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Connection between Wightman Functions
and Green Functions in p-Space.

D. RUELLE

Eidgendssische Technische Hochschule - Ziirich

(ricevuto il 10 Ottobre 1960)

Resumé. — Dans le présent travail, aprés avoir repris 1’étude des pro-
priétés d’analyticité de la fonction ¥~ de Wightman dans le cas ou le
temps seul est variable complexe, nous en déduisons la fonction de
Green @, étendant ainsi par une nouvelle méthode les résultats de O. Stein-
mann relatifs 4 la fonction & 4 points. La fonction G a pour valeur fron-
tiére la transformée de Fourier de la valeur moyenne du vide du pro-
duit T des champs et prolonge analytiquement la fonction retardée de
L.8.Z. dans ’espace des impulsions. Finalement on établit un ensemble
de propriétés qui caractérisent G en ce sens que si G posséde cey pro-

priétés, il existe une et une seule fonction A possédant les propriétés
habituelles et telle que G en dérive.

1. - Introduection. x- and p-spaces.

The Wightman function % (z), 2= x+iy is defined as an analytic conti-
nuation of the vacuum expectation value

W) = CAO (@) AP (5) oo AW (@) D0

of the local scalar fields A% (x,) (%?).
The Green function G(k), k= p-+ig will be defined as an analytic conti-
nuation of the Fourier transform of the vacuum expectation value of a T-pro-

(1) A. S. WiearManN: Phys. Rev., 101, 860 (1956).
(2) D. Hary and A. WicHT™MAN: Mat. Fys. Medd. Dan. Vid. Selsk., 31, no. 5 (1957).
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duct (3).
G(p) = FTAPAD LA (Pry eoey Pu) -

1t i~ convenient to introduce immediately the spaces of variables that will
be nsed in the sequel.

Consider the space K*~1 of the independent real variables ¢, ¢, ..., t,. The
quotient of this space by the equivalence relation

(1.1) fy—t= t—t,, ti—ty=ti—ty, ey lyy—ty =1, —1

is a space R™ which will be called (f).

Similarly if &y, @y, ...y &, O Yo, Y1y ooy Yu (YOSD. &y 21, ..., &n) are setsof
independent real (resp. complex) vector variables, the corresponding equi-
valence relations will vield spaces R** (resp. €**) which will be called (z) or (y)
(resp. (2)).

If one considers vectors (20, x9), (27, 21), ..., (2, x,) where the first (time)
component is allowed to be complex, the other (space) components being real,
one obtains in the same way a space O, x R*" called (2%, x).

Consider now the space R**! of the independent real variables s, 5, ..., 8,
The subspace of this space defined by

(1.2) Sp+ S+ .+ 85, =0

is a space R* which will be called (s).

Similarly if py, piy - Pu O Goy Giy -ory Gu (resp. ko, Ky, ...y k.) are sets of
independent real (resp. complex) vector variables, the corresponding subspaces
are space R+ (resp. C*') which will be called (p) or (g) (resp. (k)).

It one considers vectors (ky, py), (5}, p1)s ---, k), pn) where the first com-
ponent is allowed to be complex, the other components being real, one obtains
in the same way a space C"x R3" called (k° p).

We can now introduce a bilinear form on (¢) (s), namely

(1.3) set= st =D s(ti— 1) .
i=0 i=1

Similarly

(1.3") prr =2 P =3 piw;— ),
i=0 i=1

and %o on.

3y J. ScuwiNcer: lnnuwal Indernational Conference on High Enerqy Physics at
CERN (1958).

23 - Il Nuoro Cimento.
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For integrations over (¢), (s); (®), (p), etc., we will use
(1.4) dit =d{t, —t) ... d@. —1%) ds =ds, ... ds,,
(1.4") de = d{z, — 2y) ... d(@,—2,) dp =dp, ... dp,.

In the spaces just introduced, we have of course redundant variables. It
is useful to keep them in general for reasons of symmetry. In particular cases
however, other variables may be more suitable.

We have introduced above four-dimensional vectors for obvious physical
reasons. All that will be said can however be easily generalized to N1
dimengsional vectors (%, 4%, ..., 27) with metric (2*)2— (21)2—...— (2™)2, N >1

2. — The decomposition of (r) and (s) into cones.

Let us consider the set of all planes
(2.1) to—1t, =0 t, 8 =0,1,..,n; ¢%4¢

in (¢). They decompose (¢) into a set .7~ of open convex cones.

In such a cone 7, every difference #,—t, has a well-defined sign so that
we can order the #; by increagsing values into a characteristic sequence
t, <ty <<t

On the other hand to every sequence (iy, %, ..., ;) there corresponds a
permutation & of {0,1, ..., n} such that = (0,1, ..., n) = (o, @1 ...y 4,) (and to
every permutation corresponds a sequence). There is thus a one-to-one cor-
respondence between .7 and the symmetric group p.., of permutations of
n-+1 objects, and  therefore contains (n--1)! cones, each being defined by
n relations:

t—t, >0 ..t —t >0

n

We will often write for convenience
{2.2) T(r) = (Zgy b1y oory Ba) -
The n faces of T(m):
o=t <t <<t , 1<l =1t <<l e <t <.y, =1 .
can then be represented by
(2.3)  (fg~tyy Gay ey tn)y  (Boy Gy~ figy coey Gn)y  weey  (fog G1y erey Gng~ 10},

where the ~ symbol allows for transposition of the adjacent indices.
The faces of lower dimension are represented with more ~ symbols up to
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the vertices:
(2.4) (g, dy~lgm~i~iy),  (fo~idy, g~ iy)y ey (o~ iy~ cn~d, gy By -

