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The Ergodic Theory of Axiom A Flows

Rufus Bowen* (Berkeley) and David Ruelle** (Bures-sur-Y vette)

1. Introduction

Let M be a compact (Riemann) manifold and (f*): M — M a differentiable
flow. A closed (f")-invariant set A<M containing no fixed points is hyperbolic
if the tangent bundle restricted to A can be written as the Whitney sum of three
(Tf")invariant continuous subbundles

T,M=E+E*+E"*

where E is the one-dimensional bundle tangent to the flow, and there are constants
¢, A>0 so that

@) |Tf'(v)| ce *|v|| for veE?®, t=0 and

(b) ITf " (v)|| Sce™*|v|| for veE*, t20.
We can choose 1,>0 and change 1 so that the above conditions hold with c=1
when t2>1t,. We can also assume that, for such ¢, Tf* (resp. Tf ~") expands E
at a smaller rate than it expands any element of E* (resp. E®). It is then said that
the metric is adapted (see [14]) to f*. We will always assume that t,<1—this
can be achieved by a rescaling of t (t > t'=t/t,) which does not affect our main
results.

A closed invariant set A is a basic hyperbolic set if

(a) A contains no fixed points and is hyperbolic;

(b) the periodic orbits of f*|A are dense in A;

{c) f*1A is a topologically transitive flow; and

(d) there'is an open set U> A with A=[) f'U.

teR
These sets are the building blocks of the Axiom A4 flows of Smale [27]. We will
especially be interested in attractors, basic hyperbolic sets A for which the U
in (d) can be found satisfying f'U < U for all t = T, (T, fixed) and hence A= () f*U.
t20

This paper will study the average asymptotic behavior of orbits of points in the
neighborhood U of a CZ-attractor.

Precisely we will find an ergodic probability measure y, on a C? attractor A
so that for almost all xeU w.r.t. Lebesgue measure and all continuous g: U - R
one has

1T
lim—[e(f'x)dt=[gdu, 4y
0
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(see Theorem 5.1). The measure p, will be described as the unique equilibrium
state for a certain function ¢ =¢"™ (defined by (2), SectionIV) on A, i.e. the
unique f*-invariant probability measure 4 on A which maximizes the expression

h,(fH+[edu

where h,(f") is measure theoretic entropy. This variational principle (which is
formally identical with one in statistical mechanics [21]) is useful because it
gives a description of u, which persists when one lifts 4, to a symbol space for
closer study.

This paper carries over to flows results previously obtained for diffeo-
morphisms with regard to equilibrium states [6, 7, 24] and attractors [24]. For
Anosov flows (4= M) the measure g, has been studied in [9, 16, 17, 20, 25, 26]
and the theory of Gibbs states (a slightly different formalism from equilibrium
states which yields the same measures for basic hyperbolic sets) has been developed
in [26]. Some results obtained here for flows are new even for diffeomorphisms;
this is the case of Theorem 5.6. Results for diffeomorphisms can be obtained
from those for flows via suspension (or directly by simplification of the proofs).

The determination of the asymptotic behavior of orbits is a significant
problem in the study of differentiable dynamical systems. In particular the
asymptotic behavior of solutions of a differential equation is of central interest
in physical applications. Here we consider only the case of Axiom A4 flows. In
that case it is known that f*x often depends in a very sensitive or “unstable”
manner on the initial condition x, and (1)—which describes the time-average
of an “observable” g—is probably the best way of expressing the asymptotic
behavior of f*x. It is a natural problem to extend (1) to non Axiom A situations.

We shall show that u,,.., depends continuously on the flow (f*) (Proposition 5.4).
In the same direction, Sinai [26] has proved the stability of u, under small
stochastic perturbations for Anosov flows'. (1) holds almost everywhere for x
in the basin of an Axiom A attractor; one can prove that, for a C?* Axiom A4
flow, these basins (and those of point attractors) cover M up to a set of Lebesgue
measure zero. Equivalently: if a basic set is not an attractor, its stable manifold
has measure zero (Theorem 5.6).

It can be seen that, unless A is a periodic orbit, the entropy of y, does not
vanish; this indicates “strong ergodic properties” of the system (u,,, f*). In fact,
if (f) restricted to A is C-dense, (u,, f*) is a Bernoulli flow (see Remark 3.5).
The correlation functions

pee=f(gof g du,—§gdn, g du,

are interesting to consider in physical applications. In the C-dense case we have
lim, , , p, . (1)=0 if g, g'e[*(n,) (Remark 3.5). Assuming that g, g" are C', does
Pge (1) tend to zero exponentially when ¢ — oo ? The methods of the present paper
do not seem capable of answering this question. A positive answer has been
obtained for diffeomorphisms ([24, 26]).

! The corresponding problem for attractors for Axiom A diffeomorphisms has been treated by Kifer
(Sinai, private communication).
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Terminology

The manifold M and the Riemann metric on M are C®. The flow (f*) is
called C" (r=1) if it corresponds to a C" vector field on M; a basic hyperbolic
set A for (%) is then called a C” basic hyperbolic set. The flow (f) restricted to A
is topologically transitive if it has a dense orbit.

For easy reference, we collect here the definitions of stable manifolds

WS={yeM: limd(f'x, [*'y)=0}
t— o0

W= W,

teR

A distance on M is defined by
or(x,y)= sup d(f'x,f'y)
0<tI<T

when 0< T< oo; B (g, T)isthe closed e-neighbourhood of x for that distance; also
W:e)=W:nB_ (g, w0).
Replacing t by —t and s by u we obtain the definition of unstable manifolds.

We al it
€ also write Wj(E)z U I/I/;S(g), etc.
xeA

The basic hyperbolic set A is C-dense if W n A is dense in A for some (hence
for all) xeA.

In general we write f*u the image of a measure u by a continuous map f.

