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The Ergodic Theory of Axiom A Flows 

Rufus Bowen* (Berkeley) and David Ruelle** (Bures-sur-Yvette) 

1. Introduction 

Let M be a compact  (Riemann) manifold and (if): M ~ M  a differentiable 
flow. A closed (ft)-invariant set A c M containing no fixed points is hyperbolic 
if the tangent bundle restricted to A can be written as the Whitney sum of three 
(Tft)-invariant continuous subbundles 

T a M = E + E S + E  " 

where E is the one-dimensional bundle tangent to the flow, and there are constants 
c, 2 > 0 so that 

(a) IlTf'(v)ll <ce-'~'llvil for veE ~, t>=O and 

(b) IlZf-'(v)lI <ce  -~' Ilvll for veE", t>O. 
We can choose t o > 0 and change 2 so that the above conditions hold with c = 1 
when t > t o. We can also assume that, for such t, T f  t (resp. Tf  -t) expands E 
at a smaller rate than it expands any element of E u (resp. E~). It is then said that 
the metric is adapted (see [-14]) to f,o. We will always assume that t o < l - t h i s  
can be achieved by a rescaling of t (t-~ t' = t/to) which does not affect our main 
results. 

A closed invariant set A is a basic hyperbolic set if 

(a) A contains no fixed points and is hyperbolic; 

(b) the periodic orbits of f~lA are dense in A; 

(c) f t lA  is a topologically transitive flow; and 

(d) there is an open set U ~ A with A = ~ f~ U. 
tE~ 

These sets are the building blocks of the Axiom A flows of Smale [27]. We will 
especially be interested in attractors, basic hyperbolic sets A for which the U 
in (d) can be found satisfying f f  U c U for all t > T O (T O fixed) and hence A = N f '  U. 

t>__0 
This paper will study the average asymptotic behavior of orbits of points in the 
neighborhood U of a C2-attractor. 

Precisely we will find an ergodic probabili ty m e a s u r e / ~  on a C 2 attractor A 
so that for almost all x e U w.r.t. Lebesgue measure and all continuous g: U ~ R 
one has T 

lim 1 ! g ( f f  x) d t = S g d ~  (1) 
T~ot~ T 
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(see Theorem 5.1). The measure go will be described as the unique equilibrium 
state for a certain function ~o=qr ") (defined by (2), Section IV) on A, i.e. the 
unique fMnvariant  probability measure/l  on A which maximizes the expression 

hu(fx)+ ~ ~o d/l 

where h , ( f  ~) is measure theoretic entropy. This variational principle (which is 
formally identical with one in statistical mechanics [21]) is useful because it 
gives a description of #~ which persists when one lifts #~ to a symbol space for 
closer study. 

This paper carries over to flows results previously obtained for diffeo- 
morphisms with regard to equilibrium states [6, 7, 24] and attractors [24]. For 
Anosov flows (A = M) the measure ~% has been studied in [9, 16, 17, 20, 25, 26-] 
and the theory of Gibbs states (a slightly different formalism from equilibrium 
states which yields the same measures for basic hyperbolic sets) has been developed 
in [26]. Some results obtained here for flows are new even for diffeomorphisms; 
this is the case of Theorem 5.6. Results for diffeomorphisms can be obtained 
from those for flows via suspension (or directly by simplification of the proofs). 

The determination of the asymptotic behavior of orbits is a significant 
problem in the study of differentiable dynamical systems. In particular the 
asymptotic behavior of solutions of a differential equation is of central interest 
in physical applications. Here we consider only the case of Axiom A flows. In 
that case it is known that f t x  often depends in a very sensitive or "unstable" 
manner on the initial condition x, and (1)-which describes the time-average 
of an "observable" g - i s  probably the best way of expressing the asymptotic 
behavior o f f  t x. It is a natural problem to extend (1) to non Axiom A situations. 

We shall show that/l~(,~ depends continuously on the flow (f,) (Proposition 5.4). 
In the same direction, Sinai [26] has proved the stability of #e under small 
stochastic perturbations for Anosov flows 1. (1) holds almost everywhere for x 
in the basin of an Axiom A attractor; one can prove that, for a C 2 Axiom A 
flow, these basins (and those of point attractors) cover M up to a set of Lebesgue 
measure zero. Equivalently: if a basic set is not an attractor, its stable manifold 
has measure zero (Theorem 5.6). 

It can be seen that, unless A is a periodic orbit, the entropy o f / ~  does not 
vanish; this indicates "strong ergodic properties" of the system (#o,f ').  In fact, 
if (ft) restricted to A is C-dense, (/l~,, f ' )  is a Bernoulli flow (see Remark 3.5). 
The correlation functions 

pgg,(t) = 5 (g o i f ) .  g' g' 

are interesting to consider in physical applications. In the C-dense case we have 
limt_oopgg,(t)=O if g,g'eL2(p~) (Remark 3.5). Assuming that g,g' are C 1, does 
pgg,(t) tend to zero exponentially when t-~ oo ? The methods of the present paper 
do not seem capable of answering this question. A positive answer has been 
obtained for diffeomorphisms ([24, 263). 
i The corresponding problem for attractors for Axiom ,4 diffeomorphisms has been treated by Kifer 
(Sinai, private communication). 
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Terminology 
The  manifold  M and the R iemann  metric  on M are C ~176 The  flow (f t )  is 

called C r ( r >  1) if it cor responds  to a C '  vector  field on M;  a basic hyperbol ic  
set A for (f t )  is then called a C r basic hyperbol ic  set. The  flow (f t )  restricted to A 
is topological ly  transi t ive if it has a dense orbit.  

Fo r  easy reference, we collect here the definitions of  s table manifolds  

W~= { y e m :  limd(ftx, fty)=O} 
t ~ O O  

wcs=OW :x. 

A distance on M is defined by 

6r(x, y)= sup d(ftx, fty) 
O < t < _ T  

when 0 < T <  oo ; B x(e, T) i s  the closed e -ne ighbourhood  of x for that  distance;  also 

w2(~)= W?, nBx(~, oo). 

Replac ing  t by - t  and s by u we obta in  the definition of unstable  manifolds.  
We also write 

W~ (e) = U Wx ~ (e), etc. 
x E A  

The basic hyperbol ic  set A is C-dense if W~n  A is dense in A for some (hence 
for all) x ~ A. 

In general  we write f *  ~t the image of  a measure  ~t by a cont inuous  m a p  f. 

