be two finite sets
and Φ : A→ P(B) be a multi-valued map. Then

|A| =
∑
b∈B

ΛΦ(b) ≤ |B|max
b∈B

ΛΦ(b) .

The proof is immediate. We will often apply the lemma in the special
situation where, for any b ∈ B, |Φ(a)| is independent of a ∈ Φ−1(b). Then

the contracting factor may be written ΛΦ(b) = |Φ−1(b)|
|Φ(a)| for any a ∈ Φ−1(b).

2.3. Unfolding self-avoiding walks. An unfolding operation, similar to
the one used in [11] and more recently in [17], will be applied on several
occasions. We first describe the operation in its simplest form, and then the
specific version that we will use.

For z ∈ Zd, let Rz be the orthogonal reflection with respect to the plane
{x ∈ Zd : 〈x|e1〉 = 〈z|e1〉}, i.e. the map such that for any x ∈ Zd,

Rz(x) = x+ 2〈z − x|e1〉e1.

For γ ∈ SAWn, let k be any index such that

〈γk|e1〉 = max{〈γj|e1〉 : 0 ≤ j ≤ n} .
The simplest unfoldings of γ are those walks obtained by concatenating γ[0, k]
and Rγk(γ[k, n]) for such an index k. The condition on k ensures that any
such walk is indeed self-avoiding.

Of the numerous choices of the unfolding point index k, the following seems
to be the most suitable for our purpose.

Definition 2.2. For γ ∈ SAWn, the hanging time hang = hang(γ) is the
index k ∈ {0, . . . , n} for which γk is maximal for the lexicographical order
of Zd. We call γhang the hanging point and write γ1 = γ[0, hang] and γ2 =
γ[hang, n].



THE ENDPOINT OF SELF-AVOIDING WALK 5

Here are two essential properties of the hanging point. First, γhang depends
only on the set of points visited by γ, not on the order in which they are vis-
ited. Second, the lexicographical order of Zd is invariant under translations;
thus the hanging time of γ is the same as that of any translate of γ.

In a variation (motivated by technical considerations) of the unfolding
procedure, we will sometimes add a short walk between γ[0, k] andRγkγ[k, n].
The specific unfolding that we will use is defined next.

Definition 2.3. For a walk γ ∈ SAWn, define Unf(γ) ∈ SAWn+1 to be
the concatenation of γ1, the walk across the edge e1, and the translation of
Rγhangγ

2 by e1.

In [17], Madras used an unfolding argument to obtain a lower bound on
the mean-square displacement of a uniform self-avoiding walk. A simple
adaptation of his technique proves that PSAWn(||Γn|| = 1) ≤ 2

3
for all n ≥ 3d+

1. We now sketch this argument since, for example, the proof of Theorem 1.2
in Section 5 may be viewed as an elaboration.

To any walk γ ∈ SAWn with ||γn|| = 1, choose an axial direction in which
γ has maximal coordinate at least two – we will assume this to be the e1-
direction – and associate to γ its simple unfolding b ∈ SAWn, given by
concatenating the e1-reflection of γ2 to γ1. Any unfolded walk b corresponds
to at most two walks γ with ||γn|| = 1. This is because the level at which

the unfolding was done is one among 〈bn|e1〉−1
2

, 〈bn|e1〉
2

and 〈bn|e1〉+1
2

, of which
at most two are integers.

Moreover, since the maximal e1-coordinate of γ is at least two, the unfold-
ing of γ is such that ||bn|| > 1. The choice of axial direction for reflection
may be made in such a way that it may be determined from the unfolded
walk. Thus, PSAWn (||Γn|| = 1) ≤ 2

3
.

2.4. The Hammersley-Welsh bound. For n ∈ N, let cn = |SAWn| denote
the number of length-n walks that start at the origin. Write µc ∈ (0,∞)

for the connective constant, given by µc = limn c
1/n
n . Its existence follows

from the submultiplicativity inequality cn+m ≤ cncm and Fekete’s lemma.
Furthermore, the limit defining µc is decreasing, thus providing a lower bound
on cn.

The value of µc is not rigorously known for any lattice Zd with d ≥ 2. The
only non-trivial lattice for which the connective constant (for unweighted
self-avoiding walks) has been rigorously derived is the hexagonal lattice, see
[6], using parafermionic observables (also see [2, 10] for other applications
of parafermionic observables, including the computation of the connective
constant for a model of weighted walks).

An upper bound for the growth rate of cn is provided by the Hammersley-
Welsh argument of [11] (which is proved by an iterative unfolding procedure).
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Figure 1. An example of type I and II patterns for d = 2.

It states the existence of a constant cHW > 0 such that, for all n ∈ N,

(2.2) µnc ≤ cn ≤ ecHW
√
nµnc .

3. The shell of a walk: definition and applications

The shell of a walk, defined next, is a notion that appeared implicitly
in Kesten’s proof of the pattern theorem in [14]. In the next subsections,
we present two consequences of the pattern theorem which may be of some
general use. We illustrate this by the proof of Proposition 1.3.

Definition 3.1 (Type I/II patterns). Type I and II patterns are self-avoiding
walks χI , respectively χII , contained in the cube [0, 3]d, with the properties that

• χI and χII both visit all vertices of the boundary of [0, 3]d,
• χI and χII both start at (3, 1, . . . 1) and end at (3, 2, 1 . . . , 1),
• |χII | = |χI |+ 2.

Figure 1 contains examples of such patterns for d = 2. The existence of
such pairs of walks for any dimension d ≥ 2 may be easily checked, and no
details are given here. Fix a pair of type I and II patterns for the rest of the
paper.

A pattern χ is said to occur at step k of a walk γ if γ[k, k+|χ|] is a translate
of χ. A walk may have several occurrences of both type I and II patterns.
Note that occurrences of such patterns are necessarily disjoint.

Definition 3.2 (Shell of a walk). Two self-avoiding walks are equivalent if
one can be obtained from the other by changing some type I patterns into type
II patterns and some type II patterns into type I patterns. Classes for this
equivalence relation are called shells.

A shell may be viewed as a walk with certain slots where type I and II
patterns may be inserted. Note that a shell may contain walks of different
lengths. Shells are convenient to work with as many interesting events may
be written in terms of the shell of the walk (see below for examples of such
events).

The shell of the walk γ is denoted ς(γ); TI(γ) and TII(γ) denote the number
of occurrences for patterns of type I and II in γ. Observe that TI(γ) and
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TII(γ) are determined by ς(γ) and the length of γ. When the random variable
Γ is involved, we will sometimes drop the explicit dependence of T on Γ.

By Kesten’s pattern theorem [14, Thm. 1], there exist constants c > 0 and
δ > 0 such that, for any n ≥ d3d,

(3.1) PSAWn (TI(Γ) ≤ δn) ≤ e−cn and PSAWn (TII(Γ) ≤ δn) ≤ e−cn.

3.1. Shell probabilities are stable under perturbation of walk length.
The following lemma states that, when considering typical events expressed
only in terms of shells, their PSAWn and PSAWn+2k probabilities are comparable
for k small enough. The lemma will be instrumental when applying multi-
valued map arguments.

Let A be a subset of shells and let

An = {γ ∈ SAWn : ς(γ) ∈ A}.

The set A may be chosen as, for example, the set of half-space walks, bridges,
irreducible bridges, walks with a certain number of renewal times or walks
with very large quasi-loops. This flexibility in the choice of A may render the
lemma useful in a broad context. We will use it in the proof of Theorem 1.1,
more precisely in Proposition 4.2.

Lemma 3.3. For any c > 0, there exists C > 0 such that the following
occurs. Let A be a set of shells and n be an integer such that |An| ≥ e−c

√
nµnc .

Then, for any 0 ≤ k ≤ n1/5,

(3.2) |An−2k| ≥ C|An|µ−2k
c .