2. Symbolic Dynamics
Let us recall the symbolic dynamics of a basic hyperbolic set A [4]. For
A=[4;;] an nxn matrix of 0’s and 1's we define

Z={x=(x)L" e{l,...,n}": 4

ti=— 0

=1VieZ}

XiXp+1

and 6, X, —» X, by 0,(x)=(x)2 _, where xj=x;, . If we give {I,...,n} the
discrete topology and {1, ...,n}% the product topology, then X, becomes a
compact metrizable space and ¢, a homeomorphism. g, (or X,) is called a
subshift of finite type if 6 4: X, — X, is topologically transitive (i.e. for U, V non-
empty open sets there is an n>0 with f"Un V£0).

For y: 2, >R a positive continuous function one can define a special (or
suspension) flow as follows. Let

Y={(x,s): se[0, ¥ (x}],xeZ,}c 2, xR.

Identify the points (x, y(x)) and (o 4(x), 0) for all xe X, to get a new space A(A4, ¥).
Then A(A, y) is a compact metric space (see [8] for a metric) and one can define
a flow g' on A(A, ) by

g'(x,85)=(x,s+1) for s+te[0, ¥ (x)]
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and remembering identifications. More precisely, if z=g(x, s) where q: Y — A(A4,¢)
is the quotient map, then g'(z)=q(c¥ x, v) where k is chosen so that

k—1
v=t+s— Y W(aix)e[0, ¥ (ohx)].
j=0

The flow g‘ on A(4, ), will be important to us with i satisfying an additional
condition. For y: 2, >R let

var, y =sup {|Y (X) ~ Yy (¥)|: X, yeZ,, x;=y,V|i|<n}.
Let
F,={YeC(Z,): 3b>0, ae(0, 1) so that var,y <b«" for all n=0}.

2.1. Lemma. Let A be a basic hyperbolic set. Then there is a topologically mixing*
subshift of finite type 6,: X, — Z,, a positive YeF, and a continuous surjection
p: A(A, ) > A so that

A4, ¥) —F A4, ¥)

A— 4
commutes.

This is from [4], Section 2, except for the mixing conditionong,. Ifa,: X, —» 2,
is not mixing, then for some m>0 X, =X, u---u X, a disjoint union of closed
sets with o,(X))=X,,, and ¢7%|X;: X;— X, conjugate to a mixing subshift of
finite type (see e. g 2.7 of [2]).

Identifying ¢%: X, — X, with some g5: Z;— Z, and defining y': 2, SR by

Y=y (x)+¥(0,x)+ -+ oy x)

one can see that A(B, ¥) is homeomorphic to A(4, ) in a natural way and y/'e .
There are other properties of the map p which we shall recall as we need
them. Throughout the remainder of the paper ¢ will always denote a positive
function in &, and ¢, a mixing subshift of finite type.
For any homeomorphism f the set of f-invariant Borel probability measures
will be denoted M(f). If F=(f"),.g is a continuous flow we will write M(F)=
(M.

teR

3. Equilibrium States

Let us review the definition of topological pressure for a homeomorphlsm I
X — X of a compact metric space and a continuous function ¢: X —IR'[23, 28].
For given ¢>0 and n>0, a subset Ec X is called (¢, n)-separated if

x,yeE, x+y=d(f*x,f*y)>¢ for some ke[0,n].

2 A homeomorphism F: X — X is topologically mixing if, for U, V open nonempty in X, U F"V +§
for all sufficiently large n.
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One defines

n—1
Z.(f,0,8)= sup{ Y exp Y. o(T“x): E is (s, n)-separated}
xeE k=0
P(f; @.0)=lim sup - logZ, (£, ¢. )

and
P(f, @)=limP(f, ¢,¢).

For ¢ =0 the number P(f, ¢) is just the topological entropy h(f) of f; the theory
of topological pressure generalizes that of topological entropy. The main general
result is that

P(f, <p)=ugzz(>ﬂ(h,‘(f)+f @dp).

This was proved by Walters [28]; for f expansive there is a ueM(f) with
h(N)+] 0 du=P(f,9).
An equilibrium state for ¢: X - R with respect to f: X > X is a ueM(f)
with hu(f)+f ¢ du=P(f, ¢),i.e.a ye M(f) maximizing the quantity hu(f)+j edu
Now we will consider the case of a flow F=(f": X — X)and ¢: X > R. A set
Ec X is (g, T)-separated if

x,yeE, x=*y = d{(f'x, f'y)>¢ forsome te[0, T].
Then we define

T
Z(F, @, &)=sup { Yexpfo(fix)dt: Eis (e, T)-separated}
o]

xeE

. 1
P(F9 ?, 8)2111'11:1 Sup?:log ZT(F, @, 8)
and
P(F,¢)=lim P(F. ¢,2).

The definition of P(F, ¢) is independent of the choice of metric on M. It is a
straightforward exercise to check that if one lets ¢(x)={§ ¢ (f'x)dt, then
P(F,9)=P(f', ¢"); also, for ye M(F) one has [ ¢ du={o¢'du. As M(F)c M(f*)
one has

h(fY+fedu=h,(fY+[ e dusP(f*,¢")=P(F, ¢)

for pe M(F). There is an argument ([28], see also [10], p. 359-360) to show that
for any p'e M(f?) one can find a ue M(F) with

h(fY+e duzh, (fH+[e'dy'.
Hence it follows that

P(F, @)= sup (h,(f)+| o du).
ueM(F)
By an equilibrium state for ¢ (with respect to F) we mean a pe M(F) with

h(f)+] ¢ du=P(F, ¢).
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For G={g'} the special flow on A(4, ) there is a well-known bijection
between M(G) and M(o,). For ve M(o,) and m Lebesgue measure, v xm gives
measure 0 to the identifications on Y — A(A4, ¢) and so p,=(vxm(Y))" ' vxm|Y
gives a probability measure on A(4, ). One can check that ve M(c,) implies
u,€ M(G) and that v— p, defines a bijection M(o,) > M(G).