Each cone (2) can thus be viewed as a formal # — 1-simplex with # faces (3)
and n vertices (4) (this simplex can be realized by cutting T with an appro-
priate affine plane). The set of all these simplexes together with their faces
builds up a «simplicial complex » which is a « triangulation » of a n — 1-sphere

(e.g. the sphere 3 (t,—t,)*=1 in (1)).
i=1

We go now over to (s) space and consider the set of all planes

(2.5) Ss,=0, Xc{0,1,..,n}, X#0, X+#{0,1,..,n}.

1EX

If X, and X, are such that X,=CX,, i.e. if they are complementary sub-

sets of {0,1,...,n}, the planes > s, =0 and Y s,= 0 are of course identical.
TEX, 1€X,

We will call & the set of open convex cones into which (s) is decomposed
by the planes (5). This set has a less simple geometrical structure than .7.
For instance a cone Se.% is not always limited by »n planes when n >4.
The situation is illustrated by the case of the cone S for n =4 which is de-
fined by

So k8> 0 Sp+ 83> 0 So+ 8> 0,
(2.6)
S+ 8 >0 8+ 8>0 8;+8,>0.

It may be remarked that the subspace of (s) orthogonal to an intersection
(different from () of planes (1) of (¢) is an intersection of planes (5) the con-
verse however is generally not true.

3. — Analyticity of the Wightman funetion.

The following axioms: Lorentz invariance, existence and uniqueness of the
vacuum, stability of the vacuum and local commutativity imply that the
Wightman funetion #7(z) exists, is analytic in Un%; (the union of the per-
muted extended tubes) (*) and is invariant there under the homogeneous com-
plex Lorentz group.

(") Let us recall that the tube %, is defined by
M= —€Vis 1 =y—EVasstn= 1YYt € Vi, = arbitrary.

The extended tube is defined by %, — Uieror1 P
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# (z) has (n+1)! distribution boundary values #""(z) (which are assumed
to be tempered) when the imaginary part of z tends to zero, z remaining inside
some 7t#,, TEYPniy.

Let
(3.1) Gen—n, G=gtu), P=3p,
with
20, Ty ey B) = (igy Gy, ey £n) 5
then

pa—3poa=3 PlE.
i=0 i=1
If we write

(3.2) W) = F G (p) = (271)‘“[(11) exp [ip =] G7(p)

the stability of the vacuum expresses itself by the support condition
(3.3) G*p) =0 unless PieV., j=1,0yn

This allows the Fourier transform (2) to be extended to a Laplace transform
analytic in 7%, and. gives conditions on its behaviour at infinity. We will
not however formulate these conditions since it is easier in practical cases to
use directly (3.3).

Regarding Lorentz invariance, if space reflections are allowed, # is in-
variant under L((Q), if they are rejected, ¥  is only invariant under L.(C),
where the complex rotations in L,(C) have determinant 1.

Having introduced the basic properties of the Wightman functions that
do not connect several of them (as positive-definiteness of the metric and the
asymptotic condition would do) we proceed by studying ¥~ in the space (2%, x).

The decomposition of the space (y°) into cones T(x) induces a decompo-
sition of (2, x) into domains R* i T (x).

If #€y,., the corresponding permuted tube and permuted extended tube are
ad, = {2 otz e}, adty, = {z: n‘lzeﬂ;} .

The real point in %, are the Jost points (4), those in adf, the « permuted » Jost points.
We do not assume that #(z) is uniform in UnZ, but if « is a Jost point or a per-
muted Jost point, ¥ (z) is holomorphic and uniform in a neighbourhood of x (%).
(3 R. Jost: Helv. Phys. Acta, 30, 409 (1957).
(3) D. Kueirsax: Bull. Am. Phys. Soc., 5, 82, 79 (1960).
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Since R4 [T(x) is the trace on (2% x) of aZ,, # (% x) is analytic in
every R*-t i T(n).

Suppose now that T{x') and T(x") have a face (i), ..., 11~ {4y ... b,) D
common. The piece of plane F defined by

(3.4) Yo <<yl _ =y, << Y

is then a common boundary of R*-+iT(x') and R*--iT(x").

Let x be a real point in #'#, (a permuted Jost point (4)), #7(:%, x) is ana-
Iytic in a neighbourhood of ., and therefore at some point of F for which
(0 — Tpq)2< O,

Let now & be any point of ¥ for which (r,—a,_,) < 0. By a very small
complex Lorentz transformation, z can be brought either in #'#, or in a"%,,
so that the restrictions of #" to R*--iT(n') and to R*+iT(x") can both be
continued over F at :z. These continuations coincide because the set of points
of I for which (r,— ., ,)>2< 0 is connected and they coincide at some points
of this set.