The argument by which we will derive the lemma is a direct adaptation
of one in [14], where the claim is proved for An = SAWn. In this case, the
result can be improved to |k| ≤ n1/3 due to the submultiplicativity property
of the number of self-avoiding walks. For the uses we have in mind, n1/5 is
sufficient.

Proof. Fix c > 0. It suffices to prove the statement for n large enough (the
specific requirements on n will be indicated in the proof). Fix a value n.

Let δ, cδ > 0 be constants such that (3.1) holds. Define

Ãm = {γ ∈ Am : TII(γ) > δn},
Ãm+2 = {γ ∈ Am+2 : TII(γ) > δn+ 1},
Ãm+4 = {γ ∈ Am+4 : TII(γ) > δn+ 2}.

Note that the assumption |An| ≥ e−c
√
nµnc and the choice of δ yield

|An \ Ãn| ≤ e−cδn|SAWn| ≤ e−cδne(cHW+c)
√
n|An|.



8 H. DUMINIL-COPIN, A. GLAZMAN, A. HAMMOND AND I. MANOLESCU

As a consequence, for n larger than some value depending on cδ, cHW and c,

(3.3) |Ãn| ≥ 1
2
|An| ≥ 1

2
e−c
√
nµnc .

This will be useful later, and henceforth we assume that n is sufficiently large
for (3.3) to hold. Let us also assume that δn ≥ n3/4.

We start by proving that, for any ` ∈ N with |`| ≤ n3/4, when setting
m = n+ 2`,

(3.4)
|Ãm+2|
|Ãm|

− |Ãm+4|
|Ãm+2|

≤ 2

δ3n
· |Ãm|
|Ãm+2|

.

Consider the multi-valued map from Ãm+2 into Ãm that consists of replacing
a type II pattern by a type I pattern. The multi-valued map principle implies

|Ãm+2| =
∑
γ∈Ãm

TI(γ)

TII(γ) + 1
.(3.5)

Similarly, by considering the multi-valued map from Ãm+4 into Ãm that re-
places two type II patterns by type I patterns, one obtains

|Ãm+4| =
∑
γ∈Ãm

TI(γ)(TI(γ)− 1)

(TII(γ) + 1)(TII(γ) + 2)
.

It follows that

|Ãm+2|2

|Ãm|
− |Ãm+4|

=

∑
γ∈Ãm

1

−1∑
γ∈Ãm

TI(γ)

TII(γ) + 1

2

−
∑
γ∈Ãm

TI(γ)(TI(γ)− 1)

(TII(γ) + 1)(TII(γ) + 2)

≤
∑
γ∈Ãm

((
TI(γ)

TII(γ) + 1

)2

− TI(γ)(TI(γ)− 1)

(TII(γ) + 1)(TII(γ) + 2)

)
≤ 2

δ3n
|Ãm|.

The first inequality is due to Cauchy-Schwarz and the second, valid when n
is high enough, to TII(γ) ≥ δn and TI(γ) ≤ m ≤ n + 2n3/4. Dividing the
above by |Ãm+2| yields (3.4).

Let us now show that

|Ãn−2k+2|
|Ãn−2k|

< µ2
c +

1

n1/5
, for all 0 ≤ k ≤ n1/5.(3.6)

Assume instead that for some 0 ≤ k ≤ n1/5 and m = n− 2k,

|Ãm+2|
|Ãm|

≥ µ2
c +

1

n1/5
.
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In particular, this implies that |Ãm|
|Ãm+2|

≤ 1. Using (3.4), it may be shown by

recurrence that, for n large enough and ` ≤ n3/4 + k, we have |Ãm+2`|
|Ãm+2`+2|

≤ 1

and

|Ãm+2`+2|
|Ãm+2`|

≥ µ2
c +

1

n1/5
− 2

δ3n

∑̀
k=1

|Ãm+2k−2|
|Ãm+2k|

≥ µ2
c +

1

2n1/5
.

Thus,

|Ãn+2n3/4| ≥ |Ãn|
(
µ2
c +

1

2n1/5

)n3/4

≥ 1

2
e−c
√
nµnc

(
µ2
c +

1

2n1/5

)n3/4

> ecHW
√
n+2n3/4

µn+2n3/4

c .

In the second inequality, we used (3.3), and, in the third, we assumed that n
exceeds an integer that is determined by c, cHW and µc. The above contra-
dicts the Hammersley-Welsh bound (2.2), and (3.6) is proved.

We conclude by observing that (3.6) and (3.3) imply that, for all k ≤ n1/5,

1
2
|An| ≤ |Ãn| ≤

(
µ2
c +

1

n1/5

)k
|Ãn−2k| ≤ Cµ2k

c |Ãn−2k| ≤ Cµ2k
c |An−2k|,

where C is some constant depending only on µc. �

Remark 3.4. If one assumes that |Am| ≥ e−c
√
mµmc for any m ∈ [n −

n3/4, n + n3/4], then the same technique implies a stronger result. In ad-
dition to (3.6), a converse inequality may be obtained by a similar argument.
Assuming |Am+2|/|Am| ≤ µ2

c − 1
n1/5 for some m ∈ [n− 2n1/5, n+ 2n1/5] leads

to a contradiction by going backward instead of forward. It follows that there
exists a constant C > 0 such that the ratio µ2k

c |An|/|An+2k| is contained be-
tween 1/C and C for all |k| ≤ n1/5. We expect that in most applications, the
important bound will be the one given by Lemma 3.3.

3.2. Redistribution of patterns. We present a technical result, Lemma 3.5,
concerning the distribution of patterns of type I and II within a given typical
shell. Roughly speaking, when considering walks of a given length with a
given shell, there is a specified number of type I patterns to be allocated into
the available slots, and this allocation occurs uniformly. For a typical shell,
the number of slots, and the number of type I patterns to be allocated into
them, are macroscopic quantities, of the order of the walk’s length. Thus,
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conditionally on a typical shell, the number of type I patterns in a macro-
scopic part of the walk has a Gaussian behaviour, with variance of the order
of the walk’s length.

Lemma 3.5 will prove to be very useful: after its proof, we will derive
Proposition 1.3, our result concerning midpoint delocalization, as a corollary.
The lemma will also play an important role in our quantitative study of
endpoint delocalization in Section 5.

Consider a shell σ and (S1, S2) a partition of its slots. For a walk γ ∈ σ
and i = 1, 2, let T iI(γ) (and T iII(γ)) be the number of type I (and type II)
patterns in Si. With this notation, TI = T 1

I + T 2
I and TII = T 1

II + T 2
II .

Lemma 3.5. Let δ, ε, ε′, C > 0. There exists N > 0 such that the following
occurs. Let n ≥ N , σ be a shell and (S1, S2) be a partition of its slots with
|S1|, |S2| ≥ δn. Suppose that n and σ are such that TI and TII are both larger
than δn (and recall that TI and TII are determined by n and σ). Then,

PSAWn

(∣∣∣∣T 1
I (Γ)− TI |S1|

|S1|+ |S2|

∣∣∣∣ ≥ √n(log n)1/2+ε

∣∣∣∣ ς(Γ) = σ

)
≤ 1

nC
.(3.7)

Moreover, if k1, k2 are such that
∣∣∣ki − TI |S1|

|S1|+|S2|

∣∣∣ ≤ 2
√
n(log n)1/2+ε and |k1 −

k2| ≤
√
n, then

PSAWn (T 1
I (Γ) = k1 | ς(Γ) = σ)

PSAWn (T 1
I (Γ) = k2 | ς(Γ) = σ)

≥ n−ε
′
.(3.8)

Before the technical proof, we give a heuristic explanation. For simplicity,
suppose that S1 comprises the first K slots of σ, and S2 the remainder.

