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Abstract. We describe smooth compactifications of certain families of reductive
homogeneous spaces such as group manifolds for classical Lie groups, or pseudo-
Riemannian analogues of real hyperbolic spaces and their complex and quaternionic
counterparts. We deduce compactifications for Clifford–Klein forms of these
homogeneous spaces, namely for quotients by discrete groups Γ acting properly
discontinuously, in the case that Γ is word hyperbolic and acts via an Anosov
representation. In particular, these Clifford–Klein forms are topologically tame.

1. Introduction

The goal of this note is two-fold. First, we describe compactifications of certain
families of reductive homogeneous spaces G/H by embedding G into a larger group
G′ and realizing G/H as a G-orbit in a flag manifold of G′. These homogeneous
spaces include:

• group manifolds for classical Lie groups (Theorems 1.1 and 2.6, see also [He02]),
• certain affine symmetric spaces or reductive homogeneous spaces G/H given
in Tables 2 and 3 (Propositions 1.5.(1) and 5.8.(1)),
• pseudo-Riemannian analogues of real hyperbolic spaces and their complex
and quaternionic counterparts (see (1.3) in Section 1.4).

Second, we use these compactifications and a construction of domains of discontinuity
from [GW12] to compactify Clifford–Klein forms of G/H, i.e. quotient manifolds
Γ\G/H, in the case that Γ is a word hyperbolic group whose action on G/H is given
by an Anosov representation ρ : Γ→ G ↪→ G′. We deduce that these Clifford–Klein
forms are topologically tame.

Anosov representations (see Section 3.3) were introduced in [Lab06]. They provide
a rich class of quasi-isometric embeddings of word hyperbolic groups into reductive Lie
groups with remarkable properties, generalizing convex cocompact representations
to higher real rank [Lab06, GW12, KLPb, KLPc, KLPa, KLP16, KL, GGKW16].
Examples include:
(a) The inclusion of convex cocompact subgroups in real semisimple Lie groups of

real rank 1 [Lab06, GW12];
(b) Representations of surface groups into split real semisimple Lie groups that belong

to the Hitchin component [Lab06, FG06, GW12];
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(c) Maximal representations of surface groups into semisimple Lie groups of Hermit-
ian type [BILW05, BIW10, GW12];

(d) The inclusion of quasi-Fuchsian subgroups in SO(2, d) [BM12, Bar15];
(e) Holonomies of compact, strictly convex RPn-manifolds [Ben04].

1.1. Compactifying group manifolds. Any real reductive Lie group G can be
seen as an affine symmetric space (G×G)/Diag(G) under the action of G×G by left
and right multiplication. We call G with this structure a group manifold. We describe
a smooth compactification of the group manifold G when G is a classical group. This
compactification is very elementary, in particular when G is the automorphism group
of a nondegenerate bilinear form. It shares some common features with the so-called
wonderful compactifications of algebraic groups over an algebraically closed field
constructed by De Concini and Procesi [CP83] or Luna and Vust [LV83], as well as
with the compactifications constructed by Neretin [Ner98, Ner03]. After completing
this note, we learned that this compactification had first been discovered by He [He02,
Th. 0.3& 0.4]; we still include our original self-contained description for the reader’s
convenience.

We first consider the case that G is O(p, q), O(m,C), Sp(2n,R), Sp(2n,C), U(p, q),
Sp(p, q), or O∗(2m). In other words, G = AutK(b) is the group of K-linear auto-
morphisms of a nondegenerate R-bilinear form b : V ⊗R V → K on a K-vector
space V , for K = R, C, or the ring H of quaternions; and we assume that b is
K-linear in the second variable, and that b is symmetric or antisymmetric (if K = R
or C), or Hermitian or anti-Hermitian (if K = C or H). We describe a smooth
compactification of G = AutK(b) by embedding it into the compact space of maximal
(b ⊕ −b)-isotropic K-subspaces of (V ⊕ V, b ⊕ −b). Let n ∈ N be the real rank of
G = AutK(b) and N = dimK(V ) ≥ 2n the real rank of AutK(b ⊕ −b). (In other
words, n is the dimension over K of a maximal b-isotropic subspace in V .) For any
0 ≤ i ≤ n, let Fi(b) = Fi(−b) be the space of i-dimensional b-isotropic subspaces
of V ; it is a smooth manifold with a transitive action of G. We use similar notation
for (V ⊕ V, b⊕−b), with 0 ≤ i ≤ N . For any subspace W of V ⊕ V , we set

(1.1) π(W ) :=
(
W ∩ (V ⊕ {0}),W ∩ ({0} ⊕ V )

)
.

This defines a map π : FN (b⊕−b)→
(⋃n

i=0Fi(b)
)
×
(⋃n

i=0Fi(−b)
)
.

Theorem 1.1. Let G = AutK(b) be as above. The space X = FN (b⊕−b) of maximal
(b ⊕ −b)-isotropic K-subspaces of V ⊕ V is a smooth compactification of the group
manifold (G×G)/Diag(G) with the following properties:

(1) X is a real analytic manifold (in fact complex analytic if K = C and b
is symmetric or antisymmetric). Under the action of a maximal compact
subgroup of AutK(b⊕−b), it identifies with a Riemannian symmetric space
of compact type, given explicitly in Table 1.

(2) The (G×G)-orbits in X are the submanifolds Ui := π−1(Fi(b)×Fi(−b)) for
0 ≤ i ≤ n, of dimension dimR(Ui) = dimR(G)− i2 dimR(K). The closure of
Ui in X is

⋃
j≥i Uj.

(3) For 0 ≤ i ≤ n, the map π defines a fibration of Ui over Fi(b)×Fi(−b) with
fibers isomorphic to (Hi ×Hi)/Diag(Hi), where Hi = AutK(bVi) is the au-
tomorphism group of the bilinear form bVi induced by b on V ⊥b

i /Vi for some
Vi ∈ Fi(b).

In particular, U0 is the unique open (G×G)-orbit and it identifies with (G×G)/Diag(G).
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G n N X as a Riemannian symmetric space
O(p, q) min(p, q) p+ q (O(p+ q)×O(p+ q))/Diag(O(p+ q))
U(p, q) min(p, q) p+ q (U(p+ q)×U(p+ q))/Diag(U(p+ q))
Sp(p, q) min(p, q) p+ q (Sp(p+ q)× Sp(p+ q))/Diag(Sp(p+ q))

Sp(2n,R) n 2n U(2n)/O(2n)
Sp(2n,C) n 2n Sp(2n)/U(2n)
O(m,C) bm2 c m O(2m)/U(m)
O∗(2m) bm2 c m U(2m)/Sp(m)

Table 1. The compactification X of Theorem 1.1.

Remark 1.2. For G = O(p, q), U(p, q), or Sp(p, q), the compactification X identifies
with the group manifold (Gc×Gc)/Diag(Gc) where Gc is the compact real form of a
complexification of G. For G = O(n, 1), the embedding of G into Gc = O(n+ 1) lifts
the embedding of Hn

R t Hn
R = O(n, 1)/O(n) into SnR = O(n + 1)/O(n) with image

the complement of the equatorial sphere Sn−1
R .

Similar compactifications are constructed for general linear groups GLK(V ) and
special linear groups SLK(V ) in Theorem 2.6 below.

1.2. Compactifying Clifford–Klein forms of group manifolds. Let G =
AutK(b) be as above. For any discrete group Γ and any representation ρ : Γ → G
with discrete image and finite kernel, the action of Γ on G via left multiplication
by ρ is properly discontinuous. The quotient ρ(Γ)\G is an orbifold, in general non-
compact. Suppose that Γ is word hyperbolic and ρ is P1(b)-Anosov (see Section 3
for definitions), where P1(b) is the stabilizer in G of a b-isotropic line. Considering a
suitable subset of the compactification X of G described in Theorem 1.1, we construct
a compactification of ρ(Γ)\G which is an orbifold, or if Γ is torsion-free, a smooth
manifold.

Theorem 1.3. Let Γ be a word hyperbolic group and ρ : Γ→ G = AutK(b) a P1(b)-
Anosov representation with boundary map ξ : ∂∞Γ→ F1(b). For any 0 ≤ i ≤ n, let
Kiξ be the subset of Fi(b) consisting of subspacesW containing ξ(η) for some η ∈ ∂∞Γ,
and let Uξi be the complement in Ui of π−1(Kiξ ×Fi(−b)), where π is the map defined
by (1.1). Then ρ(Γ)× {e} ⊂ AutK(b)× AutK(b) acts properly discontinuously and
cocompactly on the open subset

Ω :=
n⋃
i=0

Uξi

of FN (b⊕−b). The quotient orbifold (ρ(Γ)× {e})\Ω is a compactification of

ρ(Γ)\G ' (ρ(Γ)× {e})\(G×G)/Diag(G).

If Γ is torsion-free, then this compactification is a smooth manifold.

Theorem 1.3 is in fact a special case of Theorem 4.1 below, which gives a procedure
to compactify quotients of G = AutK(b) by a word hyperbolic group Γ acting via
any P1(b⊕−b)-Anosov representation

ρ : Γ −→ AutK(b)×AutK(b) ⊂ AutK(b⊕−b) ;

the group Γ is thus allowed to act simultaneously by left and right multiplication
instead of just left multiplication. We refer to Remark 4.2 in the case that AutK(b)
has real rank 1.
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Remark 1.4. Let G be an arbitrary real reductive Lie group and P a parabolic
subgroup. Composing a P -Anosov representation ρ : Γ → G with an appropriate
linear representation τ : G → AutK(b) (see Proposition 3.11), we obtain a P1(b)-
Anosov representation τ ◦ ρ : Γ→ AutK(b). Theorem 1.3 can then be applied to give
a compactification of ρ(Γ)\G: see Corollary 4.5 for a precise statement.

1.3. Compactifying other families of homogeneous spaces and their
Clifford–Klein forms. The idea of embedding a group G into a larger group G′
so that a homogeneous space G/H can be realized explicitly as a G-orbit in an
appropriate flag variety G′/P ′, can be applied in other cases as well. We prove the
following.

Proposition 1.5. Let (G,H,P,G′, P ′) be as in Table 2.
(1) There exists an open G-orbit U in G′/P ′ that is diffeomorphic to G/H; the

closure U of U in G′/P ′ provides a compactification of G/H.
(2) For any word hyperbolic group Γ and any P -Anosov representation ρ : Γ→ G,

the cocompact domain of discontinuity Ω ⊂ G′/P ′ for ρ(Γ) constructed in
[GW12] (see Proposition 3.13) contains U ; the quotient ρ(Γ)\(Ω∩U) provides
a compactification of ρ(Γ)\G/H.

G H P G′ P ′

(i) O(p, q + 1) O(p, q) StabG(W ) O(p+ 1, q + 1) StabG′(`
′)

(ii) U(p, q + 1) U(p, q) StabG(W ) U(p+ 1, q + 1) StabG′(`
′)

(iii) Sp(p, q + 1) Sp(p, q) StabG(W ) Sp(p+ 1, q + 1) StabG′(`
′)

(iv) O(2p, 2q) U(p, q) StabG(`) O(2p+ 2q,C) StabG′(W
′)

(v) U(2p, 2q) Sp(p, q) StabG(`) Sp(p+ q, p+ q) StabG′(W
′)

(vi) Sp(2m,R) U(p,m− p) StabG(`) Sp(2m,C) StabG′(W
′)

Table 2. Reductive groups H ⊂ G ⊂ G′ and parabolic subgroups P
of G and P ′ of G′ to which Proposition 1.5 applies. We denote by `
or `′ an isotropic line and by W or W ′ a maximal isotropic subspace
(over R, C, or H), relative to the form b preserved by G or G′. Here
m, p, q are any integers with m > 0; we require p > q + 1 in case (i)
and p > q in cases (ii), (iii), as well as q > 0 in cases (iv), (v).

The open G-orbit U diffeomorphic to G/H is given explicitly in Section 5.
Example (i), example (iv) for q = 1, and example (vi) for p = 0 were previously

described in [GW12, Prop. 13.1, Th. 13.3, and § 12].
In examples (iv), (v), and (vi), the space G/H is an affine symmetric space, which

is Riemannian in example (vi) for p = 0 or m. In examples (i), (ii), and (iii), the
space G/H = AutK(bp,q+1)/AutK(bp,q) identifies with the quadric

Ĥp,q
K = {x ∈ Kp,q+1 | bp,q+1

K (x, x) = −1}

where K = R, C, or H and bp,qK is the quadratic form on Kp+q given by

(1.2) bp,qK (x, x) := x1x1 + · · ·+ xpxp − xp+1xp+1 − · · · − xp+qxp+q.
Thus G/H fibers over the affine symmetric space

Hp,q
K = AutK(bp,q+1

K )/
(
AutK(bp,qK )×AutK(b0,1K )

)
with compact fibers. This affine symmetric space is Riemannian for q = 0.
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In Proposition 5.8 below, we treat two other families of reductive homogeneous
spaces which are not affine symmetric spaces using the following remark.

