Spectral analysis on pseudo-Riemannian locally symmetric spaces

By Fanny Kassel* and Toshiyuki Kobayashi**

Abstract: We summarize recent results initiating spectral analysis on pseudo-Riemannian locally symmetric spaces $\Gamma \backslash G/H$, beyond the classical setting where H is compact (e.g. theory of automorphic forms for arithmetic Γ) or Γ is trivial (e.g. Plancherel-type formula for semisimple symmetric spaces).

Key words: Locally symmetric space; pseudo-Riemannian manifold; discontinuous group; Laplacian; invariant differential operator; branching law; spherical variety.

1. Introduction A pseudo-Riemannian manifold is a smooth manifold M equipped with a smooth, nondegenerate symmetric bilinear tensor g of signature (p, q). It is called Riemannian if $q = 0$, and Lorentzian if $q = 1$. As in the Riemannian case, the metric g induces a Radon measure on M and a second-order differential operator

$$\Box = \text{div grad}$$

called the Laplacian. It is a symmetric operator on the Hilbert space $L^2(X)$. The Laplacian \Box is not an elliptic differential operator if $p, q > 0$.

A semisimple symmetric space X is a homogeneous space G/H where G is a semisimple Lie group and H an open subgroup of the group of fixed points of G under some involutive automorphism. The manifold X carries a G-invariant pseudo-Riemannian metric induced by the Killing form of the Lie algebra \mathfrak{g} of G. The group G acts on X by isometries, and the C_∞-algebra $\mathcal{D}(X)$ of G-invariant differential operators on X is commutative.

In this note we consider quotients $X_\Gamma = \Gamma \backslash X$ of a semisimple symmetric space $X = G/H$ by discrete subgroups Γ of G acting properly discontinuously and freely on X ("discontinuous groups for $X"$). Such quotients are called pseudo-Riemannian locally symmetric spaces. They are complete (G, X)-manifolds in the sense of Ehresmann and Thurston, and they inherit a pseudo-Riemannian structure from X. Any G-invariant differential operator D on X induces a differential operator D_Γ on X_Γ via the covering map $\pi_\Gamma: X \to X_\Gamma$. For instance, the Laplacian \Box on X is G-invariant, and $(\Box_X)_\Gamma = \Box_{X_\Gamma}$. We think of

$$\mathcal{P} := \{D_\Gamma : D \in \mathcal{D}_G(X)\}$$

as the set of "intrinsic differential operators" on the locally symmetric space X_Γ. It is a subalgebra of the C-algebra $\mathcal{D}(X_\Gamma)$ of differential operators on X_Γ:

$$\mathcal{D}_G(X) \ni f \mapsto f \in \mathcal{D}(X_\Gamma), \quad D \mapsto D_\Gamma.$$

For a C-algebra homomorphism $\lambda: \mathcal{D}_G(X) \to \mathbb{C}$, we denote by $C^\infty(X_\Gamma; \mathcal{M}_\lambda)$ the space of smooth functions f on X_Γ (joint eigenfunctions) satisfying the following system of partial differential equations:

$$(\mathcal{M}_\lambda) \quad D_\Gamma f = \lambda(D) f \quad \text{for all } D \in \mathcal{D}_G(X).$$

Let $L^2(X_\Gamma; \mathcal{M}_\lambda)$ be the space of square-integrable functions on X_Γ satisfying (\mathcal{M}_λ) in the weak sense. It is a closed subspace of the Hilbert space $L^2(X_\Gamma)$.

* 2020 Mathematics Subject Classification. Primary 22E40; Secondary 22E46, 58J50, 11F72, 53C35.

** CNRS and IHES, Laboratoire Alexander Grothendieck, 35 route de Chartres, 91440 Bures-sur-Yvette, France. Supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC starting grant DiGGeS, grant agreement No 715982).
We are interested in the following problems.

Problems 1. For intrinsic differential operators on $X_T = \Gamma\backslash G/H$,

1. construct joint eigenfunctions on X_T;
2. find a spectral theory on $L^2(X_T)$.