It is known that any function ye %, has a unique equilibrium state v w.r.t.
g, [6, 11, 22, 24] and that v depends continuously on y (weak topology for v,
uniform topology for y). We will now state the corresponding condition on
@: A(A, l,[/)—»]R which guarantees a unique equilibrium state.

3.1 Proposition®. Let ¢: A(P, )R be continuous, ®(x )=[4® @(x,t)dt and
=P (G, ¢). Assume that ®€F,. Then there is a measure u,e M(G) so that

(@) u, is the unique equilibrium state for @ with respect to G.

(b) u,=u,, where v, is the unique equilibrium state for @ —cy on 2 ,.
(¢) u, is ergodic and positive on non-empty open sets and

(d) for >0 there is a C,>0 so that

r
to(By (e, T))= C, exp (—c T+ fo(g'x) dt)
0
for all xe A(A, ), T =0 where
B, ole, T)={yeA(4,¥): d(g'y,g'x)S¢ forall te[0, T]}.

Lety=d—cy. As &, ye #, we have ye #,. This guarantees that y has a unique
equilibrium state v,. By Fubini’s theorem, for any ve M(s,), (v xm)(Y)= f(//dv

and [ @ du,= {i Iy . A theorem of Abramov [1] states that
1 h,(o4)
b (8) f ydv’
Hence
=P(G, )= sup (h,(g")+[ody)
peM(G)
ho)+[@dv

by [ydv

Thus P(o,,y)=sup(h,(o,)+[(®—cy)dv)=0 with v attaining the supremum

(i.e. v=yv,) precisely if y, is the unique equilibrium state for ¢. This shows that
K, = M, satisfies (a) and (b); (¢) is true because v, has these same properties ([6] or
[24], Appendix B).

We now verify (d). Let xeA(4, ¥) be represented by x=(x, t,), t,€[0, Y (x))
and g” x=(0" x, t,), where n=n(x) is such that

t,=T+t,— kiol// (0%, X)€[0, ¥ (o, x)).

3 Another proof of (a), {b), (d) has now been obtained by E. Franco-Sanchez, Berkeley thesis, 1974.
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Given >0 one can find §,>0 and s,>0 (not depending on x or T) so that*
B, q(e, )2 {(y, 0): |1t—t,|<s, and d(d% y, o% x)<4, for all ke[0,n—1]}.

We do not go through the details but do point out that, for any a>0, e %,
implies that for é small enough

n—1

do* x, 0% y)SoVke[0,n—1] = ) WY (e4x)—y (ol y)l<a.
Then k=0

s
Ho By, e, T)EW;—VO voly: d(oy, 0y x)<0,Vke[0,n—11}.

By [6] Lemma 5, this right side is at least
n—1 n—1
a, exp ( Y y(e* x)—nP(a,, V)) =a,exp ) 7(6%x)
k=0 k=0

for some a,>0. Since

Zgb(o,,x)ﬂz T+t

and
n—1

ty T t2
[orx 0di+ [o(g'x)di— [l x,0)dt=Y. &(c* x),
0 0 0

k=0
n T
one sees that )’ y(o* x)differs from —c T+ | ¢(g" x) dt by at most 2 [y || (jc| + [ o).
o

k=0
This proves (d).

3.2. Remark. Special flows are simple enough that parts (a) and (b) above could
have been derived without appealing so much to general (and harder) results on
topological pressure.

3.3 Theorem. Assume that A is a basic hyperbolic set for F and that ¢: A->R
satisfies a Hélder condition of positive exponent. Then ¢ has a unique equilibrium
state p,,. Furthermore, p,, is ergodic and positive on non-empty open sets of A, and
for any £>0 there is a C,>0 so that

T
o (By. pya(e: T2 C, exp (_p(m, 0T+ [0l x)dt)
forall xeA, T=0.

We apply the preceding proposition to the function g*=¢@op on A(A, ).
There are b; >0 and 7€(0, 1) so that

d(p(x,0), p(y, 0)) b,
1fx -y, for all [i| < N (see [4], Lemma 2.2.(i)).

4 In this formula (v, 1) has to be replaced by (o;'y, ¥(s;'y)+1) resp. by (o,y, t—y(y)) when t <0
resp. t>y(y
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Since F is a differentiable flow, there is a constant b, so that

d(f'x, f'y)=b,d(x,y) provided te[0, jy[].
The Holder condition on ¢ states that

lo(x)—@=bsd(x,y)* with o>0.

Combining these estimates, when x;=y,Yie[ — N, N] we have

) ()
6( p*(x,t)dt— [ @*(y,t)dt
0

vix)

SlelivE)—ymi+ g lo(/ p(x, 0) =@ (f* p(y, 0))] dt
Sl )~y W+ Wil bs (b, by ().

Since Y€, this gives P*eF where @*(x)= %™ o*(x, 1) dt. So ¢* has a unique
equilibrium state p. as in the preceding proposition.

We recall that there are closed subsets A,=p~Y(4°.#) and A,=p~'(4“#) of
A(A4, ¥) so that (see [4])

@) A+AP,Y)+A,

(b) g d,cA4,,g7"'A4,cA,Vt=0 and

(c) p is one-to-one off | ), g g' (A, A) =,z 8" (4,0 4,).
Because fi,,. is positive on non-empty open sets p,.(4)+ 14 1,+(A4,); since . is
ergodic and each of these sets is invariant under one direction of time, p1,,.(4))=0=
p+(4,). By (c) then p gives a conjugacy of the measurable flows (G, u,.) and
(F(A, n,)) where p,=p* p.. In particular b, (f")=h, (g") and

h, Y+ edu,=h, (€)+]e*du,.=P(G, 0¥).

