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Abstract. I t  is shown tha$ for an infinite lattice system, thermodynamic equi- 
librium is ~he solu$ion of a variational problem involving a mean entropy of states 
introduced earlier [2]. As an application, a version of the Gibbs phase rule is proved. 

O. Introduction 

The aim of this article is to  present a variat ional  me thod  for the  
determinat ion of the  equilibrium state  of an  infinite sys tem in statistical 
mechanics.  For  technical  reasons, we shall have  to  restrict  ourselves to 
latt ice systems, bu t  it is clear t h a t  the results should extend to  more 
general situations. As an application of the method  we prove a version 
of the Gibbs phase rule. The physical  ideas contained in this article are 
no t  different f rom those of an  earlier paper  [3], bu t  there  the  p rogramme 
could no t  be pushed through.  Quite a bit  of technical  development  has 
taken  place since [3] which explains the ease with which the results can 
now be obtained. We shall in part icular  rely heavi ly on two recent  papers 
[2] and [1] for notat ions and results, these are recalled in the first two 
sections. 

1. Thermodynamic Limit 

We consider particles on a lattice Z ~ and assume t h a t  only  0 or 1 
particle can occupy  a site. An  interact ion is a sequence q~ = (qS(~))k~l of 
k-body potentials,  which are assumed to  be symmetr ic  in their  a rguments  
and invar iant  under  t ranslat ions of the lattice. Given a set X = (x 1 . . . . .  
xn} of occupied sites the potent ia l  energy is 

Uv(X) = X ~ ~5(~) (xip . . . .  ki, ) . (1.1) 

We assume t h a t  the interact ion satisfies 

1 =~o 
II~ll = X k-~ 2: I~<~)(o, xl . . . .  , x~-l)l < + ~  (1,2) 

k ~ 1 xl . . . . .  x~_~ £Zv 
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where ~ extends over M1 sequences of distinct points of Z v different 
from 0. The interactions ~ form then a real Banaeh space ~ wi£h respect 
to the norm (1.2), and (1.1), (1.2) give 

Ig~(x) t  ~ nlI~H • (1.3) 

For each region A (finite subset of Z ~) we define a parti t ion function 

ZA(¢) = ~ e - %  (x) • (1 .4)  
X C A  

Let  also V(A) denote the number  of points in A 
Theorem 1. (i) I / q )  ~ 2 ,  the/ollowing limit exists 

p(q3) = lira V(A) - l  logZA(qb) . (1.5) 
A ~ c ~  

The/unctional P ( ' )  is convex and continuous on ~ .  
(ii) Let D be the set o /a l l  ~ ~ ~ such that the graph o/ P(.) has a 

unique tangent plane at qD, i. e. there is a unique element o~ o/the dual ~*  
o/ ~ such that/or all y) ~ 

P(~b + T )  >_- p(~b) - e e ( T ) .  (1.6) 

With this definition, D contains a countable intersection o/ dense open 
subsets o/ ~ (in particular D is dense by BAIrns). 

(iii) I / ~  C D, then 

lira ZA(~) -~ V(A) -~ Z e - % ( x )  U~(X) = ~ ( T ) .  (1.7) 
A ~ c o  X c A  

There/ore cz¢ may be interpreted as the "infinite volume correlation/unction" 
corresponding to the interaction q). 

These results are due ~o GAI~LAVOT~I and MtgACLE [1 ]. 

2. States anti their Entropy 

The description of equilibrium states of systems in classical statistical 
mechanics has been investigated in [4] and it was shown there how such 
states can be identified with certain states of an adequate abelian 
C*-algebra 9.1. I n  the pa1~icular case of a lattice system with either 0 or 1 
particle a t  each site, the problem is rather  simple and we discuss it 
briefly. 

Let  K be the product  H,~z,{O, 1}~ of one copy of the set {0, l} (with 
the discrete topology) for each lattice site. With respect to the product 
topology, K is compact.  The set N of states on the C*-algebra ~ (K) of 
continuous complex functions on K is naturally identical to the set of 
probabili ty measures on K. The v*-topology on E is the "vague"  topology 
of measures and makes E compact.  There is a bijection co-~ S~ of K 
onto the subsets of Z ~ such tha t  wz = I *~ x E Z~. We may  thus consider 
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A E ~ (K) either as a function of o) E K or of So C Z ~. I f  x E Z ~ we define 
the translate ~ A by  

~ A (So)  = A (So  - x ) .  (2 .1)  

We shall be in~erested in the convex compact  set E f~ ~f± where .5 f ±  
denotes the measures on K which are invariant  under the translations 
of the lattice Z" [i. e. re(A)~--m(z~A)]. The elements of Ef~  ~ ±  are 
natural  candidates for the description of equilibrium states in statistical 
mechanics of lattice systems. 