In the classical setting where H is a maximal compact subgroup K of G, i.e. X_T is a Riemannian locally symmetric space, a rich and deep theory has been developed over several decades, in particular, in connection with automorphic forms when Γ is arithmetic. For compact H, the spectral decomposition of $L^2(X_T)$ is closely related to a disintegration of the regular representation of G on $L^2(\Gamma\backslash G)$:

\[
L^2(\Gamma\backslash G) \simeq \int_G m_\Gamma(\pi) \pi \, d\sigma(\pi),
\]

where $d\sigma$ is a Borel measure on the unitary dual \hat{G} and $m_\Gamma: \hat{G} \to \mathbb{N} \cup \{\infty\}$ a measurable function called multiplicity. There is a natural isomorphism

\[
L^2(X_T) \simeq L^2(\Gamma\backslash G)^H
\]

and the Hilbert space $L^2(X_T)$ is decomposed as

\[
L^2(X_T) \simeq \int_{(\hat{G})_H} m_\Gamma(\pi) \pi^H \, d\sigma(\pi),
\]

where π^H denotes the space of H-invariant vectors in the representation space of π and

\[
(\hat{G})_H := \{ \pi \in \hat{G} : \pi^H \neq \{0\} \}.
\]

Since the center $\mathfrak{z}(\mathfrak{g}_C)$ of the enveloping algebra $U(\mathfrak{g}_C)$ acts on the space of smooth vectors of π as scalars for every $\pi \in \hat{G}$, the decomposition (1.4) respects the actions of $\mathbb{D}(X)$ and $\mathfrak{z}(\mathfrak{g}_C)$ via the natural \mathbb{C}-algebra homomorphism $d\ell: \mathfrak{z}(\mathfrak{g}_C) \to \mathbb{D}(X)$. This homomorphism is surjective e.g. if G is a classical group.

The situation changes drastically beyond the aforementioned classical setting, namely, when H is not compact anymore. New difficulties include:

1. (Representation theory) By the ergodicity theorem of Howe–Moore [7], if H is noncompact, then $L^2(\Gamma\backslash G)^H = \{0\}$, and so (1.3) fails:

\[
L^2(X_T) \neq L^2(\Gamma\backslash G)^H
\]

and the irreducible decomposition (1.2) of the regular representation $L^2(\Gamma\backslash G)$ of G does not yield a spectral decomposition of $L^2(X_T)$.

2. (Analysis) In contrast to the usual Riemannian case (see [23]), the Laplacian \Box_{X_T} is not elliptic anymore, and thus even the following subproblems of Problem 1.(2) are open in general for $X_T = \Gamma\backslash G/H$ with H noncompact.

Questions 2.

1. Does the Laplacian \Box_{X_T}, defined on $C^\infty_c(X_T)$, extend to a self-adjoint operator on $L^2(X_T)$?
2. Does $L^2(X_T; \mathcal{M}_\lambda)$ contain real analytic functions as a dense subspace?
3. Does $L^2(X_T)$ decompose discretely into a sum of subspaces $L^2(X_T; \mathcal{M}_\lambda)$ when X_T is compact?

2. Standard quotients We observe that a discrete group of isometries on a pseudo-Riemannian manifold X does not always act properly discontinuously on X, and the quotient space $X_T = \Gamma\backslash X$ is not necessarily Hausdorff. In fact, some semisimple symmetric spaces X do not admit infinite discontinuous groups of isometries (Calabi–Markus phenomenon [2, 12]), and thus it is not obvious a priori whether there are interesting examples of pseudo-Riemannian locally symmetric spaces X_T beyond the classical Riemannian case.

Fortunately, there exist semisimple symmetric spaces $X = G/H$ admitting “large” discontinuous groups Γ such that X_T is compact or of finite volume. Let us recall a useful idea for finding such X and Γ.

Suppose a Lie subgroup L of G acts properly on X. Then the action of any discrete subgroup Γ of L on X is automatically properly discontinuous, and this action is free whenever Γ is torsion-free. Moreover, if L acts cocompactly (e.g. transitively) on X, then $\text{vol}(X_T) < +\infty$ if and only if $\text{vol}(\Gamma\backslash L) < +\infty$.