As F|A is the quotient of G and @*=@op, one has P(F|A, )< P(G, ¢*) (see
Walters [28], Theorem 2.2); because h, (f Y+ du,=P(G,¢*) one has
P(F|A, )=P(G, ¢*) and pu, is an equilibrium state for ¢. If u were another
equilibrium state for ¢, then p=p* ' for some u’'e M(G) (by an easy application
of the Hahn-Banach and Markov-Kakutani theorems) and

hy () +f @* dp zh,(f)+ | @ du=P(F|4, ¢)=P(G, ¢*).

So ' is an equilibrium state for ¢*, p'=p. and p=pu,. Thus p, is the unique
equilibrium state. The remaining properties for u, follow from the corresponding
ones for . in Proposition 3.1.

3.4 Remark. For ¢ =0 the uniqueness of equilibrium state just says that F|A has
a unique invariant measure maximizing entropy. This was proved earlier in [5].

3.5. Remark. It was proved in [2] and [24] that (6, v,) is isomorphic to a
Bernoulli shift where v, is the equilibrium state of ye#,. The corresponding
result for (F[A, u,) follows from results proved elsewhere. If F|4 is C-dense
(i.e. W*(x)n A is dense in A for every xeA where W*(x)={y: d(f~'x, f " y)—=0
as t— +oo0}), then G is also C-dense and Sinai [26] p. 48-9, applied a theorem of
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Gurevi¢ [12] to show that (G, u,.) is a K-flow. We mention that, although Sinai
uses the formalism of Gibbs states instead of equilibrium states, the measure .
is the same as the one he constructs. M.Ratner [20] (also Bunimovi¢ [9]) has
proved in this C-dense case that (G, ) is actually Bernoulli (i.e. (g, y.) is
isomorphic to a Bernoulli shift for each ¢+0). Since (F|4, u,)=(G, p,.), (F4, 1)
is Bernoulli when F|A is C-dense and ¢ is Holder continuous. In that case we
have

lim [ (g2/") ¢ du,=[g du, [ & dp,

for all g, g'e[*(u,). [This follows from the fact that (u,, f*) is equivalent to a
Bernoulli shift for each ¢, and the continuity of the flow (/7).

4. Attractors

Now assume A is a C? basic hyperbolic set. For xe A let 4,(x) be the Jacobian
of the linear map D f*: E — EY. using inner products induced by the Riemannian
metric.

Define din A,(x)

da
PP (x)= — = _ (%)

-0 dt

@)

t=0

which exists and depends differentiably on E“ (hence continuously on x) as f*
is a C* flow. Since A7 ,(x)=A,(f T x) Az(x) one has

—InA(fTx)=—In Ar, (x)+1n Ap(x)
and so
dlIn A (x)

u Ty _
P (fTx)= s

s=T
This implies that

T
[ (f'x)dt=—1n A (x).
o]
This integral is the one appearing in Theorem 3.3 for ¢ = ™.

4.1. Lemma. For A a C? basic hyperbolic set and ¢®: A — R 'as above, o™ satisfies
a Hélder condition of positive exponent.

x — E* is Holder continuous (3.1 of [19]) and E* — ¢*(x) is differentiable, so
the composition x — @™ (x) is Holder.

4.2. Lemma (Volume lemma). Let A be a C? basic hyperbolic set and define
B (e, T)={yeM: d(f*x, f'y)S¢ forall tef0, T]}.
For small ¢>0 there is a constant c,> 1 so that
m(B, (e, T)) Ap(x)elc], ¢,

for all xeA and T =0, where m is the measure on M derived from the Riemann
metric.
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4.3. Lemma (Second volume lemma). For small ¢, >0 there is d=d(e, §)>0
(d independent of n) so that

m(B, (5, n))=d - m(B,(¢, n))
whenever xe A and ye B (¢, n).
These two lemmas are proved in the Appendix.
4.4. Proposition. (a) Let A be a C? basic hyperbolic set and define
B, (e, T)= | B,(& T).

xeA

Then (for sufficiently small ¢)
P(FIA, ¢*)=lim sup = log m(B, ¢, 7)) 0. @)
(b) Define
Wie)={yeM: imd(f*y, f*x)=0 and d(f"y, ' x)<eV120}
t— o
when xe A, and let Wi(e)=1\ )., W:(e). If m(W;(e))>0, then P(F|A, ¢")=0 and
hﬂ(p(u,(fl)= —§ o™ dp e (4)

This is true in particular if A is an attractor.
Let 0<d=<e If E is 2 maximal (5, T)-separated set for F|A, then
U B.(6/2. T)=B (& T)= | B,(6+5, T)

xeE xeE

where the B _(6/2, T) are disjoint, and the second inclusion follows from
Ac st g B.(6, T). Thus, assuming & small enough and using the volume lemma,
¢y 2 Ar(x)T ' Em(B e, TS sy, Y, Ap(x)”
x€E xekE
Therefore
¢t Zo(FlA, @, 5)Sm(B (e T) S ¢y, , Zo(FIA, ¢, 6)
and

. 1
P(FiA, ™, 8)= hr;l sup log m(B (e, T)).

The limit § — 0 yields (3), proving (a).

By Theorem 3.3 and Lemma 4.1, ¢ =" has a unique equilibrium state p ..
By the definition of equilibrium states, (4) is equivalent to P(F|A4, ¢™)=0. The
latter statement follows from (3) with

m(B.o(e. T) 2 m(W;(0) >0
There is a neighbourhood V of 4 so that
Wie)o{yeM: f*yeV forall t1=0}.

Indeed 5.1 of [13] gives this for diffeomorphisms and [13] indicates how to do the
proof for flows. If A is an attractor, one can find a small neighbourhood U’ of A
so that f'yeV for all t=0 whenever yeU’. Then U’ <W;:(¢) and therefore
m(W;(g))>0.
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4.5. Remark. A rescaling of t: t -t =t/t, does not change the invariant measures,
it replaces h,(f*) by h,(f*)=1t, h,(f") (see [1]) and ¢ by @' =1, ¢“. Therefore
—as indicated in the Introduction —rescaling of t does not change p,., or the
main results below. A change of Riemann metric on M changes ¢ but not pu,
or P(F|A, ') as one readily sees.
4.6. Corollary. Let A be a C? basic hyperbolic set. For sufficiently small >0 there
is a constant ¢, such that

m (Bx (2 &, T)) é C; /’L(p(u) (Bx (87 T))
forall xeA, T=0.