It is now easy to conclude that #” is analytic at those points of the plane
yo—1yy =0 for which (#,—.ur,,)>< 0 and which do not belong to other
planes of singularities. The case of these intersections is dealt with hy use
of the Kantensatz (¢7) and we get the following.

THEOREM 1. — #7(2°, x) can have singularities only if two of its arguments
(2}, x,) and (2}, x,.), i1 arve such that y'—y'= 0 and x,—x, is not space-
like.

Let now the function F(z) be invariant under Lz and such that F(:0, x)
is analytic in the domain R*"--iT(x).

We introduce the variables 17, ...,i7 of eq. (4.1) as co-ordinates in (z),
writing

S (T ) = (T 0y 0) (0, Ty 0) (0,00, ., D)

If :en #,, each term in the right-hand side is of the form

(O, [P :,-, sy ()) = [1(‘)(0, cevy Jiy ey ()),

where A9e Lt and (0, weey Liy o--r 0) belongs to the bhoundary of K- iT(xn)
in (2% %), (0,.., 3, .., 0)1is thus a limiting point of analyticity points of #~
and, by virtue of the tube theorem (*), the same is true for z. Since 4, is

(") We need here an unusual form of the tube theorem. That this holds is seen
by referring to a proof of it based on the use of the continuity theorem.

() H. BErNKE and P. THULLEN: Ergeb. d. Mall., 3, no. 3 (Berlin, 1934).

("} D. Ruerre: Hele. Phys. leta, 32, 135 (1959).
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an open set, 2z is a point of analyticity of ¥ and we obtain easily (?) the fol-
lowing

THEOREM 2. — If the domain of analyticity of # (2%, x) is as given in Theo-
rem 1 and if W (2) is invariant under Li (resp. hw (2) is analytic in UnR; and
invariant there under L (C) (resp. L(C)).

4. - The boundary values of the Wightman funetion.

We have introduced in the last paragraph the real boundary values #7(z)
of #°(z). They may also be defined by

(4.1) W) = Hm# (2, x), y°el(n).

y'—>0

This defines (n+1)! « sheets » along (x) corresponding to the cones T(n)e 7.
We divide now each sheet into 2% oriented «intervals»

(4.2) (70, @) = (io 2812 o0 Z 1)

by giving the differences #; —a; a definite sign so that either », <,
or ¢, >,. o is thus an arbitrary family of n > or < signs.

Just as the T(m), the (n+1)!2" intervals (=, ) may be viewed as the
(r — 1)-simplexes of a formal complex with faces

(4.3) (lo=112622 e Z0n)y (G028 =120 Z%n)y oy (062612 e Z ey = Un)
and vertices

(4.4) (028 =fly= .= 1,), (o=10,2 0= c=1p), sy (o= 11= . =luy Z1a),
where the = sign allows for transposition of the adjacent indices.

A sum of intervals is called a (n — 1)-cycle when its boundary is zero.
We will mostly consider cycles made up of (n+1)! intervals corresponding
to the permutations w€y,41-

Let s(o) be the number of < signs in o, then a necessary and sufficient
condition for

C =3 (=) (n, 0,)
€Y nt1
to be a cycle is that whenever T'(m,) and T'(m,)differ only by 2 transposition
of consecutive indices, o, and o, may differ only by the sign between these
two indices.
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Consider now a sequence (*)
(4.5) @ (@) €Sy r: positive integer

chosen once for all and such that ¢.(z) — d(z) in &;, when r — oo.

We define (7, 0)# % g,(x) €S to be equal to# ™%, (x) when the inequal-
ities ¢ hold, and zero otherwise.

We make then the following assumptions on #° and the sequence ¢,.

ASSUMPTIONS A. — If O= > (—)")(m, 0,) is a cycle:

1) OF xq.(x) converges towards a distribuiion in &* when r — co.
2) CH# (x) = lim O xq.(®) is invariant under LI.

The first assumption is less stringent than it would be to require each
(7, 6)# % q@,(x) to have a limit.

The second one is not unnatural since it can be proved for points such
that »,,—x;7= 0 whenever i's£¢. One has just to use Theorem 1 and to no-
tice that the derivatives of C#" with respect to the parameters of the Lorentz
group vanish when all x, are different.

If the assumptions A are fulfilled, we define the vacuum expectation value
of the time-ordered product by é(w):TW (), where the eycle T is defined
by T=3 (m,>). This definition may of course depend upon the sequence g,.

5. — Shifting of integral paths and analyticily of the Green funection.

Using eq. (3.1), we can write
6.1 Fllm o)W xe.1(p) = (275)*2’1](1% exp (— i X P7-&) (m o)W #¢.(2)

7 being held fixed and such that =(0, 1, ..., n) = (i, 4y, ..., i), let ¢’ and o"
differ only by the sign between ¢,, and i,. Clearly then

f Q8L exp [—iPE-E1[(m, o')W % () - (7, )W % ()]

has the support property P?eV,.

(") For a definition of the convolution product (%), of the functionnal space &
and of its dual S* (space of tempered distributions), see ScHWARTZ (%).