Definition 3 (Standard quotient X_T). A quotient $X_T = \Gamma\backslash X$ of $X = G/H$ by a discrete subgroup of G is called standard if Γ is contained in a reductive subgroup L of G acting properly on X.

A criterion on triples (G, L, H) of reductive Lie
groups for \(L \) to act properly on \(X = G/H \) was established in [12], and a list of irreducible symmetric spaces \(G/H \) admitting proper and cocompact actions of reductive subgroups \(L \) was given in [19]. Recently, Tojo [24] announced that the list in [19] exhausts all such triples \((L,G,H)\) with \(L \) maximal.

3. Construction of discrete spectrum

Let \(X = G/H \) be a semisimple symmetric space. Let \(j \) be a maximal semisimple abelian subspace in the orthogonal complement of \(h \) in \(g \) with respect to the Killing form, and \(W \) the Weyl group for the root system \(\Sigma(\mathfrak{g},i_C) \). The Harish-Chandra isomorphism \(\Psi: S(i_C)^W \cong \mathbb{D}_G(X) \) (see [6]) induces a bijection

\[
\Psi^*: \text{Hom}_{\mathbb{C}\text{-alg}}(\mathbb{D}_G(X), \mathbb{C}) \cong i_C/W.
\]

The dimension of \(j \) is called the rank of the symmetric space \(X = G/H \). Let \(K \) be a maximal compact subgroup of \(G \) such that \(H \cap K \) is a maximal compact subgroup of \(H \). Assume that \(G \) is connected without compact factor and that the following rank condition is satisfied:

\[
\text{rank } G/H = \text{rank } K/(H \cap K).
\]

Then we can take \(j \) as a subspace of \(t \). We fix compatible positive systems \(\Sigma^+(\mathfrak{g}_C,i_C) \) and \(\Sigma^+(\mathfrak{k}_C,i_C) \), denote by \(\rho \) and \(\rho_c \) the corresponding half sums of positive roots counted with multiplicities, and set

\[
\Lambda := 2\rho_c - \rho + \mathbb{Z}\text{-span}\{\text{highest weights of } (\hat{K})_{H\cap K}\}.
\]

For \(C \geq 0 \), we consider the countable set

\[
\Lambda_C := \{\lambda \in \Lambda : \langle \lambda, \alpha \rangle > C \text{ for all } \alpha \in \Sigma^+(\mathfrak{g}_C,i_C)\}.
\]

Fact 4 (Flensted-Jensen [5]). *If the rank condition (3.2) holds, then there exists \(C > 0 \) such that*

\[
L^2(X; \mathcal{M}_\lambda) \neq \{0\} \quad \text{for all } \lambda \in \Lambda_C.
\]

In fact one can take \(C = 0 \) [20]. We now turn to locally symmetric spaces \(X_\Gamma \):

Theorem 5 ([8], [9, Th. 1.5]). *Under the rank condition (3.2), for any standard quotient \(X_\Gamma \) with \(\Gamma \) torsion-free, there exists \(C_\Gamma > 0 \) such that*

\[
L^2(X; \mathcal{M}_\lambda) \neq \{0\} \quad \text{for all } \lambda \in \Lambda_{C_\Gamma}.
\]

Thus the discrete spectrum \(\text{Spec}_d(X_\Gamma) \), which is by definition the set of \(\lambda \in \text{Hom}_{\mathbb{C}\text{-alg}}(\mathbb{D}_G(X), \mathbb{C}) \) such that \(L^2(X; \mathcal{M}_\lambda) \neq \{0\} \), is infinite.