2. Symbolic Dynamics 
Let us recall the symbol ic  dynamics  of a basic hyperbol ic  set A [4]. Fo r  

A = [Au] an n • n matr ix  of  O's and l ' s  we define 

S a = {x = (xi)+=~ ~o~ {1 . . . . .  n}e: A . . . . . .  = 1Vi~7Z} 

and aa:  Sa--*S a by aa(x)=(x ' i )L_oo where  x'~=xi+ 1. If we give {1 . . . . .  n} the 
discrete topo logy  and {1 , . . . ,n}  e the p roduc t  topology,  then S a becomes a 
c om pa c t  metr izable  space and a a a h o m e o m o r p h i s m ,  a a (or ,ra) is called a 
subshift of finite type if aa:  S a ~ S a is topological ly  transit ive (i.e. for U, V non-  
emp ty  open sets there is an  n > 0  with f"Uc~ V:I:O). 

For  ~p: S a ~ I R a  posit ive cont inuous  function one can define a special (or 
suspension)  flow as follows. Let  

Y= {(x, s): s~[0,  ~k(x)], x E22a} c -Y'a x IR. 

Identify the points  (x, ~p(x)) and (aa(x), 0) for all x ~ t ;  a to get a new space A(A, ~,). 
Then  A (A, if) is a c o m p a c t  metric  space (see [8] for a metric) and one can define 
a flow g' on A(A, ~) by 

gt(x, s )= (x ,  s+t) for s + t ~ [ 0 ,  ~k(x)] 
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and remembering identifications�9 More  precisely, if z = q (x, s) where q: Y ~ A (A, ~9) 
is the quotient map, then gt(z)=q(akx,  v) where k is chosen so that 

k - I  

~ = t + s -  ~ O(o~x)e[o, ~(a,~, x)]. 
j=o 

The flow gt on A(A, ~), will be important  to us with ~ satisfying an additional 
condition. For  ~O: Z a --* IR let 

var, ~O = s u p  {[~k ( x ) -  ~k (y)[: x, yeZA, X i =yiV Iil < n}. 
Let 

4 =  {OeC(Xa): 3 b > 0 ,  ee(0, I) so that vag~,<bc t"  for all n>0} .  

2.1�9 Lemma.  Let A be a basic hyperbolic set. Then there is a topologically mixing 2 
subshifi of finite type aa: S a ~S,a,  a positive O ~ a  and a continuous surjection 
p: A (A, ~) --* A so that 

commutes. 

A(A,  ~) g '+ A(A, tk) 

A f' , A  

This is from [4], Section 2, except for the mixing condition on a a. I faa :  Z a ~ X A 
is not mixing, then for some m > 0 Z A = X 1 w-.-  w X,,, a disjoint union of closed 
sets with aa(Xi)=Xi+~ and a~lXi: X~--,X~ conjugate to a mixing subshift of 
finite type (see e.g. 2.7 of [2]). 

Identifying a~: X 1 --,X~ with some an: 2:B~ 2:n and defining ~' :  Z B --*JR' by 

O'(x) = 0 (x) + 0 (o~ x) + . . .  + O (a~- x x) 

one can see that A(B, ~') is homeomorphic  to A(A, ~b) in a natural way and q / e ~ .  
There are other properties of the map p which we shall recall as we need 

them. Throughout  the remainder of the paper  ~9 will always denote a positive 
function in ~ and a a a mixing subshift of finite type. 

For  any homeomorphism f the set of f - invar iant  Borel probability measures 
will be denoted M ( f ) .  If F = ( f t ) t ~  is a continuous flow we will write M ( F ) =  

M (ff). 
teP, 

3. E q u i l i b r i u m  S t a t e s  

Let us review the definition of topological pressure for a homeomorphism f :  
X -~ X of a compact  metric space and a continuous function ~: X -* R [23, 28]. 
For given e > 0  and n>0 ,  a subset E ~ X  is called (~, n)-separated if 

x, y eE ,  x:~y ~ d ( f k x ,  f~y )>e  for some ke[0 ,  n]. 

2 A homeomorphism F: X~X is topologically mixing if, for U, V open nonempty in X, U f~ F"V +0 
for all sufficiently large n. 
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One defines 
n - - I   ,-s  arated} 

1 
P(f, qo, O=l im SUPn log Z,,(f, qo, e) 

and 
P(f, (p) = !im P(f, q0, O. 

For q0 =0  the number P(f, q)) is just the topological entropy h(f) of f ;  the theory 
of topological pressure generalizes that of topological entropy. The main general 
result is that 

sup P ( f  ~o) = u~M(flh, ( f)  + ~ ~o d#). 

This was proved by Walters [28]; for f expansive there is a #~M(f )  with 
hu(f) + ~ ~o d#=P(f ,  qo). 

An equilibrium state for q0: X ~ I R  with respect to f :  X - . X  is a #eM( f )  
with h, ( f )  + ~ q0 d# = P (f, (p), i.e. a # e M(f)  maximizing the quantity h u (f)  + S qo d# 

Now we will consider the case of a flow F=(f f :  X ~ X) and (p: X-* IR. A set 
E c X is (e, T)-separated if 

x,y~E,  x ~ y  ~ d( f tx ,  f t y )>e  forsome t~[0, T]. 

Then we define 

Zr(F, q~, e)= sup exp qo (ff  x) dt: E is (e, T)-separated 

1 
P(F, qo, e) = l imsup ~ log ZT(F, ~0, ~) 

and 
P (F, go)=!ira ~ P(F, ~o, e). 

The definition of P(F, (p) is independent of the choice of metric on M. It is a 
straightforward exercise to check that if one lets @(x)=~loqo(ffx)dt, then 
P(F, q~)=P(f~, @); also, for #eM(F) one has ~ q0 d # = S @  d#. As M ( F ) ~ M ( f  ~) 
one has 

hu(f~)+ S( p d#=hu(f ' )+ ~ @ dpN P( f ' ,  @)= P(F, q0) 

for #eM(F).  There is an argument ([28], see also [10], p. 359-360) to show that 
for any # ' e M ( f  1) one can find a #~M(F) with 

h, ( f ' )  + ~ qr d# => h,, (f~) + I @ d#'. 
Hence it follows that 

P(F, tp)= sup (hu(fl)+ ~ (p d#). 
I~EM (F) 

By an equilibrium state for q~ (with respect to F) we mean a #EM(F) with 

hu (fx) + ~ (p dl2 = P (F, qO. 



186 R. Bowen and D. Ruelle 

For G={gt} the special flow on A(A, tp) there is a well-known bijection 
between M(G) and m(tYa). For vEM(aA) and m Lebesgue measure, v x m gives 
measure 0 to the identifications on Y--.A(A, tp) and s o / ~ = ( v  x m(Y)) -1 v x ml Y 
gives a probability measure on A(A,O). One can check that veM(aa) implies 
# ~ M ( G )  and that v ~/tv defines a bijection M(aA) --. M(G). 