Remark 1.6. The cocompact domains of discontinuity Ω of Proposition 1.5.(2) lift
to cocompact domains of discontinuity in G′/P ′′ for any parabolic subgroup P ′′

of G′ contained in P ′; in particular, they lift to cocompact domains of discontinuity
in G′/P ′min where P ′min is a minimal parabolic subgroup of G′. The compactifi-
cations of the quotients ρ(Γ)\U of Proposition 1.5.(2) induce compactifications of
the quotients ρ(Γ)\U ′ for any G-orbit U ′ in G′/P ′′ lifting the G-orbit U ⊂ G′/P ′

diffeomorphic to G/H.

1.4. Compactifying pseudo-Riemannian analogues of hyperbolic manifolds.
For K = R, C, or H and p > q ≥ 0, the space Hp,q

K = AutK(bp,q+1)/(AutK(bp,q) ×
AutK(b0,1)) has a natural realization in projective space as

Hp,q
K = P({x ∈ Kp+q+1 | bp,q+1

K (x, x) < 0}) ⊂ P(Kp+q+1).

The space Hp,q
R is an analogue of the real hyperbolic space Hn

R: it is pseudo-
Riemannian of signature (p, q) and has constant negative sectional curvature. Simi-
larly, Hp,q

C and Hp,q
H are analogues of the complex and quaternionic hyperbolic spaces.

The space Hp,q
K has a natural compactification, namely

(1.3) Hp,q
K := PK({x ∈ Kp+q+1 | bp,q+1

K (x, x) ≤ 0}).
This is a manifold with boundary, which is the union of Hp,q

K (open G-orbit) and
F1(bp,q+1

K ) (closed G-orbit).
Let P = Pq+1(bp,q+1

K ) be the stabilizer in AutK(bp,q+1
K ) of a maximal bp,q+1

K -isotropic
subspace of Kp+q+1, so that (G,P ) is as in examples (i), (ii), or (iii) of Table 2.
Building on Proposition 1.5, we prove the following.

Theorem 1.7. For K = R, C, or H and p > q ≥ 0, let G = AutK(bp,q+1
K ) and

P = Pq+1(bp,q+1
K ). Let Γ be a word hyperbolic group and ρ : Γ → G a P -Anosov

representation.
(1) The action of Γ on Hp,q

K via ρ is properly discontinuous, except possibly if
K = R and p = q + 1.

(2) Assume that the action is properly discontinuous. Let ξ : ∂∞Γ→ Fq+1(bp,q+1
K )

be the boundary map of ρ and Kξ the subset of ∂Hp,q
K = F1(bp,q+1

K ) consist-
ing of lines ` contained in ξ(η) for some η ∈ ∂∞Γ. Then Γ acts properly
discontinuously and cocompactly, via ρ, on Hp,q

K r Kξ. In particular, if Γ

is torsion-free, then ρ(Γ)\(Hp,q
K r Kξ) is a smooth manifold with boundary

compactifying ρ(Γ)\Hp,q
K .

Remark 1.8. For K = R and p = q + 1, the fact that ρ is Pq+1(bp,q+1
K )-Anosov does

not imply that the action of Γ on Hp,q
K is properly discontinuous: see Example 5.4.

In the case that K = R and p = q + 1 is odd, the action of Γ on Hp,q
K can actually

never be properly discontinuous unless Γ is virtually cyclic, by [Kas08].

1.5. Tameness. We establish the topological tameness of the Clifford–Klein forms
ρ(Γ)\G/H of Sections 1.2, 1.3, and 1.4. Recall that a manifold is said to be topologi-
cally tame if it is homeomorphic to the interior of a compact manifold with boundary.
Here is an immediate consequence of Theorem 1.7.

Corollary 1.9. For K = R, C, or H and p > q ≥ 0, let G = AutK(bp,q+1
K ) and

P = Pq+1(bp,q+1
K ). For any torsion-free word hyperbolic group Γ and any P -Anosov
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representation ρ : Γ→ G, if the quotient ρ(Γ)\Hp,q
K is a manifold (which is always the

case except possibly if K = R and p = q + 1, see Theorem 1.7), then this manifold is
topologically tame.

In order to prove topological tameness in more general cases, we establish the
following useful fact.

Lemma 1.10. Let G ⊂ G′ be two real reductive algebraic groups and Γ a torsion-free
discrete subgroup of G. Let X be a G′-homogeneous space and Ω an open subset of X
on which Γ acts properly discontinuously and cocompactly. For any G-orbit U ⊂ Ω,
the quotient Γ\U is a topologically tame manifold.

Proposition 1.5 and Lemma 1.10 immediately imply the following, by taking U to
be a G-orbit in G′/P ′ that identifies with G/H.

Corollary 1.11. Let Γ be a torsion-free word hyperbolic group and let H ⊂ G ⊃ P be
as in Table 2. For any P -Anosov representation ρ : Γ→ G, the quotient ρ(Γ)\G/H
is a topologically tame manifold.

Using Theorem 1.3 and Lemma 1.10, we also prove the following.

Theorem 1.12. Let Γ be a torsion-free word hyperbolic group, G a real reductive
algebraic group, and P a proper parabolic subgroup of G. For any P -Anosov repre-
sentation ρ : Γ→ G, the quotient ρ(Γ)\G is a topologically tame manifold.

Remark 1.13. Let K be a maximal compact subgroup of G. Compactifications of
the Riemannian locally symmetric spaces ρ(Γ)\G/K for P -Anosov representations
ρ : Γ → G have recently been constructed in [KL] and [GKW]. They also induce
compactifications of ρ(Γ)\G.

1.6. Organization of the paper. In Section 2 we establish Theorem 1.1 and its
analogue for GLK(V ) (Theorem 2.6). In Section 3 we recall the notion of Anosov
representation, the construction of domains of discontinuity from [GW12], and a few
facts from [GGKW16] on Anosov representations into AutK(b)×AutK(b). This allows
us, in Section 4, to establish Theorem 1.3 and some generalization (Theorem 4.1). In
Section 5 we prove Proposition 1.5 and Theorem 1.7. Finally, Section 6 is devoted to
topological tameness, with a proof of Lemma 1.10 and Theorem 1.12.

Acknowledgements. We are grateful to Jeff Danciger, Adolfo Guillot, and Pablo
Solis for useful comments and discussions. We thank the referees for pertinent remarks
which helped improve the paper.

2. Compactification of group manifolds

In this section we provide a short proof of Theorem 1.1 and of its analogue for
general linear groups GLK(V ) with K = R, C, or H (Theorem 2.6).

2.1. The case G = AutK(b). Let us prove Theorem 1.1. We use the notation of
Section 1.1. In particular,

π : FN (b⊕−b) −→
( n⋃
i=0

Fi(b)
)
×
( n⋃
i=0

Fi(−b)
)

is the map defined by (1.1). The group

AutK(b)×AutK(b) = AutK(b)×AutK(−b)
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naturally embeds into AutK(b⊕−b). For 0 ≤ i ≤ n, the set

Ui := π−1
(
Fi(b)×Fi(−b)

)
is clearly invariant under AutK(b)×AutK(−b).

Lemma 2.1. The space X = FN (b⊕−b) of maximal (b⊕−b)-isotropic K-subspaces
of V ⊕ V is the union of the sets Ui for 0 ≤ i ≤ n.

Proof. It is enough to prove that for any W ∈ FN (b⊕−b),

(2.1) dimK(W ∩ ({0} ⊕ V )) = dimK(W ∩ (V ⊕ {0})).

We have

dimK(W ∩ ({0} ⊕ V )) = dimK(W ) + dimK({0} ⊕ V )− dimK(W + ({0} ⊕ V ))

= dimK(V ⊕ V )− dimK(W + ({0} ⊕ V ))

= dimK(W + ({0} ⊕ V ))⊥,

where (W + ({0} ⊕ V ))⊥ denotes the orthogonal complement of W + ({0} ⊕ V ) in
V ⊕ V with respect to b⊕−b. But

(W + ({0} ⊕ V ))⊥ = W⊥ ∩ ({0} ⊕ V )⊥ = W⊥ ∩ (V ⊕ {0}),

hence dimK(W ∩ ({0}⊕V )) = dimK(W⊥∩ (V ⊕{0})). Since W is maximal isotropic
for b⊕−b, we have W = W⊥, and so (2.1) holds. �

For any 0 ≤ i ≤ n, let

πi : Ui −→ Fi(b)×Fi(−b)

be the map induced by π. By construction, πi is (AutK(b)×AutK(b))-equivariant.
Let us describe the fiber of πi above (Vi, Vi) for some given Vi ∈ Fi(b). We denote

by bVi the R-bilinear form induced by b on V ⊥b
i /Vi ' KdimK(V )−2i. If b is symmetric,

antisymmetric, Hermitian, or anti-Hermitian, then so is bVi . For instance, if b is
symmetric over R with signature (p, q), then bVi has signature (p− i, q − i).

Lemma 2.2. For any Vi ∈ Fi(b), the fiber π−1
i (Vi, Vi) ⊂ FN (b ⊕ −b) is the set

of maximal (b ⊕ −b)-isotropic K-subspaces of V ⊥b
i ⊕ V ⊥b

i that contain Vi ⊕ Vi and
project to maximal isotropic subspaces of (V ⊥b

i /Vi) ⊕ (V ⊥b
i /Vi) transverse to both

factors (V ⊥b
i /Vi)⊕ {0} and {0} ⊕ (V ⊥b

i /Vi). As an (AutK(bVi)×AutK(bVi))-space,
π−1
i (Vi, Vi) is isomorphic to

(AutK(bVi)×AutK(bVi))/Diag(AutK(bVi)).

In particular, Ui is nonempty. Taking i = 0, we obtain that U0 is an (AutK(b)×
AutK(b))-space isomorphic to

(AutK(b)×AutK(b))/Diag(AutK(b)).

Proof of Lemma 2.2. By definition, any W ∈ π−1
i (Vi, Vi) satisfies W ∩ (V ⊕ {0}) =

Vi⊕{0} andW ∩({0}⊕V ) = {0}⊕Vi, henceW contains Vi⊕Vi andW ⊂ V ⊥b
i ⊕V

⊥b
i

sinceW is (b⊕−b)-isotropic. Thus π−1
i (Vi, Vi) is the set of maximal (b⊕−b)-isotropic

subspaces of V ⊥b
i ⊕ V ⊥b

i that contain Vi ⊕ Vi and correspond to maximal isotropic
subspaces of (V ⊥b

i /Vi)⊕(V ⊥b
i /Vi) transverse to both factors. In particular, π−1

i (Vi, Vi)
identifies with its image in FN−2i(bVi ⊕ −bVi) and is endowed with an action of
AutK(bVi)×AutK(bVi).
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We first check that this action of AutK(bVi)×AutK(bVi) is transitive. Let W ′0 be
the image in (V ⊥b

i /Vi)⊕ (V ⊥b
i /Vi) of

{(v, v) | v ∈ V ⊥b
i } ⊂ V

⊥b
i ⊕ V ⊥b

i .

The imageW ′ in (V ⊥b
i /Vi)⊕ (V ⊥b

i /Vi) of any element of π−1
i (Vi, Vi) meets the second

factor V ⊥b
i /Vi trivially, hence is the graph of some linear endomorphism h of V ⊥b

i /Vi.
This h belongs to AutK(bVi) since W ′ is (bVi⊕−bVi)-isotropic. Thus W ′ = (e, h) ·W ′0
lies in the (AutK(bVi)×AutK(bVi))-orbit of W ′0, proving transitivity.

Let us check that the stabilizer of W ′0 in AutK(bVi) × AutK(bVi) is the diagonal
Diag(AutK(bVi)). For any (g1, g2) ∈ AutK(bVi)×AutK(bVi),

(g1, g2) ·W ′0 = {(g1(v), g2(v)) | v ∈ V ⊥b
i /Vi} = {(v, g2g

−1
1 (v)) | v ∈ V ⊥b

i /Vi},
and so (g1, g2) ·W ′0 = W ′0 if and only if g1 = g2. �

Lemma 2.3. For any 0 ≤ i ≤ n, the map πi is surjective and the action of
AutK(b)×AutK(b) on Ui is transitive.