Theorem 5 applied to \((G \times \{1\}, G \times G, \text{Diag } G)\) instead of \((L,G,H)\) (group manifold case) implies:

Example 6. Suppose \(\text{rank } G = \text{rank } K \). For any torsion-free discrete subgroup \(\Gamma \) and any discrete series representation \(\pi_\lambda \) of \(G \) with sufficiently regular Harish-Chandra parameter \(\lambda \),

\[
\text{Hom}_G(\pi_\lambda, L^2(\Gamma \backslash G)) \neq \{0\}.
\]

This sharpens and generalizes the known results asserting that if \(\Gamma \) is an arithmetic subgroup of \(G \), then (3.3) holds after replacing \(\Gamma \) by a finite-index subgroup \(\Gamma' \) (possibly depending on \(\pi_\lambda \)), see Borel–Wallach [1], Clozel [3], DeGeorge–Wallach [4], Kazhdan [11], Rohlfs–Speh [21], and Savin [22].

Remark 7. (1) Theorem 5 extends to a more general setting where \(X_\Gamma \) is not necessarily standard: namely, the conclusion still holds as soon as the action of \(\Gamma \) on \(X \) satisfies a strong properness condition called sharpness [9, Th. 3.8].

(2) The rank condition (3.2) is necessary for \(\text{Spec}_d(X) \) to be nonempty (see Matsuki–Oshima [20]), in which case Fact 4 applies. On the other hand, \(\text{Spec}_d(X_\Gamma) \) may be nonempty even if (3.2) fails. This leads us to the notion of discrete spectrum of type I and II, see Definition 12 below.

4. Spectral decomposition of \(L^2(X_\Gamma) \)

In this section, we discuss spectral decomposition on standard quotients \(X_\Gamma \). We do not impose the rank condition (3.2), but require that \(L_C \) act spherically on \(X_C \), i.e. a Borel subgroup of \(L_C \) has an open orbit in \(X_C \). To be precise, our setting is as follows:

Setting 8. We consider a symmetric space \(X = G/H \) with \(G \) noncompact and simple, a reductive subgroup \(L \) of \(G \) acting properly on \(X \) such that \(X_C = G_C/H_C \) is \(L_C \)-spherical, and a torsion-free discrete subgroup \(\Gamma \) of \(L \).

For compact \(H \), we can take \(L = G \). However, our main interest is for noncompact \(H \), in which case \(L \neq G \) in the setting 8.
In Theorems 9 and 10 below, we allow the case where \(\text{vol}(X_{\Gamma}) = +\infty \).

Theorem 9 (Spectral decomposition). In the setting \(\mathcal{S} \), there exist a measure \(d\mu \) on \(\text{Hom} := \text{Hom}_{\mathcal{C}-\text{alg}}(\mathbb{D}_G(X), \mathbb{C}) \) and a measurable family \((\mathcal{F}_{\lambda})_{\lambda \in \text{Hom}} \) of linear maps, with

\[
\mathcal{F}_{\lambda} : C^\infty_c(X_{\Gamma}) \rightarrow C^\infty(X_{\Gamma}; \mathcal{M}_\lambda),
\]

such that any \(f \in C^\infty_c(X_{\Gamma}) \) can be expanded into

\[
f = \int_{\text{Hom}} \mathcal{F}_{\lambda} f \; d\mu(\lambda),
\]

with a Parseval–Plancherel type formula

\[
\|f\|^2_{L^2(X_{\Gamma})} = \int_{\text{Hom}} \|\mathcal{F}_{\lambda} f\|^2_{L^2(X_{\Gamma})} \; d\mu(\lambda).
\]

The measure \(d\mu \) can be described via a “transfer map” discussed in Section 5, see (5.4). In particular, we see that (4.1) is a discrete sum if \(X_{\Gamma} \) is compact, answering Question 2.3 in our setting. The proof of Theorem 9 gives an answer to Questions 2.(1)–(2):

Theorem 10. In the setting \(\mathcal{S} \),

1. the pseudo-Riemannian Laplacian \(\Box_{X_{\Gamma}} \) defined on \(C^\infty_c(X_{\Gamma}) \) is essentially self-adjoint on \(L^2(X_{\Gamma}) \);
2. any \(L^2 \)-eigenfunction of the Laplacian \(\Box_{X_{\Gamma}} \) can be approximated by real analytic \(L^2 \)-eigenfunctions.