(%) I.. Semwarrz: Théorie des distributions, t. 2 (Paris, 1951); t. 1, 2¢me gd, (Paris,
1957).
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Otherwise stated, when P7 is restricted to the complementary of V., in
particular when P7°< 0, the formula

(5.2) Flm, VW k@ }p) = — F (7, "YW 5 )(p)

allows the path of integration of &, to be «shifted ».
We will apply this result to

(5.3) G.(p) = (2n)- ”"fdx exp [— ip @] TW %@, (x) = 3 F (7, >)W *¢.](p).

n

Let p° belong to some cone S of the family . into which (p°) can be divided
(see Section 2), the P then have a definite sign when x and j are fixed.

Shifting the path of integration whenever it is possible in F{(n, >)¥ x¢,|(p)
we get

(5.4) F i, =)W *@)(p) = () F[(z, o))# *¢.1(p), res,
where the support of (&, o5)# % ¢,(2) is
(5.5) <0 if PP>0, g°>0 it PP<0.
So, if ¢ is such that ¢°c§ and g=10
(5.6) exp [q-2)(m, o)W * @, (x)eF* .

On the other hand, (" = 3 (—)"™(x, ¢3) is easily seen to be a cycle and C¥#%"

4

is therefore Lorentz-invariant. (5.6) gives then
(5.7) exp [(Ag)-x] C*W e.s* for .1eL!.

We will now use the following properties (*):

1) It 4 is a distribution, the set [" of all real points ¢ such that
exp[q-@]A(x) e¥* is convex.

2) Flexp[q-x]A}(p) defines a Laplaee transform, analytic when the
vauable k= p+iq is in the tube R* -4 I’(]‘ the interior of I').
We will call I'(S) the set I" corresponding to the distribution C*¥". Using
1) and the invariance of I'(§) under homotheties s —as (x> 0), we see that
any finite sum of vectors belonging to I'(S) belongs to I'(S).

(®) J. L. Lioxs: Suppl. Nuovo Cimento, 14, 9 (1959).
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1
Let now w*elV ., a=1...., 4+ and Zu"‘: u, where u is the unit vector

v =1 E 4 4+
along thet ime axis. M s%e S, the point ¢ = (3 syu, X sju’, ..., > s u”) belongs
v =1 a1 Nl
. - A
to I'(8), because we can write #* =1 u, r >0, A'e L',
If sl=..=s'=4, ¢=(s,0). Tf s', .., s ave varied over neighbourhoods

of s in N, ¢ varies over a neighbourhood of (s, 0). Since thﬂis neighbourhood
belongs to I'(S), we have proved that se S implies (s, 0)eI'(S).

Extending the Fourier transform G‘“'(p):o,? C°# (p) to a Laplace trans-
form G*(p+-iq) analytic in the tube R#"--{[(S) and then restricting to the
space (k° p), we have proved:

1) GY(k°, p) is analytic in R* -+ (8 (i.e. when g eN).

2) lim Gk, p) = G(p) if poe M.
—>0.0"€s
Let 8,e.% be defined by the equations s, >0, 1< i< n.
We introduce the retarded cycle R by R= (™, R#" then reduces to the
well-known r function (*°) (*) and #r(p) is analytic if p is a Jost point, i.e. if

(5.8) ( > /l,»p,—)2 < 0  whenever 1,220, Sii=1.

i=1 [

A set F'c(s), £+ 0, will be called a face of Se9 if it is the interior in
a subspace Y's; = 0 of the intersection of this subspace and the closure S
of S. ey

Let now 8" and 8" have a face F in common. The piece of plane R*—{F
1s then a common boundary of R*--iS and R+ /8",

If a point e R+ iF is such that (z p,-)2<0, it is possible to bring it

(€X

either in Rk J'r-—ilu‘(;,\") or in "4 i,f‘(b‘”) ‘f)y a very small complex Lorentz
transformation. This means that G¥(k9, p) and G¥(ke, p) can both be ana-
Iytically continued through R**4-iF at L. In order to prove that these conti-
nuations agree in the connected set of all points of R4 |-/ # for which <}: pi) 220,
we will show that they agree at some point of this set. fex

Let p, be a Jost point (eq. (5.8)) such that pieF in (p°). In any real
neighbourhood of p, there exist houndary values of G¥(k) and G* (k) which
coincide with #T% = Fr which is analytic in a neighbourhood of p ;. There are
thus points of ¥ with (3 pi)? < 0 such that 6*'(k) and G'(k) coincide, which proves

1EY
the announced property.

(") The connexion with the usual definition of r is given by ref. (11), eq. (3.11).
(1) H. LEaMAaNN, K. SyMa~Nzig and W. ZIMMERMANN : Nuovo Cimento, 6, 319 (1957).
(") NX. Nrsurima: Phys. Rev., 111, 995 (1958).
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The intersections of several surfaces Y ¢/= 0 are easily dealt with by use
iex
of the %{antensatz (¢) and we get for the function G(k), whose restriction to
R _L4[(8) is G5(k), the following

THEOREM 3. — The function G(k° p) can have singularities only if Y ¢
i€x
vanishes for some X c{0,1,...,n}, X5 0, X {0, 1, ..., n} and > p, is not space-
like. fex

6. — The multiple commutators.

We will now try to get more information about the connexion between
the cones Se& in (s) and the corresponding cycles C°.