Proof. The map πi is (AutK(b) × AutK(b))-equivariant and the action of
AutK(b)×AutK(b) on Fi(b)×Fi(−b) is transitive, hence πi is surjective. To see that
the action of AutK(b)×AutK(b) on Ui is transitive, it is enough to check that for any
Vi ∈ Fi(b) the action of the stabilizer of (Vi, Vi) in AutK(b)× AutK(b) is transitive
on the fiber π−1

i (Vi, Vi). This follows from Lemma 2.2. �

In particular, the fiber of πi above any point of Fi(b)×Fi(b) is the image, by some
element of AutK(b)×AutK(b), of the fiber π−1

i (Vi, Vi) described in Lemma 2.2.

Lemma 2.4. For any 0 ≤ i ≤ n, the dimension of the manifold Ui is
dimR(Ui) = dimR(AutK(b))− i2 dimR(K).

Proof. Consider two elements Vi, V ′i ∈ Fi(b) such that V ⊥b
i ∩ V ′i = {0}. Let

T = V ⊥b
i ∩ V ′⊥b

i ' V ⊥b
i /Vi.

The parabolic subgroups Pi = StabAutK(b)(Vi) and P ′i = StabAutK(b)(V
′
i ) are conju-

gate in AutK(b). Let (e1, . . . , eN ) be a basis adapted to b and to the decomposition
of V as a direct sum of Vi, T , and V ′i , i.e. Vi = spanK(e1, . . . , ei),

T = spanK(ei+1, . . . , eN−i),
V ′i = spanK(eN−i+1, . . . , eN ),

and b(ek, eN−i+`) = δk,` for all k, ` ∈ {1, . . . , i} (where δ·,· is the Kronecker symbol).
In this basis, the Lie algebra of AutK(b) is given by block matrices as

AutK(b) =


A B C
D E F
G H I

 ∈ glN (K)

∣∣∣∣∣ BQ = tF σ, D = QtHσ,
C = −εtCσ, G = −εtGσ,
I = −tAσ, EQ = −QtEσ

 ,

where ε = 1 if b is symmetric or Hermitian, ε = −1 if b is antisymmetric or anti-
Hermitian, σ is the identity if b is symmetric or antisymmetric, σ is the conjugation
(in C or H) if b is Hermitian or anti-Hermitian, and Q is the matrix of the bilinear
form b|T (so that tQσ = εQ). The Lie algebras pi of Pi and p′i of P

′
i are given by

pi =


A B C

0 E F
0 0 I

 ∈ AutK(b)

 and p′i =


A 0 0
D E 0
G H I

 ∈ AutK(b)

 .
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Their sum is thus equal to AutK(b) and pi ∩ p′i ' glK(Vi)× AutK(b|T ). This implies

2 dimR(pi) = dimR(pi) + dimR(p′i)

= dimR(pi + p′i) + dimR(pi ∩ p′i)

= dimR(AutK(b)) + dimR(GLK(Vi)) + dimR(AutK(b|T ))

= dimR(AutK(b)) + i2 dimR(K) + dimR(AutK(bVi)).

Using Lemma 2.2, we obtain

dimR(Ui) =2 dimR(Fi(b)) + dimR(AutK(bVi))

=2 dimR(AutK(b))− 2 dimR(Pi) + dimR(AutK(bVi))

= dimR(AutK(b))− i2 dimR(K). �

By Lemma 2.4, we have dimR(Ui) > dimR(Uj) for all 0 ≤ i < j ≤ n.

Lemma 2.5. For any 0 ≤ i ≤ n, the closure Si of Ui in FN (b⊕−b) is the union of
the submanifolds Uj for i ≤ j ≤ n.

Proof. The inclusion Si ⊂
⋃
j≥i Uj follows from the upper semicontinuity of the

function W 7→ dimR(W ∩ (V ⊕ {0})) on FN (b⊕−b). In order to prove the reverse
inclusion, it is sufficient to show that Ui+1 ⊂ Si: we can then conclude by descending
induction on i. Let us establish this last inclusion.

Let Vi, V ′i and T be as in the proof of Lemma 2.4 and let e, f ∈ T satisfy
b(e, e) = b(f, f) = 0 and b(e, f) = 1. Let S = T ∩ {e, f}⊥b , let bS be the restriction
of b to S, and let R ∈ FN−2i−2(bS ⊕−bS) be transverse to the factors S ⊕ {0} and
{0} ⊕ S. We denote elements of V ⊕ V as pairs (v, v′) with v, v′ ∈ V .

The vectors (e, e) and (f, f) span a (b⊕−b)-isotropic plane P . The direct sum of
Vi ⊕ V ′i , of R, and of P is a subspace W ∈ FN (b⊕−b) which belongs to Ui since its
intersection with V ⊕ {0} is equal to Vi ⊕ {0}.

For any λ ∈ R∗, the linear map gλ : V → V defined by
gλ(e) = λe,
gλ(f) = λ−1f,
gλ(v) = v for v ∈ {e, f}⊥b

belongs to AutK(b); furthermore, the element (gλ, id) fixes pointwise Vi ⊕ V ′i and R,
and sends (e, e) to (λe, e) and (f, f) to (λ−1f, f). The limit W ′ of (gλ, id) ·W as
λ → +∞ is thus spanned by Vi ⊕ V ′i , by R, by (e, 0), and by (0, f), and it belongs
to Si. The intersection W ′ ∩ (V ⊕ {0}) is spanned by Vi ⊕ {0} and (e, 0), hence W ′
belongs to Ui+1. The (AutK(b)×AutK(b))-orbit of W ′ is therefore equal to Ui+1 and
is contained in Si. This completes the proof. �

By the Iwasawa decomposition, any maximal compact subgroup of AutK(b⊕−b)
acts transitively on the flag variety FN (b ⊕ −b). By computing the stabilizer of a
point in each case, we see that FN (b⊕−b) identifies with a Riemannian symmetric
space of the compact type as in Table 1. This completes the proof of Theorem 1.1.

2.2. The case G = GLK(V ). We now establish an analogue of Theorem 1.1 when
G = GLK(V ) is the full group of invertible K-linear transformations of V . Here we
use the notation Fi(V ) to denote the Grassmannian of i-dimensional K-subspaces
of V , and N to denote dimK(V ). Then (1.1) defines a map

π : FN (V ⊕ V ) −→
( N⋃
i=0

Fi(V )

)
×
( N⋃
i=0

Fi(V )

)
.
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Theorem 2.6. Let V be an N -dimensional vector space over K = R, C, or H, and
G = GLK(V ). The Grassmannian X = FN (V ⊕ V ) of N -dimensional K-subspaces
of V ⊕ V is a smooth compactification of the group manifold (G×G)/Diag(G) with
the following properties:

(1) X is a real analytic manifold (in fact complex analytic if K = C). Under the
action of a maximal compact subgroup of GLK(V ⊕ V ), it identifies with a
Riemannian symmetric space of the compact type, namely
• O(2N)/(O(N)×O(N)) if K = R,
• U(2N)/(U(N)×U(N)) if K = C,
• Sp(2N)/(Sp(N)× Sp(N)) if K = H.

(2) The (G × G)-orbits in X are the submanifolds Ui,j := π−1(Fi(V ) × Fj(V ))
for i, j ≥ 0 with i+ j ≤ N ; there are (N + 1)(N + 2)/2 of them. They have
dimension dimK(Ui,j) = dimK(G)− i2 − j2 = N2 − i2 − j2. The closure of
Ui,j in X is

⋃
k≥i, `≥j Uk,`.

(3) For 0 ≤ i+j ≤ N , the map π defines a fibration πi,j of Ui,j over Fi(V )×Fj(V )
with fibers given by Lemma 2.8 below.

In particular, U0,0 is the unique open (G × G)-orbit in X and it identifies with
(G×G)/Diag(G).

Any (SLK(V )× SLK(V ))-orbit O ⊂ U0,0 identifies with

(SLK(V )× SLK(V ))/Diag(SLK(V ));

the closure of O in X is the union of O and of the Ui,j for i, j ≥ 1 with i+ j ≤ N .

Remark 2.7. For K = C and N = 2, the (SL2(C)× SL2(C))-equivariant compactifi-
cation of SL2(C) given by Theorem 2.6 was previously described by Guillot [Gui07],
who showed that this is the only (SL2(C)× SL2(C))-equivariant compactification of
SL2(C) as a complex manifold. It identifies with the compactification of Sp(2,C)
from Theorem 1.1.

The proof of Theorem 2.6 is similar to Theorem 1.1: the group GLK(V )×GLK(V )
naturally embeds into GLK(V ⊕ V ). For i, j ≥ 0 with i+ j ≤ N , the set

Ui,j := π−1
(
Fi(V )×Fj(V )

)
⊂ FN (V ⊕ V )

is invariant under GLK(V ) × GLK(V ), and X = FN (V ⊕ V ) is the union of these
sets Ui,j . Here it is clear that Ui,j is nonempty for all i, j. Let

πi,j : Ui,j −→ Fi(V )×Fj(V )

be the map induced by π. By construction, πi,j is (GLK(V )×GLK(V ))-equivariant,
hence surjective (because the action of GLK(V ) on Fi(V ) and Fj(V ) is transitive).
As above, it is enough to determine the fiber of πi,j above one particular point of
Fi(V )×Fj(V ). Let (e1, . . . , eN ) be a basis of V . We set

(2.2)


Vi := spanK(e1, . . . , ei),
V ′i := spanK(ei+1, . . . , eN ),
Vj := spanK(eN−j+1, . . . , eN ),
V ′j := spanK(e1, . . . , eN−j),

V ′i,j := V ′i ∩ V ′j = spanK(ei+1, . . . , eN−j),

so that V is the direct sum of Vi and V ′i , and also of V ′j and Vj . By assumption,
i+ j ≤ N , hence Vi ∩ Vj = {0}. The quotient V/Vi identifies with V ′i , which is the
direct sum of V ′i,j and Vj . Similarly, the quotient V/Vj identifies with V ′j , which is
the direct sum of Vi and V ′i,j . We see (Vi, Vj) as an element of Fi(V )×Fj(V ).
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Lemma 2.8. The fiber π−1
i,j (Vi, Vj) ⊂ FN (V ⊕ V ) is the set of N -dimensional K-

subspaces of V ⊕ V that contain Vi ⊕ Vj and project to (N − i− j)-dimensional K-
subspaces of (V/Vi)⊕(V/Vj) transverse to both factors (V/Vi)⊕{0} and {0}⊕(V/Vj).
As a (GLK(V/Vi)×GLK(V/Vj))-space, π−1

i (Vi, Vj) is isomorphic to the quotient of

GLK(V/Vi)×GLK(V/Vj) ' GLK(V ′i )×GLK(V ′j )

by the subgroup consisting of the pairs of block matrices

(2.3)
{((

A B
0 C

)
,
(
D 0
E A

)) ∣∣∣ A ∈ GLK(V ′i,j), C ∈ GLK(Vj), D ∈ GLK(Vi),

B ∈ HomK(Vj , V
′
i,j), E ∈ HomK(Vi, V

′
i,j)

}
.

Proof. The first statement is clear. For the second statement, one easily checks that
π−1
i,j (Vi, Vj) is the (GLK(V ′i )×GLK(V ′j ))-orbit of

W0 := ({0} ⊕ Vj) + (Vi ⊕ {0}) +
{

(v, v) | v ∈ V ′i,j
}

and that the stabilizer of W0 in GLK(V ′i )×GLK(V ′j ) is (2.3). �

In particular, U0,0 is a (GLK(V )×GLK(V ))-space isomorphic to

(GLK(V )×GLK(V ))/Diag(GLK(V )).

Similarly to Lemma 2.3, for any i, j ≥ 0 with i + j ≤ N , the action of GLK(V ) ×
GLK(V ) on Ui,j is transitive. Note that dimK(Fi(V )) = i(N − i). From Lemma 2.8
we compute dimK(π−1

i,j (Vi, Vj)) = N2 − (i+ j)N , and so

dimK(Ui,j) = dimK(Fi(V )) + dimK(Fj(V )) + dimK(π−1
i,j (Vi, Vj))

=N2 − i2 − j2.

In particular, dimK(Ui,j) > dimK(Uk,`) for all (i, j) 6= (k, `) with i ≤ k and j ≤ `.
By upper semicontinuity of the functions W 7→ dimK(W ∩ (V ⊕ {0})) and W 7→
dimK(W ∩ ({0} ⊕ V )), the closure Si,j of Ui,j in FN (V ⊕ V ) is the union of the
submanifolds Uk,` for k ≥ i and ` ≥ j.

By the Iwasawa decomposition, any maximal compact subgroup of GLK(V ⊕ V )
acts transitively on the flag variety FN (V ⊕ V ). By computing the stabilizer of a
point, we see that FN (V ⊕ V ) identifies with a Riemannian symmetric space of the
compact type as in Theorem 2.6.(1).