Theorem 11. In the setting \(\mathcal{S} \), the discrete spectrum \(\text{Spec}_{d}(X_{\Gamma}) \) is infinite whenever \(\Gamma \) is cocompact or arithmetic in the subgroup \(L \).

Let \(D'(X) \) be the space of distributions on \(X \), endowed with its standard topology. Let \(p^*_\Gamma : L^2(X_{\Gamma}) \rightarrow D'(X) \) be the pull-back by the projection \(p_\Gamma : X \rightarrow X_{\Gamma} \). For \(\lambda \in \text{Spec}_{d}(X_{\Gamma}) \), we denote by \(L^2(X_{\Gamma}; \mathcal{M}_\lambda)_{\mathcal{H}} \) the preimage under \(p^*_\Gamma \) of the closure in \(D'(X) \) of \(L^2(X_{\Gamma}; \mathcal{M}_\lambda) \), and by \(L^2(X_{\Gamma}; \mathcal{M}_\lambda)_{\mathcal{H}} \) its orthogonal complement in \(L^2(X_{\Gamma}; \mathcal{M}_\lambda) \).

Definition 12. For \(i = I \) or \(II \), the discrete spectrum of type \(i \) of \(X_{\Gamma} \) is the subset \(\text{Spec}_{d}(X_{\Gamma})_I \) of \(\text{Spec}_{d}(X_{\Gamma}) \) consisting of those elements \(\lambda \) such that \(L^2(X_{\Gamma}; \mathcal{M}_\lambda)_I \neq \{0\} \).

By construction, \(\text{Spec}_{d}(X_{\Gamma})_I \) is contained in \(\text{Spec}_{d}(X) \), hence it is nonempty only if (3.2) holds (Remark 7.(2)); in this case \(\text{Spec}_{d}(X_{\Gamma})_I \) is actually infinite for standard \(X_{\Gamma} \) by Theorem 5. On the other hand, Theorem 11 has the following refinement.

Theorem 13. In the setting \(\mathcal{S} \), \(\text{Spec}_{d}(X_{\Gamma})_I \) is infinite whenever \(\Gamma \) is cocompact or arithmetic in \(L \).

Example 14. Let \(M \) be a 3-dimensional compact standard anti-de Sitter manifold. Then both \(\text{Spec}_{d}(X_{\Gamma})_I \) and \(\text{Spec}_{d}(X_{\Gamma})_II \) are infinite, and

\[
\text{Spec}_{d}(X_{\Gamma})_I \subset [0, +\infty), \quad \text{Spec}_{d}(X_{\Gamma})_II \subset (-\infty, 0].
\]

5. Transfer maps

In Section 1 we considered spectral analysis on locally symmetric spaces \(X_{\Gamma} \) through the algebra \(\mathcal{P} (\simeq \mathbb{D}_G(X)) \) of intrinsic differential operators on \(X_{\Gamma} \). For standard quotients \(X_{\Gamma} \) with \(\Gamma \subset L \), another \(\mathcal{C} \)-algebra \(\mathcal{Q} \) of differential operators on \(X_{\Gamma} \) is obtained from the center \(\mathfrak{z}(\mathcal{C}) \) of the enveloping algebra \(U(\mathfrak{i}_c) \): indeed, \(\mathfrak{z}(\mathcal{C}) \) acts on smooth functions on \(X \) by differentiation, yielding a \(\mathcal{C} \)-algebra of \(L \)-invariant differential operators on \(X_{\Gamma} \), hence a \(\mathcal{C} \)-algebra of differential operators on \(X_{\Gamma} = \Gamma \backslash X \) since \(\Gamma \subset L \). In general, there is no inclusion relation between \(\mathcal{P} \) and \(\mathcal{Q} \). In order to compare the roles of \(\mathcal{P} \) and \(\mathcal{Q} \), we highlight a natural homomorphism \(\mathfrak{z}(\mathfrak{g}_C) \rightarrow \mathcal{P} \) and a surjective one \(d\ell : \mathfrak{z}(\mathfrak{i}_c) \rightarrow \mathcal{Q} \). Loosely speaking, the algebras \(\mathfrak{z}(\mathfrak{g}_C) \) and \(\mathfrak{z}(\mathfrak{i}_c) \) separate irreducible representations of the groups \(G \) and \(L \), respectively, hence it is important to understand how irreducible representations of \(G \) behave when restricted to the subgroup \(L \) (branching problem) in order to utilize the algebra \(\mathcal{Q} \) for the spectral analysis on \(X_{\Gamma} \) via the algebra \(\mathcal{P} \) (see [16, 17]). We shall return to this point in Theorem 15 below.