Let 4, be the abelian group generated by the cones Se%, and let %,
be the subgroup generated by the cycles C° in the abelian group of all cycles
defined in Section 4. The mapping S — C° extends by linearity to a homo-
morphism %, — €,. This homomorphism is obviously onto, but it is not in
general an isomorphism. Its kernel 7, is the set of linear combinations of
8 €% such that the corresponding linear combinations of boundary values of
G(z) vanish identically.

We call Steinmann relations the resulting linear relations between the G*(p).

Let X = {4y, i1y ..., %} C{0, 1, ..., n}. We will call (s), the subspace of (s)
defined by the relation Y s;==0 in the subspace generated by s; , si, ...y i .

i€X
The decomposition of (s): into a set &, of cones is effected just as in (s) and
to these cones we associate cycles ° for the variables z; , Rijy ey 2. Wewill
call €, the abelian group generated by the cycles thus formed.

Consider now two cones S, 8’¢% such that 8’ and 8" have in common
the face F belonging to the plane Y s,= 0 so that > s, <0 in § andy s, >0
in S//. 1€EX i€X i€x

If we write
(6.1) CF— % = 3 (=), 0F) — (=) (m 0],

where we have set for simplicity ¢’ = 0%, 0"= ¢}, the sum in the right-hand
side extends only over those permutations m€y,;; for which

(6.2) 70,1, ey 1) = (B, gy orry Bn) DA X = {dgy vory 0} OF X = {Ensy oery ne

Let 7, €y44, and m€y,, be permutations of X and CX respectively.
We may then represent the permutations z of eq. (2) by mm. or mm,, the
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corresponding ¢ being of the form o,z ¢, or ¢,2 ¢, respectively, so that

{I’ (705, 0') = (M, 017> 0,) (y7ty, 0°) = (M7, 0,<C 04)
(6.3)
[ (1, 6') = (a1, 02 < 0y) (amtyy 0") = (o701, 0> 0y) 4

oy (resp. o) is determined by the signs of the > s, X;c X, X;# 0, X,# X

i€X,

(vesp. of the s, X,cCX. X, 0, X, CX) in F, which are the same as
i€X,
in & and 8". Since the sign conditions on the Y s, (resp. D s,) are compatible,
1€X, 1€X,

they determine a cone 8,€¥; (resp. 8,6 ,) and one may write ¢, = af,; (resp.
Ty = ajj) independently of whether w = =7, or 7 = nun,.
Using (6.3), (6.1) can be written

Z 2[ HTIN iy, 012> 0y) — (— )OI g, 0y < o) +

+ () ey, 0 < 01) — ()T Y (w0 > 0y)]
(6.4)
— z (_)s(al) z (_)S(Jg)[(nlnz’ oy > 0_2) +

+ (T2 s 01 0s) — (M1, 03> 01) — (703701, 02<< 07)] .

We introduce now the product and the commutator of two cycles ¢, and C,
when these cycles have no variable in commeon

G-, = z (_)S(UI)(ﬂly o1) z (_)3(62)(7527 as)

N T2

(6.5) = ) z ) (s, 017> 0y) + (e, 01< 0v)],

7’1

[(/"17 02] = (-0, — Cy- 0.

The commutator of two cycles will be defined to be zero if they have at
least one variable in common. We have thus proved the formula

(6.6) oS % = [Osl, OS"] .

Conversely, if S, and 8, are arbitrary cones of &, and S, respectively,
it ix easily seen that there exists at least one couple of cones &', 8”€% such
that eq. (6.6} holds. This means that the direct sum % = z% has the
structure of a Lie algebra for commutation.

From the above, it results that the cycle ¥ corresponding to any cone
S e is equal to the cycle C% corresponding to a fixed cone 8, plus a sum of
commutators of c¢ycles with a smaller number of variables.
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One may thus reconstruct every cycle in %, if one knows one cycle €%,
Sey, for each X. For instance one may take the retarded cycles, obtaining
the following

THEOREM 4. — The abelian group € generated by the cycles C* is also generated
as a Lie algebra by the retarded cycles R.

If we restrict to %,, this means that the abelian group of all linear com-
binations with integral coefficients of the boundary values G*(p) of G(k) is
identical to the abelian group of the Fourier transforms of all linear combi-
nations with integral coefficients of the vacuum expectation values of mul-
tiple commutators of retarded products and fields (each field A‘(x;) being
used eventually in a R-product, once and only once in each multiple com-
mutator).

7. — Introduction of masses.

When we introduced cycles along the real boundary values of #'(z), we
had to cut singularities (at the top of light cones). This difficulty was solved
by a regularization process and assumptions about #".

The purpose of this paragraph is to avoid similar troubles with G(k) by
introducing a non-zero minimum mass in the theory.

It will also be necessary for the following to introduce the truncated Wight-
man functions % (12). No proof will be given here of the properties stated.

Let o be the family of all partitions of the set {0, 1, ..., n} into k-1 sub-
sets: Xy, X, ..., X, and let #7(2), be the Wightman function of the wvari-
ables z; such that ie X .

We write then the reduction formula

X

(7.1) W(E)=3 1_[“/7

k=0 g, i=

and use it to define the truncated functions %  recursively on the number of
variables.

The function # (z) has all mathematical properties described above for
# (z). A Green function can be deduced of it, which also has all the mathematical
properties of G(k). It can be seen that it coincides in fact with G(k).

