by explicit argument.

*Work supported in part by National Science Foundation Grant No. GP-8924.

¹A. D. B. Woods and R. A. Cowley, Phys. Rev. Lett. <u>24</u>, 646 (1970).

²E. C. Achter and L. Meyer, Phys. Rev. <u>188</u>, 291 (1969).

³R. B. Hallock, Phys. Rev. Lett. 23, 830 (1969).

⁴D. K. Lee, Phys. Rev. 162, 134 (1967).

⁵H.-W. Lai, H.-K. Sim, and C.-W. Woo, Phys. Rev. A 1, 1536 (1970).

⁶D. Pines and C.-W. Woo, Phys. Rev. Lett. <u>24</u>, 1044 (1970).

⁷A. J. Kromminga and M. Bolsterli, Phys. Rev. <u>128</u>, 2887 (1962).

⁸S. Sunakawa, S. Yamasaki, and T. Kebukawa, Progr. Theor. Phys. <u>41</u>, 919 (1969).

⁹R. D. Etters, Nuovo Cimento <u>44B</u>, 68 (1966).

¹⁰D. K. Lee and E. Feenberg, Phys. Rev. <u>137</u>, A731 (1965).

Extension of the Lee-Yang Circle Theorem

David Ruelle*

Institute for Advanced Study, Princeton, New Jersey† 08540 (Received 7 December 1970)

We study the zeros of the partition function of a classical spin system and compute a region of the complex fugacity plane where they necessarily lie. We recover the Lee-Yang circle theorem as a special example; we also find that a spin system with finite-range interaction has no phase transition at high temperature.

Asano's recent results¹ have revived interest in the celebrated Lee-Yang circle theorem,² by giving it a more conceptual proof. Here an extension of the circle theorem to noncircular regions is proved and applied to problems in statistical mechanics.

(1) <u>Statement of results.</u> – Let P be a complex polynomial in several variables, which is of degree 1 with respect to each, i.e., Λ is a finite set and

$$P(z_{\Lambda}) = \sum_{X \subset \Lambda} c_X z^X,$$

where $z_{\Lambda} = (z_x)_{x \in \Lambda}$, and $z^X = \prod_{x \in X} z_x$.

<u>Theorem</u>: Let (Λ_{α}) be a finite covering of Λ , and for every $x \in \Lambda_{\alpha}$ let M_{α_x} be a closed subset of the complex plane C such that $0 \notin M_{\alpha_x}$. For each α we assume that the polynomial

$$P_{\alpha}(z_{\Lambda_{\alpha}}) = \sum_{X \subset \Lambda_{\alpha}} c_{\alpha X} z^{X}$$

does not vanish when $z_x \notin -\prod_{\alpha} (-M_{\alpha x})$, all $x \in \Lambda$. Then the polynomial

$$P(z_{\Lambda}) = \sum_{X \subset \Lambda} z^{X} \prod_{\alpha} c_{\alpha(\Lambda_{\alpha} \cap X)}$$

does not vanish when³ $z_x \in -\prod_{\alpha} (-M_{\alpha_x})$, all $x \in \Lambda$.

The proof is given in Section 2. This result extends a theorem by Lee and Yang,² and can be used in the same way to obtain regions free of zeros for polynomials in one variable. More precisely, let the Λ_{α} be the two-point subsets of $\Lambda: \Lambda_{\alpha} = \{x, y\}$ and $c_{\alpha X} = a_{x y}$ when $X = \{x\}$ or $X = \{y\}$, $c_{\alpha X} = 1$ when $X = \emptyset$ or $X = \{x, y\}$. For real a_{xy} and $-1 \leq a_{xy} \leq 1$ we may take $M_{\alpha_x} = \{z \in C : |z| \geq 1\}$; hence⁴

$$Q(\xi) = \sum_{\mathbf{X} \subset \Lambda} \xi^{|\mathbf{X}|} \prod_{\mathbf{x} \in \mathbf{X}} \prod_{\mathbf{y} \in \mathbf{X}} a_{\mathbf{xy}}$$

does not vanish when $|\xi| < 1$. By symmetry $Q(\xi)$ does not vanish when $|\xi| > 1$, hence the zeros of Q have absolute value 1; this is the <u>Lee-Yang</u> circle theorem.

Let Φ be a real function on $(Z_m)^{\nu}$ (ν -tuples of integers mod m, "periodic lattice") with $\Phi(x) = \Phi(-x)$, and take $\Lambda = (Z_m)^{\nu}$. Let again the Λ_{α} be the two-point subsets of $\Lambda : \Lambda_{\alpha} = \{x, y\}$, and write $c_{\alpha X} = \exp[-\beta \Phi(x-y)]$ when $X = \{x, y\}$ and $c_{\alpha X} = 1$ when $X = \emptyset$, $\{x\}$, or $\{y\}$. We may then take

$$M_{\alpha x} = \Delta_{xy}^{\ \beta},$$

where

$$\Delta_{xy}^{\ \beta} = \{z \in C : |z+1| \le (1-e^{\beta \Phi(x-y)})^{1/2}\}$$
for $\Phi(x-y) \le 0$,
$$\Delta_{xy}^{\ \beta} = \{z \in C : |ze^{-\beta \Phi(x-y)} + 1| \le (1-e^{-\beta \Phi(x-y)})^{1/2}\}$$
for $\Phi(x-y) \ge 0$,

and we find that

$$Q(\xi) = \sum_{X \subset \Lambda} \xi^{|X|} \exp\left[-\beta \sum_{\{x,y\} \subset X} \Phi(x-y)\right]$$

can vanish only when

$$\xi e \Gamma^{\beta} = -\prod_{y \in Z_m^{\nu}} (-\Delta_{0y}^{\beta}).$$

The region Γ^{β} is sketched for small and large values of β in Fig. 1. For small β , Γ^{β} does not