Suppose a reductive subgroup \(L \) acts properly and transitively on \(X = G/H \). Then \(L_H := L \cap H \) is compact. We may assume that \(L_K := L \cap K \) is a maximal compact subgroup of \(L \) containing \(L_H \), after possibly replacing \(L \) by some conjugate. Then the locally pseudo-Riemannian symmetric space \(X = \Gamma \backslash G/H \) fibers over the Riemannian locally symmetric space \(Y_{\Gamma} = \Gamma \backslash L/L_K \) with fiber \(F := L_K/L_H \):

\[
F \rightarrow X_{\Gamma} \rightarrow Y_{\Gamma}.
\]

To expand functions on \(X_{\Gamma} \) along the fiber \(F \),
we define an endomorphism p_τ of $C^\infty(X_\Gamma)$ by
\[
(p_\tau f)(\cdot) := \frac{1}{\dim \tau} \int_K f(\cdot) \, \text{Trace} \, \tau(k) \, dk
\]
for every $\tau \in \mathcal{K}_L$. Then p_τ is an idempotent, namely, $p_\tau^2 = p_\tau$. The τ-component of $C^\infty(X_\Gamma)$ is defined by
\[
C^\infty(X_\Gamma)_\tau := \text{Image}(p_\tau) = \text{Ker}(p_\tau - \text{id}).
\]
We note that $C^\infty(X_\Gamma)_\tau \neq \{0\}$ if and only if τ has a nonzero L_H-invariant vector, i.e. $\tau \in (\mathcal{K}_L)_L$. It is easy to see that the projection p_τ commutes with any element in \mathcal{Q} ($\simeq \mathcal{D}_G(X)$), but not always with “intrinsic differential operators” $D_\tau \in \mathcal{P}$ ($\simeq \mathcal{D}_G(X)$), and consequently it may well happen that
\[
p_\tau(C^\infty(X_\Gamma;M_\lambda)) \not\subset C^\infty(X_\Gamma;M_\lambda).
\]
To make a connection between the two subalgebras \mathcal{P} and \mathcal{Q}, we introduce a third subalgebra \mathcal{R} of $\mathcal{D}(X_\Gamma)$, coming from the fiber F in (5.1). Namely, \mathcal{R} is isomorphic to the \mathbb{C}-algebra $\mathcal{D}_{\mathcal{L}_K}(F)$ of \mathcal{L}_K-invariant differential operators D on F, and obtained by extending elements of $\mathcal{D}_{\mathcal{L}_K}(F)$ to \mathcal{L}-invariant differential operators on X, yielding differential operators on the quotient X_Γ.

Suppose now that we are in the setting 8. The subgroup L acts transitively on X by [18, Lem. 4.2] and [13, Lem. 5.1]. Moreover, we can prove that
\[
\mathcal{Q} \subset \langle \mathcal{P}, \mathcal{R} \rangle
\]
where $\langle \mathcal{P}, \mathcal{R} \rangle$ denotes the subalgebra of $\mathcal{D}(X_\Gamma)$ generated by \mathcal{P} and \mathcal{R}. This implies the following strong constraints on the restriction of representations:

Theorem 15. In the setting 8, any irreducible (\mathfrak{g}, K)-module occurring in $C^\infty(X)$ is discretely decomposable as an $(1, L \cap K)$-module.

See [13, 14, 15] for a general theory of discretely decomposable restrictions of representations. See also [17] for a discussion on Theorem 15 when dropping the assumption that L acts properly on X.