We now determine the closure in X of the (SLK(V )× SLK(V ))-orbit O of

W0 := {(v, v) | v ∈ V } ∈ U0,0.

For this we use a Cartan decomposition SLK(V ) = K(exp a+)K where K is a
maximal compact subgroup of G and, in some basis (e1, . . . , eN ) of V , the set exp a+

consists of the diagonal (N ×N)-matrices of determinant 1 whose entries are positive
and in nonincreasing order, see Example 3.1 below. Consider a sequence (gm, g

′
m) ∈

(SLK(V ) × SLK(V ))N. For any m ∈ N, we may write g′mg−1
m = kmamk

′
m where

km, k
′
m ∈ K and am = diag(λ1,m, . . . , λN,m) ∈ exp a+; then

(gm, g
′
m) ·W0 =

{(
k′
−1
m · v, kmam · v

)
| v ∈ V

}
=
{(
k′
−1
m a−1

m · v, km · v
)
| v ∈ V

}
.

Up to passing to a subsequence, by compactness of K, we may assume that the
sequences (km)m∈N and (k′m)m∈N converge to some k, k′ ∈ K, respectively. If
(am)m∈N is bounded, then all accumulation points of ((gm, g

′
m) · W0)m∈N belong
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to O. Otherwise, up to passing again to a subsequence, we may assume that for any
1 ≤ ` ≤ N we have λ`,m → λ` where, for some i, j ≥ 1, λ` = +∞ for 1 ≤ ` ≤ i,

λ` ∈ (0,+∞) for i < ` ≤ N − j,
λ` = 0 for N − j < `.

As in (2.2), let 
Vi := spanK(e1, . . . , ei),
V ′i,j := spanK(ei+1, . . . , eN−j),

Vj := spanK(eN−j+1, . . . , eN ),

and let a be the endomorphism of V ′i,j given by the matrix diag(λi+1, . . . , λN−j) in
the basis (ei+1, . . . , eN−j). Then (gm, g

′
m) ·W0 tends to

({0} ⊕ k · Vi) + {(k′−1 · v, ka · v) | v ∈ V ′i,j}+
(
k′
−1 · Vj ⊕ {0}

)
∈ Ui,j .

For i, j ≥ 1 the action of SLK(V )× SLK(V ) on Ui,j is transitive, and so the closure
of O in X is the union of O and of the Ui,j for i, j ≥ 1.

This completes the proof of Theorem 2.6.

3. Reminders on Anosov representations and their
domains of discontinuity

In this section we recall the definition of an Anosov representation into a reduc-
tive Lie group, see [Lab06, GW12, GGKW16], and the construction of domains of
discontinuity given in [GW12]. We first introduce some notation.

3.1. Notation. Let G be a real reductive Lie group with Lie algebra g. We assume
G to be noncompact, equal to a finite union of connected components (for the real
topology) of G(R) for some algebraic group G. Recall that g = z(g) + gs, where z(g)
is the Lie algebra of the center of G and gs the Lie algebra of the derived subgroup
of G, which is semisimple. Let K be a maximal compact subgroup of G, with Lie
algebra k. Let a = (a∩z(g))+(a∩gs) be a maximal abelian subspace of the orthogonal
complement of k in g for the Killing form; we shall call a a Cartan subspace of g. The
real rank of G is by definition the dimension of a. Let Σ be the set of restricted roots
of a in g, i.e. the set of nonzero linear forms α ∈ a∗ for which

gα := {z ∈ g | ad(a)(z) = 〈α, a〉 z ∀a ∈ a}

is nonzero. Choose a system of simple roots ∆ ⊂ Σ, i.e. any element of Σ is expressed
uniquely as a linear combination of elements of ∆ with coefficients all of the same
sign. Let

a+ := {Y ∈ a | 〈α, Y 〉 ≥ 0 ∀α ∈ ∆}
be the closed positive Weyl chamber of a associated with ∆. The Weyl group of a in g
is the group W = NK(a)/ZK(a), where NK(a) (resp. ZK(a)) is the normalizer (resp.
centralizer) of a in K. There is a unique element w0 ∈W such that w0 · a+ = −a+;
the involution of a defined by Y 7→ −w0 · Y is called the opposition involution. The
corresponding dual linear map preserves ∆; we shall denote it by

a∗ −→ a∗(3.1)
α 7−→ α? = −α ◦ w0.
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Recall that the Cartan decomposition G = K(exp a+)K holds: any g ∈ G may be
written g = k(expµ(g))k′ for some k, k′ ∈ K and a unique µ(g) ∈ a+ (see [Hel01,
Ch. IX, Th. 1.1]). This defines a map

(3.2) µ : G −→ a+

called the Cartan projection, inducing a homeomorphism K\G/K ' a+. We refer to
[GGKW16, § 2.3] for more details.

Example 3.1. For K = R (resp. C, resp. H), the real Lie group G = SLd(K) admits
the Cartan decomposition G = K(exp a+)K where K = O(d) (resp. U(d), resp.
Sp(d)), and a ⊂ gld(K) is the set of traceless real diagonal matrices of size d× d. For
K = R or C, the diagonal entries of µ(g) are the logarithms of the singular values
of g ∈ G (i.e. of the square roots of the eigenvalues of tḡg, where ḡ is the complex
conjugate of g), in nonincreasing order.

Let Σ+ ⊂ Σ be the set of positive roots with respect to ∆, i.e. restricted roots that
are nonnegative linear combinations of elements of ∆. For any nonempty subset θ of ∆,
we denote by Pθ the normalizer in G of the Lie algebra uθ =

⊕
α∈Σ+rspan(∆rθ) gα.

Explicitly,
Lie(Pθ) = g0 ⊕

⊕
α∈Σ+

gα ⊕
⊕

α∈Σ+∩span(∆rθ)

g−α.

In particular, P∅ = G and P∆ is a minimal parabolic subgroup of G.1 Any parabolic
subgroup of G is conjugate to Pθ for some θ ⊂ ∆.

3.2. Proper actions and sharp actions. Fix a W -invariant Euclidean norm ‖ · ‖
on a. For any point x ∈ a and any subset S ⊂ a, we denote by

dista(x, S) = inf
s∈S
‖x− s‖

the corresponding distance from x to S. The following properness criterion of Benoist
and Kobayashi shows that the Cartan projection µ of (3.2) can be used to understand
properly discontinuous actions on homogeneous spaces of G.

Fact 3.2 ([Ben96, Kob96]). Let Γ be a discrete subgroup of G and H a closed subgroup
of G. The action of Γ on G/H is properly discontinuous if and only if

lim
γ→∞

dista(µ(γ), µ(H)) = +∞.

This condition means that limn→+∞ dista(µ(γn), µ(H)) = +∞ for any sequence
(γn)n∈N of pairwise distinct elements of Γ.

A quantitative way of understanding proper actions is given by the notion of
sharpness, which was introduced by Kassel and Kobayashi [KK16].

Definition 3.3. Let Γ < G be a discrete subgroup and let H < G be a closed
subgroup. The action of Γ on G/H is sharp it there exist c, C > 0 such that for any
γ ∈ Γ,

dista(µ(γ), µ(H)) ≥ c ‖µ(γ)‖ − C.

Besides its geometric content, this notion is also relevant to the spectral theory of
the Laplacian on pseudo-Riemannian locally symmetric spaces, see [KK16].

The following estimates are useful when manipulating the Cartan projection (see
e.g. [Kas08, Lem. 2.3]): for any g1, g2, g3, g ∈ G,

(3.3) ‖µ(g1g2g3)− µ(g2)‖ ≤ ‖µ(g1)‖+ ‖µ(g3)‖ and ‖µ(g−1)‖ = ‖µ(g)‖.
1This is the same convention as in [GGKW16]. In [GW12] however, θ and ∆ r θ are switched.
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3.3. Anosov representations. The following definition of Anosov representations
is not the original one from [Lab06, GW12], but an equivalent one taken from
[GGKW16, Th. 1.3] (see also [KLPc]).

Definition 3.4. Let Γ be a word hyperbolic group, with boundary at infinity ∂∞Γ.
Let θ ⊂ ∆ be a nonempty subset of the simple restricted roots. A representation
ρ : Γ→ G is Pθ-Anosov if there exists a pair of continuous ρ-equivariant boundary
maps

ξ+ : ∂∞Γ→ G/Pθ and ξ− : ∂∞Γ→ G/Pθ?

that are dynamics-preserving for ρ and transverse, and if for any α ∈ θ,
(3.4) lim

γ→∞
〈α, µ(ρ(γ))〉 = +∞.

By dynamics-preserving we mean that for any γ ∈ Γ of infinite order with attracting
fixed point η+

γ ∈ ∂∞Γ, the point ξ+(η+
γ ) (resp. ξ−(η+

γ ) is an attracting fixed point
for the action of ρ(γ) on G/Pθ (resp. G/Pθ?). By transverse we mean that pairs of
distinct points in ∂∞Γ are sent to transverse pairs in G/Pθ × G/Pθ? , i.e. to pairs
belonging to the unique open G-orbit in G/Pθ × G/Pθ? (for the diagonal action
of G). Condition (3.4) means that limn→+∞〈α, µ(ρ(γn))〉 for any sequence (γn)n∈N
of pairwise distinct elements of Γ.

The maps ξ+, ξ− are unique, entirely determined by ρ.

Remark 3.5. We will often use the definition when θ = θ?, in which case G/Pθ =
G/Pθ? and ξ+ = ξ− by the aforementioned uniqueness. This common map ξ+ = ξ−

will be then denoted by ξ and called the equivariant boundary map associated with ρ.

By [Lab06, GW12], any Pθ-Anosov representation is a quasi-isometric embedding;
in particular, it has discrete image and finite kernel. The set of Pθ-Anosov represen-
tations is open in Hom(Γ, G). Any Pθ-Anosov representation is Pθ′-Anosov for any
θ′ ⊂ θ [GW12, Lem. 3.18]; thus the strongest form of Anosov is with respect to the
minimal proper parabolic subgroup P∆.

We shall use the following fact from [GGKW16, Th. 1.3 & Cor. 1.9], which also
follows from [KLPc].

Lemma 3.6. If ρ : Γ → G is Pθ-Anosov, then the following strengthening of (3.4)
is satisfied: there exist c, C > 0 such that for any α ∈ θ and any γ ∈ Γ,

dista(µ(γ),Ker(α)) ≥ c ‖µ(ρ(γ))‖ − C.
In particular, Γ acts sharply, via ρ, on G/H for any closed subgroup H of G with
µ(H) ⊂

⋃
α∈θ Ker(α).

3.4. Uniform domination. Let λ : G → a+ be the Lyapunov projection of G, i.e.
the projection induced by the Jordan decomposition: any g ∈ G can be written
uniquely as the commuting product g = ghgegu of a hyperbolic, an elliptic, and a
unipotent element (see e.g. [Ebe96, Th. 2.19.24]), and exp(λ(g)) is the unique element
of exp(a+) in the conjugacy class of gh. For any g ∈ G,

(3.5) λ(g) = lim
n→+∞

1

n
µ(gn).

For any simple restricted root α ∈ ∆, let ωα ∈ a∗ be the fundamental weight
associated with α: by definition, for any β ∈ ∆,

2
(ωα, β)

(α, α)
= δα,β,
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where (·, ·) is a W -invariant inner product on a∗ and δ·,· is the Kronecker symbol.
We shall use the following terminology from [GGKW16].

Definition 3.7. Let α ∈ ∆. A representation ρL : Γ→ G uniformly ωα-dominates
a representation ρR : Γ→ G if there exists c < 1 such that for any γ ∈ Γ,

〈ωα, λ(ρR(γ))〉 ≤ c 〈ωα, λ(ρL(γ))〉.

Remark 3.8. Uniform ωα-domination implies uniform ωα?-domination. Indeed, for
any g ∈ G we have 〈ωα? , λ(g)〉 = 〈ω?α, λ(g)〉 = 〈ωα, λ(g−1)〉.

3.5. Anosov representations into AutK(b) and AutK(b⊕−b). Let G = AutK(b)
where b is a nondegenerate R-bilinear form on a K-vector space V as in Section 1.1.

