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A rigorous proof is given for the existence of a phase transition in the Widom-Rowlin~-

son model in two dimensions.

A new model exhibiting a phase transition has
received much attention recently. It is a classi-
cal continuous model with two kinds of particles,
A and B. The only interaction is a hard-core ex-
clusion: An A particle and a B particle cannot be
closer than a distance R; there is no restriction
on the distance between two A or two B particles.
When the activities of the two kinds of particles
are equal to z, and z is sufficiently large, one ex-
pects that two phases coexist: The one consists
predominantly of A particles; the other, of B par-
ticles. If the B particles are invisible, the re-
sulting system of A particles yields a model for
vapor-liquid phase transitions, which has been
introduced and discussed by Widom and Rowlin-
son.?

Until now, a rigorous proof for the presence of
a phase transition in the above models was miss-
ing although Gallavotti and Lebowitz? were able to
handle the analogous lattice problem. In the pres-
ent note a modification of the Peierls argument?®
is used to give a proof for the continuous case in
two dimensions. Higher dimensions can be han-
dled in a similar manner.

The main point in the Peierls argument is the
computation of the probability of certain contours
on a lattice. We use a lattice formed of d Xd “lit-
tle” squares with d =R/3V2 (so that R is the diag-
onal of a 3d X 3d square). The box containing the
particles is a rectangle composed of N little
squares. We introduce the boundary condition
that no B particle is allowed in the two rows or
columns adjacent to the sides of the rectangle. If
a B particle is contained in a little square, we
shade the 3d X 3d square centered on this little
square. The boundary of the union of the shaded
areas is a contour I', a polygon consisting of var-
ious connected components. We write I as a
union of disjoint pieces y,,+++,v,: Each piece is
a smallest set of connected components of I such
that, if two connected components have a distance
less than R, they belong to the same y;,.

If the polygon y; has length Id and consists of ¢
connected components, it can be covered by a k-
step lattice walk, where k<1+12(c —1). The
walk starts at one point and goes back to it; it
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covers once the y; and twice the paths between
the different connected components of y; (each
path can be chosen of length < 64, and, at most,

¢ —1 such paths are needed). A connected compo-
nent of y; has length of at least 12; therefore, [

= 12c¢ and

k<l+12c < 21.

An upper bound to the number #(l) of polygons
of length /d which may occur as pieces y; in the
decomposition of I" is given by

n(l) <Nx 32 1)

The factor N corresponds to the choice of an ini-
tial point for a lattice walk covering the polygon;
the factor 3%'> 3%, to the number of such walks
with given initial point.

We prove now that the grand canonical probabil-
ity p(y) for a given polygon y to occur as one of
the pieces y,,*++,y, of T" satisfies

ply)< exp(-zld%2). )

We assume that y is an outer piece of T', i.e.,
there is a path coming from infinity, reaching a
point of v without crossing I'. We say that a point
x (not on y) is interior to y if a path coming from
infinity crosses y an odd number of times before
reaching x (see Fig. 1). Let X be any configura-
tion of A and B particles producing a contour T’

]
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FIG. 1. v, (solid line) and v, (dashed line) are two
pieces of I'. The interior of y; is marked .
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which contains the piece y, and suppose that y is
an outer piece. From X we obtain a class X* of
configurations as follows: (a) All A particles in-
terior to v are changed to B particles, and vice
versa. (b) Let G be a band around v consisting of
all little squares which have one side or corner
on y; A particles are placed in an arbitrary man-
ner in G. Clearly, step (a) leads to permissible
configurations. So does step (b) because, after
(a), any B particle must be separated from G by
a piece of the contour I' different from v, and
therefore at a distance >R from G. Using an idea
which goes back ultimately to Peierls and Grif-
fiths,>® we write

p0)=2k)/Z
<ZW/1ZWw)z) =1/2.

Here Z is the grand partition function; Z (y) is the
contribution to Z of the configurations such that
T contains y as an outer piece. Finally Z; is the
grand partition function for A particles in G,
which is equal to the grand partition function for
free particles at activity z in G. The area of G

is larger than 3/d%. (On each side of ¥ one can
construct a square with this side as diagonal;
these squares have area 3d?, are contained in G,
and do not overlap.) Therefore

Z > exp(31d%z),

proving (2).

We can now estimate the expectation value of
the number S of little squares in the shaded area
surrounded by I': S is not greater than the sum of
the numbers of little squares interior to the outer
pieces which occur in the decomposition of T,

We write I =2m +2nr, where 2md and 2nd are the
length of the horizontal and vertical part of v, re-
spectively. Then, using (1) and (2), we obtain

(8) < 23, p(y) X (number of little squares

interior to y)

< i} f} mn3* ) expl — (m +n)d%z]
m=3 n=3

=N[Y m expm(41n3 —d22) .
m=3

The probability that a little square contains at
least one B particle is thus bounded by

N"YS) < ¢(d?* - 41n3),

where ¢(¢) is finite for £ >0 and tends to 0 for
{— oo,

Let T be the total number of little squares oc-
cupied by at least one particle of any kind. We
shall show that for sufficiently large z

N™XT)>1/484,

We denote by Z . the contribution to the grand par-
tition function Z of the configurations such that 7'
<N/242. We notice that at least N~ (11)?7T little
squares are at a distance >R from any particle.
Therefore,

Z2>27 [exped?)|¥2> %7
for sufficiently large z. Finally,

1-z./z _ 1 1
2(11)2  ~ 4(11)® ~ 484°

1 >
N<T> >

If there is only one pure thermodynamic phase,
the probability that a little square contains at
least one A particle is equal to the probability
that this little square contains at least one B par-
ticle, and therefore

2N"KS)= N"XT).

We have thus proved that there is more than one
pure thermodynamic phase if

20 (d?% - 41n3) <1/484,

and we know that this is the case for sufficiently
large z.

Remark.—The existence of a phase transition
can be proven in the same manner as above if a
“small” hard core is introduced for the A-A and
B-B interactions. It suffices to take the corre-
sponding distance strictly less than d (for in-
stance R/5).
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