Consider the random process W : {0, . . . , TI + TII} → {0, . . . , TI} whose
value at 0 ≤ k ≤ TI + TII is the number of type I patterns allocated into
the first k slots of σ. Under PSAWn (·|ς(Γ) = σ), W is uniform in the set of
trajectories of length TI + TII , with steps 0 or 1, starting at 0 and ending
at TI .

In other words, consider the random walk with increments zero with prob-
ability TII

TI+TII
and one with probability TI

TI+TII
. Then W has the law of this

walk, conditioned on arriving at TI at time TI + TII . The assumptions on TI
and TII ensure that the variance of the increment of W is bounded away from
0.

With this notation T 1
I = WK . The inequalities for |S1| and |S2| ensure

that the point K is not too close to the endpoints of the range of W . It

follows from standard estimates on random walk bridges that
T 1
I√

TI+TII
follows

an approximately Gaussian distribution. If this approximation is used, then
Lemma 3.5 follows by basic computations. Also, the probability that WK

equals ` is at most Cn−1/2 for some constant C > 0 and any ` ∈ Z. This last
observation will be used in the proof of Proposition 1.3.
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Proof of Lemma 3.5. Fix δ, ε, ε′ and C strictly positive. Let n, σ and (S1, S2)
be as in the lemma. The parameter n will be assumed to be large in the sense
that n ≥ N for some N = N(δ, ε, ε′, C).

If Γ is distributed according to PSAWn(.|ς(γ) = σ), then the TI type I
patterns and TII type II patterns are distributed uniformly in the slots of σ.
Thus, for k ∈ {0, . . . , |S1|},

PSAWn

(
T 1
I (Γ) = k

∣∣ ς(Γ) = σ
)

=

(|S1|
k

)( |S2|
TI−k

)(|S1|+|S2|
TI

) .(3.9)

Write m = |S1| + |S2|, |S1| = αm and TI = βm. By assumption α, β ∈
[δ, 1− δ] and m ≥ 2δn. Let Z =

T 1
I

αβm
− 1. Under PSAWn (· | ς(Γ) = σ), Z is a

random variable of mean 0, such that αβ(1 + Z)m ∈ Z ∩ [0,min{|S1|, TI}].
First, we investigate the case where Z is close to its mean, corresponding

to the second part of the lemma. By means of a computation which uses
Stirling’s approximation and the explicit formula (3.9), we find that

PSAWn (Z = z | ς(Γ) = σ) = (1 + o(1))
exp

(
− αβ

2(1−α)(1−β)
mz2

)
√

2παβ(1− α)(1− β)m
,(3.10)

where o(1) designates a quantity tending to 0 as n tends to infinity, uniformly

in the acceptable choices of σ, S1, S2 and z, with |z| ≤ 2
√
n(logn)1/2+ε

αβm
.

Consider now k1, k2 be as in the second part of the lemma. Define the

corresponding zi = ki
αβm
−1, and note that |zi| ≤ 2

√
n(logn)1/2+ε

αβm
and |z1−z2| ≤

√
n

αβm
. By (3.10),

PSAWn (Z = z1 | ς(Γ) = σ)

PSAWn (Z = z2 | ς(Γ) = σ)
= (1 + o(1)) exp

(
− 1

2δ5
(log n)1/2+ε

)
≥ n−ε

′
,

for n large enough. This proves (3.8).
We now turn to the deviations of Z from its mean (this corresponds to

the first part of the lemma). From (3.9), PSAWn (Z = z | ς(Γ) = σ) is trivially

unimodal in z with maximum at z = 0. For |z| ≥
√
n(logn)1/2+ε

αβm
, (3.10) implies

the existence of constants c0, c1 > 0 depending only on δ such that, for n
large enough,

PSAWn (Z = z | ς(Γ) = σ) ≤ exp (−c0(log n)1+2ε)

c1

√
n

≤ n−C−1.(3.11)

Since T 1
I takes no more than n values, (3.11) implies (3.7). �

We are now in a position to prove Proposition 1.3.
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Proof of Proposition 1.3. It suffices to prove the statement for n large. Let
n ∈ N and x ∈ Zd.

Consider a shell σ with x ∈ γ for some walk γ ∈ σ. Let S1 be the slots of
σ before x and let S2 be the ones after. We will omit here the case where x
is a point contained in one of the slots; this is purely a technical issue and
does not change the proof in any significant way.

Consider walks γ ∈ SAWn with ς(γ) = σ. Let tσ be the number of type I
patterns that such a walk needs to have in S1 so that γbn

2
c = x, if such

a number exists and is contained in [0,min{|S1|, TI}]. Denote S the set of
shells for which tσ is well defined. Thus, if γ has midpoint x, then ς(γ) ∈ S.
We may therefore write

PSAWn

(
Γbn

2
c = x

)
=
∑
σ∈S

PSAWn

(
T 1
I = tσ, ς(Γ) = σ

)
.(3.12)

There exist constants δ, c > 0 such that

PSAWn

(
Γ[0, n

4
] contains fewer than δn type I patterns

)(3.13)

≤
cn/4c3n/4

cn
PSAWn/4 (Γ contains fewer than δn type I patterns)

≤ e2cHW
√
nPSAWn/4 (Γ contains fewer than δn type I patterns) < e−cn,

where the second inequality comes from the Hammersley-Welsh bound (2.2),
and the third from (3.1). The same holds for type II patterns, and for Γ[3n

4
, n]

instead of Γ[0, n
4
]. It follows that

PSAWn

(
min(|S1|, |S2|, TI , TII) < δn

)
< 4e−cn.(3.14)

For shells σ ∈ S such that |S1| ≥ δn and |S2| ≥ δn, (3.10) gives

PSAWn

(
T 1
I = k

∣∣ ς(Γ) = σ
)
≤ Cn−1/2,(3.15)

for some C > 0, any k ∈ N and n sufficiently large (i.e., larger than some
value depending only on δ).

By applying (3.14) and (3.15) to (3.12), we obtain

PSAWn

(
Γbn

2
c = x

)
≤ 4e−cn + Cn−1/2 ≤ 2Cn−1/2,

for n sufficiently large. �

4. Delocalization of the endpoint

This section is devoted to the proof of Theorem 1.1. Let us begin with
some general definitions. A walk γ ∈ SAWn is called a bridge if

〈γ0|e1〉 < 〈γk|e1〉 ≤ 〈γn|e1〉, for 0 < k ≤ n.
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Write SABn for the set of bridges of length n and PSABn for the uniform
measure on SABn.

ren

zren

hang

end

start

Figure 2. A walk γ with a renewal point γk, a z-renewal
point γ` and hanging point γhang. The bold structure beyond
the point γ` helps to ensure that ` is a z-renewal time. Both
γ[k, `] and γ[k, hang] are bridges.

For γ ∈ SAWn, an index k ∈ [0, n] is a renewal time if 〈γi|e1〉 ≤ 〈γk|e1〉
for 0 ≤ i < k and 〈γi|e1〉 > 〈γk|e1〉 for n ≥ i > k. Because it simplifies the
proof of the next subsection in a substantial way, we introduce the notion of
z-renewal. An index k ∈ [0, n− 2] is a z-renewal time if

• 〈γi|e1〉 < 〈γk+1|e1〉 for 0 ≤ i < k + 1,
• the edge (γk+1, γk+2) is not equal to e1 or −e1,
• 〈γi|e1〉 > 〈γk+1|e1〉 for n ≥ i > k + 2.

Note that a z-renewal time is necessarily a renewal time. Let zRγ denote the
set of z-renewal times of γ. A (z-)renewal point is a point of the form γk
where k is a (z-)renewal time.

4.1. The case of bridges. Let π1 be the orthogonal projection from Zd onto
the hyperplane H = {x ∈ Zd : 〈x|e1〉 = 0}, that is, for any x ∈ Zd,

π1(x) = x− 〈x|e1〉e1.