We know that the mass operator in Hilbert space has an eigenvalue equal
to zero and corresponding to the vacuum. We ghall assume that the rest of
its spectrum is > u, u> 0.

(12) R. Haaa: Phys. Rev., 112, 668 (1958) and Suppl. Nuovo Cimento, 14, 131 (1959).
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Let then V* =uw:iorel’, r2>u?, x: a vector in Minkowski space. We
have the following (see (1))

THEOREM 5. — Let #7(x) = F G'(p) = (2z)~* [dp exp [ipz] @(p);
G7(p) then satisfies the support condition @j‘(p) =0 unless PTel’’, j=1, .., n.

THEOREM 6. — The function G(k° p) can have singularities only if 3 ¢
i€X -
vanishes for some X c{0,1,...,n}, X 0, X>={0,1, ..., n} and (Zp,-)z >y

iex
We gather now the information we have about the functions ¥~ and @.

I. Properties of W (2).

1) #7(2) is invariant wnder L{C) or L{0) according to whether the theory
is tnrarviant under LT, or L.

2y The singularities of #°(2°, x) are given by the Theorem 1.
3) W (z) has boundary values

W) = lm W (2, y)

Y00, ' C(m)
which are tempered distributions.
1) There are conditions on the behaviour of #'(z) at infinity which we
replace by the support conditions of Theorem 5 on FH *(p).
From these properties of #, we have derived the following
II. Properties of G(p).

1)y G(k) is invariant under L.(0) or L(C) according to wheter the theory
is invariant under LY or L.

2) The singularities of G(k°, p) are given by the Theorem 6.
3} G(k) has boundary values

G'(p) = lim G, p)

¢"—0, ¥~
which are tempered distributions.

4) These boundary values are subjected to linear conditions: the Steinmann
relations (Section 6).

5) There are conditions on the behaviour of G(k) at infinity which we
replace by the support conditions on FG'(x) which follow from eq. (3.5).

(** D. Rurnne: Thése (Bruxelles, 1959).
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8. — Produets.

In order to show that the information contained in the properties of the #~
function has been completely translated into terms of the properties of the
@ tunction, we will reconstruct # (not #°!) from G. This paragraph is devoted
to an intermediate step in this reconstruction, namely the definition of products.

Since the distributions G*(p) are subjected to the Steinmann relations, they
generate an abelian group which is isomorphic to the group %, of cycles intro-
duced in Section 6. For facility, we will in fact identify the two groups and
represent the G*(p) by the corresponding cycles. We will also introduce the
commutators by the formula (6.6) and we will be allowed, in computations
with multiple commutators, to use the relations

(8-1) [01, 02] = “[Gm 01]7 [Ci + Cllly 02] = [0;7 02] + [011/, 02] ’
[Cla [02; 03]] + [Cza [03, Cl]] + [03’ [C’l, 02]] =0.

Congider now a partition of {0, 1, ..., n} into k41 subsets X,, X,, ..., X;. If

X = {lg, 1y oory Ty}, We will write x;;, = i, and pj; = pi .
We define then
-
dp; = dpjs .. APjry P,=3 >pi.
=7 i€Xy
Now,
dp = dpy-dP,-dp, ... AP, -dp,
and
” I EooT)
20 = 3 Pil@in— Tione)+ 2 2 Pis®is — Tio)
i=0 i=1 i=0i'=1
so that if
— 3 . H }
Fz, = (275)_2“’)‘[(1335 exp [4 D D (@i — 250) ],
=1
we have

— — — k
F=Fy Fx, ... ka(2n)—2kfdPl e APy exp [i X Pi(wj0 — ®ijmpy) -
j=1
Let C;e €,,, we will define products Cy-C, ... €, with the following properties.

ITI. Properties of the products.

1) The products are Lorentz-invariant tempered distributions.
2) Distributivity: Cy ... (C;+ C}) ... Co= 0y ... 0} ... O+ Cy ... C; ... C,.
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k)
F T Z (1. () Y 7. av . 0 *
3) [Fy, Fy o Ty, Uo Cr o O] exp > > 825,65
7(j) i=0 j'=0 .
when O;= 0%, S,eF . and Y 8;;, =0, (850, $i1, - Sircny) €85

i .
i'=0

1) Support properties in (p):
0o+ C, ... O, vanishes unless P;eVi, 1< j< k.

3) The following identity holds:

(/YO e 01—1'01 e Ck_ C/'O e 0['0171 o C‘k - CD “ee [Ol—]7 Cl] “oe Ok .

This last property allows the definition of multiple commutators of pro-
duets of cyeles, the number of dots {(-) plus the number of square brackets
([]) being equal to k. This will justify a posteriori our use of the symbols
[Cyy Cy...C,] and [0, ... Oy, Ol

Properties IIT are trivial consequences of Properties I for one single cycle
belonging to %,. We will now define the products recursively on the number
of factors and show that III-1)-5) hold at each step.

By definition, let

4 -
(8.3) [007 01 ses (’Vk] == z Ol “en G.’f—l'[007 CJ'CH_l ‘ee O/c .
i=1

First, we show that this expression vanishes unless P;>> uZ
By the induction Assumption III-4), C,...C,,[C,, C,;]-C;i, ... O, vanishes
unless

(8.4) P,—PeVt, ..., P,—PeVl, Pele, .., Pelt.