This follows from Theorem 3.3, Lemma 4.2, and Proposition 4.4(z), with
C; = CZE/CE'

5. Main Results

5.1. Theorem. Let A be a C? hyperbolic attractor, Wj its basin. Then for m-almost
all points xe W3 one has

1
Jim Va0 di=[gdpge

for all continuous g: M - R (i.e. x is a generic point for p_..,).

We can replace W} by a neighbourhood U of A such that f'Uc U for all
t2tyand [ f'U=A.
t=0
Let us write | T
g(hx)==[g(f'x)dt and g=[gdy,.
0
Let
E(g, 8)={xeU: lim sup|Z(T, x)~&| 23}

Choose £>0 so small that |g(f*x)—g(f*x")|<d/4 whenever d(x,x')<e and
0st=s1 If weset C,(g,8)={xeU: |g(n, x)—g|>7J}, then

sl 0 2)erles)

N=0n=N

Now fix N>0 and choose finite subsets Sy, Sy, ,,..., of A successively as
follows. Let S,(n=N) be a maximal subset of C,(g,8/2)n A satisfying the
conditions:

(@) B.(e,n)n B, (e, k)=0 for xe8§,, yeS,, N<k<n and
(b) B,(e,n)nB,.(e,n)=0 for x, x'eS,, x+x'.
(Notice that each S, is finite.) Choose o> 0 so that
B, ()= Wie)= | W;(e)

zeA

(B4() is the closed a-neighbourhood of A). If

30

veB,@nC, (87 ) @zN)
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and ye W’(¢e) with ze 4, then ze C,(g, 6/4) because of the way ¢ was chosen. By
the maximality of S, one has

B,(e,n)n B, (e, k)+P for some xe§,, NSk<n
and then B, (2¢, k) B,(g, n)> W(g)3y. Thus one has

B,(a)n U C, (g, ) U | B, (2¢&,k).

k=N xeSi
Using Lemma 4.2 one has

m(BA(oc UC (g,35)) A/ZEZ Zexpf(p(f’x)dt (5)
k=N xeSx

The definition of S, implies that Vy =) v s, B.(& k) is a disjoint union.
The choice of ¢ gives that B,(x,k)=C,(g,6/4) for xeS,=C,(g, 6/2) and so
Ve U v Ci(g, 8/4). Because . is ergodic,

0 22 é 0
O=ﬂ¢(u) (E (g’ 'Z)) gﬂ(p(u) ( ﬂ U Ck (g, Z)) - llm ﬂ.(p(u) < U C (ga 4 ))
N=0 k=N N-ow

and gim fo(Vyy)=0. By Theorem 3.3 (and P(F|A4, ¢“)=0, confer Proposition4.4)
© k
LoV ZC. Y, Y expfo(f*x)dt.
k=N xeSx [¢]
Hence the sum on the right converges to 0 as N — oo and using (5) above we get

hmm(B (@) U C, (g, 345 ))=0.

This in turn gives m(B,(®) " E (g, 8))=0
Now f*E(g,0)cE(g,d) for all t=0 and f*(U)c=B,(«) for some t>0. As f*
is a diffeomorphism, m(f* E(g, 8))<m(B ()" E(g, §))=0 implies m(E(g, §))=
Letting {g,};>, be a dense sequence of continuous functions U — IR, we get that
for x outside the m-null set :
U ()

kmz=1
one has Tlim 2.(T,x)=g,; as the g, are dense, it follows that Tlim g(T,x)=g for
all continuous g: U - R.

5.2. Remark. For the special case of an Anosov flow (4= M) with an invariant
(probability) measure y' absolutely continuous w.r.t. m, this theorem implies the
known fact that K= Py

5.3. Theorem. Let A be a C? attractor, WS its basin, and let v be a probability
measure absolutely continuous with respect to m and with support in W;. If the
Sflow F restricted to A is C-dense, then

lim { (g /) dv= g djtp

for all continuous g: M — R.
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We may choose U as in the proof of Theorem 5.1, and assume that supp ve U.
Define f**v by

(f*" v)@)=v(gf)

and write p = . We have to prove that weak lim f*’v=yu. In showing this we

t— o0
may assume that v=r-m where r=0 is bounded (by density of bounded func-
tions in I}).
Given &> 0 we find as in the proof of Proposition 4.4 that if U’ is a sufficiently
small neighbourhood of A, then U'c Wj(¢). We can choose t(¢)>0 so that
[ Uc U’ and therefore

supp f*@ve Wie).

Let Ec A be a maximal (T, ¢)-separated set for F|A, we have thus

supp f*'@vc| ) B,(2¢, T).

xe€E

Let (). be a non-negative measurable partition of unity on supp f*'®v
subordinate to the covering by the B (2¢, T) and let x, be the characteristic func-
tion of B (s, T). We write

g (Lpdgrey)
Ver™ Z (_’_TX:T) A M

The measure v, ; is a probability measure absolutely continuous with respect
to u, with density bounded independently of T. This is because

[Y.d(f*@v) m(B,(2¢, T))
§x.du #(B, (e, T))
by Corollary 4.6 (r,, denotes the density of f*"® v with respect to m).

Notice that v, ; is obtained by redistributing the mass of f*'®v in such a
manner that all that goes to B, (e, T) comes from B, (2¢, T). Therefore also f**v, ;.
is obtained by redistributing the mass of f*¢**® y in such a manner that all that
goes to f' B, (e, T) comes from f* B, (2¢, T). The diameter of f* B (2¢, T) is at
most 4¢ when 0<t < T; therefore if A" is a closed weak neighbourhood of the
origin in the space of real measures on M we have

FROED g frry e g

xeE

é ”rt(s)Hoo éC; ”r!(s)”oo

when 0<t<T, provided ¢ has been chosen sufficiently small.