Our first step on the route to Theorem 1.1 is its analogue for bridges.
Bridges are easier to handle due to their renewal and z-renewal points.

Proposition 4.1. We have that limn supv∈H PSABn (π1(Γn) = v) = 0.

This proposition follows from the next two statements. The first shows
that typical bridges have many z-renewal times, and the second that the
endpoint of a bridge with many z-renewal times is delocalized.

Proposition 4.2. For any M ∈ N, limn PSABn (|zRΓ| < M) = 0.
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Proof. Fix ε > 0 and M ∈ N and let us show that, for n large enough,
PSABn (|zRΓ| < M) < ε.

Let SABM
n be the set of bridges of length n with strictly fewer than M

z-renewal times. If |SABM
n | < e−2cHW

√
nµnc , we may use (2.2) to deduce that

PSABn (|zRΓ| < M) < e−cHW
√
n ≤ ε, provided n is large enough.

From now on, assume

(4.1) |SABM
n | ≥ e−2cHW

√
nµnc .

Let k = bn1/5c, and define the map

Φ :
k⋃
j=1

SABM
n−2j × SAB2j−2 −→ SABn

that maps (γ1, γ2) to the concatenation of γ1, the walk whose consecutive
edges are e1 and e2, and γ2. Each γ ∈ SABn has at most M pre-images
under Φ, because, if Φ maps (γ1, γ2) to γ, then the endpoint of the copy of
γ1 in γ is one of the first M z-renewal points of γ. We deduce that

k∑
j=1

|SABM
n−2j| × |SAB2j−2| ≤M |SABn|.

Lemma 3.3 applied with A = ∪k≥0SABM
k , along with (4.1), provides the exis-

tence of anM -dependent constant C > 0 for which |SABM
n−2j| ≥ Cµ−2j

c |SABM
n |

for all 0 ≤ j ≤ k. Thus,

PSABn (|zRΓ| < M) =
|SABM

n |
|SABn|

≤ M

C
∑k

j=1 |SAB2j−2|µ−2j
c

.

However, it is a classical fact that the generating function for bridges diverges
at criticality, i.e.

∑∞
j=1 |SAB2j|µ−2j

c = ∞. This is shown for instance in [16,

Cor. 3.1.8]. As n tends to infinity, so does k, and therefore, for n sufficiently
large, PSABn (|zRΓ| < M) < ε. �

Proposition 4.3. For any ε > 0, there exists M > 0 such that, for any
n, h > 0 and x ∈ Zd,

PSABn

(
Γn = x

∣∣∣ |zRΓ| ≥M, 〈Γn|e1〉 = h
)
≤ ε.

Proof. If k is a z-renewal time of a walk γ, and if the edge (γk+1, γk+2) is
modified to take any one of the 2d − 2 values ±e2, ±e3, . . ., the outcome
remains self-avoiding and shares γ’s height. In light of this, the proof is
trivial. �
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hang

ren

bren

bn

x x

OO

eone

O

x

Figure 3. Left: A walk γ ∈ SAHSWn ending at x. Middle:
The unfolding of γ, Unf(γ), and its last renewal point Unf(γ)ren.
Notice the bold edge e1 added between γ1 and the reflection
of γ2. Right: A walk b ∈ Φ(γ). Its last renewal point is bren;
b[0, ren] is a bridge and b[ren, n + 1] is equal up to translation
to Unf(γ)[ren, n+ 1] (bold). The choice of b[0, ren] may be such
that π1(bn+1) 6= π1(x).

4.2. The case of half-space walks. Next, we prove delocalization for walks
confined to a half-space. The set of half-space walks of length n is

SAHSWn =
{
γ ∈ SAWn : 〈γk|e1〉 > 0 for all 1 ≤ k ≤ n

}
.

Let PSAHSWn denote the uniform measure on SAHSWn.

Proposition 4.4. We have that limn supx∈Zd PSAHSWn(γn = x) = 0.

Proof. Let ε > 0 and note that Proposition 4.1 ensures the existence of H ∈ N
such that

(4.2) sup
k≥H,v∈H

PSABk

(
π1(Γk) = v

)
≤ ε.

First note that PSAHSWn(〈γhang|e1〉 ≤ H) decays exponentially as n → ∞.
Indeed, the pattern theorem [14, Thm. 1] implies that, with probability ex-
ponentially close to one, a walk in SAHSWn contains H+1 consecutive edges
e1. We may therefore restrict our attention to walks going above height H.

Let x ∈ Zd and define a multi-valued map Φ : {γ ∈ SAHSWn : γn = x} →
SAHSWn+1 as follows. Let ren be the last renewal time of Unf(γ) (recall the
definition of Unf from Section 2.3) and let Φ(γ) be the set of all half-space
walks which can be represented as the concatenation of some bridge of length
ren and Unf(γ)[ren, n]. See Figure 3. Note that hang is a renewal time for
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Unf(γ) (this is due to the edge e1 added between the two walks), hence ren
is well defined and ren ≥ hang. For any γ ∈ SAHSWn, |Φ(γ)| = |SABren|.

In the other direction, let b ∈ SAHSWn+1 and γ ∈ Φ−1(b). The time ren
of γ can be determined, since it is the last renewal time of b. As such, γ[ren, n]
is determined by b. Thus, γ[0, ren] is a bridge with

π1(γren) = π1(x+ bren − bn+1).

Furthermore, Unf is an injective function from {χ ∈ SAHSWn : χn = x}
to SAHSWn+1 (indeed, the vertical coordinate of the hanging point of the
original walk can be determined from knowing that the original walk ended
at x). In conclusion,

|Φ−1(b)| ≤
∣∣∣{χ ∈ SABren : π1(χren) = π1(x+ bren − bn+1)

}∣∣∣.
As mentioned before, we may suppose 〈γhang|e1〉 ≥ H, and therefore ren ≥ H.
The set Φ(γ) is independent of γ ∈ Φ−1(b). Thus, for any choice of b, the
contracting factor of Φ appearing in the multi-valued principle satisfies

ΛΦ(b) ≤ max
k≥H,v∈H

PSABk

(
π1(Γk) = v

)
≤ ε.

The multi-valued map principle and the trivial inequality |SAHSWn+1| ≤
2d|SAHSWn| yield PSAHSWn(γn = x) ≤ 2dε, and the proof is complete. �

4.3. The case of walks (proof of Theorem 1.1). Fix ε > 0. Proposi-
tion 4.3 yields the existence of M > 0 such that, for any n, h ≥ 0,

(4.3) sup
x∈Zd

PSABn

(
Γn = x

∣∣∣ |zRΓ| ≥M, 〈Γn|e1〉 = h
)
≤ ε

2d
.

Fix such a value of M . Recall the notation (γ1, γ2) = (γ[0, hang], γ[hang, n]).
We divide the proof in two cases, depending on whether Γ1 possesses at least
or fewer than M z-renewal times. The next two lemmas treat the two cases.

Lemma 4.5 (Many z-renewal times for Γ1). For n large enough,

sup
x∈Zd

PSAWn

(
Γn = x and |zRΓ1| ≥M

)
≤ ε.

In the case where the first part contains few z-renewal times, we further
demand that the hanging time be smaller than n/2.

Lemma 4.6 (Few z-renewal times for Γ1). For n large enough,

sup
x∈Zd

PSAWn

(
Γn = x, hang ≤ n/2 and |zRΓ1| < M

)
≤ ε.

Theorem 1.1 follows from the two lemmas because, as we now see, they
imply that

sup
x∈Zd

PSAWn(Γn = x) ≤ 4ε.
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ren

hang

target

bren

oo

bhang

bn

Figure 4. Left: A walk γ ∈ EM(x). Right: A walk b ∈ Φ(γ).
The first and last parts of b (bold) are the same as those of γ
(up to translation and reflection). Its middle part is a bridge
with appropriate length and e1-displacement.

