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Existence of a Phase Transition in a Continuous Classical System
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A rigorous proof is given for the existence of a phase transition in the Widom-Bowlin-
son model in two dimensions.

A new model exhibiting a phase transition has
received much attention recently. It is a classi-
cal continuous model with two kinds of particles,
A and B. The only interaction is a hard-core ex-
clusion: An A particle and a B particle cannot be
closer than a distance R; there is no restriction
on the distance between two A or two B particles.
When the activities of the two kinds of particles
are equal to s, and z is sufficiently large, one ex-
pects that two phases coexist: The one consists
predominantIy of A particles; the other, of 8 par-
ticles. If the B particles are invisible, the re-
sulting system of A particles yields a model for
vapor-liquid phase transitions, which has been
introduced and discussed by Widom and Rowlin-
son.

Until now, a rigorous proof for the presence of
a phase transition in the above models was miss-
ing although Gallavotti and Lebowitz' were able to
handle the analogous lattice problem. In the pres-
ent note a modification of the Peierls argument'
is used to give a proof for the continuous case in
two dimensions. Higher dimensions can be han-
dled in a similar manner.

The main point in the Peierls argument is the
computation of the probability of certain contours
on a lattice. We use a lattice formed of d &&d "lit-
tle" squares with d =R/Sv 2 (so that R is the diag-
onal of a Sd x Sd square). The box containing the
particles is a rectangle composed of N little
squares. We introduce the boundary condition
that no 8 particle is allowed in the two rows or
columns adjacent to the sides of the rectangle. If
a & particle is contained in a little square, we

shade the 3d & 3d square centered on this little
square. The boundary of the union of the shaded
areas is a contour I', a polygon consisting of var-
ious connected components. We write I as a
union of disjoint pieces y„~ ~ ~, y„: Each piece is
a smallest set of connected components of I such
that, if two connected components have a distance
less thanR, they belong to the same y;.

If the polygon y; has length ld and consists of c
connected components, it can be covered by a 4-
step lattice walk, where h( i+12(c —1). The
walk starts at one point and goes back to it; it

An upper bound to the number n(l) of polygons
of length ld which may occur as pieces y; in the
decomposition of I' is given by

n(l) (¹&3"
The factor N corresponds to the choice of an ini-
tial point for a lattice walk covering the polygon;
the factor 3"& 3, to the number of such walks
with given initial point.

We prove now that the grand canonical probabil-
ity P(y) for a given polygon y to occur as one of
the pieces y„~ ~ ~, y„of I' satisfies

P (y) ( exp(- —'«'&). (2)

We assume that y is an outer piece of I", i.e. ,
there is a path coming from infinity, reaching a
point of y without crossing I". We say that a point
x (not on y) is interior to y if a path coming from
infinity crosses y an odd number of times before
reaching x (see Fig. 1). I et X be any configura-
tion of A and B particles producing a contour I"

FIG l. yi (solid. line) and y2 (dashed line) are two
pieces of I". The interior of y~ is marked i.

covers once the y; and twice the paths between
the different connected components of y; (each
path can be chosen of length ( 6d, and, at most,
c —1 such paths are needed). A connected compo-
nent of y; has length of at least 12; therefore, l
~ 12c and

k &l+12c ~ 2l.
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which contains the piece y and suppose that y ls
an outer piece. From I we obtain a class X* of
configurations as follows: (a) All A particles in-
terior to y axe changed to B particles, and vice
versa. (b) Let G be a band around y consisting of
all little squares which have one side or corner
on y; A. particles are placed in an arbitraxy man-
ner in G. Clearly, step (a) leads to permissible
configurations. So does step (b) because, after
(a), any & particle must be separated from G by
a piece of the contour I' different from y, and
therefore at a distance &R from G. Using an idea
which goes back ultimately to Peierls and Grif-
fiths, "we write

P(y) =Z(y)/Z'

-.Z(y)/[Z(y)Z. ] = 1/Z. .
Here Z is the grand partition function; Z(y) is the
contribution to Z of the configurations such that
I' contains y as an outer piece. Finally ~z is the
grand partition function for A particles in G,
which is equal to the grand partition function for
free particles at activity z in G. The a,rea of G
is larger than ~ ld . (On each side of y one can
construct a square with this side as diagonal;
these squares have area ~d', are contained in C,
and do not overlap. ) Therefore

Z~ & exp(-,' ld'z),

proving (2).
We can now estimate the expectation value of

the number 8 of little squares in the shaded area
surrounded by I'. 8 is not greater than the sum of
the numbers of little squares interior to the outer
pieces which occur in the decomposition of I".
We write l = 2m+ 2n, where 2md and 2nd axe the
length of the horizontal and vertical paxt of y, re-
spectively. Then, using (1) and (2), we obtain

(8) ~ +7p(y) && (number of little squares

interior to y)

~ g g ~~84(- "~exp[-(~+n)d" ]

where qr (t) is finite for t & 0 and tends to 0 for
QO

Let 7' be the total number of little squares oc-
cupied by at least one particle of any kind. We
shall show that fox' sufficiently large ~

N '(T) &1/484.

We denote by Z the contribution to the grand par-
tition function Z of the configurations such that T
&N/242. We notice that at least N —(11)'T little
squares are at a distance &R from any particle.
Therefore,

Z& Z [exp(zd')] "~'& —,'Z

for sufficiently lax ge ~. Finally,

1-Z /Z
484

If there is only one pure thermodynamic phase,
the probability that a little square contains at
least one A paxticle is equal to the probability
that this little square contains at least one B par-
ticle, and therefore

2X '(S) & V '(Z')

We have thus proved that there is more than one
pure thermodynamic phase if

2y(d'z —4 ln3) & 1/484,

and we know that this is the case for sufficiently
large z.

Bemm k.—The existence of a phase transition
can be proven i.n the same manner as above if a
"small" hard core is introduced for the A. -A. and
&-8 interactions. It suffices to take the coxre-
sponding distance strictly less than d (for in-
stance 8/5).

I wish to thank S. L. Lebowitz and E. Lieb for
very useful discussions.

=N[Q I exp'(41n3 -d'z)]~.

The probability that a little square contains at
least one B particle is thus bounded by

X '(S) - q (Pz —4lnS),
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