In all cases except when K = R and b is a symmetric bilinear form of signature
(n, n), the restricted root system is of type Bn, Cn, or BCn. (See [Hel01, Ch.X,
Th. 3.28] for definitions of the types.) We can choose the system of simple restricted
roots ∆ = {αi(b) | 1 ≤ i ≤ n} so that for any 1 ≤ i ≤ n the parabolic subgroup
Pi(b) := P{αi(b)} is the stabilizer of an i-dimensional b-isotropic K-subspace of V .
The space Fi(b) of i-dimensional b-isotropic K-subspaces of V then identifies with
G/Pi(b). We have αi(b) = αi(b)

? for all 1 ≤ i ≤ n.
In the case that K = R and b is a symmetric bilinear form of signature (n, n), the

restricted root system is of typeDn. We can still choose the system of simple restricted
roots ∆ = {αi(b) | 1 ≤ i ≤ n} so that for any 1 ≤ i ≤ n− 2 the parabolic subgroup
Pi(b) := P{αi(b)} is the stabilizer of an i-dimensional b-isotropic subspace of V . We
have αi(b) = αi(b)

? for all 1 ≤ i ≤ n − 2. When n is even, αn−1(b) = αn−1(b)?

and αn(b) = αn(b)? whereas when n is odd, αn−1(b) = αn(b)?. The parabolic
subgroups Pn−1(b) := P{αn−1(b)} and Pn(b) := P{αn(b)} are both stabilizers of n-
dimensional b-isotropic subspaces of V , and they are conjugate by some element
g ∈ AutK(b)rAutK(b)0. The stabilizer of an (n−1)-dimensional b-isotropic subspace
is conjugate to Pn−1(b) ∩ Pn(b) = P{αn−1(b),αn(b)}.

We shall use the following result.

Lemma 3.9 ([GGKW16, Th. 7.3]). For ρL, ρR ∈ Hom(Γ,AutK(b)), the representa-
tion ρL ⊕ ρR : Γ→ AutK(b)× AutK(−b) ↪→ AutK(b⊕−b) is P1(b⊕−b)-Anosov if
and only if one of the two representations ρL or ρR is P1(b)-Anosov and uniformly
ωα1(b)-dominates the other.

Since the boundary map of an Anosov representation is dynamics-preserving,
Lemma 3.9 immediately implies the following.

Corollary 3.10. If ρL ⊕ ρR : Γ → AutK(b) × AutK(−b) ↪→ AutK(b ⊕ −b) is
P1(b⊕−b)-Anosov, then its boundary map

ξ : ∂∞Γ −→ F1(b⊕−b)
is, up to switching ρL and ρR, the composition of the boundary map
ξL : ∂∞Γ→ F1(b) of ρL with the natural embedding F1(b) ↪→ F1(b⊕−b).

We will always be able to reduce to P1(b)-Anosov representations into AutK(b)
using the following result.

Proposition 3.11 ([GGKW16, Prop. 3.5 & 7.8, Fact 2.34, and § 7.3]). Let K = R,
C, or the ring H of quaternions. For any real reductive Lie group G and any
nonempty subset θ ⊂ ∆ of the simple restricted roots, there exist a nondegenerate
R-bilinear form b on a K-vector space V and an irreducible linear representation
τ : G→ AutK(b) with the following properties:
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(1) an arbitrary representation ρ : Γ→ G is Pθ-Anosov if and only if the compo-
sition τ ◦ ρ : Γ→ AutK(b) is P1(b)-Anosov;

(2) if a representation ρL : Γ→ G uniformly ωα-dominates another representation
ρR : Γ → G for all α ∈ θ, then τ ◦ ρL : Γ → AutK(b) uniformly ωα1(b)-
dominates τ ◦ ρR : Γ→ AutK(b).

The existence of such b and τ satisfying (1) was first proved in [GW12, § 4] for
K = R. In fact, the irreducible representations τ satisfying (1) and (2) are exactly
those for which the highest restricted weight χ of τ satisfies

{α ∈ ∆ | (α, χ) > 0} = θ ∪ θ?

and for which the weight space corresponding to χ is a line; there are infinitely many
such τ .

Example 3.12. For G = GLd(R) and θ = {ε1 − ε2}, we can take τ to be the adjoint
representation Ad : G→ GLR(g) and b to be the Killing form of g.

3.6. Domains of discontinuity. We shall use the following result.

Proposition 3.13 ([GW12, Th. 8.6]). Let Γ be a word hyperbolic group.
(1) For any P1(b)-Anosov representation ρ : Γ → AutK(b) with boundary map

ξ : ∂∞Γ→ F1(b), the group Γ acts properly discontinuously and cocompactly,
via ρ, on the complement Ω in Fn(b) of

Kξ :=
⋃

η∈∂∞Γ

{W ∈ Fn(b) | ξ(η) ⊂W} ⊂ Fn(b).

(2) Suppose we are not in the case that K = R and b is a symmetric bilinear form
of signature (n, n). For any Pn(b)-Anosov representation ρ : Γ → AutK(b)
with boundary map ξ : ∂∞Γ → Fn(b), the group Γ acts properly discontinu-
ously and cocompactly, via ρ, on the complement Ω in F1(b) of

Kξ :=
⋃

η∈∂∞Γ

{` ∈ F1(b) | ` ⊂ ξ(η)} ⊂ F1(b).

Contrary to what is stated in [GW12, Th. 8.6], the case of O(n, n) (i.e. of a
restricted root system of type Dn) has to be excluded in point (2) of the proposition.

4. Properly discontinuous actions on group manifolds

LetG = AutK(b) where b is a nondegenerateR-bilinear form on aK-vector space V
as in Section 1.1. By Theorem 1.1, the (G × G)-orbits in the space FN (b ⊕ −b) of
maximal (b⊕−b)-isotropic K-subspaces of V are the Ui := π−1(Fi(b)×Fi(−b)), for
0 ≤ i ≤ n, where

π : FN (b⊕−b) −→
( n⋃
i=0

Fi(b)
)
×
( n⋃
i=0

Fi(−b)
)

is the map defined by (1.1). The following generalization of Theorem 1.3 is an
immediate consequence of Theorem 1.1, Corollary 3.10, and Proposition 3.13.(1).

Theorem 4.1. Let Γ be a torsion-free word hyperbolic group and ρL, ρR : Γ→ G =
AutK(b) two representations. Suppose that ρL is P1(b)-Anosov and uniformly ωα1(b)-
dominates ρR (Definition 3.7). Then Γ acts properly discontinuously, via ρL ⊕ ρR,
on (G×G)/Diag(G).
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Let ξL : ∂∞Γ→ F1(b) be the boundary map of ρL. For any 0 ≤ i ≤ n, let KiξL be
the subset of Fi(b) consisting of subspaces W containing ξL(η) for some η ∈ ∂∞Γ,
and let UξLi be the complement in Ui of π−1(KiξL × Fi(−b)). Then Γ acts properly
discontinuously and cocompactly, via ρL ⊕ ρR, on the open subset

Ω :=

n⋃
i=0

UξLi

of FN (b⊕−b), and the quotient orbifold (ρL ⊕ ρR)(Γ)\Ω is a compactification of

(ρL ⊕ ρR)(Γ)\(G×G)/Diag(G).

If Γ is torsion-free, then this compactification is a smooth manifold.

Recall from Lemma 3.9 that the condition that one of the representations ρL
or ρR be P1(b)-Anosov and uniformly ωα1(b)-dominate the other is equivalent to the
condition that

ρ := ρL ⊕ ρR : Γ −→ G×G = AutK(b)×AutK(−b) ↪−→ AutK(b⊕−b)
be P1(b⊕−b)-Anosov [GGKW16, Th. 7.3].

Proof of Theorem 4.1. By Corollary 3.10, the boundary map ξ : ∂∞Γ→ F1(b⊕−b) of
ρ = ρL⊕ρR is the composition of ξL with the natural embedding F1(b) ↪→ F1(b⊕−b).
By Proposition 3.13.(1), the group Γ acts properly discontinuously and cocompactly,
via ρ, on the open set Ω. Note that Ω contains U0, hence the action of Γ on U0 via ρ
is properly discontinuous. By Theorem 1.1, the set U0 is an open and dense (G×G)-
orbit in FN (b ⊕ −b), isomorphic to (G × G)/Diag(G). Therefore, Γ acts properly
discontinuously via ρ on (G×G)/Diag(G) and ρ(Γ)\U0 ' ρ(Γ)\(G×G)/Diag(G) is
open and dense in the compact orbifold ρ(Γ)\Ω. This orbifold is a manifold if Γ is
torsion-free. �

Remark 4.2. In the case that AutK(b) has real rank 1, all properly discontinuous
actions via a quasi-isometric embedding ρL ⊕ ρR : Γ→ AutK(b)×AutK(b) fall into
the setting of Theorem 4.1, by [GGKW16, Th. 7.3]. For AutK(b) = O(2, 1) we obtain
compactifications of anti-de Sitter 3-manifolds, and for AutK(b) = O(3, 1) com-
pactifications of holomorphic Riemannian complex 3-manifolds of constant nonzero
curvature. We refer to [Gol85, Ghy95, Kob98, Sal00, Kas, GK16, GKW15, DT15,
Tho16, DGK16] for examples of such pairs (ρL, ρR).

Remark 4.3. Suppose G = AutK(b) = Sp(2,C) ' SL2(C). For ρR : Γ → G con-
stant, the compactification of Theorem 4.1 is naturally endowed with a holomorphic
action of G; by [Gui07], all other holomorphic equivariant compactifications are
bimeromorphically equivalent to this one. For ρR : Γ→ G ' SL2(C) not necessarily
constant but close enough to the constant representation, a compactification similar
to Theorem 4.1 has recently been worked out by Mayra Méndez in her ongoing PhD
thesis, building on [Gui07].

Corollary 4.4 ([GGKW16, Th. 7.3, (1)⇒(6)]). Let Γ be a word hyperbolic group,
G an arbitrary real reductive Lie group, and ρL, ρR : Γ → G two representations.
Let α ∈ ∆ be a simple restricted root of G. If ρL is P{α}-Anosov and uniformly
ωα-dominates ρR, then the action of Γ on (G×G)/Diag(G) via (ρL, ρR) : Γ→ G×G
is properly discontinuous.

Recall that any Pθ-Anosov representation is P{α}-Anosov for all α ∈ θ (see Sec-
tion 3.3).
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Proof. By Proposition 3.11, there exist a nondegenerate bilinear form b on a real vector
space V and a linear representation τ : G→ AutR(b) such that τ ◦ ρL : Γ→ AutR(b)
is P1(b)-Anosov and uniformly ωα1(b)-dominates τ ◦ ρR. By Theorem 4.1, the action
of Γ on

(AutR(b)×AutR(b))/Diag(AutR(b))

via τ ◦ ρL ⊕ τ ◦ ρR is properly discontinuous. Since (τ(G) × τ(G))/Diag(τ(G))
embeds into (AutR(b)×AutR(b))/Diag(AutR(b)) as the (τ(G)×τ(G))-orbit of (e, e),
the action of Γ on (τ(G) × τ(G))/Diag(τ(G)) via τ ◦ ρL ⊕ τ ◦ ρR is also properly
discontinuous. Thus the action of Γ on (G × G)/Diag(G) via (ρL, ρR) is properly
discontinuous. �

As above, the condition that one of the representations τ ◦ ρL or τ ◦ ρR be P1(b)-
Anosov and uniformly ωα1(b)-dominate the other is equivalent to the condition that

τ ◦ ρL ⊕ τ ◦ ρR : Γ −→ AutK(b)×AutK(−b) ↪−→ AutK(b⊕−b)
be P1(b⊕−b)-Anosov.

Corollary 4.5. Let Γ be a word hyperbolic group, G an arbitrary real reductive Lie
group, and ρL, ρR : Γ → G two representations of Γ. Let b be a nondegenerate
R-bilinear form on a K-vector space V as above, for K = R, C, or H, and let
τ : G→ AutK(b) be a linear representation of G such that τ ◦ ρL : Γ→ AutK(b) is
P1(b)-Anosov and uniformly ωα1(b)-dominates τ ◦ ρR (see Proposition 3.11). Let Ω be
the cocompact domain of discontinuity of (τ ◦ ρL⊕ τ ◦ ρR)(Γ) in FN (b⊕−b) provided
by Proposition 3.13.(1). A compactification of

(τ ◦ ρL ⊕ τ ◦ ρR)(Γ)\(τ(G)× τ(G))/Diag(τ(G))

is given by its closure in (τ ◦ ρL ⊕ τ ◦ ρR)(Γ)\Ω. If τ : G → AutK(b) has compact
kernel, this provides a compactification of (ρL, ρR)(Γ)\(G×G)/Diag(G).

In the special case where ρR : Γ→ {e} ⊂ G is the trivial representation, the action
of Γ on (G×G)/Diag(G) via ρL ⊕ ρR is the action of Γ on G via left multiplication
by ρL and Corollary 4.5 yields, when τ has compact kernel, a compactification of
ρL(Γ)\G ' (ρL(Γ)× {e})\(G×G)/Diag(G).

We refer to Theorem 6.5 for the tameness of (ρL, ρR)(Γ)\(G × G)/Diag(G) for
general ρL, ρR.