Indeed, the lemmas clearly yield

sup
x∈Zd

PSAWn

(
hang ≤ n/2 and Γn = x

)
≤ 2ε,

for n large enough. The counterpart inequality with hang ≥ n/2 may be
obtained by reversing the walk’s orientation (and translating it to start at
the origin).

Thus the proof of Theorem 1.1 is reduced to demonstrating the two lemmas.

Proof of Lemma 4.5. For n ∈ N, let EM(x) be the set of walks γ ∈ SAWn

with γn = x and |zRγ1| ≥M . For such walks, let ren be the smallest renewal
time of γ1 (note that γ1 has at least one renewal time, namely hang). Split γ1

in two parts γ11 = γ[0, ren], γ12 = γ[ren, hang] and set k = hang − ren.
We define a multi-valued map Φ : EM(x) → SAWn+1 under which γ ∈

EM(x) is unfolded about hang and the sub-bridge γ12 is substituted by any
bridge sharing γ12’s length and e1-displacement (but not necessarily its dis-
placement in other directions). More precisely, for γ ∈ EM(x), Φ(γ) is the
set of walks b ∈ SAWn+1 with the properties that

• b[0, ren] is equal to γ11;
• b[ren, hang] is the translate of a bridge of length k and e1-displacement

〈γhang − γren|e1〉,
and which has at least M z-renewal times;
• and b[hang, n+ 1] is equal to Unf(γ2) (up to translation).

By construction such walks are indeed self-avoiding, so that Φ(γ) is well-
defined. See Figure 4.
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Let us now estimate the contracting factor ΛΦ of Φ. For γ ∈ EM(x),

(4.4) |Φ(γ)| =
∣∣∣{χ ∈ SABk : |zRχ| ≥M and 〈χk|e1〉 = 〈γhang − γren|e1〉

}∣∣∣.
For the number of pre-images, consider γ ∈ Φ−1(b) for some b ∈ SAWn+1

(note that Φ−1(b) could be empty, in which case the conclusion is trivial).
Since γ ends at x and the e1-displacement of the bridge which replaces γ12

in b is the same as that of γ12, the e1-coordinate of the hanging point of γ is
determined by b. Namely,

〈γhang|e1〉 = 〈bhang(γ)|e1〉 =
〈x|e1〉+ 〈bn+1|e1〉 − 1

2
.

But hang is a renewal time for b, hence the above determines hang. It follows
that γ2 is also determined by b (including its positioning which is given by
the fact that γn = x). Moreover, since ren is the first renewal time of γ, it
is also the first renewal time of b[0, hang]. Thus b determines γ11 as well.
Finally, γ12 is a bridge with at least M z-renewals, between the determined
points γren and γhang. It follows that

(4.5) |Φ−1(b)| ≤
∣∣∣{χ ∈ SABk : |zRχ| ≥M and χk = γhang − γren

}∣∣∣.
Since γ11 and γ2 are determined by b, any γ ∈ Φ−1(b) has the same number
of images under Φ. Equations (4.4), (4.5) and the choice of M (see (4.3))
imply that ΛΦ(b) is bounded by ε

2d
uniformly in γ, which immediately yields

|EM(x)| ≤ ε

2d
|SAWn+1| ≤ ε|SAWn|.

�

We finish with the easier proof of Lemma 4.6.

Proof of Lemma 4.6. Let Fj(x) be the set of walks γ ∈ SAWn such that
γn = x, hang ≤ n/2 and |zRγ1| = j.

We construct once again a multi-valued map Φ, this time from Fj(x)
to SAWn+3. For γ ∈ Fj(x), Φ(γ) comprises the walks formed by concatenat-
ing γ1, the walk whose consecutive edges are e1 and e2, and any half-space
walk of length n− hang + 1. See Figure 5.

The number of images through Φ satisfies |Φ(γ)| = |SAHSWn−hang+1|. To
determine the number of pre-images, note that, if b ∈ Φ(γ), then bhang(γ) is
the (j + 1)-st z-renewal point of b. Also, γ2 is contained in the half-space
{y ∈ Zd : 〈y|e1〉 ≤ 〈γhang|e1〉} and ends at the point x. Such walks can easily
be transformed into half-space walks of length n−hang+1 by reflecting them
and adding an edge e1 at the beginning. Note that the endpoint of such a
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o
target

bhang

bn

hang

o

Figure 5. Left: A self-avoiding walk γ ∈ Fj. Right: A walk
b ∈ Φ(γ). The point bhang(γ) is the (j + 1)-st z-renewal point
of b; it is followed by the edges e1, e2 (in bold), then by a
half-space walk of length n− hang + 1.

walk is then determined by γ1 and x. Using Proposition 4.4, we find that,
for any b ∈ SAWn+3, the contracting factor of Φ satisfies

ΛΦ(b) ≤ sup
k≥n/2+1

z∈Zd

PSAHSWk

(
Γk = z

)
≤ ε

(2d)3M
,

provided that n is large enough. By the multi-valued map principle and
|SAWn+3| ≤ (2d)3|SAWn|, we obtain that PSAWn

(
Fj(x)

)
≤ ε/M . By taking

the union of the Fj(x) over j < M , we obtain Lemma 4.6. �

5. Quantitative decay for the probability of ending at x

We say that a walk γ = γ[0, n] closes if γ0 and γn are neighbors; a closing
walk is one that closes. The fundamental step in our quantitative delocaliza-
tion result, Theorem 1.2, is the following theorem.

Theorem 5.1. For any ε > 0 and n large enough,

PSAWn

(
Γ closes

)
≤ n−1/4+ε.

The reduction of Theorem 1.2 to Theorem 5.1 is an exercise in local surgery
whose details are a little technical. To permit our focus to remain at present
on the central ideas needed for quantitative delocalization, we defer the ar-
gument to the final Section 5.2.

A little notation is in order as we prepare to prove Theorem 5.1.

Definition 5.2. Two closing walks are said to be equivalent if the sequence
of vertices visited by one is a cyclic shift of this sequence for the other. A
(self-avoiding) polygon is an equivalence class for this equivalence relation.
The length of a polygon is equal to the length of any member closing walk
plus one. For n ∈ N, let SAPn be the set of polygons of length n+ 1.
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The following trivial lemma will play an essential role.

Lemma 5.3. [Polygonal invariance] For n ∈ N, let χ and χ′ be two equivalent
length-n closing walks. Then

PSAWn

(
Γ is a translate of χ

)
= PSAWn

(
Γ is a translate of χ′

)
.

5.1. Deriving Theorem 5.1. We start by a non-rigorous overview. The
actual proof is in Subsection 5.1.2.

5.1.1. An overview of the proof. The proof will proceed by contradiction.
Suppose that the statement of Theorem 5.1 is false, and let n be a large
integer such that PSAWn

(
Γ closes

)
≥ n−1/4+5ε. The factor 5ε in the exponent

will be used as a margin of error which will decrease at several steps of the
proof.

Fix an index `0 ∈ [n
4
, 3n

4
] such that PSAWn(Γ closes | hang = `0) ≥ n−1/4+4ε.

(The existence of such an index is proved in Lemma 5.4 and relies solely on
polygonal invariance and the hypothesis that Theorem 5.1 is false.)

A walk ending at its hanging point will be called good if, when completed
by n − `0 steps in such a way that the hanging point is left unchanged, the
resulting walk has probability at least n−1/4+3ε of closing. When thinking of
walks as being built step by step, good walks should be thought of as first
parts that leave a good chance for the walk to finally close. Since we assume
that the walk closes with good probability, it is natural to expect that its first
part is good with reasonable probability, and indeed one may prove (using
polygonal invariance once again) that for our choice of `0,

PSAWn

(
Γ1 is good

∣∣Γ closes, hang = `0

)
≥ n−1/4+3ε.

Here, the notation Γ1 = Γ[0, hang] for the walk’s first part was introduced in
Definition 2.2.