It is known that any function 7eo~ has a unique equilibrium state v w.r.t. 
~A [6, 11, 22, 24] and that v depends continuously on ,/ (weak topology for v, 
uniform topology for 7). We will now state the corresponding condition on 
O: A(A, t))---, IR which guarantees a unique equilibrium state. 

3.1 Proposition 3. Let r A(P,O)-*IR' be continuous, 45(x)=yq'o(X)~o(x,t)dt and 
c=P(G,  ~o). Assume that 4 5 ~ .  Then there is a measure t%~M(G) so that 

(a) /~o is the unique equilibrium state for r with respect to G. 
(b) /~=kt,o where v o is the unique equilibrium state for 45-ctp on X A. 
(c) p~ is ergodic and positive on non-empty open sets and 
(d) for e >0 there is a C~ > 0 so that 

l~,p(Bx, G(e, T))> C~ exp ( - c  T+ 5 ~0(g'x) dt 
O 

for all xeA(A ,  ~,), r > o  where 

B,,,a(e, r ) =  {yeA(A,  ~k): d(g t Y, gtx)<=8 for all teE0, T]}. 

Let 7= 45-c ~. As 45, tps~@ a we have 7so~ a. This guarantees that o/has a unique 
equilibrium state %. By Fubini's theorem, for any veM(aA), (v x m)(Y)= S 0 dv 

S 45 dv 
and ~ ~p d/~v= ~ t) dv " A theorem of Abramov [1] states that 

Hence 

h.~(gl)_ h~(aA) 
~ r  

c=P(G, go)= sup (hu(gl)+ ~ (p dl~) 
~eM(G) 

hv(aA) + y 45 dv 
= S U  - 

dv 

Thus P(aA, 7) = sup (h,,(aA) + ~ (45-- C tk) dr) = 0 with v attaining the supremum 

(i.e. v = vo) precisely if/~v is the unique equilibrium state for q). This shows that 
/lo=#v o satisfies (a) and (b); (c) is true because v o has these same properties ([6] or 
[24], Appendix B). 

We now verify (d). Let xeA(A ,  O) be represented by x=(x ,  tl), qe[0 ,  tp(x)) 
and gr X=(a"A X, t2), where n=n(x) is such that 

n - - 1  

t2= T+t , -  E q(Gx) [0, 
k=O 

3 Another proof of (a), (b), (d) has now been obtained by E. Franco-Sanchez, Berkeley thesis, 1974. 
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Given e > 0  one can find 6~>0 and s~>0 (not depending on x or T) so that 4 

B~,G(e,T)~{(y,t):  I t - q l < s ~  and d(a~y,a~x)<6~ for all ke[0, n - 1 ] } .  

We do not go through the details but do point out that, for any c~>0, Oeo~ a 
implies that for 6 small enough 

n-1 
d(ak x, agAy)<=bVk~[O,n--1] ~ ~[O(a~x) -~b(a~y) l<a .  

k = O  

Then 

p~ B~ c,(e, T)_>=- s~ _ Vo {y: d(ak Y, ak X)=< 6~VkE[0, n-- 13}. 
' "  - j ~ d v  ~ 

By [6] Lemma 5, this right side is at least 

( n--12 ~( O'k 0 n-l~, a~exp �9 x ) -nP (aA ,7  =a~exp 7(a~l N) 
\ k=O k=O 

for some a, > O. Since 

and 

n-1 
@ (a k x) + t 2 = T +  t 1 

k=0 

tl T t 2 n-- 1 
q~ (x, t) dt + ~ ~p (gt x) dt - ~ q~ (a~ x, t) dt = ~ �9 (a k x), 

0 0 0 k=O 

one sees that 7(a~ x)differs from - c T +  ~o(gtx)dtbyatmost211Oll(IcI+[lq~ll). 
k=O 0 

This proves (d). 

3.2. Remark. Special flows are simple enough that parts (a) and (b) above could 
have been derived without appealing so much to general (and harder) results on 
topological pressure. 

3.3 Theorem. Assume that A is a basic hyperbolic set for F and that (p: A ~ I R '  
satisfies a H6lder condition of positive exponent. Then q2 has a unique equilibrium 
state #~. Furthermore, I~ is ergodic and positive on non-empty open sets of A, and 
for any ~ > 0 there is a C~ > 0 so that 

T 

Jbr all x e A ,  T>O. 

We apply the preceding proposition to the function q~*=q0op on A(A, 0). 
There are bl>O and re(O, 1) so that 

d(p(x, 0), p(y, 0))__<bl z N 

if x i = Yl for all [i] =< N (see [4], Lemma 2.2. (i)). 

4 In this formula (y, t) has to be replaced by (aA ~y, @(aA~y)+t) resp. by (aAy, t-~b(y)) when t < 0  
resp. t > @(y). 
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Since F is a differentiable flow, there is a constant  b 2 so that 

d(f f  x, f f  y)<bzd(x,y  ) provided tel0,  [101]]. 

The H61der condition on q9 states that 

[q~(x)-cp(y)l<b3d(x,y) ~ with a > 0 .  

Combining these estimates, when x i = yiVi�9 [ - N ,  N] we have 

r ~(Y) t) dt ~o q~*(x,t)dt- ~ q~*(y, 
0 

q~(x) 

< II,pil [~h(x)-~(y)[ + ~ ko(f '  p(x, 0))-(p(ff  p(y, 0)) I dt 
0 

< []tpll I~b(x)-~9 (y)[ + limb [l b3(b 2 bx)~(z~) N. 

Since ~ � 9  this gives ~ * � 9  where ~*(x)=~o iX) q~*(x, t)dr. So ~p* has a unique 
equilibrium state #~, as in the preceding proposition. 

We recall that there are closed subsets A~ = p-  ~ (A ~ ~l) and A,, = p-  ~ (A" ~ ' )  of 
A(A, ~9) so that (see [4]) 

(a) AJeA(P,  O ) , A ,  
(b) gtA~cA~, g - tA ,  ~A ,V t>O and 

(c) p is one-to-one off Ut~Rgt(A, u A~) = U , ~  g'(A, w A~). 
Because/~,  is positive on non-empty open sets/~o,(A~)+ 1 :~#~o,(A.); s ince/~,  is 
ergodic and each of these sets is invariant under one direction of time,/~, (A~)= 0 = 
/~o,(A,). By (c) then p gives a conjugacy of the measurable flows (G,/~.) and 
(F(A,/t~0)) where #~= p*/~, .  In particular hu, (fl)  = h,~. (g~) and 

hu,, ( f l )  + ~ (p d#,~-= hu,.(gl)+~ ~p* d#o.=P(G, qo*). 