5. Properly discontinuous actions on other
homogeneous spaces

This section is devoted to the proof of Proposition 1.5 and Theorem 1.7.

5.1. Notation. For K = R, C, or H and p, q ∈ N, we denote by Kp,q the vector
space Kp+q endowed with the R-bilinear form bp,qK of (1.2), so that AutK(bp,qK ) =
O(p, q), U(p, q), or Sp(p, q). We use the notation Pi(b

p,q
K ) of Section 3.5 for parabolic

subgroups. For m ∈ N and K = R or C, we denote by

ω2m
K : (x, y) 7−→ x1ym+1 − xm+1y1 + · · ·+ xmy2m − x2mym

the standard symplectic form on K2m, so that AutK(ω2m
K ) = Sp(2m,K) for K = R

or C and AutR(ω2m
R ) ⊂ AutC(ω2m

C ).
Recall that a Hermitian form h on a C-vector space V is completely determined

by its real part b: for any v, v′ ∈ V ,

h(v, v′) = b(v, v′)−
√
−1 b

(
v,
√
−1v′

)
.
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If the signature of h is (p, q), then the signature of b is (2p, 2q). Similarly, an H-
Hermitian form hH on a right H-vector space V is completely determined by its
complex part h: for any v, v′ ∈ V ,

hH(v, v′) = h(v, v′)− h
(
v, v′j) j.

Thus an H-Hermitian form is completely determined by its real part. If the signature
of hH is (p, q), then the signature of h is (2p, 2q), and the signature of the real part
b of h and hH is (4p, 4q).

5.2. Compactifying pseudo-Riemannian analogues of (locally) hyperbolic
spaces. We first prove Proposition 1.5 in cases (i), (ii), and (iii) of Table 2. Let
K = R, C, or H and p, q ∈ N. As in Sections 1.3 and 1.4, the quadric

Ĥp,q
K = {x ∈ Kp,q+1 | bp,q+1

K (x, x) = −1}

identifies with the homogeneous space G/H where G = AutK(bp,q+1
K ) and H =

AutK(bp,qK ), the embedding H ↪→ G being given by the splitting Kp,q+1 = Kp,q⊕K0,1.
Let Z be the center of G, i.e. the set of multiples of the identity λ id for λ ∈ K
satisfying λ̄λ = 1, so that AutK(bp,qK )×AutK(b0,1K ) = H×Z. The quadric Ĥp,q

K fibers,
with compact fiber, over the affine symmetric space Hp,q

K = G/(H × Z), which can
be realized as

Hp,q
K = P({x ∈ Kp,q+1 | bp,q+1

K (x, x) < 0}) ⊂ P(Kp,q+1).

The splitting Kp+1,q+1 = K1,0 ⊕ Kp,q+1 induces an embedding ι : G ↪→ G′ =
AutK(bp+1,q+1

K ) and a projection pr : Kp+1,q+1 → Kp,q+1. Proposition 1.5.(1) in
cases (i), (ii), and (iii) of Table 2 is contained in the following elementary remarks.

Lemma 5.1. For K = R, C, or H and p > q ≥ 0, let G = AutK(bp,q+1
K ) and

H = AutK(bp,qK ).

(1) The space F1(bp+1,q+1
K ) is a smooth compactification of Ĥp,q

K = G/H. It is the
union of two G-orbits: an open one U isomorphic to Ĥp,q

K and a closed one,
namely F1(bp,q+1

K ).
(2) The space Hp,q

K := PK({x ∈ Kp+q+1 | bp,q+1
K (x, x) ≤ 0}) is a compactification

of Hp,q
K = G/(H × Z) as a manifold with boundary. It is the union of two

G-orbits: an open one, namely Hp,q
K , and a closed one, namely F1(bp,q+1

K ).
(3) The map

F1

(
bp+1,q+1
K

)
−→ PK(Kp+q+1)

` 7−→ pr(`)

is well defined, proper, and G-equivariant. Its image is Hp,q
K , and its fibers are

exactly the Z-orbits in F1(bp+1,q+1
K ). In restriction to Ĥp,q

K it is the natural
projection Ĥp,q

K → Hp,q
K , and in restriction to F1(bp,q+1

K ) it is the identity.

Proof. The group G = AutK(bp,q+1
K ) acts transitively on the closed submanifold

F1(bp,q+1
K ) of the smooth compact manifold F1(bp+1,q+1

K ), which has positive codi-
mension. The complement U = F1(bp+1,q+1

K ) r F1(bp,q+1
K ) is open and dense in

F1(bp+1,q+1
K ), and identifies with Ĥp,q

K since G acts transitively on U and the stabilizer
in G of [1 : 0 : . . . : 0 : 1] ∈ U ⊂ P(Kp+1,q+1) is H = AutK(bp,qK ). Thus F1(bp+1,q+1

K ) is
a smooth compactification of Ĥp,q

K . This proves (1). Point (2) easily follows from the
definition. In (3), the map is well defined since the restriction of the form bp+1,q+1

K to
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the kernel of pr is positive definite. The other claims in (3) are checked by a direct
calculation. �

Proposition 1.5.(2) in cases (i), (ii), and (iii) of Table 2 is contained in the following
result, which will be proved in Section 5.3.

Theorem 5.2. For K = R, C, or H and p > q ≥ 0, let G = AutK(bp,q+1
K ) and

G′ = AutK(bp+1,q+1
K ). Let Γ be a word hyperbolic group and ρ : Γ→ G a Pq+1(bp,q+1

K )-
Anosov representation with boundary map ξ : ∂∞Γ→ Fq+1(bp,q+1

K ). Let

Kξ :=
⋃

η∈∂∞Γ

{
` ∈ F1

(
bp,q+1
K

)
| ` ⊂ ξ(η)

}
and let i1 : F1(bp,q+1

K ) ↪→ F1(bp+1,q+1
K ) and iq+1 : Fq+1(bp,q+1

K ) ↪→ Fq+1(bp+1,q+1
K ) be

the natural inclusions.
(1) The composition ι ◦ ρ : Γ→ G′ is Pq+1(bp+1,q+1

K )-Anosov with boundary map
ξ′ = iq+1 ◦ ξ, except possibly if K = R and p = q + 1.

(2) If K = R and p = q + 1, then the composition ι ◦ ρ is Pq+1(bp+1,q+1
K )-Anosov

if and only if the action of Γ via ρ on Hp,q
K = Hp,p−1

R is properly discontinuous;
in this case the boundary map of ι ◦ ρ is ξ′ = iq+1 ◦ ξ.

(3) Assume that ι ◦ ρ : Γ → G′ is Pq+1(bp+1,q+1
K )-Anosov. Then the cocompact

domain of discontinuity Ω of Proposition 3.13.(2) for ι ◦ ρ is F1(bp+1,q+1
K ) r

i1(Kξ), which contains the dense G-orbit U of F1(bp+1,q+1
K ) isomorphic to Ĥp,q

K .
In particular, the action of Γ on Ĥp,q

K via ι ◦ ρ is properly discontinuous and,
if Γ is torsion-free, then ρ(Γ)\Ω is a smooth compactification of ρ(Γ)\Ĥp,q

K .
Let Cξ = F1(bp,q+1

K ) rKξ. Then the action of Γ via ρ on Hp,q
K ∪ Cξ ⊂ Hp,q

K is
properly discontinuous and cocompact. The action of Γ via ρ on Hp,q

K is in
fact sharp (Definition 3.3).

Suppose K = R and q = 0. Then Lemma 5.1.(1) describes the usual com-
pactification of the disjoint union of two copies of the real hyperbolic space Hp

R,
obtained by embedding them as two open hemispheres into the visual boundary
∂Hp+1

R = F1(bp+1,1
R ) ' SpR of Hp+1

R . A representation ρ : Γ → O(p, 1) is P1(bp,1R )-
Anosov if and only if it is convex cocompact, in which case Theorem 5.2.(3) states
that Γ acts properly discontinuously, via ρ, on the complement in ∂Hp+1

R of the
limit set Kξ of ρ in ∂Hp

R. When ρ(Γ) ⊂ SO(p, 1), Theorem 5.2.(3) describes the
compactification of two copies of the convex cocompact hyperbolic manifold ρ(Γ)\Hp

R
obtained by gluing them along their common boundary.

For K = R and q = 1 (Lorentzian case), Theorem 5.2.(1) describes the usual
compactification of the double cover of the anti-de Sitter space AdSp+1, obtained by
embedding it into the Einstein universe Einp+1.

In general, the compactification F1(bp+1,q+1
K ) of Ĥp,q

K of Lemma 5.1.(1) is homeo-
morphic to

(SpK × SqK)/{z ∈ K | zz = 1}.

Remark 5.3. Identifying R2n+2 with Cn+1 gives a U(n, 1)-equivariant identification of
Ĥ2n,2

R with Ĥn,1
C . Examples of P2(b2n,2R )-Anosov representations ρ : Γ → O(2n, 2)

include the composition of any convex cocompact representation ρ1 : Γ → U(n, 1)

with the natural inclusion of U(n, 1) into O(2n, 2); the manifold ρ(Γ)\Ĥ2n,2
R then

identifies with ρ1(Γ)\Ĥn,1
C , and the compactifications of these two manifolds given by
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Theorem 5.2.(3) coincide. The same holds if we replace

(Ĥ2n,2
R , Ĥn,1

C ,O(2n, 2),U(n, 1), P2(b2n,2R ))

with (Ĥ4n,4
R , Ĥn,1

H ,O(4n, 4),Sp(n, 1), P4(b4n,4R ))

or with (Ĥ2n,2
C , Ĥn,1

H ,U(2n, 2),Sp(n, 1), P2(b2n,2C )).

The following examples show that for K = R and p = q + 1, the fact that
ρ : Γ→ G = AutK(bp,q+1

K ) is Pq+1(bp,q+1
K )-Anosov does not imply that the action of

Γ on Ĥp,q
K via ρ is properly discontinuous.

Example 5.4. Let K = R and p = q + 1 = 2. Then the identity component G0 of
G = O(2, 2) identifies with PSL2(R)× PSL2(R) and Ĥ2,1

R is a covering of order two
of (PSL2(R)× PSL2(R))/Diag(PSL2(R)). A representation ρ : Γ→ G0 is P2(b2,2R )-
Anosov if and only if the projection of ρ to the first (or second, depending on the
numbering of the simple roots) PSL2(R) factor is convex cocompact. However, the
action of Γ via ρ is properly discontinuous on Ĥ2,1

R if and only if the projection of ρ
to one PSL2(R) factor is convex cocompact and uniformly dominates the other, by
[GGKW16, Th. 7.3] (see Remark 4.2).

Example 5.5. Let K = R and p = q + 1 ≥ 2. Any Hitchin representation ρ : Γ →
O(p, p) of a closed surface group Γ or any Schottky representation ρ : Γ → O(p, p)
representation of a nonabelian free group is Pp(b

p,p
R )-Anosov. However, for odd p the

action of such groups Γ on Ĥp,p−1
R via ρ is never properly discontinuous [Kas08].

5.3. Proof of Theorem 5.2. We first prove (1). Consider a Cartan subspace a′

for G′ = AutK(bp+1,q+1
K ) that contains a Cartan subspace a for G = AutK(bp,q+1

K ).
If K = R and p > q + 1, then G and G′ both have restricted root systems of
type Bq+1, hence the restriction of αq+1(bp+1,q+1

K ) to a is αq+1(bp,q+1
K ). (Recall that

αq+1(b) is the simple restricted root such that P{αq+1(b)} is the stabilizer of a (q + 1)-
dimensional isotropic space, see Section 3.9.) If K = C or H and if p > q + 1, then
G and G′ both have restricted root systems of type (BC)q+1, hence the restriction
of αq+1(bp+1,q+1

K ) to a is αq+1(bp,q+1
K ). If K = C or H and if p = q + 1, then G has a

restricted root system of type Cq+1 and G′ of type (BC)q+1, hence the restriction of
αq+1(bp+1,q+1

K ) to a is 1
2αq+1(bp,q+1

K ). In all three cases, it follows from Definition 3.4
that if ρ : Γ → G = AutK(bp,q+1

K ) is a Pq+1(bp,q+1
K )-Anosov representation with

boundary map ξ : ∂∞Γ → Fq+1(bp,q+1
K ), then the composed representation ι ◦ ρ is

Pq+1(bp+1,q+1
K )-Anosov with boundary map ξ′ = iq+1 ◦ ξ. This proves (1).