If P)<<e 0<e<pu, the sum in the right-hand side of (8.3) reduces to
one term with the support property P,— P, 7;‘;, so that [C,, Cy, ..., C,] van-
ishes unless Pi< —u te.

Similarly, if P,— P}<e, [Cy, Cy,..., C;] vanishes unless Py> u—e. Let
now P> 0, P,— P!> 0, using the induction Assumption III-4), we have

07‘,'01 es Gj—l'[c()y C,-]'C'jﬂ o 07\771 =0 y [00, Ck]'Cl aee Ok_1 =0.

Therefore, using 1I1-2)-5),

k-1
[Coy €y O] = 3 €1 i[Oy O] oo O+ Oy Oy [Co,y il
j=1

k-1

= S0 [Cos O] e Oiyy O] + [Cy e Oy, [Cy, CL]]

i=1
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k-1 5-1
=2 (20..[C, C]...[Cy, O . Oy +-Cy .. [[Co, €5, O] oon Coy +
i=1 1=1
k-1
+ 2 0o [Coy €] [Cry Ci) . iy + Oy [C, [Osy O] .. Cocy
1=7+1
k-135-1
=2 (2 €. [Cr €] .. [Co, €1 oo Gyt €, [Coy [ €y C]] e Cayt-
j=1 1=1
k-1
4+ 3 0o [Coy €3] [, €] e Crcy)
1=1
k-11-1
=2(2 01 [Co, O3] . [Cy Ci] oo €y 0y [ O,y [Cry €] e Cry -
1=1j=1
k-1
+ 2 0[O, C) . [, €] . Crcy)
j=141

k-1
= Z [007 Cl can [Cl, O;J e Ck—-l] .
1=1

We have thus proved that [C,, Cy, ..., C,] vanishes unless Pj>u? when
P>0, PP—P)>0.

As a whole, using the «principe de recollement des morceaux» (8), we
have proved that [Cy, C, ... C;] vanishes when |P{l<u—e, 0<e<<pu.

Letting ¢ go to zero and using Lorentz invariance, we see that [C,, C, ... C;]
vanishes unless P}> u?.

We define the product C,-C,...C, to be equal to [C,, C;...C;] when
P> —pu, and to zero when P;< u.

The product may also be defined to be equal to [(,... C,y, ;] when
P.> —u and to zero when P{<<u. The proof of the equivalence of the two
definitions is straightforward if one uses the same kind of developments as
above.

It remains now to show that the properties I11.1-5) III1.1), hold. 2), 3),
are direct consequences of the corresponding induction assumptions and of
the definition of the produect.

II1.4). The product has been defined so that PIGVf, introducing this
into (8.4) one finds P;e 7’; for 2<j<k.

111.5). We have

1-2
[Coy Cr o G Cr oo O] = 3 €, e[y O] . G- Cr . O+
j=1
+ Cl aer [CD, 01_1]'01 ves Ck + Cl ‘ee Cl_l'[oo, Cl] .es Ok "I—‘

%
+ z Cl ean 01_1'01 are [00, G,] e Ck 9

J=1+1
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80 that

[Co € Oy € G — [y Crn O Coy oo O]

1-2
= 3 € [Coy O] [Cyy € e Gt €y o [[Coy Gy € oo Gt
j=1
k
1o [Cy [Cay O] o G+ X €y o [Cryy O] . [Cy, O] .. €
j=1+1
1-2
= 3 0y [Coy O] e [y € e Gk Gyt [Coy [Cryy G -on Ci+
j=1

k
+ z i[Oty €] o [Co,y €] .. €

= [Cy, C,...1C L, O] ... O] .
From this equation, the property results, except for
CoCr.. O, —C-Cy... O, =[0,, C]... 0,
which is proved by considering the difference

[Cy €y Cryy €] —[C1Cy .. Gy, Ol

9. - Determination of the Wightman funetion from the Green funetion.

We will now prove the following

THEOREM 7. — If a function G(k) satisfies the conditions 11.1)-5) of Section 1,
it determines umguel y a Wightman function %°(2) from which it derives. W (2)
satisfies the conditions 1.1)-4).

A restriction will be brought to this formulation at the end of the proof.

From G(k) we have already derived the products C,-C, ... C, and proved
the properties IT1.1)-5) starting from II.1)-5).

Let us first consider condition II1.3).

Corresponding to the cone S,-eyxj we define the convex closed cone U(S;):

) —

(9.3)  T(S) =@}y, ¥, ooy Ty): 2 855055 < O Whenever (Sjo, ;15 -y 8irsy) €S}

j'=0

II1.3) implies that &, &, .. %, (0, .. C, decreases faster than expo-
nentially at infinity in the complementary of U(S;).

24 - Il Nuovo Cimento.
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But then, it can be shown, using Lorentz invariance, that #, %, ... #, Co°
-C; ... C, must actually vanish outside of U(S,).

So we replace II1.3) by

IIL3'). Support properties in (¥): F o F ... F, C Cy... Oy where C;= 0%,
8;€Fy,, vanishes unless
(@ @1y ey X3,) €US,) 0<j<k.