As FIA is the quotient of G and ~o*=(pop, one has P(FIA,~o)<=P(G,(p*) (see 
Walters [28], Theorem2.2); because hu,(fl)+~q)dl~o=P(G, go *) one has 
P(F[A, tp)=P(G,(p*) and 1% is an equilibrium state for qo. If/~ were another 
equilibrium state for (p, then #=p*/~ '  for some Iz'�9 (by an easy application 
of the Hahn-Banach and Markov-Kakutani theorems) and 

hu ' (gl) + ~ q). dff >- h u (f l)  + ~ ~o dl~ = P (FIA, ~o) = P (G, (p*). 

So #' is an equilibrium state for ~o*,/~'=#e, and p=p~.  Thus/~,~ is the unique 
equilibrium state. The remaining properties for #~0 follow from the corresponding 
ones for p~, in Proposition 3.1. 

3.4 Remark. For q~=0 the uniqueness of equilibrium state just says that FIA has 
a unique invariant measure maximizing entropy. This was proved earlier in [5]. 

3.5. Remark. It was proved in [2] and [24] that (O'a, V0) is isomorphic to a 
Bernoulli shift where v o is the equilibrium state of V e ~ .  The corresponding 
result for (FIA, ~ )  follows from results proved elsewhere. If FIA is C-dense 
(i. e. W" (x) n A is dense in A for every x �9 A where W" (x) = {y: d ( f - t  x, f -  t y) ~ 0 
as t ~  + ~}),  then G is also C-dense and Sinai [-26] p. 48-9, applied a theorem of 
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Gurevi~ [12] to show that (G, #e,) is a K-flow. We mention that, although Sinai 
uses the formalism of Gibbs states instead of equilibrium states, the measure #~, 
is the same as the one he constructs. M.Ratner [20] (also Bunimovi~ [9]) has 
proved in this C-dense case that (G, kt~,) is actually Bernoulli (i.e. (gt,/~,) is 
isomorphic to a Bernoulli shift for each t 4= 0). Since (FIA, p~)~ (G, #~,), (FIA, #~) 
is Bernoulli when F[A is C-dense and rp is H/31der continuous. In that case we 
have 

lim ~ (go f ' ) .  g' d&, = ~ g d/~-  ~ g' d/~ 
t ~ o O  

for all g, g ' e L  2 (/~). [This follows from the fact that (#~, f ' )  is equivalent to a 
Bernoulli shift for each t, and the continuity of the flow (f ')].  

4 .  A t t r a c t o r s  

Now assume A is a C 2 basic hyperbolic set. For x e A  let 2,(x) be the Jacobian 
of the linear map Dff:  E~ ~ E}, x using inner products induced by the Riemannian 
metric. 

Define t = o - t = o q0(,}(x) = dln).t(x) d~.t(x ) 
dt dt (2) 

which exists and depends differentiably on E~ (hence continuously on x) as f t  
is a C 2 flow. Since 2r+ , ( x )=2 , ( f r x )  2r(X) one has 

- l n  2 t ( f r x ) =  - I n  2r+, (x)+ln  2r(X ) 
and so 

(pcu~(f r x) = d lnds).S(x) ,=r" 

This implies that 
T 

qoC")(f t x) dt = - in 2r(x ). 
0 

This integral is the one appearing in Theorem 3.3 for q~ = ~o {u). 

4.1. Lemma. For A a C 2 basic hyperbolic set and q){u}: A ~ P,"as above, qo (u} satisfies 
a HSlder condition of positive exponent. 

x--+ E" x is H61der continuous (3.1 of [19]) and E~--+ (r is differentiable, so 
the composition x--+ ~o(U)(x) is Htilder. 

4.2. Lemma (Volume lemma). Let A be a C 2 basic hyperbolic set and define 

Bx(e, T)= {yeM:  d ( f f  x, f '  y)<=~ for all t~[O, T]}. 

For small e > 0 there is a constant c~ > 1 so that 

m(Bx(e , T)) 2T(X)~ [c[ 1, c~] 

for all x s A  and T>O, where m is the measure on M derived from the Riemann 
metric. 
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4.3. Lemma (Second volume lemma). For small ~, 6 > 0  there is d=d(e, 5)>O 
(d independent of n) so that 

m(B,(6, n))> d . m(Bx(e, n)) 

whenever xeA  and yeBx(e, n). 

These two lemmas are proved in the Appendix. 

4.4. Proposition. (a) Let A be a C 2 basic hyperbolic set and define 

BA( , T)= U Bx( , T). 
xeA 

Then (Jor sufficiently small e) 
1 

P (FIA, go(")) = l imsup -T- log m (B A (~, T)) < O. (3) 

(b) Define 

d " ' ~:Vt>0} W~(e,)={yeM: l imd( f f  y, f t x )=O and (J y , f  x)< 
t ~ o O  

when xeA,  and let W~(e)= ~ A  W~(~). I f  m(WA(e))>0 , then P(FIA, go(~))=0 and 

1 _ go (u )  hu~o(,,(f ) -  -~  dl~o(~). (4) 

This is true in particular if A is an attractor. 
Let O<6<e. If E is a maximal (6, T)-separated set for F[A, then 

B~ (5/2, T) ~ B A (c, T) ~ ~ S x (~5 + e, T) 
x e E  x e E  

where the Bx(6/2, T) are disjoint, and the second inclusion follows from 
A ~ ~ , ~  Bx(6, T). Thus, assuming ~ small enough and using the volume lemma, 

c~ 1 ~ 2T (X)-I ~ m (B A (e, T)) <= c a+` ~ I~T (X)- 1. 
x e E  x e E  

Therefore 

and 
c~/~ Zr(F[A, go{"), a)<m(BA(e, T))<ca+ ~ Zr(FIA, gor 6) 

1 
P(FIA, go("), 8)= lira sup ~ log m(Ba(e, T)). 

The limit 6 ~ 0 yields (3), proving (a). 

By Theorem 3.3 and Lemma 4.1, go = go (") has a unique equilibrium state #e(u). 
By the definition of ,equilibrium states, (4) is equivalent to P(FIA, go("))=0. The 
latter statement follows from (3) with 

r))>= O. 

There is a neighbourhood V of A so that 

WA(S)~{yeM: f t y e V  for all t=>0}. 

Indeed 5.1 of [13] gives this for diffeomorphisms and [13] indicates how to do the 
proof for flows. If A is an attractor, one can find a small neighbourhood U' of A 
so that f t y e V  for all t > 0  whenever yeU'. Then U'cWj(e) and therefore 
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4.5. Remark. A rescaling of t: t--+ t '= tit o does not change the invariant measures, 
it replaces h , ( f  1) by h~,(f'~ t o h , ( f  1) (see [1]) and ~o (") by q~'(")= t 0 (p("~. Therefore 
- a s  indicated in the In t roduct ion-resca l ing  of t does not change/~(.)  or the 
main results below. A change of Riemann metric on M changes q~(") but not P~o,,), 
or P(FIA, @u)) as one readily sees. 