We now assume K = R and p = q + 1, and prove (2). The group G has a
restricted root system of type Dp and G′ of type Bp, hence the restriction of αp(b

p+1,p
R )

to a is 1
2(αp(b

p,p
R ) − αp−1(bp,pR )). The boundary map ξ : ∂∞Γ → Fp(bp,pR ) of the

Pp(b
p,p
R )-Anosov representation ρ : Γ → AutR(bp+1,p

R ) induces, by composition with
i : Fp(bp,pR ) ↪→ Fp(bp+1,p

R ), a continuous, (ι ◦ ρ)-equivariant, transverse boundary
map ξ′ : ∂∞Γ → Fp(bp+1,p

R ). Note that Hp,p−1
R = G/(H × Z) where H × Z =

AutR(bp,p−1
R )×AutR(b0,1R ) satisfies

µ(H × Z) = a+ ∩Ker(αp(b
p+1,p
R )).

If ι ◦ ρ : Γ → G′ is Pp(b
p+1,p
R )-Anosov, then the action of Γ on Hp,p−1

R is sharp by
Lemma 3.6; in particular, it is properly discontinuous. Conversely, suppose that the
action of Γ on Hp,p−1

R is properly discontinuous. The properness criterion of Benoist
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and Kobayashi (Fact 3.2) implies∣∣〈αp(bp+1,p
R ), µ(ρ(γ))〉

∣∣ −→
γ→∞

+∞.

Using Lemma 5.6 below, we deduce that for any γ ∈ Γ of infinite order,

〈αp(bp+1,p
R ), λ(ι ◦ ρ(γ))〉 > 0,

and so ι ◦ ρ(γ) has a unique attracting fixed point in Fp(bp+1,p
R ), see [GGKW16,

Prop. 3.3.(c)]. Since ρ(γ) ∈ AutR(bp,pR ), this attracting fixed point lies in Fp(bp,pR )
and is thus the image by ξ of the attracting fixed point of γ in ∂∞Γ. We conclude
that ξ′ is dynamics-preserving. Therefore, the composed representation ι ◦ ρ is
Pp(b

p+1,p
R )-Anosov with boundary map ξ′ = iq+1 ◦ ξ. This concludes the proof of (2).

We finally prove (3). Suppose that ι ◦ ρ : Γ → G′ is Pq+1(bp+1,q+1
K )-Anosov. By

(1) and (2), the boundary map ξ′ : ∂∞Γ → Fp(bp+1,q+1
R ) of ι ◦ ρ is the composition

of the boundary map ξ : ∂∞Γ → Fq+1(bp,q+1
R ) of ρ with the natural inclusion iq+1 :

Fq+1(bp,q+1
K ) ↪→ Fq+1(bp+1,q+1

K ). By Proposition 3.13.(2), the group Γ acts properly
discontinuously and cocompactly, via ι ◦ ρ, on Ω = F1(bp+1,q+1

K ) rKξ′ , where

Kξ′ =
⋃

η∈∂∞Γ

{
` ∈ F1

(
bp+1,q+1
K

)
| ` ⊂ iq+1(ξ(η))

}
= i1(Kξ).

This set Ω contains the dense G-orbit U of F1(bp+1,q+1
K ) isomorphic to Ĥp,q

K described
in Lemma 5.1.(1). Since the surjective map F1(bp+1,q+1

K )→ Hp,q
K of Lemma 5.1.(3) is

proper and G-equivariant, the group Γ acts properly discontinuously and cocompactly,
via ρ, on the image of Ω in Hp,q

K , which is Hp,q
K ∪ Cξ. Recall that H

p,q
K = G/(H × Z).

We have µ(H × Z) ⊂ Ker(αq+1(bp,q+1
K )), and so Lemma 3.6 shows that the properly

discontinuous action of Γ on Hp,q
K is in fact sharp. This completes the proof of

Theorem 5.2.

Lemma 5.6. Let g ∈ AutR(bp,pR ) satisfy

(5.1) 〈αp−1(bp,pR ), λ(g)〉 = 〈αp(bp,pR ), λ(g)〉 > 0.

Then the sequence (〈αp(bp,pR )− αp−1(bp,pR ), µ(gn)〉)n∈N is bounded.

Proof. To make computations easier, we replace bp,pR with the equivalent symmetric
bilinear form b given, for all x, y ∈ R2p, by

b(x, y) =

p∑
i=1

xi yp+i + xp+i yi.

With this bilinear form, the Lie algebra of O(p, p) is

o(p, p) =

{(
B C
D −tB

) ∣∣∣ B,C,D ∈Mp(R), C + tC = D + tD = 0

}
.

A Cartan subspace of o(p, p) is

a = {diag(λ1, . . . , λp,−λ1, . . . ,−λp) | λ1, . . . , λp ∈ R}.

The corresponding set of roots is Σ = {±εi ± εj | 1 ≤ i < j ≤ p}, where εi ∈ a∗

is given by εi(diag(λ1, . . . ,−λp)) = λi. A system of simple roots is given by ∆ =
{α1(b), . . . , αp(b)}, where αi(b) = εi − εi+1 for 1 ≤ i ≤ p− 1 and αp(b) = εp−1 + εp.
The corresponding set of positive roots is Σ+ = {εi ± εj | 1 ≤ i < j ≤ p}. Using the
notation of Section 3.1, we take µ : O(p, p) → a+ to be the Cartan decomposition
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associated with the Cartan decomposition O(p, p) = K(exp a+)K where K = O(p)×
O(p).

Let g = gegugh be the Jordan decomposition of g. Using the Jacobson–Morozov
theorem [Hel01, Th. 7.4] and (3.3), we may assume ge = 1 and gh ∈ a+ and gu ∈
exp u∆. Assuming this, let us check that 〈αp(bp,pR ) − αp−1(bp,pR ), µ(gn)〉 = 0 for all
n ∈ N.

Let x := log(gh) = λ(g) ∈ a+ and y := log(gu) ∈ u∆. The assumption (5.1) on g
implies 〈εp, x〉 = 0 and 〈ε1, x〉 ≥ · · · ≥ 〈εp−1, x〉 > 0. In particular, 〈εi + εj , x〉 > 0
and 〈εi − εp, x〉 > 0 for all 1 ≤ i < j ≤ p. Since gh and gu commute, so do x and y,
hence

y ∈
⊕

1≤i<j≤p−1

uεi−εj .

We deduce that g = ghgu belongs to the connected subgroup of O(p, p) whose Lie
algebra is {(

B 0
0 −tB

) ∣∣∣ B ∈Mp−1(R) ⊂Mp(R)

}
,

where Mp−1(R) is embedded in the upper left corner of Mp(R). This subgroup is
isomorphic to GL+

p−1(R) and admits a Cartan decomposition

GL+
p−1(R) =

(
K ∩GL+

p−1(R)
)(

exp a+ ∩GL+
p−1(R)

)(
K ∩GLp−1(R)+

)
compatible with that of O(p, p), from which we see that 〈εp, µ(GL+

p−1(R))〉 = {0}.
In particular, 〈αp(bp,pR )− αp−1(bp,pR ), µ(gn)〉 = 〈2εp, µ(gn)〉 = 0 for all n ∈ N. �

5.4. Proof of Proposition 1.5. Cases (i), (ii), and (iii) of Table 2 are covered by
Lemma 5.1 and Theorem 5.2. We now treat the remaining cases. Let (K,L, N, bK)
be:

• in case (iv), K = R, L = C, N = 2p+ 2q, and bK = b2p,2qR on KN ;
• in case (v), K = C, L = H, N = 2p+ 2q, and bK = b2p,2qC on KN ;
• in case (vi), K = R, L = C, N = 2m, and bK = ω2m

R on KN .
In all three cases, the group G of Table 2 is AutK(bK). Consider j ∈ L rK such
that j2 = −1 and let σ : K→ K be the conjugation by j, namely zσ = −jzj for all
z ∈ K. (In cases (iv) and (vi) we have σ = idR and in case (v) we have zσ = z̄.) Let
bL be the bilinear form on LN = KN + KN j given by

bL(v + v′j, w + w′j) = bK(v, w)− bK(v′, w′)σ + (bK(v′, w)σ + bK(v, w′))j.

The group G′ of Table 2 is AutL(bL) and the natural injection AutK(bK) ↪→ AutL(bL)
defines the injection ι : G ↪→ G′.

As in Section 3.9, we denote by P1(bK) the stabilizer of an isotropic line in (KN , bK)
and by F1(bK) = G/P1(bK) the set of isotropic lines. We use similar notation P1(bL)
and F1(bL) for G′. There is a natural ι-equivariant embedding i : F1(bK) ↪→ F1(bL).
Let Γ be a word hyperbolic group and ρ : Γ → G a P1(bK)-Anosov representation
with boundary map ξ : ∂∞Γ → F1(bK). It easily follows from Definition 3.4 (see
also [GGKW16, Prop. 3.5]) that the composition ι ◦ ρ : Γ → G′ is P1(bL)-Anosov
with boundary map ξ′ = i ◦ ξ : ∂∞Γ → F1(bL). For any η ∈ ∂∞Γ, the L-line ξ′(η)
intersects KN ⊂ LN nontrivially (the intersection is ξ(η)). Therefore, the cocompact
domain of discontinuity Ω of Proposition 3.13.(1) contains

V =
{
W ∈ FN (bL) |W ∩KN = {0}

}
,

which is a G-invariant, open, and dense subset of FN (bL). In particular, the action
of Γ on V via ι ◦ ρ is properly discontinuous, and Γ\Ω is a compactification of Γ\V.
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The fact that V contains an open G-orbit U isomorphic to G/H is contained in the
following more precise statement. It concludes the proof of Proposition 1.5.

Lemma 5.7. In cases (iv) and (v) of Table 2 the action of G on V is transitive.
In case (vi) the set V is the disjoint union of (m + 1) open G-orbits isomorphic to
G/U(p,m− p) for p ranging through {0, . . . ,m}.

Proof. Let W ∈ U . Since W ∩KN = {0} there is an R-linear map J : KN → KN

such that

(5.2) W =
{
v + J(v)j | v ∈ KN

}
.

The fact that W is an L-subspace is equivalent to J being σ-antilinear (i.e. J(vλ) =
J(v)λσ) and J2 = −idKN . The fact that W is bL-isotropic is equivalent to

bK(J(v), J(w)) = bK(v, w)σ and bK(v, J(w)) = −bK(J(v), w)σ

for all v, w in KN . Furthermore, for g ∈ G, the linear map corresponding to g ·W is
gJg−1.

Conversely a linear map J with the above properties defines an element W of U by
the formula (5.2). In cases (iv) and (v) it is easy to see that there is only one conjugacy
class of such J whereas in case (vi) there are (m+ 1) conjugacy classes corresponding
to the different signatures of the symmetric form (v, w) 7→ ω2m

R (v, J(w)). �

5.5. Compactifying more families of (locally) homogeneous spaces. We now
use Remark 1.6 to compactify other reductive homogeneous spaces that are not affine
symmetric spaces, together with their Clifford–Klein forms.

Proposition 5.8. Let (G,H,P,G′, P ′, P ′′) be as in Table 3.
(1) There exists an open G-orbit U in G′/P ′′ that is diffeomorphic to G/H; the

closure U of U in G′/P ′′ provides a compactification of G/H.
(2) For any word hyperbolic group Γ and any P -Anosov representation ρ : Γ→ G,

the cocompact domain of discontinuity Ω ⊂ G′/P ′ for ρ(Γ) constructed in
[GW12] (see Proposition 3.13.(1)) lifts to a cocompact domain of disconti-
nuity Ω̃ ⊂ G′/P ′′ that contains U ; the quotient ρ(Γ)\(Ω̃ ∩ U) provides a
compactification of ρ(Γ)\G/H.

G H P G′ P ′ P ′′

(vii) O(4p, 4q) Sp(2p, 2q) StabG(`) Sp(2p+ 2q, 2p+ 2q) StabG′(W
′) StabG′(W

′′ ⊂W ′)
(viii) Sp(4m,R) O∗(2m) StabG(`) O∗(8m) StabG′(W

′) StabG′(W
′′ ⊂W ′)

Table 3. Cases to which Proposition 5.8 applies. Here m, p, q are
any positive integers. We denote by ` an isotropic line (over R) and
by W ′ a maximal isotropic subspace (over H), relative to the form b
preserved by G or G′. We also denote by (W ′′ ⊂W ′) a partial flag of
isotropic subspaces with W ′ maximal and dimR(W ′) = 2 dimR(W ′′).