Given ~ E E f~ ~ ± ,  for each region A we define a function ]1t of the 
subsets of A by  

/A (X) = e ({co E K : So r~ A =: X}) (2.2) 
and an entropy 

So(A ) = - ~ ]~(X) l o g h ( X  ) . (2.3) 
X c A  

Theorem 2. I1 0 E E ~ ~f ±, the [ollowing limit exists 

s (O)=  lira V(A)-~So(A)=~fV(A)-~S~(A) .  (2.4) 
A ~ o o  

The [unctional s(') is a~ine and upper semi.continuous on E fs.o -of±. 
This result is contained in [2], Section 5, in a slightly different form 

because of a different choice of C*-algebra. One may  for instance derive 
here the upper  semi-continuity of s ( ' )  f rom the fact  tha t  s is the lower 
bound of a family of continuous functions V(A) -~ S(A) on E n ~ ± .  

3. The Variational Property 

Given # E ~ a continuous function A ,  on K is defined by 

[o o so 
= { ~  , . 0  (3 .1)  

The linear mapping ~5 -~ A¢ is norm decreasing from M to ~ (K). Notice 
tha t  if S~ = X is finite 

~ A~(X) = Uv(X) . (3.2) 
x E X  

Theorem 3 (variational property). 11 q5 E ~ ,  then 
P(~))= sup [ s ( e ) - e ( A o ) ] .  (3.3) 

We ~s t  prove ~hat for each ~ E E ~ ~ ±  we have 

P ( ¢ )  ~ s(e ) - - ~ ( A ~ ) .  (3.4) 

Let  A = (x~ . . . .  , x~}, and ~A be the subalgebra of ~ ( K )  consisting of 
those functions of eo which depend only on eel,, . . . .  o~ .  ~ A E ~fA, then 

o(A) = Z 1A(X)A(X). 
X c A  
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On the other hand UA ~A is dense in ~ (K) by the theorem of Stone- 
Weierstrass. Using this and the invarianee of 0 we find that ,  given ~ > 0, 
then for sufficiently large A 

] 0 ( A o ) -  V(A)  -1 • ~ / A ( X ) r ~ A o ( X ) ]  < e 
x E A  X C A 

where, by  (3.2), 

V(A) -~ ~ ~ h ( X ) z ~ A o ( X ) =  V(A) -~ ~ h ( X )  U~,(X) 
• EA X C A  X c A  

hence 
[q(A¢) - V ( A ) - !  ~" IA(X) V¢(X)[ < e .  (3.5) 

X c A  

On the other hand, by (2.4), 

s(e) < V(A)-~[ - ~Y' /A(X)  logIA(X)] 
X c A  

therefore 

s(q) -- o(A¢)  - e < - -  V ( A )  -1 Z ]a(X) [U. (X)  + lOg[A(X)] .  
X C A  

Using ~ ]A (X) ---- 1 and the concavity of the logarithm this yields 
X c A  

e -- gO (X) 
s(e)  - e (Ao)  - e < V (A)  -1 ~ [A(X) log - -  

x c . ~  /A(X) --  

< V(A)- l l °g  Z e--~*(x)- 
X c A  

:By (I.5), this yields (3.4) when A -~ ~ .  
We show now tha t  ~ E E ~ ~ ±  can be found such that  

p(qS) < s(o~) -- o(A¢)  + 2 e .  (3.6) 

Given an integer n > 0, let 

A n = { x E Z ~ : O < x * < n  for i = 1  . . . . .  v}. 

For  n large enough, (1.5) yields 

[p(~5) - V ( A n ) - I  logZA~(¢)I < e .  (3.7) 

We introduce a function [ of finite subsets of Z ~ by 

]'(X) = ZA.(o)) -~ e - v , ( x )  . 
The translates 

A ~ + n k  

of An, where/c E Z '  form a partition of ZL Let  A be the union of a finite 
number of such translates 

N 
A =  13 [ A . +  n k j .  

i = 1  
If A E ~A, we define 

~(A)  = ~ . . .  ~ [(X~) . . . [(X~,) A ( X  I b "  " w Xs-)  . 
X ~ C A n + n I ~ t  X . , v c A n + n t ~  n 
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I t  is easy to see that  this definition does not depend on the special 
choice of A and, the union of the c~ A being dense in c# (K), ~ extends 
uniquely to a state on ~¢ (K), which is periodic with periodicity cell An. 
A state @ E E ~ A¢ ± is now obtained by  averaging ~ over translations: 

e(A) = V(A,) -1 ~ e ( ~ A )  
xE An 

then, by  easy estimates 

s(@) = lira V(A) -1 [ -  ~ /A(X) log/A(X)] 
A-.-* oo X c A 

= V(A,)_I[  - ~Y~ t(X)logT(X)]. (3.8) 
X c A ~  

Using for instance (3.5) one checks also that  for large n 

l@(Ae) - V(An) -~ ~ [(X) U~(X)I < e .  (3.9) 
X C A n  

From (3.8), (3.9) and (3.7) we get 

s(e) - e(A~) + e > V(A~)-* [ -  ~7 t(X) [U¢(X) + log/(Z)]]  
X c A n  

= V(A~,)-~ logZa.(fib) > p(~b) -- e 

which proves (3.6) and therefore the Theorem. 