4.6. Corollary. Let A be a C 2 basic hyperbolic set. For sufficiently small e > 0 there 
is a constant c'~ such that 

m (B:, (2 5, T)) < c; &o(~)(Bx (e, T)) 
for all x~A,  T>O.  

This follows from Theorem 3.3, Lemma4.2, and Proposition4.4(a), with 
c'~ = c ~ j C ~ .  

5. M a i n  Resu l t s  

5.1. Theorem. Let A be a C 2 hyperbolic attractor, [ ~  its basin. Then for m-almost 
all points x~W~ one has 

�9 1 T 

for all continuous g: M--+ IR (i.e. x is a generic point for I%(~)). 

We can replace W~ by a neighbourhood U of A such that f ' U  c U for all 
t > t  o and ~ f ' U = A .  

t > O  

Let us write 
1 r 

Let 

and g,=~gdl%. 

E(g, 5)= {x~ U: lim sup [~,(T, x ) -  ~q >5} .  
T ~ o o  

small that ] g ( f t x ) - g ( f ' x ' ) [ < 6 / 4  whenever d(x ,x ' )<e  and Choose ~>0 so 
0 < t < l .  If we set C, (g ,b ' )={x~U:  ]~,(n,x)-~,l>6'}, then 

Now fix N > 0  and choose finite subsets Su,Su+ 1 . . . .  , of A successively as 
follows. Let S , ( n > N )  be a maximal subset of C,(g, 8 / 2 ) n A  satisfying the 
conditions: 

(a) Bx(g,n)~By(e,k)= 0 for x~S , ,  Y~Sk, N <=k <n and 

(b) Bx(e,n)c~Bx,(e,n)--- 0 for x ,x '~S , ,  x~=x'. 
(Notice that each S. is finite.) Choose a > 0 so that 

BA(O0= W~(g)---- U Wz*(~) 
g~A 

(B A(a) is the closed a-neighbourhood of A). If 

( YEBA(O0& C n g, (n> N) 
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and y~ W~(e) with z~A, then ze  C.(g, 6/4) because of the way e was chosen. By 
the maximality of S. one has 

Bz(e,n)nBx(e,k):~ ~ for some X~Sk, N < k < n  

and then Bx(2e, k)~Bz(e, n)~ Wf(e)~y. Thus one has 

36 

Using Lemma 4.2 one has 

m BA(~ ) C n g, ---A2~ exp q~(ftx)dt. (5) 
k = N x~Su 0 

The definition of S, implies that Vu= ~)~=u U~s~Bx( ~, k) is a disjoint union. 
The choice of e gives that B~(x,k)~Ck(g, 6/4 ) for X~SR=Ck(g, 6/2 ) and so 

o~ C V N =  U k = N  k(g, 6/4). Because/~(. ,  is ergodic, 

and ulirno~ k%,-, (VN) = 0. By Theorem 3.3 (and P (FIA, ~0 (")) = 0, confer Proposition 4.4) 

2 exp  )dt. 
k~N X~Sk 0 

Hence the sum on the right converges to 0 as N -~ Go and using (5) above we get 

N ~  n=N 

T h i s  in  turn gives m (B a (5) (~ E (g, 6)) = 0. 

Now f 'E(g ,  6)=E(g, 6) for all t > 0  and f ' (U)=Ba(~ ) for some t>0 .  As f t  
is a diffeomorphism, m(f '  E(g, h))<m(Ba(~)~ E(g , 6))=0 implies m(E(g, 6))=O. 
Letting {gk}~= t be a dense sequence of continuous functions U ~ IR, we get that 
for x outside the m-null set ( ' )  U E 

k ,m>l  

one has lira ~,k(T,x)=~,k; as the gk are dense, it follows that lim ~,(T,x)=~, for 
T~oo T~oo 

all continuous g" U -~, IR. 

5.2. Remark. For the special case of an Anosov flow (A = M) with an invariant 
(probability) measure/~' absolutely continuous w.r.t, m, this theorem implies the 
known fact that/~'=/~,~,). 

5.3. Theorem. Let A be a C 2 attractor, W~ its basin, and let v be a probability 
measure absolutely continuous with respect to m and with support in W~. I f  the 
flow F restricted to A is C-dense, then 

lim ~ (go f ')  dv= ~ g dl~,~ 

for all continuous g: M --* IR. 
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We may choose U as in the proof of Theorem 5.1, and assume that supp v = U. 
Define f , t  v by 

( f * '  v)(g) = v(g o f  t) 

and write p~,.)= y. We have to prove that weak lim f , t  v = p. In showing this we 
t ~ o O  

may assume that v = r . m  where r > 0  is bounded (by density of bounded func- 
tions in L~). 

Given e > 0 we find as in the proof of Proposition 4.4 that if U' is a sufficiently 
small neighbourhood of A, then U ' c  W~(e). We can choose t(e)> 0 so that 
f"~) U ~ U' and therefore 

supp f *  t(~) v ~ W~(e). 

Let E c A  be a maximal (T, ~)-separated set for FIA, we have thus 

s u p p f  *t(') v c  U B.(2e, T). 
x ~ E  

Let ( O . ) ~  be a non-negative measurable partition of unity on suppf*~(~)v 
subordinate to the covering by the B~(2e, T) and let %x be the characteristic func- 
tion of B~(e, T). We write 

' ~ ~ %~ d/~ "%x/~- 

The measure v~. T is a probability measure absolutely continuous with respect 
to #, with density bounded independently of T. This is because 

Ox d ( f  *'(~) v) rn(Bx(2e, T)) < C'~ IIr,(~)ll~ 
~ Zx d p <IIr,(~)llo~ i~(Bx(e, T) ) = 

by Corollary 4.6 (r~(,) denotes the density of f*t(~)v with respect to m). 

Notice that v~, r is obtained by redistributing the mass of f*t( ' )v  in such a 
manner that all that goes to B~(e, T) comes from B~(2 e, T). Therefore also f . t  v,. r 
is obtained by redistributing the mass of f *  (' § t(~)) v in such a manner that all that 
goes to f t  B~(e, T) comes from f t  Bx(2e, T). The diameter of f t  Bx(2e, T) is at 
most 4e when O < t < T ;  therefore if JV is a closed weak neighbourhood of the 
origin in the space of real measures on M we have 

f*(t+t(O) v_ f . t  v, ,rejf  ~ 

when 0-< t_< T, provided e has been chosen sufficiently small. 
Remember now that V~,T=S~,T.I~ where S~,TeL~(It) and llS~,Tll~ is bounded 

independently of T. We can thus choose T. --* oo such that s,, T. ~ S, in L ~~ (/t) with 
its topology of weak dual of LI(#). We have thus 

f *  (,+,(o) v - f * t ( s ~ ,  p ) e W  (6) 

for all t > 0 .  We use now Remark 3.5: (#, f t )  is a Bernoulli flow and 

lim ~ s~. (g o f  t) d# = #(g) 
t ~ o o  
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for all cont inuous  g: A ~ IR. There  is thus t~/such that  

f* ' (s~ . /~)-  t ,e  ~4/" 

for t > t~ .  F r o m  (6) and (7) we obtain 

. f . t  v - t ~ 2 , ~ V  

when t>t(e)+ L,. Therefore  f * t v  tends weakly to/~ when t--, oo. 