Proof of Proposition 5.8 in case (vii) of Table 3. Let us writeH = R+Ri+Rj+Rk
where i2 = j2 = −1 and ij = −ji = k. We identify Hp+q with R4p+4q, and see
H = AutH(bp,qH ) as the subgroup of G = AutR(b4p,4qR ) commuting with the right
multiplications by i and by j, which we denote respectively by I, J ∈ G. The tensor
product R4p+4q ⊗R H can be realized as the set of “formal” sums

R4p+4q ⊗R H =
{
v1 + v2i+ v3j + v4k | v1, v2, v3, v4 ∈ R4p+4q

}
.
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Consider the real bilinear form b on R4p+4q ⊗R H given by

b(vH, v
′
H) = b4p,4qR (v1, v

′
1)− b4p,4qR (v2, v

′
2) + b4p,4qR (v3, v

′
3)− b4p,4qR (v4, v

′
4)

for any vH = v1 + v2i + v3j + v4k and v′H = v′1 + v′2i + v′3j + v′4k in R4p+4q ⊗R H,
and let bH be the H-Hermitian form on R4p+4q ⊗R H with real form b. Then
G′ = Sp(2p + 2q, 2p + 2q) identifies with AutH(bH), and the natural embedding of
G = AutR(b4p,4qR ) into G′ induces a natural embedding of F1(b4p,4qR ) into F1(bH).

Let Fp+q,2p+2q(bH) be the space of partial flags (W ′′ ⊂W ′) of R4p+4q ⊗R H with
W ′ ∈ F2p+2q(bH) and dimH(W ′) = 2 dimH(W ′′). (Note that the inclusion W ′′ ⊂W ′
imposes bH|W ′′×W ′′ = 0, i.e. W ′′ ∈ Fp+q(bH).) The space Fp+q,2p+2q(bH) identifies
with G′/P ′′ and fibers G′-equivariantly over F2p+2q(bH) ' G′/P ′ with compact fiber.
Consider the element (W ′′0 ⊂W ′0) ∈ Fp+q,2p+2q(bH) given by{

W ′′0 := {v + (Iv)i+ (Jv)j + (Kv)k | v ∈ R4p+4q},
W ′0 := {v + (Iv)i+ (Jv′)j + (Kv′)k | v, v′ ∈ R4p+4q}.

Its stabilizer in G = AutR(b4p,4qR ) is the set of elements g commuting with I and J ,
namely H = AutH(bp,qH ). Thus the G-orbit U of (W ′′0 ⊂ W ′0) in Fp+q,2p+2q(bH)

identifies with G/H and the closure U of U in Fp+q,2p+2q(bH) ' G/P ′′ provides a
compactification of G/H.

Let Γ be a word hyperbolic group and ρ : Γ→ G a P1(b4p,4qR )-Anosov representation
with boundary map ξ : ∂∞Γ→ F1(b4p,4qR ). It easily follows from Definition 3.4 (see
also [GGKW16, Prop. 3.5]) that the composed representation ρ′ : Γ → G ↪→ G′ is
P1(bH)-Anosov and that its boundary map ξ′ : ∂∞Γ → F1(bH) is the composition
of ξ with the natural inclusion F1(b4p,4qR ) ↪→ F1(bH). By Proposition 3.13.(1), the
group Γ acts properly discontinuously and cocompactly, via ρ′, on Ω the complement
in F2p+2q(bH) of

Kξ′ =
⋃

η∈∂∞Γ

{W ′ ∈ F2p+2q(bH) | ξ′(η) ⊂W ′}.

Since Fp+q,2p+2q(bH) fibers G′-equivariantly over F2p+2q(bH) with compact fiber, Γ

also acts properly discontinuously and cocompactly, via ρ′, on the preimage Ω̃ of Ω
in Fp+q,2p+2q(bH). One checks that Ω̃ contains the G-invariant open set

U ′ := {(W ′′ ⊂W ′) ∈ Fp+q,2p+2q(bH) |W ′ ∩R4p+4q = {0}},
which itself contains (W ′′0 ⊂W ′0), hence U . Thus Γ acts properly discontinuously on
G/H via ρ and the quotient ρ′(Γ)\(Ω̃∩U) provides a compactification of ρ(Γ)\G/H.

�

Case (viii) of Table 3 is similar to case (vii): just replace the real quadratic form
b4p,4qR on R4p+4q with the symplectic form ω4m

R on R4m, and b with the symplectic
form ω4m

R (v1, v
′
1)−ω4m

R (v2, v
′
2)+ω4m

R (v3, v
′
3)−ω4m

R (v4, v
′
4) onR4m⊗RH. The subgroup

of G = AutR(ω4m
R ) commuting with I and J is H = O∗(2m).

6. Topological tameness

Lemma 1.10 is a particular case of the following general principle.

Proposition 6.1. Let X be a real semi-algebraic set and Γ a torsion-free discrete
group acting on X by real algebraic homeomorphisms. Suppose Γ acts properly
discontinuously and cocompactly on some open subset Ω of X. Let U be a Γ-invariant
real semi-algebraic subset of X contained in Ω (e.g. an orbit of a real algebraic group
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containing Γ and acting algebraically on X). Then the closure U of U in X is real
semi-algebraic and Γ\(U ∩Ω) is compact and has a triangulation such that Γ\(∂U ∩Ω)
is a finite union of simplices. If U is a manifold, then Γ\U is topologically tame.

Here we use the notation D̊ for the interior of a subset D of X and ∂D = D r D̊
for its boundary.

6.1. Real semi-algebraic subsets. Before proving Proposition 6.1, we first review
a few basic definitions on real semi-algebraic sets and maps.

Recall that a real semi-algebraic subset of RN is a subset defined by polynomial
equalities and inequalities. More precisely, the class S ⊂ P(RN ) of real semi-algebraic
subsets is the smallest class stable by finite union, finite intersection, complementary
and containing the sets {P = 0} and {P > 0} for every polynomial P .

A map f : X → Y between real semi-algebraic subsets is called semi-algebraic
if its graph is a real semi-algebraic subset of X × Y . Algebraic maps are always
semi-algebraic. If f is a semi-algebraic function, then so are |f |,

√
|f |, etc. If f ′

is another semi-algebraic function, then max(f, f ′) is semi-algebraic; in particular,
f+ = max(f, 0) and f− = max(−f, 0) are always semi-algebraic. The inverse of a
semi-algebraic homeomorphism is semi-algebraic.

The closure of a real semi-algebraic subset is also real semi-algebraic (see e.g.
[Cos00, Cor. 2.5]). The image of a real semi-algebraic subset by a semi-algebraic map
is a real semi-algebraic subset [Cos00, Cor. 2.4.(2)].

Definition 6.2. A locally real semi-algebraic set is a topological space X which
admits an open covering U and, for every U ∈ U, a continuous map φU : U → RNU

such that
• φU is a homeomorphism onto its image φU (U), which is a real semi-algebraic
subset of RNU ,
• for any U, V ∈ U the subset φU (U ∩ V ) ⊂ RNU is real semi-algebraic;
• for any U, V ∈ U, the map φU ◦ φ−1

V : φV (U ∩ V )→ RNU is semi-algebraic.

Any real semi-algebraic subset is a locally real semi-algebraic set. The notion of
semi-algebraic map naturally extends to the setting of locally real semi-algebraic sets.

Remark 6.3. Up to taking a refinement of U and composing φU by an affine trans-
formation of RNU , we may assume that for every U ∈ U the set φ(U) ⊂ RNU is
contained in the Euclidean ball BU of radius 1 centered at 0 ∈ RNU , and that φU
extends to the closure U of U in X with φU : U → RNU injective and φU (∂U) ⊂ ∂BU .

6.2. Compact locally real semi-algebraic sets. Proposition 6.1 relies on the
following observation.

Proposition 6.4. If a locally real semi-algebraic set X is compact, then it is in fact
real semi-algebraic, i.e. there exist an integer N ∈ N, a real semi-algebraic subset
S ⊂ RN , and a semi-algebraic homeomorphism φ : X → S.

Proof. Let U be an open covering and φU : U → RNU , for U ∈ U, continuous maps
defining the locally real semi-algebraic structure of X. We may assume that they are
as in Remark 6.3. Since X is compact, we may furthermore assume that U is finite.

For any U ∈ U, the function fU (u) = 1− ‖φU (u)‖RNU is semi-algebraic on U and
zero on ∂U . The map

ψU : U −→ R×RNU

u 7−→ (fU (u), fU (u)φU (u))
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is continuous, injective, and semi-algebraic. Extending it by zero outside U , we
obtain a continuous semi-algebraic map ψU : X → RNU+1.

The direct sum of the ψU , for U ∈ U, is a continuous, injective, semi-algebraic
map φ : X → RN . Since X is compact, φ is a homeomorphism onto its image. This
image is the finite union of the real semi-algebraic subsets φ(U) ⊂ RN , hence is real
semi-algebraic. �

Proof of Proposition 6.1. Since the closure of a real semi-algebraic subset is real
semi-algebraic, U is real semi-algebraic and ∂U = U r U is real semi-algebraic.

The quotients Γ\(U ∩ Ω) and Γ\(∂U ∩ Ω) have a natural structure of locally
real semi-algebraic sets. Since they are compact, they are real semi-algebraic by
Proposition 6.4. Thus the triangulation theorem for real semi-algebraic pairs (see
[Cos00, Th. 3.12]) gives the sought-for triangulation.

This triangulation allows us to build a tubular neighborhood of Γ\(∂U ∩Ω) such
that Γ\U is homeomorphic to the complement of this tubular neighborhood. Thus,
if U is a manifold, then Γ\U is homeomorphic to the interior of a compact manifold
with boundary. �

6.3. Tameness of group manifolds. From Theorem 4.1 and Lemma 1.10 (partic-
ular case of Proposition 6.1), we deduce the following. Theorem 1.12 corresponds to
the special case where ρR is constant.

Theorem 6.5. Let Γ be a torsion-free word hyperbolic group, G a real reductive
algebraic group, and ρL, ρR : Γ → G two representations. Let α ∈ ∆ be a simple
restricted root of G. If ρL is P{α}-Anosov and uniformly ωα-dominates ρR, then
(ρL, ρR)(Γ)\(G×G)/Diag(G) is a topologically tame manifold.

For G = SO(p, 1) with p ≥ 2, this was first proved in [GK16, Th. 1.8 & Prop. 7.2].
In that case, tameness actually still holds when ρL is allowed to be geometrically
finite instead of convex cocompact.

Recall that any Pθ-Anosov representation is P{α}-Anosov for all α ∈ θ (see Sec-
tion 3.3).

Proof of Theorem 6.5. By Proposition 3.11, there exist a nondegenerate bilinear form
b on a real vector space V and a linear representation τ : G → AutR(b) such that
τ ◦ρL : Γ→ AutR(b) is P1(b)-Anosov and uniformly ωα1(b)-dominates τ ◦ρR. Let Ω be
the cocompact domain of discontinuity of (τ ◦ρL⊕ τ ◦ρR)(Γ) in FN (b⊕−b) given by
Proposition 3.13.(1). By Theorem 4.1, it contains the open (AutR(b)×AutR(b))-orbit
U0 of Theorem 1.1, which identifies with (AutR(b)×AutR(b))/Diag(AutR(b)). Let u
be a point in U0 with stabilizer equal to Diag(AutR(b)). Applying Lemma 1.10 to the
(τ⊕τ)(G)-orbit U of u in U0, we see that (τ ◦ρL⊕τ ◦ρR)(Γ)\(τ(G)×τ(G))/Diag(τ(G))
is a topologically tame manifold. If τ has finite kernel, then (ρL⊕ρR)(Γ)\(G×G)/G
is a topologically tame manifold as well.

However, in general τ might not have finite kernel. To address this issue, we force
injectivity by introducing another representation, as follows. Let τ ′ : G→ GLR(V ′)
be any injective linear representation of G where V ′ is a real vector space of dimension
N ′ ∈ N. The Grassmannian FN ′(V ′ ⊕ V ′) is compact, hence the action of Γ on
Ω×FN ′(V ′ ⊕ V ′) via

(τ ◦ ρL ⊕ τ ◦ ρR)× (τ ′ ◦ ρL ⊕ τ ′ ◦ ρR)
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is properly discontinuous and cocompact. By Theorem 2.6, there is an open
(GLR(V ′)×GLR(V ′))-orbit U ′0 in FN ′(V ′ ⊕ V ′) that identifies with

(GLR(V ′)×GLR(V ′))/Diag(GLR(V ′)).

Let u′ be a point in U ′0 with stabilizer Diag(GLR(V ′)) in GLR(V ′) × GLR(V ′).
By injectivity of τ ′, the stabilizer of (u, u′) in G × G for the action of G × G on
FN (b⊕−b)×FN ′(V ′⊕V ′) via (τ ⊕ τ)× (τ ′⊕ τ ′) is Diag(G). Applying Lemma 1.10
to the ((τ ⊕ τ)× (τ ′⊕ τ ′))(G)-orbit U of (u, u′) and to Ω×FN ′(V ′⊕V ′) instead of Ω,
we obtain that (ρL, ρR)(Γ)\(G×G)/Diag(G) is a topologically tame manifold. �
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