This estimate can be improved in the following way: one may change the
value of the hanging time and prove that for 0 ≤ k ≤

√
n,

PSAWn

(
Γ1 is good

∣∣Γ closes, hang = `0 − 2k
)
≥ n−1/4+2ε.(5.1)

This part of the proof is heavily based on the resampling of patterns described
in Lemma 3.5 and illustrated in Figure 6.

This study shows that, when considering closing walks as polygons, the
`0−2k steps before the hanging point have reasonable probability of forming
a good walk, for k = 0, . . . ,

√
n. The correspondence between closing walks

and polygons is essential here, as is the fact that the hanging point only
depends on the polygon, not on the starting point of the closing walk.

Call a point whose index lies in [hang − `0, hang] of a closing walk ticked
if the section of the walk between that point and the hanging point is good.
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galogalo

hanghang

Figure 6. In a closing walk the `0 steps up to the hanging
point form a good walk (bold). By exchanging type I and II
patterns between the bold and regular part of the walk in a way
that increases by order n1/2 the number of type II patterns in
the bold part, we may effectively shorten the good part by an
amount of this order.

Since each of
√
n points have chance at least n−1/4+2ε to be ticked, the ex-

pected number of ticked points in a closing walk is at least n1/4+2ε. It follows
that, with probability greater than n−1/4+ε, a closing walk has more than
n1/4+ε ticked points.

We now reach the crucial part of the proof. Fix a walk with T ≥ n1/4+ε

ticked points. By considering the portions of the walk between the ticked
points and the hanging point, we obtain a family of good walks {χi : i =
1, . . . ,T}, with χi ⊂ χi+1. See also Figure 7.

The existence of this family of good walks implies a very strong property
of χT. Indeed, let Γ be a uniform self-avoiding walk of length n− `0, starting
at the (common) end-point z of the χis and with hanging point z (in words,
it stays in the half-space “below” z). Note three properties. First, the events
that Γ ends next to the starting point of χi, for i = 1, . . . ,T, are mutually
exclusive (in fact, this is not quite true, as we will discuss in the proof).
Second, the events that Γ avoids χi are decreasing with i (since χi is a portion
of χi+1). Third, note that χi being good means that, when conditioning Γ
to avoid χi, there is probability at least n−1/4+3ε that χi ends next to the
starting point of χi. By using these three facts alongside T ≥ n1/4+ε, the
probability that Γ avoids χT can be proved to be stretched exponentially
small, i.e. at most e−cn

4ε
for some small constant c > 0.

Using an unfolding argument, this implies that, when conditioning on the `0

first steps of the walk to satisfy T ≥ n1/4+ε and resampling the end of the
walk, the newly obtained walk has stretched exponentially small chance of
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having `0 as its hanging time. It is therefore also stretched exponentially un-
likely for a walk to have n1/4+ε ticked points in its first `0 steps and to have `0

as its hanging time. But by assumption, with probability n−1/4+5ε, a walk is
closing; moreover, by polygonal invariance, it has conditional probability 1/n
to have `0 as its hanging time; and finally, as we have discussed, with a further
conditional probability of at least n−1/4+ε, its first `0 steps have T ≥ n1/4+ε.
Thus, the above event is both of probability at most stretched exponential
and of probability at least n−3/2+6ε, which of course is a contradiction if n is
large enough.

5.1.2. Proof of Theorem 5.1. We now elaborate the heuristic argument pre-
sented in Subsection 5.1.1. As mentioned before, we will proceed by contra-
diction. Suppose that there exists ε > 0 such that

PSAWn

(
Γ closes

)
≥ n−

1
4

+5ε(5.2)

for an infinite number of values of n ∈ N. (In particular ε ≤ 1/20.)
Fix n ≥ max{2, 41/ε + 1} for which (5.2) holds. Further bounds on n

(depending only on ε) will be imposed. The next lemma and the bound
n > 41/ε permit us to fix an integer `0 ∈ [n

4
, 3n

4
] such that

(5.3) PSAWn

(
Γ closes

∣∣ hang = `0

)
≥ n−

1
4

+4ε.

Lemma 5.4. The number of ` ∈ {0, . . . , n} such that

PSAWn

(
Γ closes

∣∣ hang = `
)
≤ n−

1
4

+4ε

is at most 2n1−ε.

Proof. By the polygonal invariance (Lemma 5.3), hang(Γ) conditionally on Γ
closing is uniform in {0, . . . , n}, so that, for each ` ∈ {0, . . . , n},

(5.4) PSAWn

(
Γ closes, hang = `

)
=

1

n+ 1
PSAWn

(
Γ closes

)
.

Hence, by (5.2),

PSAWn

(
Γ closes

∣∣ hang = `
)

=
PSAWn(Γ closes, hang = `)

PSAWn(hang = `)

≥ n−
1
4

+5ε

n+ 1

1

PSAWn(hang = `)
,

which in turn gives

n+ 1 =
n∑
`=0

(n+ 1)PSAWn(hang = `) ≥
n∑
`=0

n−
1
4

+5ε

PSAWn

(
Γ closes

∣∣ hang = `
) .

Since n ≥ 2, the lemma follows. �
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Definition 5.5. A walk γ ∈ SAW` with hang(γ) = ` is said to be good if

PSAWn+`−`0
(
Γ closes

∣∣Γ1 = γ
)
≥ n−

1
4

+3ε.

Any translate of a good walk is also called good.

Thus, γ is good if, when completed with n − `0 steps in such a way that
the resulting walk has hanging time `, the resulting walk has a reasonable
chance of closing.

In the next lemma, we bound from below (still under the assumption that
Theorem 1.2 is false) the probability of being good for the first part of a walk
with hang close to `0. We start with the case hang = `0, then we resample
patterns using Lemma 3.5 to change hang by an additive constant smaller
than

√
n.

Lemma 5.6. For n large enough and any 0 ≤ k ≤
√
n,

PSAWn

(
Γ1 is good

∣∣Γ closes, hang = `0 − 2k
)
≥ n−

1
4

+2ε.(5.5)

Proof. We start with the case k = 0. First note that

ESAWn

[
PSAWn

(
Γ closes

∣∣Γ1
)∣∣∣|Γ1| = `0

]
= PSAWn

(
Γ closes

∣∣ hang = `0

)
≥ n−

1
4

+4ε.

Since we may assume that n ≥ 21/ε,

PSAWn

(
Γ1 is good

∣∣ hang = `0

)
(5.6)

= PSAWn

(
PSAWn

(
Γ closes

∣∣Γ1
)
≥ n−

1
4

+3ε
∣∣∣ |Γ1| = `0

)
≥ n−

1
4

+3ε.

But

PSAWn

(
Γ1 is good

∣∣ hang = `0; Γ closes
)

PSAWn

(
Γ1 is good

∣∣ hang = `0

)(5.7)

=
PSAWn(Γ closes |Γ1 is good; hang = `0)

PSAWn(Γ closes | hang = `0)
≥ 1.

The inequality is a direct consequence of the definition of a good walk. From
(5.6) and (5.7), we deduce that

PSAWn

(
Γ1 is good

∣∣Γ closes; hang = `0

)
≥ n−

1
4

+3ε,(5.8)

which is an improved version of (5.5) for k = 0.

Now we extend the result to general values of k. For this we will use
Lemma 3.5.

First observe that, for a shell σ and a walk γ ∈ σ, the hanging point of γ
is entirely determined by σ (beware of the fact that this is only true for the
point, not the index).

For a walk γ, let S1 denote the slots of ς(γ) between the origin and γhang
and S2 those after γhang. (The type I and II patterns are such that γhang
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cannot be a vertex belonging to a pattern of either type.) We say that γ is

balanced if
∣∣∣T 1
I (Γ)− TI |S1|

|S1|+|S2|

∣∣∣ ≤ √n(log n)1/2+ε.