In addition to (5.2), the quotient fields of \mathcal{P} and $\langle \mathcal{Q}, \mathcal{R} \rangle$ coincide [10], and we obtain the following:

Theorem 16 (Transfer map). In the setting 8, for any $\tau \in (\mathcal{L}_K)_L$ there is an injective map $\nu(\cdot, \tau) : \text{Hom}_{\mathcal{C\text{-}alg}}(\mathcal{D}_G(X), \mathbb{C}) \hookrightarrow \text{Hom}_{\mathcal{C\text{-}alg}}(\mathcal{F}, \mathbb{C})$ such that for any $\lambda \in \text{Hom}_{\mathcal{C\text{-}alg}}(\mathcal{D}_G(X), \mathbb{C})$, any $f \in C^\infty(X_\Gamma;M_\lambda)$, and any $z \in \mathcal{F}$,
\[
df(z)(p_\tau f) = \nu(\lambda, \tau)(z) \, p_\tau f.
\]

We write $\lambda(\cdot, \tau)$ for the inverse map of $\nu(\cdot, \tau)$ on its image. We call $\nu(\cdot, \tau)$ and $\lambda(\cdot, \tau)$ transfer maps, as they “transfer” eigenfunctions for \mathcal{P} to those for \mathcal{Q}, and vice versa, on the τ-component $C^\infty(X_\Gamma)_\tau$.

For an explicit description of transfer maps, let
\[
\Phi^* : \text{Hom}_{\mathcal{C\text{-}alg}}(\mathcal{F}, \mathbb{C}) \rightarrow \mathcal{F}/W(\mathcal{F})
\]
be the Harish-Chandra isomorphism as in (3.1), where $W(\mathcal{F})$ denotes the Weyl group of the root system $\Delta(\mathbb{C}, t_c)$ with respect to a Cartan subalgebra t_c in \mathcal{C}. We note that there is no natural inclusion relation between j_c and t_c.

For each $\tau \in (\mathcal{L}_K)_L$, we find an affine map $S_\tau : j_c \rightarrow t_c$ such that the following diagram commutes:

\[
\begin{array}{ccc}
j_c^* & \rightarrow & t_c^* \\
\downarrow & & \downarrow \\
j_c^*/W & \rightarrow & t_c^*/W(\mathcal{F}) \\
\Phi^* & \rightarrow & \Phi^*
\end{array}
\]

Then a closed formula for the transfer map $\nu(\cdot, \tau)$ is derived from that of the affine map S_τ which was determined explicitly in [10] for the complexifications of the triples (L, G, H) in the setting 8.

Via the transfer maps, we can utilize representations of the subgroup L efficiently for the spectral analysis on X_Γ, as follows. As in (1.2), let
\[
L^2(\Gamma \setminus L) \simeq \int_L m_\Gamma(\theta) \, d\sigma(\theta)
\]
be a disintegration of the regular representation $L^2(\Gamma \setminus L)$ of the subgroup L. Then the transform \mathcal{F}_λ in Theorem 9 can be built naturally by using (5.3) and the expansion of $C^\infty_c(X_\Gamma)$ along the fiber F in (5.1). Consider the map...
\[\Lambda: (\widetilde{j})_{LH} \times (\widetilde{L})_{LH} \to \text{Hom}_{\mathbb{C}}(D_{G}(X), \mathbb{C}), \]

\((\vartheta, \tau) \mapsto \lambda(\chi_{\vartheta}, \tau), \) where \(\chi_{\vartheta} \in \text{Hom}_{\mathbb{C}}(\mathfrak{g}(\mathbb{C}), \mathbb{C}) \)

is the infinitesimal character of \(\vartheta \in \widetilde{L}. \) Then the Plancherel measure \(d\mu \) on \(\text{Hom}_{\mathbb{C}}(D_{G}(X), \mathbb{C}) \)

in Theorem 9 can be defined by

\[d\mu = \Lambda_{*}(d\sigma|_{(\widetilde{j})_{LH} \times (\widetilde{L})_{LH}}) \]

Detailed proofs of Theorems 9, 10, 11, 15, and 16 will appear elsewhere.

References