Remember now that v, ,=s, - u where s, ;€ L*(u) and |is, 7ll,, is bounded
independently of T. We can thus choose T, — co such that s, ; —s, in L*(u) with
its topology of weak dual of I'(x). We have thus

SRy [ pe N ©
for all t=0. We use now Remark 3.5: (i, f*) is a Bernoulli flow and

!liqu s, (go fdu=u(g)
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for all continuous g: A — IR. There is thus ¢, such that

S*Use- W) —pe 7
for t=t¢,. From (6) and (7) we obtain
f*tv—uézﬂf

when t=1(¢)+1t,. Therefore f*'v tends weakly to 4 when t - o0,

5.4. Proposition. Let A be a C? basic hyperbolic set. The measure Koo depends
continuously on the C? flow F for the weak topology on measures and the C* topology
on flows. Also the pressure of " and the entropy of u o with respect to F depend
continuously on F for the C* topology on flows.

Let u=p,u, and g’ be the corresponding measure for a flow F'. We have to
show that i’ — 1 weakly when F'— F in the C! sense; i’ is a measure carried by
the F'-basic set A’ close to A.

Going back to Lemma 2.1 and using [4] we have a special flow G’ on A'(4,¥)
and a continuous surjection p’: A'(4,¥') > A'. By [4] and the Q-stability theo-
rem [5], we can construct A'(4,y') from the same subshift ¢,: ¥, > X, which
was used for A(P, ). When F’'— F, we have ' — ¢ uniformly, and p'(x, t) - p(x, 1)
(uniformly in (x,f) for 0<t=<min{y(x), y'(x)}). Furthermore E, ,—~E

where E'* is the unstable subbundle for F’ (by Theorem (6.1) of [15]).
We know that

U
px, 1)

Yr{x) P(x)
o(x)= | o™ (p(x,n)dt= Of e“(f* p(x,0)) dt

0
= —ln,(p(x,0)
and correspondingly
@' (x)=—In Ay, (0" (x,0).
Therefore when F'— F, we have ¢’ — ¢ uniformly.
According to Section 3 we have

h(o)+|®dv
P(FiA, ") =P(G, p™op)= sup A~
(FlA, ")=P(G, 9™ p) ,up [ dv

Therefore P(F|A, ¢™) depends continuously on F. Using the notation of Proposi-
tion 3.1, we let v, be the unique equilibrium state for @ — P(F|A,¢"™)-y. By the
continuity of the equilibrium state indicated just before Proposition 3.1, v, — v,
when F'—»F. Thus p, —pu, and y'=p* p, —>pu=p*p, .

Finally, the entropy of u,w is

P(F|A, ¢*)—f o™ dp

§ 0" dptyeo= (90 p) dpt,, = @ dvo/[ Y dv,

where

depends continuously on F.
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5.5. Proposition. Let A be a C? basic hyperbolic set and let £>0.
(@) If Wi(e)c A for some xe A, then A is an attractor.
(b) If A is not an attractor, there exists y>0 such that for all xe A, there is
ye WE(e) with d(y, A)>7.
If W¥(e)= A, and u>0, the set
U= W e): ye | [ W@} ®)

lt|zu

is a neighbourhood of x in M (see [13], Lemma 4.1). Choose a periodic point
peU,n A and let ¢, be its period. For some Be(0, £], we have W) (B)c U,, hence

W (B) = Wie)n Wie)=A4
{by [18], Theorem 3.2). Now
Wy= J e Wi

and
u/cu__ ”/u
| 2 ftp

0=t

A

to
is dense in A (see for instance [3], p. 11-13).

For each xe W)*, the set U, defined by (8) is a neighbourhood of x in M. As
W (e), W(e) depend continuously on xeA, one can find >0 independent of x

such that U, > B,(29) for all xe W™ (see [13], Lemma 4.1). In view of this, and
the density of W,* in 4,

B,(®) = {U,: xe W},

Therefore, if ze B,(6) there exist xe W;* and yel i<, f* Wi(e)c W= A such
that ze W (e). When t— oo then d(f’z, f* y) -0 uniformly in z. Therefore

m ft BA (5) = A >
t20
which shows that A is an attractor and proves (a).
To prove (b), notice that the set

V,={xeA:d(y, A)>y for some yeW/(e)}

is open in A since W;'(¢) varies continuously with x. Also V, increases as y decreases
and, by part (a) of the present proposition, { J,, , V,=A. Therefore, by compact-
ness, V,= A for some y>0.

5.6. Theorem®. Let A be a C? basic hyperbolic set. The following conditions are
equivalent :

(a) A is an attractor;

(b) m(Wp)>0;

(c) P(FlA, o™)=0.

* Some of the ideas in the proof of this theorem were earlier discovered by J. Franks and R.F. Williams.
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Since Wi=1J2 o f~"Wj(e), (b) can be replaced by m(W;(e))>0 for any small
¢>0. In Proposition 44 (b) we have seen that (a) = (b) = (¢). To complete the
proof we assume that A is not an attractor, and show that P(F|4, ¢™)<0.

Given a small e>0, choose y as in Proposition 5.5(b). There is >0 such that
if xed, f*Wi(y/4)> W} (e). Let EcA be (y, T)-separated. For any xeE and
T>0, there is y(x, T)eB,(y/4, T) such that d(f"*T(y(x, T), A)>y [because
ST B,(y/4, T)> Wi (y/4), hence f7** B, (y/4, T)> W} (e)]. Choose §&(0, y/4] such
that d(f* z, f* y)<7y/2 whenever d(z, y)<4. Then

B, 10, T)= B, (y/2, T)
ST By, )0, T)N By (3/2)=9,

By(x,T)(é’ T)mBA(’Y/Z, T+l)=¢

hence

Using the second volume-lemma we have thus

m(B,(y/2, T))—m(B(y/2, T+ )2 Y m(B,, 1,5, T))
2d(3y/2,8) Y. m(B.(3y/2, T))2d(3y/2,8) m(B,(y/2, T))

and therefore
m(B,(y/2, T+ 1) <(1-d(37/2,8) m(B(y/2, T))
so that by Proposition 4.4(a)

P(F|A, (p(“))é—%— log(1—d(3v/2, 8))<O0.