(7) 

5.4. Proposition. Let A be a C 2 basic hyperbolic set. The measure p,(,) depends 
continuously on the C 2 flow F for the weak topology on measures and the C 1 topology 
on flows, Also the pressure of (p tu) and the entropy of p,(,,) with respect to F depend 
continuously on F for the C 1 topology on flows. 

Let/~ =/~,(,), and ~' be the corresponding measure for a flow F'. We have to 
show that # ' ~ / ~  weakly when F ' ~ F  in the C I sense; #' is a measure carried by 
the U-basic  set A' close to A. 

Go ing  back to Lemma  2.1 and using [4] we have a special flow G' on A'(A,O') 
and a cont inuous  surjection p': A'(A, 0 ' ) ~  A'. By [4] and the ~2-stability theo- 
rem [5], we can construct  A'(A, 0') from the same subshift aA: Z A ~ 2  A which 
was used for A(P, 0). When F ' ~  F, we have 0 ' ~  0 uniformly, and p'(x, t) ~ p(x, t) 
(uniformly in (x, t) for 0 _  t_< min {0 (x), ,~'(x)}). Fu r the rmore  E'f(x, t) ~ E~tx, t) 
where E "  is the unstable ~bb-undle  for F (by Theorem (6.1) of [15]). 

We know that  
~(x) O(x) 

4)(x)= ~ ~p(")(p(x,t))dt= ~ go(")(ff p(x,O))dt 
o o 

= - I n  20(x)(p(x, 0)) 

and correspondingly  

4)'(x) = - I n  2~,(~)(p'(x, 0)). 

Therefore  when F' -~ F, we have 4)' -~ 4) uniformly. 

According to Section 3 we have 

hv(OA)+ ~" 4) dv 
P(FIA, tp (")) = P(G, (p(") o p ) =  sup 

Therefore  P(F[A,  ~o (")) depends cont inuously  on F. Using the nota t ion of Proposi-  
t ion 3.1, we let v o be the unique equil ibrium state for 4)-P(FIA,@")) . 0. By the 
cont inui ty  of the equil ibrium state indicated just before Proposi t ion 3.1, v o -~ v o 
when F'  ~ F. Thus  #~6 ~ / ~ o  and p' = p' * P~6 ~ # = P* #~o" 

Finally, the en t ropy  of t*~o(-, is 

where 
P(FIA, qa("))- S qa (") d/~.,., 

~p'"' d~t,(,)= I ((P("' ~ P) d/~o = f 4) dvo/~ 0 dvo 

depends cont inuously  on F. 
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5.5. Proposition. Let A be a C 1 basic hyperbolic set and let e > O. 

(a) I f  W~ (e)c A for some x ~ A, then A is an attractor. 

(b) l f  A is not an attractor, there exists 7 > 0  such that for all x~A,  there is 
ye  W~(e) with d(y, A)>y.  

If W~"(e)c A, and u > 0 ,  the set 

ux=U U f '  (8) 
Itl<u 

is a neighbourhood of x in M (see [13], Lemma4.1). Choose a periodic point 
p~Uxc~A and let t o be its period. For some fl~(0,~], we have W~,(fl)c:_ Ux, hence 

= w3( ) A 

(by [18], Theorem 3.2). Now 

W~= U f ,,o W~(fl)=A 
n = l  

and 
w;":Uw;,.  

O<=t<=to 

is dense in A (see for instance [3], p. 11-13). 

For each x~ W~", the set U x defined by (8) is a neighbourhood of x in M. As 
W~(e), W~(e) depend continuously on x~A,  one can find 6 > 0  independent of x 
such that Ux~B=(2fi) for all x~W~" (see [13], Lemma4.1). In view of this, and 
the density of W~" in A, 

U {Ux: 

Therefore, if zeBa(6 ) there exist xeW~ ~ and ye[_)t t l~, f 'W~(z)=W[,"=A such 
that ze  WrY(e). When t-~ ~ then d ( f  t z, f t  y)-~O uniformly in z. Therefore 

f t  B A (a) = A, 
t > o  

which shows that A is an attractor and proves (a). 

To prove (b), notice that the set 

V~= {xeA:  d(y, A)>~ for some ye  W~(e)} 

is open in A since W~(e) varies continuously with x. Also V~ increases as y decreases 
and, by part (a) of the present proposition, ~ ~ > o V~ = A. Therefore, by compact- 
ness, V~ = A for some y > 0. 

5.6. Theorem s. Let A be a C z basic hyperbolic set. The following conditions are 
equivalent: 

(a) A is an attractor; 

(b) m(W])> 0; 

(c) P(FIA, q~"))=0. 

s Some of the ideas in the proof of this theorem were earlier discovered by J. Franks and R.F. Williams. 
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oo - n  $ ~ Since Wj = U,= o f w3 () ,  (b) can be replaced by m (W~ (e)) > 0 for any small 
> 0. In Proposition 4.4 (b) we have seen that (a)=~ (b)=~ (c). To complete the 

proof we assume that A is not an attractor, and show that P(FIA, q~("))<0. 
Given a small e>0,  choose 7 as in Proposition 5.5(b). There is t > 0  such that 

if x~A, f t  W,(7/4)~W~,,,(e)" Let E ~ A  be (7, T)-separated. For any x~E and 
T > 0 ,  there is y(x, T)eBx(7/4, T) such that d(ft+r(y(x, T),A)>y [because 
f r  B,~(7/4, T)~  W~"(7/4), hence f r + ,  Bx(7/4 ' T)= W~,~(e)]. Choose 6e(0, 7/4] such 
that d ( f  t z, f t  y)<y/2 whenever d(z, y)<& Then 

hence 

Br(~, r)(6, T)cB~(7/2, T) 

f r+t  Br(~ ' T)(6, T) c~ B a (7/2) = 0, 

Br(x, T)(6, T) n B a (7/2, T +  t) = 0. 