4. The Gibbs Phase Rule 

Given a one-component thermodynamic system, we take the Gibbs 
phase rule to mean that  "almost all" points of the (/~, fl) diagramme 
correspond to a single phase, # being the chemical potential and fl the inverse 
temperature. I t  is however conceivable that  for special choices of the 
interaction this statement becomes incorrect. One is thus led to for- 
mulate the following "Gibbs phase rule":  for "almost all" interactions 
and (#, fl) a system at equilibrium consists of only one phase. We deal 
with classical systems and # may be considered as a "one-body potential" 
while fl is a multiplieative factor for all potentials. We may thus omit 
#, fl in the formulation of the Gibbs phase rule (absorbing /x in the 
interaction and putting fl = 1). We say that  a system consists of only 
one phase when it  is described by a state @ which is an extremal point of 
E ;~ £e± (see [3], [4]), i. e. an ergodie measure on K. The Gibbs phase 
rule means thus that  ergodicity is generic for the states of infinite systems 
in classical statistical mechanics. To obtain a theorem it remains only to 
precise the set of interactions considered and the notion of "almost a11" 
interactions in this set. 

Theorem 4 (Gibbs phase rule). (i) I/q~ belongs to the set D o/Theorem 1, 
the/unction @-~ s(p)-o(A~,) reaches its maximum p(qS) at exactly one 
point @~ 6 E ~ ~ ± .  
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(fi) I] q5 ~ D and :¢¢ is the ]unetional defined in Theorem 1 then, 
/or all T,  

eo(A~) = ~ ( T )  (4.1) 

and ~¢~ may be interpreted as the "equilibrium state" corresponding to the 
interaction qS. 

(iii) I /  q~ C D, the equilibrium state ~ is an extremal point E f~ of± 
(= ergodic measure on K ---- pure thermodynamic phase). 

For any  ~5 E 2 ,  the functional ~ ~ s (~) -- 9 (Av) is affine upper semi- 
continuous on E ~ ~ ±  and reaches thus its max imum P(05) on a non- 
empty  set A~ which is convex and compact and contains therefore at 
least one extremal  point of E A ~%f±. I f  ~ C zl~, we have for all T E 2 

p (~b ÷ T )  ~ s (9) - e (Av + ~) = s (e) - e (A~) -- e (A ~) = P (¢) -- 9 (A ~). (4.2) 

Since ~ - ~  A~ is linear and continuous, (4.2) shows tha t  ~ - ~  P (qS) -- ~ (A~) 
is a tangent  plane to the graph of P (") at  ~b. Let  Lf be the Banach sub- 
space of ~ (K) generated by  differences A - T~ A with A ~ ~ (K), x E Z ~, 
and Q : ~ ( K )  ~ (~(K)/~.~f be the quotient mapping. We notice tha t  ~ ±  
(invariant measures on K) is isomorphic as Banach space to the duaI of 
V (K)/~f, and tha t  {Q A~:  ~ E 2 }  is dense in V (/~)/~%f (use the fact  tha t  
UA ~A is dense in (#(K)). Therefore if an element of ~f± vanishes on 
all A~ it  vanishes identically, in particular two distinct elements of zlv 
yield different tangent  planes to the graph of P ( ' ) .  By  theorem 1, if 
q5 E D, zJ~ is thus reduced to one point ~ which is extremal in E ~ ~f± 
and 9¢(A~) = ~¢(T)  for all kY~ 2 .  

Remark. The variational formulation of equilibrium given in this 
paper is grand canonical. In  [3] a microcanonical approach was used: 
"equilibrium is realized by  the state which, for a given density and 
energy density (with respect to a given interaction), has max imum 
entropy".  As usual the mierocanonical point of view is physically more 
intuitive, the grand canonical point of view is technically easier to handle. 

~¥e want  also to point out tha t  the reader can reintroduce the 
temperature  and chemical potential  explicitly (see [I]), he will find in 
particular tha t  for a dense set of interactions in 2 ,  the set of (#, ~) points 
for which there is more than  one phase is of Lebesgue-measure zero. 
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