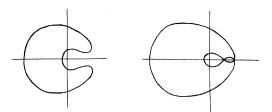


FIG. 1. The region Γ^{β} for small β (left) and large β (right).

intersect the positive real axis. Therefore a lattice gas with finite-range interaction has no phase transition at high temperature. This result was known⁵ but is obtained here with minimum technicality.

The Lee-Yang circle theorem implies that an Ising ferromagnet can have at most one phase transition (at $\xi = 1$). The above proof implies that the zeros of $Q(\xi)$ remain close to the unit circle when a small perturbation (possibly manybody) is added to the original ferromagnetic pair interaction. From this one can deduce the following: An infinite Ising ferromagnet has only one equilibrium state at $\xi \neq 1$; in particular, the thermodynamic limit of the correlation functions is independent of boundary conditions.⁶

(2) <u>Proof of theorem.</u> – When the Λ_{α} are disjoint, P is just the product of the P_{α} (with disjoint sets of variables) and the theorem is trivial. To prove the theorem in general we first form the product of the P_{α} with disjoint sets of variables and then obtain P by successive "contractions." These contractions (introduced by Asano¹) are described in the following proposition, from which the theorem is immediately obtained.

Lemma: Let A, B be closed subsets of C which do not contain 0. Suppose that the complex polynomial

 $a + bz_1 + cz_2 + dz_1z_2$

can vanish only when $z \in A$ or $z \in B$. Then

a + dz

can vanish only when $z \in -AB$.

Since $0 \notin A$, $0 \notin B$, we have $a \neq 0$. If d = 0 there is nothing to prove. If $d \neq 0$, ad-bc=0, we have

$$a + bz_1 + cz_2 + dz_1 z_2 = d(z_1 + c/d)(z_2 + a/c)$$

therefore $-c/d \in B$, and $a/c \in B$, and a+dz van-

ishes only when $z = -a/d \in -AB$. Let now $d \neq 0$, $ad-bc \neq 0$, and write⁷

$$\varphi(z) = -(a+bz)/(c+dz), \ \psi(z) = a/dz$$

where φ , ψ are now considered as mappings of the Riemann sphere (add a point at infinity to *C*, *A*, *B*). If we write $\omega = \varphi \psi^{-1}$, $z_2 = \omega z_1$ is equivalent to

$$ab + adz_1 + adz_2 + cdz_1z_2 = 0$$

showing that $\omega^2 = 1$: ω is an involution. Since B is a proper closed set, $\omega(B)$ cannot be interior to B [otherwise also $\omega^2(B)$ would be interior to B]. Thus

 $\omega(B) \bigcap \sim \overline{B} \neq \emptyset$

where \overline{AB} is the closure of the complement of *B*. By assumption $\overline{AB} \subset \varphi(A)$ and since $\varphi(A)$ is closed, $\overline{BC} \varphi(A)$. Hence

$$\omega(B) \cap \varphi(A) \neq \emptyset,$$

 \mathbf{or}

$$\varphi\psi^{-1}(B)\bigcap\varphi(A)\neq\emptyset,$$

or

$$B \bigcap \psi(A) \neq \emptyset$$

which proves the lemma.

It is a pleasure to thank F. J. Dyson for constructive criticism and Dr. C. Kaysen for his kind hospitality at the Institute for Advanced Study.

*On leave of absence from Institut des Hautes Etudes Scientifiques, 91 Bures-sur-Yvette, France.

²T. D. Lee and C. N. Yang, Phys. Rev. <u>87</u>, 410 (1952). ³In this formula, the product is over the α such that $X \in \Lambda_{\alpha}$. Notation: -AB is the set of points $-z_1z$, with

 $x_1 \in A$, $x_2 \in B$.

⁴We let |X| be the number of points in X.

⁵See G. Gallavotti, S. Miracle, and D. W. Robinson, Phys. Lett. <u>25A</u>, 493 (1967).

⁶A proof of this result will be published elsewhere. ⁷I am indebted to F. J. Dyson for communicating this argument to me, and for his kind permission to reproduce it. Dyson's elegant proof extends to the case where $\psi(z) = -(e + fz)/(g + hz)$ and ah + de = bg + cf.

 $[\]dagger Research$ sponsored by the Alfred P. Sloan Foundation.

¹T. Asano, J. Phys. Soc. Jap. <u>29</u>, 350 (1970). See also M. Suzuki and M. E. Fisher, to be published.