Using the second volumelemma we have thus 

m(BA (7/2, T))-- m(BA(Y/2, T+ t))>= Z m(By(x, T)(6, T)) 
x ~ E  

> d(3 y/2, 6) ~ m(B~(37/2, T))>d(37/2, 6) m(BA(Y/2 , T)) 
xEE 

and therefore 

m (B A (7/2, T + t)) < (1 - d (3 7/2, 6)) m (B A (7/2, T)) 

so that by Proposition 4.4(a) 

P(FIA, q~ ( ' ) ) = t  < 1 log(1-d(37/2 ,6))<0.  

5.7. Corollary. Let F be a C 2 Axiom A flow on the compact manifold M. 
(a) 7he closures of the basins of the attractors cover M. 
(b) I f  A is a basic hyperbolic set and m (A) > O, then A is a connected component 

of M and FIA is an Anosov flow. 

Since F satisfies Axiom A, M =  U {wj: A is a basic hyperbolic set}. 

The complement of the basins of the attractors is U { w~: A is not an attractor}, 
it has measure 0, and therefore contains no open set. This proves (a). 

I fA is a basic set and m(A)>0, then m(W~)>0 and m(W])>0 so that A is an 
attractor for both F and the opposite flow F -  1. Since A is an attractor for F, then 
WAU = A. Since A is an attractor for F -1, then W~ u is open. Therefore A is open and 
closed. Also, A is connected since W[ u is dense in A for periodic p (see [3], p. 11-13). 
This proves (b). 

Appendix 
Throughout what follows A will be a hyperbolic set for the C r flow (ft) on 

the manifold M (r> 1). 
We recall that, by assumption, the Riemann metric on M is adapted to f l  

(see Introduction). Notice also that there is K > 0  such that I[Tf"IEIf<K for 
all n>0 .  
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Deno te  by indices 0, 1, 2 the c o m p o n e n t s  in Ex, E~, E~ of a vector  in TxM. 
We shall use in this Append ix  a new scalar p roduc t  in TxM defined by 

2 

(u, v> x = ~ (u,, vi). (A.1) 
0 

We write Ilu[I = Ilultx=(<u,u>x) x/2. If E'  is a subspace  of  TxM, E'(e) will denote  
the closed e-ball centered at  the origin of  E'  for this metric.  

A.1. Convenient Charts.  For sufficiently small e > 0  and each x e A ,  let us define 
a C r chart qgx: T x M ( e ) - , M  such that 6 

$ C C$ U C CU ~Ox(E~+E~)(~) W' ,  ~o~(ex+Ex)(e) W" 

and the map F =  r i o f l o  r is tangent to T x f  1 at the origin of T~M. 

If expx i W~ ~ is (in a ne ighbourhood  of the origin of  TxM ) the graph  of a 
funct ion $ ' :  E~ x E~ ~ E~ we set 

~o'(u) = Uo + u~ + (u~ + r u0) .  

If qr 1 e x p ;  ~ WCx" is the g raph  of ~" :  E x x E" x -~ E~ we set 

~o"(u) = ~o + (u~ + O"(Uo, u2)) + u~. 

Then  (Px = exp~ o qr o ~o" has the desired propert ies .  
If  u �9  T~M (e), e sufficiently small, Tay lor ' s  formula  yields 

[IFz(u)l[ = [IFz(uo+Ul+U2)-Fz(uo+Ul)ll ~ y  l llu2H (A.2) 

for some y�9 1) independent  of:x. Similarly if 0 < c o < l ,  e can be chosen so 
small  that  

IIFo (u) + F x (u) - F o (v) - F 1 (v)II < co 11Fz (u) - F 2 (v)N (A.3) 
whenever  

t luo+u~-Vo-vxt l  <cotlUz-V2ll and  u, veTxm(e  ). 

We define 

D x(~, n) = {u �9 T x M : ltF k ulIsk~ s ~ for k = 0, 1, . . . ,  n}. (A.4) 

Let  ueDx(e, n), then (A.2) yields 

II (Fk)2 (u)II < 7" - k I1 (Fn)2 (u)II ----< ~ yn- k 

for k=O, 1, . . . ,n.  Let V=Uo+U 1. We m a y  assume that  veDx( (K+l )e ,n  ) and, 
for e sui tably small, app ly  (A.3) with co = 1. 

We ob ta in  

II (Fk)o (u) + (Fk)l (u) -- (Fk)o (v) -- (Fk)l (v)II ----< ]1 (Fk)2 (u)II < e y"-  k 

and therefore 
II F k (u) - F k (v)I1 < 2 e y"- k (m.5) 

for k = 0 ,  1, . . . ,  n. (In par t icular  veDx(3e, n).) 

o W ~ =  ~ { W,~: yeorb i t  of x}, Wf" = U { W~': yeorb i t  of x}. 

2 Invent. math., Vol. 29 
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A.2. Lemma. Let r = l  and ~: M ~ IR be C 1. Given 0 > 0  there is 6 > 0  such that: 
if x~A, y~M, n > 0  and d(fky, fkx)<O for k=0 ,  1, ...,n, then 

i ~ ( f t y ) d t - i  ~ ( f t x ) d t  <0. 

Because of the C z assumptions there exists C > 0 such that 

i t f i ( f t p ) d t - i  ~ ( f t  q)dt < C d(p,q). 

Given 8, one can choose 5 so small that d(x, y)<6  implies u = ( p ; l y ~  TxM(8/2) 
for x e A  and y~M. Define V=Uo+U 1 and z=q)xwW~ s. We may then assume 
that zE W/~x( 0 with Is] < C o 8 (C o independent of 8). Then 

for some 7'~(0, 1). If d(fkz ' fk+~x)< Cle~'k 

(A.5) yields 
d(fkx,  f ky )<6 for k=0 ,  1, . . . ,  n, 

d(fky, fkz)<C28Y" * 
with C 2 >0. Thus 

O(ff Y) -  O(ff  ~ ~k(ff fkY) - I O ( f ' f  kz) 
0 r 0 

n - l [  1 1 X) 

+ Z I ~ ( f f f t z ) _ _  5~( f t fk+,  
k=O 0 0 

n n X) 
+ ~ s ! + ( i '  

Cz8 . C18 ] _-< c [ l_--z~t l--Z~,~, ] +2Co811011. 