5.7. Corollary. Let F be a C* Axiom A flow on the compact manifold M.
(a) The closures of the basins of the attractors cover M.

(b) If A is a basic hyperbolic set and m(A)> 0, then A is a connected component
of M and F|A is an Anosov flow.

Since F satisfies Axiom A, M=) {W}: A is a basic hyperbolic set}.

The complement of the basins of the attractors is | J{W}: A is not an attractor},
it has measure 0, and therefore contains no open set. This proves (a).

If A is a basic set and m(A)>0, then m(W3)>0 and m(W})>0 so that A is an
attractor for both F and the opposite flow F~!. Since A is an attractor for F, then
Wy = A. Since A is an attractor for F~*, then W} is open. Therefore A is open and
closed. Also, 4 is connected since W, " is dense in A for periodic p (see [3], p. 11-13).
This proves (b).

Appendix

Throughout what follows A will be a hyperbolic set for the C" flow (f*) on
the manifold M (r=1).

We recall that, by assumption, the Riemann metric on M is adapted to f*
(see Introduction). Notice also that there is K>0 such that ||Tf"|E| <K for
all n=0.
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Denote by indices 0, 1,2 the components in E_, E}, E¥ of a vector in T M.
We shall use in this Appendix a new scalar product in T, M defined by

(u,v>x=%:(ui,v,.). (A1)

We write [lul| = lull,=({u, ud )% If E' is a subspace of T,M, E'(¢) will denote
the closed e-ball centered at the origin of E’ for this metric.

A.l. Convenient Charts. For sufficiently small ¢>0 and each x€ A, let us define
a C" chart ¢ T M(¢)> M such that®

O (E;+EDE) WSS, @ (E +EY(e)= WS

and the map F=@5 o f'o @, is tangent to T, f* at the origin of T,M.

If exp, ' WS is (in a neighbourhood of the origin of T,M) the graph of a
function §': E, x E3 — E¥ we set

@' (W)=uo+u, + (uy + ' (ug, uy)).
If '~ exp " W* is the graph of y": E, x Ex - E; we set
Q" Wy=ug+{u+¥" (ug,u,))+u,.

Then ¢, =exp, o ¢’ o ¢” has the desired properties.
If ue T, M (g), ¢ sufficiently small, Taylor’s formula yields

VE, )l = | F, (g + 1y + uy) ~ F, (ug +uy)l g'}FI lu, || (A2)

for some y€(0, 1) independent of, x. Similarly if 0<w=1, ¢ can be chosen so
small that
I Fo )+ Fi () — Fy (v) — L)l S0 | F, (u)— K, (v)] (A3)
whenever
lug+u—vy—vll Sofluy—v,ll and u,veT_M{e).

We define
D, (e,m)y={ue T M: |F*ul,  <¢ for k=0,1,...,n}. A4
Let ueD, (e, n), then (A.2) yields
ICFS), @ <y *IFD), @) Sey"*

for k=0,1,...,n. Let v=u,+u,. We may assume that veD_ ((K+1)e n) and,
for ¢ suitably small, apply (A.3) with w=1.
We obtain

NF )0 () + (F5), ) — (F)o (0) ~ (F), I S | (F5), )] Sey"*

and therefore
I F* () — F*(v)] £2e9"* (A.5)

for k=0,1,...,n. (In particular veD, (3¢, n).)
& W= J{W;: yeorbit of x}, W ={ J{W": yeorbit of x}.

2 Invent. math.,, Vol. 29
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A2 Lemma. Let r=1 and y: M - R be C'. Given 08>0 there is >0 such that:
if xeA, yeM, n>0 and d(f*y, f*x)<é for k=0,1,...,n, then

<40.

jw(f‘y)dr—jwf'xm

Because of the C* assumptions there exists C>0 such that

=Cdp, 9.

1 1
glﬁ(f’p)dt—gl//(f'q)dt

Given ¢, one can choose & so small that d(x, y)<J implies u=¢;'ye T, M(¢/2)
for xeA and yeM. Define v=uy,+u, and z=¢, ve W**. We may then assume
that ze Wy (e) with |s|< C, e (C, independent of ¢). Then
k k+s 1k

for some 70, 1), If diffz f*7x)<Crey

d(f*x, f*y)<6 for k=0,1,...,n,
(A.5) yields

d(f*y, fz)< C,ey"*

with C,>0. Thus

Jv(f i = Tu(f f )
o] r ]
ft//(f’f"Z)—OSl//(f'f"HX)

0

n-1

=5)

k=0
n—1

+ )

k=0

5!//(f‘y)—§x//(f‘x)

i Ofwf‘“x)—ofw(f'n
C,e Ci¢
éC[ 1—? +T:')7] +2C08Hl/1”.