Consider now the case when G(k) derives from a Wightman function ¥7(z)
in the way deseribed in Section 5.

Up to Fourier transformation, the products defined in the last paragraph
are then identical with those defined by eq. (6.5) (*). The proof of this state-
ment is easy, it proceeds by induction on the number of factors of the product
and is based on the support property PZGV_’; of

j 4ET exp [— i EXl(m, )V %) + (1, )F s (@)]

when (0, 1, ..., ») = (i, 1, ..y 8,) and o, ¢’ differ only by the sign between
ik—l a/nd /I:IC'
In particular, the boundary values of % are given by

9.2) W) = FLADW-AD .. A% ](2) ,

where the « cycle» A® ig % §; being the unique « cone » in Ly (Lyas well
as S; is of course reduced to a point).
Now, if G(k) satisfies the conditions II.1)-5) but has not been derived from
a function #(z), we define a funetion W (2) from G(k) by equation (9.2).
Properties 1.1), 3), 4) are then immediate consequences of IIT.1), 4). In
order to show that I.2) holds too, we refer to the proof of Theorem 1 and see
that this holds if

FLAW .. A% A5 A (g) — FAD . AW A0 | A% (x)

vanishes when (z,— ;)2 << 0.

To prove this we use first IT1.5) towrite 4%+ 49— 40 A% =[ 4 G2 4]
then (6.6) and III.2) to see that [A‘—», A is the difference of two cycles
in two variables with supports — @€V, and w,,—ax, eV, respectively,
and finally 1I1.3'), 1) to show that these support properties remain in the full
produets.

(") The proper extension of eq. (6.5) to products of k41 cyeles is immediate.
These products are then applied to % .
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Now that we have constructed a function # (z) with all the desived pro-
perties, it remains just to show that the function G(k) derived from #°(z) by
the method of Section 5 is the same as the one from which we have started.

To do this, we will simply show that the products (if cyeles €%, S €SL 5
{Xo, X1y .oy Xi}: & partition of {0, 1, ..., n}, applied to #” are identical, up to
Fourier transformation, to the products defined directly from G. This is true
indeed for k= n because of our definition of #°, and what we want to prove
is just that it is also true for k= 0.

We use thus recursion on k, k decreasing.

Let

I, = % 0% .. C%

be a product according to either definition.

I, and I1, satisfy both the same support properties IIT1.3") in ().

Now, if k< n, there is at least one cycle, say %, in more than one va-
riable. Using (6.6) and II1.5), it is possible to transform 77, or [/, into

~

M= Ce.0%. 0%,  Ses,

by adding to them a sum of products of k--2 factors.
So
1,— 11, = IT,— 1T, .

But if gj is the antipodal of §; in (8)y,s U(8,) will also be the antipodal of
U(8;). II,—1I, vanishes thus if the variables x;y, 1,y ...y Tjnen are not all equal
and Theorem 7 is proved.

It remains to discuss the restriction brought to Theorem 7 by the fact that

F G (x) = C°W ()

only when all vectors x, are different.

This reflects obviously the ambiguity of the definition of C*#(x) which
involves « cutting singularities ».

Any definition of the CO# (x) involves a choice when some difference
®;,— x; vanishes, but should be such that

1) the identical linear relations between the general cycles ¢ give rise
to the same relations between the C’f/(m);

2) when C reduces to A%W-g'” ... A% O# () should reduce to a boun-
dary value of % (z).

1) and 2) were achieved here by the trick of regularizing %" before cutting
the singularities.
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In conclusion and in order to avoid ambiguities it seems preferable to give
oneself a function G(k) with properties I1.1)-3) rather than a function # (k)
with properties 1.1)-4).

* 3k ¥

The idea of the present work originated from the Thesis of O. STEINMANN (14)
who treated the problem of the connexion between Wightman and Green
functions in full details for the four-point function. A later paper of STEIN-
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more related treatment is due to H. ARAKI (®). Most of this work (essen-
tially up to Section 7 incl.) was done in summer 1959 while the author stayed
at the E.T.H. as a « chercheur agréé de I’Institut Interuniversitaire des Sciences
Nucléaires » (Belgium).
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(14 0. SrEiNMANN: Helv. Phys. Acta, 83, 257 (1960).
(*3) O. StEINMANN: Helv. Phys. Acta, 33, 347 (1960).
(*¢) H. Araxi: to be published.

RIASSUNTO ()

Nel presente lavoro, dopo aver ripreso lo studio delle proprieta di analiticita della
funzione ¥ di Wightman nel caso in cui il solo tempo sia una variabile complessa, ne
deduciamo la funzione ¢ di Green, estendendo altresi con un nuovo metodo i risultati
di 0. Steinmann relativi alla funzione a 4 punti. La funzione G ha per valore al con-
torno la trasformata di Fourier del valore medio del vuoto del prodotto T dei campi
e prolunga analiticamente la funzione ritardata di 1.8.Z. nello spazio degli impulsi.
Infine si stabilisce un assieme di proprietd che caratteriz~zan0 G nel senso che se G
possiede tali proprieta, esiste una ed una sola funzione %" che ha le proprieta solite
e tale che ne derivi G.

*) Traduzione o cura della Redazione.