Fix δ, c > 0 for which (3.13) holds. Let G be the set of shells satisfying the
assumptions of Lemma 3.5 and such that, if γ ∈ SAWn satisfies ς(γ) ∈ G,
then γ1 is good and γ closes. Call Gbal the set of shells σ ∈ G such that any
γ ∈ σ with hang(γ) = `0 is balanced.

Note that S1 and S2 depend on γ only via ς(γ). Also, whether γ1 is good
and whether γ is closing may each be determined from ς(γ) alone. Thus,
ς(γ) ∈ G as soon as ς(γ) satisfies the assumptions of Lemma 3.5, γ1 is good
and γ closes. Moreover, any two walks from SAWn with the same shell
and hanging time are either both balanced or both not balanced. Hence,
for γ ∈ SAWn with hang = `0 and ς(γ) ∈ G, the shell ς(γ) is in Gbal as soon
as γ is balanced.

It will be useful to note that, by (5.2), (5.8) and polygonal invariance,

PSAWn

(
Γ1 is good,Γ closes and hang = `0

)
≥ n−

3
2

+7ε.

By the choice of δ,

PSAWn

(
ς(Γ) /∈ G

∣∣Γ1 is good,Γ closes and hang = `0

)
≤ 4e−cnn

3
2 .

By the first part of Lemma 3.5, for n large enough,

PSAWn

(
ς(Γ) /∈ Gbal

∣∣ ς(Γ) ∈ G
)
≤ n−

3
2 .

Using (5.8), the above inequalities yield

PSAWn

(
ς(Γ) ∈ Gbal

∣∣Γ closes, hang = `0

)
≥ 1

2
n−

1
4

+3ε,

for n large enough.
Let σ ∈ Gbal and λ be the number of type I patterns needed in the first

part of a walk γ ∈ σ so that hang(γ) = `0. By (3.8), for 0 ≤ k ≤
√
n and n

large enough,

PSAWn

(
hang = `0 − 2k

∣∣ς = σ
)

PSAWn

(
hang = `0

∣∣ς = σ
) =

PSAWn

(
T 1
I (Γ) = λ+ k

∣∣ς = σ
)

PSAWn

(
T 1
I (Γ) = λ

∣∣ς = σ
) ≥ 2n−ε.

But

PSAWn

(
Γ1 is good

∣∣Γ closes, hang = `0 − 2k
)

≥
∑
σ∈Gbal

PSAWn

(
ς(Γ) = σ

∣∣Γ closes, hang = `0 − 2k
)

=
∑
σ∈Gbal

PSAWn

(
hang = `0 − 2k

∣∣ ς(Γ) = σ
) PSAWn(ς(Γ) = σ)

PSAWn(Γ closes, hang = `0 − 2k)
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≥ 2n−ε
∑
σ∈Gbal

PSAWn

(
hang = `0

∣∣ ς(Γ) = σ
) PSAWn(ς(Γ) = σ)

PSAWn(Γ closes, hang = `0)

= 2n−εPSAWn

(
ς(Γ) ∈ Gbal

∣∣Γ closes, hang = `0

)
≥ n−

1
4

+2ε.

Here, we used polygonal invariance (Lemma 5.3) to assert that

PSAWn(Γ closes, hang = `0 − 2k) = PSAWn(Γ closes, hang = `0).

�

Definition 5.7. For a closing walk γ ∈ SAWn, an index ` is said to be ticked
if γ[hang − `, hang] is good.

In this definition, closing walks are viewed as polygons and we use the
modulo n+ 1 notation for their indices. Thus γ[hang− `, hang] may contain
the edge (γn, γ0). Note that the hanging point and the ticked indices of a
closing walk only depend on the corresponding polygon.

Let T = T(γ) be the number of ticked indices in {`0 − 2k, 0 ≤ k ≤
√
n}.

The next lemma shows that the probability of having many ticked points is
not too small.

Lemma 5.8. For n large enough,

PSAWn

(
T(Γ) ≥ n

1
4

+ε
∣∣∣Γ closes

)
≥ n−

1
4

+ε.

Proof. Consider n large enough so that Lemma 5.6 holds. For 0 ≤ k ≤
√
n,

PSAWn

(
`0 − 2k is ticked

∣∣Γ closes
)

= PSAWn

(
Γ1 is good

∣∣Γ closes, hang = `0 − 2k
)
≥ n−

1
4

+2ε,

where the equality is due to polygonal invariance (Lemma 5.3) and the in-
equality to Lemma 5.6. It follows that

ESAWn

[
T(Γ)

∣∣Γ closes
]

=

√
n∑

k=0

PSAWn

(
`0 − 2k is ticked

∣∣Γ closes
)
≥ n

1
4

+2ε.

Since T is bounded by 1 +
√
n and n ≥ 41/ε, we find that

PSAWn

(
T(Γ) ≥ n−

1
4

+ε
√
n
∣∣∣Γ closes

)
≥ n−

1
4

+ε.

�

The next lemma shows that a portion of walk with many ticked indices,
ending at some site z, is very unlikely to be the beginning of a self-avoiding
walk whose hanging point is z.
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Lemma 5.9. For a closing walk χ ∈ SAWn with T(χ) ≥ n
1
4

+ε,

PSAWn

(
hang(Γ) = `0

∣∣∣Γ[0, `0] = χ[hang − `0, hang]
)
≤ e−n

ε

.(5.9)

Proof. Let χ ∈ SAWn be a closing walk with T(χ) ≥ n
1
4

+ε and assume
without loss of generality that hang(χ) = n.

For the purpose of this proof only, let W be the set of walks γ of length n−
`0, originating at χn, with hang(γ) = 0. Let P denote the uniform measure on
the set W. When working with P , Γ denotes a random variable distributed
according to P . In particular, Γ is contained in the half-space below χn.

We now extend the notion of closing walk by saying that γ′ closes γ if
γ|γ| = γ′0 and γ′|γ′| is adjacent to γ0. We say that γ′ avoids γ if γ′ ∩ γ = {γ′0}.

Let t1 < · · · < tT be the ticked indices of χ contained in {`0 − 2k, 0 ≤ k ≤√
n}. Consider the walks χj = χ[n− j, n] for 0 ≤ j ≤ n. They all end at χn

and χj ( χj+1. For 1 ≤ i ≤ T, define

Ai = {Γ avoids χti} and Ci = {Γ closes χti}.

Also, let A = {γ ∈W : γ avoids χ`0}.
Since χti is good,

P
(
Γ closesχti

∣∣Γ avoids χti
)

= P (Ci |Ai) ≥ n−
1
4

+3ε.(5.10)

Write k = d4dn 1
4
−3εe and suppose that k ≤ T. Any realization Γ ∈W is in at

most 2d events Ci. Hence, by (5.10) and the fact that the Aj are decreasing,

2d ≥
k∑
i=1

P (Ci) ≥
k∑
i=1

P (Ci |Ai)P (Ak) ≥ 4dP (Ak).

Therefore, P (Ak) ≤ 1
2
. If the procedure is repeated between k + 1 and 2k,

one obtains

2d ≥
2k∑

i=k+1

P (Ci |Ak) ≥
2k∑

i=k+1

P (Ci |Ai)P (A2k |Ak) ≥ 4dP (A2k |Ak),

and thus P (A2k |Ak) ≤ 1/2. Since A2k ⊂ Ak, we find

P (A2k) = P (Ak)P (A2k |Ak) ≤ 1
4
.

This procedure may be repeated bT
k
c times. Since T ≥ n

1
4

+ε, we obtain

|A|
|W|

= P (Γ avoids χ`0) ≤ P (AT) ≤ 2−b
T
k
c ≤ 2

− n4ε

2(4d+1) ,

for n large enough and ε ≤ 1/12, which can be harmlessly assumed.
Let us now express the probability in (5.9) in terms of the ratio |A|/|W|.