A3. Lemma. Let n: G'M —M be the Grassmannian bundle of q-dimensional
subspaces in TM and Gf*': G'M — G*M be the diffeomorphism induced by Tf".
We assume that r=2 so that Gif is a C' flow on G'*M. If q=dimE* and
A*={E%: xe A}, then A* is a hyperbolic set for the flow Gf.
For xeA, define the manifolds
Vrs={Een ' (W:(e)): d(E—E%<e}; V*=TW)

in G*M. The manifold n~!(x) contains E*, and Gif' [~ '(x)]=n""(f"x). It is
known (and easily seen) that GUf* contracts a neighbourhood of E* in n~!(x)
(see B.1 of [19]). Since f* contracts W3(e), it follows that, when e is sufficiently
small, Gf* contracts V*. Thus TG f! is a contraction of E**=TV**. Clearly
Gf ! contracts V** and therefore TGf ~! is a contraction of E**=TV** We
h . . . . .

ave dim E**+dim E** =dim W?(g) + dim = (x) + dim W (¢)

=dimM —1+dimz~1(x)=dimG*M —1
which concludes the proof.
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A4. Lemma. Let r=2. Given 08>0, there is £>0 so that the following holds.
If xeA and veD (e n) (defined by (A4)), let E¥XeG'M be the tangent at ¢},
to the manifold ¢ (v+ E%(¢)). Then

JacTf"|E¥ _ ,
=TJacTf"|E* =

-8

(A.6)
and
JacD (F"|v+ EY) <

JacDy(F|EY) — - (A7)

-6

IA

(Dy, D, are derivatives in charts.)

The Jacobian in (A.7) is computed with respect to the scalar pioduct (A.1).
Clearly the estimate (A.7) differs from (A.6) only by bounded factors and it suffices
to prove (A.6). To do this we apply Lemma A.2 to the hyperbolic set A* for
the C' flow Gf (cf. Lemma A.3), with the replacement x > E%, y —» E* We have
to check that (for sufficiently small ¢),

d(TfE, TI*EN<6

for k=0,1,...,n. Using the charts ¢,, this results from (A.4) and (A.3). To
conclude the proof it suffices to define

d
=0

and remark that

{Y(Tf'E)dt=InJacTf"|E,.
0

A.5. Proof of the Volume Lemma. We shall show that for sufficiently small £>0
there exist b,, b, >0 so that

b,<m (D, (e, n))-JacDy(F"|EY) < b, (A.8)

for all xeA, n>0. Here m_ denotes the measure on T.M associated with the
scalar product (A.1). This will prove the volume lemma because the use of the
charts ¢, multiplies all distances, measures and Jacobians (see Lemma A.4) by
positive factors bounded away from 0 and co.

If ve(E,+ E)(e) define

N,(e,)={ueT,M: ug+u;=v and (F¥),(w)eE}\ (¢) for k=0,1,...,n}.

If ¢ is sufficiently small, [F*v|| (K + 1) ¢ for all k=0.

Also, using (A.3) with @ =1 and induction on n, we find that F" N, (e, n) is the
graph of a C' function g: Ef. (e) > (Epm,+ E,)(K+2) ) such that [Dgf| <.
In particular we obtain the second inclusion of:

D,(e,n)c|J N,(s, )= D ((K+3)¢,n).

" This is an easy adaptation of the first part of the proof of Theorem 2.3 of [14].
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To prove (A.8) it suffices thus to show that
c,<m({J N,(&,n) - JacD,(F"|E%) <c, (A9)

for some c,, c,>0.

Since |Dgll £ w, the measure of F"N, (¢, n) (induced on the manifold by the
metric (A.1) on Tfan) is contained between bounds d,,d.>0. In view of (A.7),
the measure of N, (e, n) multiplied by JacD,(F"|E¥) is contained between d, e~
and d, ¢°

Finally, using Fubini’s theorem to integrate over ve(E, + E})(¢) yields (A.9).
A.6. Proof of the Second Volume Lemma. Let weD (g, 1), and define
D,,0,m={ueT M: |F*u—F*w||x <0 for 0,1,...,n}.
It will suffice to show that there is b;>0 so that
m (D, (8, n))-JacDy(F"|E4)2 b, (A.10)
for all xeA, weD, (¢, n), n>0. Furthermore it suffices to prove (A.10) for d<e.
Lot A e T M ug=(F" W)y, uy=(F" W), u,€ B3 (36)}.

For each ve4, let ;= {f' ¢ v: |t|<a} so that ¢ I, is a “piece of trajectory”
through v. Then, for small ¢ and suitable «,
W= J(ppiL)
ved

is a C? manifold in T, M, which is the graph of a function ¢ defined on a
subset of E.., +Ej. . with values in Ef., and such that |[Dy/| Sw with we(0, 1).

We may assume that the domain of  contains E,._(2¢)+ E}..(2¢) and let W’
be the graph of the restriction of ¥ to E,. (2¢)+ E;..(28). We write

W/ _ U VKI

< 2e

where W/ < {u: ug=rj. Let
W)'={ueT,M: F'ueW, and (F*),(u)eE, (2¢) for k=0,1,...,n}
W//= U W”.

T
i< 2

Applying (A.3) and the argument in A.5 to F"W,’, F~! instead of N, (g, n),
F we find that W is the graph of a function g.: E5(2¢)— (E,+E9)(2(K+1)¢)
such that |Dg_ || £w. On the other hand W” is a union of “pieces of trajectories”
which are graphs of maps E_— Ei+ E% with derivative <w (for sufficiently
small ¢). The C? manifold W” is thus the graph of a function y” defined on a
subset of E,+ ES with values in E* and such that |Dy"|| <1 (for small ¢, hence
small w). The manifold W” imitates a piece of center-stable manifold through w.

Notice that F* contracts or expands a “piece of trajectory” in W” by a factor
bounded away from 0 and oo (contained between (K+1)~! and (K+1), say).
From this and the above properties of W” it follows that the domain of ¥”
contains a ball B of radius § around wy+w,, in E_+ E}, for sufficiently small
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and (taking < d/4(K + 1)) we have

o

d(F* Y v, FEw) S o

for k=0,1, ..., n whenever veB.

For each veB, define

N} (%,n)

={ueT.M:uy+u,=v and II(F")Z(u)—(F")Z(z//"v)H§—§- for k=0,1,...,n}.

We have

(U Nx (%, n) éwa(é, n)

veB

and proceeding as in A.5 we find that

b
m, (U N* (7, m)) -JacDy(F"|E%)=c,

for some ¢;>0. This proves (A.10) and therefore the second volume lemma.

-
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