A.3. Lemma. Let x: GqM--*M be the Grassmannian bundle of q-dimensional 
subspaces in TM and Gqft: GqM-~ GqM be the diffeomorphism induced by T f  t. 
We assume that r = 2  so that Gqf is a C 1 flow on GqM. I f  q=d imE~ and 
A* = {E~: xeA},  then A* is a hyperbolic set for the flow Gqf 

For  xeA,  define the manifolds 

Vx*S={E~7~-l(WS(8)): d(E-EU)<8}'~ Wx*U=TWU(8) 

in GqU. The manifold u - l (x )  contains E"~, and GqffEu-l(x)]=u-l( f fx) .  It is 
known (and easily seen) that Gqf 1 contracts a neighbourhood of E~" in u - l (x )  
(see B.1 of [19]). Since f l  contracts W](8), it follows that, when e is sufficiently 
small, Gf f  contracts V *s. Thus TGf f  is a contraction of E*s= TV  *~. Clearly 
Gqf -1 contracts V*" and therefore TGqf -1 is a contraction of E*"= TV~*". We 
have 

dim E *~ + dim E*" = dim W~ (8) + dim u -  1 (x) + dim W~ (8) 

= d i m M -  1 + dim u-  l (x) = dim Gq M - 1 
which concludes the proof. 
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A.4. Lemma. Let r=2 .  Given 0>0,  there is e > 0  so that the following holds. 
I f  x e A  and V6Dx(e , n) (defined by (A.4)), let E*eGqM be the tangent at qo~ 

to the manifold (p~(v+ E~(e)). Then 

and 

e-  0 < Jac Tf"IE* <_ eO (A.6) 
- JacTf"[E~ - 

e o< JacD~(F"lv+E]) <cO. (A.7) 
- JacDo(F, lE~) - 

(D o, D~ are derivatives in charts.) 
The Jacobian in (A.7) is computed with respect to the scalar pioduct (A.1). 

Clearly the estimate (A.7) differs from (A.6) only by bounded factors and it suffices 
to prove (A.6). To do this we apply Lemma A.2 to the hyperbolic set A* for 
the C ~ flow Gqf (cf. Lemma A.3), with the replacement x ~ E~,, y-~ E*. We have 
to check that (for sufficiently small e), 

d(Tfk E], Tfk E*)<6 

for k=0 ,  1 . . . .  ,n. Using the charts ~Ox, this results from (A.4) and (A.3). To 
conclude the proof it suffices to define 

and remark that 

~' (E) = d t- In (Jac Tff[ E) t= o 

n 

O(TftEv) d t=ln  Jac Tf"lEv. 
0 

A.5. Proof  of the Volume Lemma. We shall show that for sufficiently small e > 0 
there exist b,, b'~ > 0  so that 

b~ < mx (D~ (e, n)). Jac D o (F" [ E~) < b'~ (A.8) 

for all x e A ,  n>0.  Here m x denotes the measure on TxM associated with the 
scalar product (A.1). This will prove the volume lemma because the use of the 
charts ~0~ multiplies all distances, measures and Jacobians (see Lemma A.4) by 
positive factors bounded away from 0 and oo. 

If ve(E~ + E~)(e) define 

Nv(e, n)= {u~TxM" Uo+Ul=V and (Fa)a(u)~Eykx(e) for k=0 ,  1, ..., n}. 

If e is sufficiently small, [IFkv[1 < ( K +  1) e for all k>0 .  
Also, using (A.3) with (o< 1 and induction on n, we find that F"Nv(e, n) is the 

graph of a C 1 function g: Eur, x(e)~(EI,x+ESr, x)((K+Z)e ) such that [tDg[t <co 7. 
In particular we obtain the second inclusion of: 

D x (e, n) c ~ Nv (e, n) c Dx ((K + 3) e, n). 
v 

v This is an easy adaptat ion of the first part of the proof of Theorem 2.3 of [14]. 
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To prove (A.8) it suffices thus to show that 

c, < m~ (U Nv (e, n)). Jac Do (F" I E~) = c', (A.9) 
v 

for some % c; > 0. 
Since tIDgll <co, the measure of F"Nv(e, n) (induced on the manifold by the 

metric (A.1) on T:.xM ) is contained between bounds d~,d'>O. In view of (A.7), 
the measure of Nv (e, n) multiplied by Jac D o (F" ]Ex" ) is contained between d~ e- 0 
and d~ e ~ 

Finally, using Fubini's theorem to integrate over ve(E~+E~)(e) yields (A.9). 

A.6. Proof of the Second Volume Lemma. Let weDx(e, n), and define 

Dx~(f,n)={ueT~M: llFku-FkwIlykx<5 for 0, 1, ...,n}. 

It will suffice to show that there is b~ > 0 so that 

rnx(Dxw(5, n)). JacD o(F'[ E~) > b o (A.10) 

for all xeA, weDx(e,n), n>0.  Furthermore it suffices to prove (A.10) for 5<e.  
Let 

A = {ueTy.~M: Uo=(F'w)o , u2=(Fnw)2, uleE}.~(3e)}. 

For each yeA, let F~={fq):.xV: Itl<~} so that 1 %.xr~ is a "piece of trajectory" 
through v. Then, for small e and suitable a, 

w =  U ( o74 
V~zt 

is a C: manifold in T:.~M, which is the graph of a function ~ defined on a 
subset of E:.~+Ej.x with values in E~.~ and such that I1D~hlt <co with coe(0, 1). 

We may assume that the domain of ~ contains E:.~(2~)+E~.~(2~) and let W' 
he the graph of the restriction of ~h to E:.~(2e)+ Ej.~(2e). We write 

w ' =  U w; 
r :  It[ < 2 e 

where W~ c {u: Uo=Z}. Let 

w~"= {ueT~M: F"ueW~' and (Fk)l(u)eE:r~x(2e) for k=0 ,  1 . . . . .  n} 

w, ,=  U w; , . 
~: Jr[ < 2 ~  

Applying (A.3) and the argument in A.5 to F'W~', F -~ instead of N~(~,n), 
F we find that W~" is the graph of a function g~: E~(2~)~(E~+E~)(2(K+ 1)~) 
such that j[Dg~j[ =<co. On the other hand W" is a union of "pieces of trajectories" 

-~ ~ +E~ with derivative _<co (for sufficiently which are graphs of maps E~ E~ 
small e). The C 2 manifold W" is thus the graph of a function ~" defined on a 
subset of Ex+E~ with values in E" and such that ]ID~"][ __<1 (for small e, hence 
small co). The manifold W" imitates a piece of center-stable manifold through w. 

Notice that F k contracts or expands a "piece of trajectory" in W" by a factor 
bounded away from 0 and oo (contained between ( K +  1) - i  and (K+I ) ,  say). 
From this and the above properties of W" it follows that the domain of ~" 
contains a ball B of radius fl around w o + w~, in E~ + E~ for sufficiently small 
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and (taking f l < 3 / 4 ( K  + 1)) we have 

~," v, F k w ) < ~  d(F k 

for k=0 ,  1, . . . ,  n whenever v e B .  
For each v e B ,  define 

K 

<o_ f o r k = 0 , 1 ,  ,n}. = {u~_TxM: Uo+Ul=V and II(Fk)z(u)-(Fk)z(~"v)l t  = 2 "" 

We have 
6 

and proceeding as in A.5 we find that 

for some c~>0. This proves (A.10) and therefore the second volume lemma. 
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