The set A contains all the possible continuations γ of χ`0 for which χ`0 ◦γ is a
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ti

tii tt
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. . .
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e

Figure 7. Left: The final portion of χ in bold, and a walk
contained in C1 and in A1 but not in A2. Right: A walk γ ∈
W \ A (gray) may be reflected and added to χ`0 (black) to
create a walk starting with χ`0 , with hanging point different
from χn. When concatenating Rχn(γ) to χ`0 , an extra vertical
edge is added in to ensure non-intersection, and the last edge
is deleted to preserve length n.

self-avoiding walk of length n with hang = `0. On the other hand, for γ ∈W,
the walk obtained by concatenating to χ`0 an edge e1 followed by Rχn(γ) is
a self-avoiding walk of length n+ 1 with hang > `0. By deleting the last edge
of such walks, we obtain at least |W|/2d walks of length n, starting with χ`0

and having hang 6= `0. See Figure 7. Thus,

PSAWn

(
hang(Γ) = `0

∣∣Γ[0, `0] = χ`0
)
≤ 2d|A|
|W|

≤ 2d2
− n4ε

2(4d+1) ≤ e−n
ε

for n large enough. This proves (5.9). �

We are now ready to conclude the proof of Theorem 5.1. A walk χ[hang−
`0, hang] is untouchable if (5.9) is satisfied. By Lemmas 5.8, 5.9 and polygonal
invariance,

PSAWn

(
Γ1 is untouchable

∣∣Γ closes, hang = `0

)
≥ n−

1
4

+ε.

Hence

n−
1
4

+5ε

n+ 1
≤ PSAWn

(
Γ closes, hang = `0

)
≤

PSAWn

(
Γ closes, hang = `0

)
PSAWn

(
Γ[0, `0] is untouchable

)
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a1

b1c1

d1

a0x

O OO

Figure 8. Left: A self-avoiding walk γ in SAWn(x). Middle:
The polygons p0, . . . , p` forming E ∪ F . Right: The set G is
obtained from E ∪ F by adding the edges between bi and ai
and those between ci and di and removing (ai, di) and (bi, ci).

×
PSAWn

(
Γ[0, `0] is untouchable, hang = `0

)
PSAWn

(
Γ[0, `0] is untouchable, Γ closes, hang = `0

)
=

PSAWn

(
hang = `0 |Γ[0, `0] is untouchable

)
PSAWn

(
Γ[0, `0] is untouchable |Γ closes, hang = `0

)
≤ e−n

ε

n
1
4
−ε.

This is a contradiction for n large enough, and the proof of Theorem 5.1 is
complete. �

5.2. From Theorem 5.1 to Theorem 1.2. Deducing Theorem 1.2 from
Theorem 5.1 is based on a simple surgery argument.

First some notation. Fix x ∈ Zd and denote m = ||x||∞ = max{|xi| : 1 ≤
i ≤ d}. For k ∈ N, let Λk = [−k, k]d∩Zd and E(Λk) be the set of edges (u, v)
with u, v ∈ Λk. Fix n ∈ N and let SAWn(x) = {γ ∈ SAWn : γn = x}.

We will construct a map

Φ : SAWn(x)→
⋃

k:|k−n|≤|E(Λm+1)|

{γ ∈ SAWk : γ closes},

with the property that, for any γ ∈ SAW, |Φ−1(γ)| ≤ 2|E(Λm+1)|. By Theo-
rem 5.1, for ε > 0, assuming n is large enough, the image of Φ has at most
(2|E(Λm+1)|+ 1)n−1/4+ε|SAWn| elements. Theorem 1.2 follows readily.

For clarity we start with the construction of Φ for d = 2. The case d ≥ 3
will be briefly explained later. Figure 8 may help to follow the proof.

Let γ ∈ SAWn(x) and E be the set of edges visited by γ which are not
contained in Λm. The set E may be partitioned into walks χ1, . . . , χk, each
of them having both endpoints on ∂Λm. Let y1, . . . , y2k be these endpoints,
taken in anticlockwise order, starting at x.
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Let F be the set of edges of ∂Λm between y2i−1 and y2i for i = 1, . . . , k.
Then E ∪ F may be partitioned into disjoint self-avoiding polygons. We
identify E ∪ F with the union of the edges it contains.

Let us go around Λm in anticlockwise order, starting at x. Let a0 be the first
vertex in E ∪F , and ai+1 be the first such vertex, not connected to a0, . . . , ai
in E∪F . Index the polygons of E∪F as p0, . . . , p`, such that ai ∈ pi. Write bi
for the last vertex of E ∪ F visited before ai, ci for the neighbour of bi in
(E ∪ F ) ∩ ∂Λm+1 and di for the neighbour of ai in (E ∪ F ) ∩ ∂Λm+1. See
Figure 8, middle diagram.

We obtain the set of edges G from E∪F by removing the edges (ai, di) and
(bi, ci) and adding the edges of ∂Λm between bi and ai and those of ∂Λm+1

between ci and di, for i = 1, . . . , `. Then the edges in G form a self-avoiding
polygon.

Finally, remove an edge from G ∩ ∂Λm, and connect its endpoints to 0
and to one of its neighbours, inside Λm. The closing walk thus obtained is
denoted by Φ(γ). See Figure 8, right diagram.

Note that Φ(γ) is identical to γ outside Λm+1. Thus there are at most
2|E(Λm+1)| pre-images for any given image. Also Φ(γ) has between n−|E(Λm+1)|
and n+ |E(Λm+1)| edges.

For d ≥ 3 a similar construction may be performed. We sketch it next.
Let ζ be a self-avoiding polygon on ∂Λm visiting all vertices of ∂Λm. Let ζ̃

be a self-avoiding polygon on ∂Λm+1 with the property that, if u, v ∈ ∂Λm+1

with u ∼ ζi, v ∼ ζj and i < j, then ζ̃ visits u before v. (Note that, for any
u ∈ ∂Λm+1, there exists at most one i such that u ∼ ζi.) The existence of ζ

and ζ̃ may be proved by recurrence on d. We do not give additional details
on this technical issue.

As for d = 2, we consider the set E of edges of γ not contained in Λm, and
partition it into walks χ1, . . . , χk, with endpoints y1, . . . , y2k on ∂Λm, in the
order given by ζ.

By adding to E the set F of edges of ζ between y2i−1 and y2i for i = 1, . . . , k,
we create a family of disjoint self-avoiding polygons p0, . . . , p`. The points ai,
bi, ci and di are defined as before, with the anticlockwise order replaced by
the order given by ζ.

In order to unite p0, . . . , p` into a single polygon, we remove from E ∪ F
the edges (ai, di) and (bi, ci) and add the portions of ζ between bi and ai and

those of ζ̃ between ci and di, for i = 1, . . . , `. Thus we obtain a self-avoiding
polygon G, which we modify as for d = 2 to create a closing walk starting at
the origin.
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Birkhäuser Boston Inc., Boston, MA, 1993.

[17] Neal Madras. A lower bound for the end-to-end distance of self-avoiding walk. Pub-
lished electronically in Canadian Mathematical Bulletin, doi:10.4153/CMB-2012-022-
6, 2012.

[18] B. Nienhuis. Exact critical point and critical exponents of O(n) models in two dimen-
sions. Phys. Rev. Lett., 49:1062–1065, 1982.

[19] B. Nienhuis. Coulomb gas description of 2D critical behaviour. J. Statist. Phys.,
34:731–761, 1984.



THE ENDPOINT OF SELF-AVOIDING WALK 31

[20] W.J.C. Orr. Statistical treatment of polymer solutions at infinite dilution. Transac-
tions of the Faraday Society, 43:12–27, 1947.

Department of Statistics, University of Oxford, 1 South Parks Road,
Oxford, OX1 3TG, U.K.
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