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Zeta-Functions for Expanding Maps and Anosov Flows

David Ruelle (Bures-sur-Yvette)

Abstract. Given a real-analytic expanding endomorphism of a compact
manifold M, a meromorphic zeta function is defined on the compiex-valued
real-analytic functions on M. A zeta function for Anosov flows is shown to be
meromorphic if the flow and its stable-unstable foliations are real-analytic.

Introduction

In a previous note [12] we have defined generalized zeta-functions for diffeo-
morphisms and flows. These zeta-functions have as their argument a function
on the manifold rather than a number (cf. [1, 15]). We have indicated certain
analyticity properties of these zeta-functions in the case of Axiom-A diffeo-
morphisms or flows.

More detailed properties of meromorphy are obtained in the present paper,
on the basis of stronger assumptions. These new assumptions combine hyper-
bolicity (“Axiom A”) with real-analyticity requirements. We discuss now some
of the results.

1. Let M be a real-analytic connected compact manifold, f: M—M a real
analytic expanding map, and ¢ a complex-valued real-analytic function on M.
Then the series

© un n-1
{=exp), — ) [le(f*x
n=1 1 xeFixp k=0

converges for small |u| and extends to a meromorphic function of u in the entire
complex plane.

Actually, { is also a meromorphic function of ¢. The hyperbolicity assumption

is here that f is expanding, ie. [[(Tf)v]|Z0|v| with 6>1 for some Riemann
metric.

II. Let (f*) be a real-analytic Anosov flow on a real-analytic manifold such that
the stable and unstable manifolds form real-analytic foliations. If A(y) denotes the
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prime period of a periodic orbit y, the product

(©= 1 (1—ew)

yperiodic

converges for large Res and extends to a meromorphic function of s in the entire
complex plane.

Information is also obtained on the growth properties of {. II applies in
particular to the geodesic flow of a compact manifold N with constant negative
sectional curvature!. In particular

S I‘[ ﬁ(l——e_(”k”m)
yperiodic k=0
is meromorphic, in agreement with the results of Selberg for surfaces of constant
negative curvature [13].

The proof of I and 11 (more precisely of Theorems 2 and 3 below) is based on
Theorem 1 below which is of a more technical nature. We shall go rather fast
over the proof of Theorem 2 because P. Cartier has now a better proof of a more
precise result [4].

Theorem 1. Let I be a finite set and D= D, the disjoint sum of connected open
iel

sets D, CN. Let tbe al x I matrix withentriest;=0or 1 and,if t;;=1,lety,;: D, i~ D,
be holomorphic and such that clos ;D is compact in D;. We write

Jo={G, ....i)el"t, ==t ., =t =1}

@) If (iy,....i,)ed,, then §, ;, oth, , o---oy, . has one and only one fixed
pointz; .

(b) If ¢ is complex-valued analytic on D, let

n

a,= Z Oy inis i)
1

(1, ..., in)edn k=
©

Then the series Y, —a,u" converges in a neighborhood of the origin, and

n=1

o 1
(wp)=cxp Y. —a,u"

n=1

extends to a meromorphic function of u:

d,(ug)
{up)=———
dy(ugp)
where u—d, (u ), d,(u @) are entire functions.
There is an open set D' such that closD’'<D and if # is the Banach space of
complex continuous functions on closD’ which are analytic in D', with the uniform

! The conditions of II are satisfied because, if N is the universal covering space of N, then the Lie

group of isometries of N acts transitively on the unit tangent bundle of N (see for instance [5] p. 207)
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norm, then d, , d, extend to entire functions on 2 satisfying majorizations
ld(¢)— 1= llpl exp[ Cllog(llgll +e))*].

In particular u—d (ue), d,(ue) are entire functions of order 0 of u; their zeroes
(arranged by increasing modulus and repeated according to multiplicity) tend to
infinity exponentially fast.

Notice first that we can, without changing the problem, replace each D, by a
bounded set D} such that clos D; = D,. We may thus assume that the D, are bounded
and that each y; is holomorphic from a neighborhood of closD; to D,. Also,
¢ is continuous on closD, and we shall prove that d,, d, are entire on % where #
is the Banach space of functions continuous on clos D, and analytic in D.

Part (a) of Theorem 1 results from the following lemma applied to D=D, and

[p:lp.‘o‘//_‘o...ol//_ ..
iniy iyiz in—1in

Lemma 1. Let D be a bounded connected open subset of € and yy be holomorphic
from a neighborhood of closD to D. Then

(\y*closD
=1

consists of a single point Z. The eigenvalues of the derivative of Y at Z are strictly
less than 1 in absolute value.

Let ¢: D — be analytic, and define
¢, =@y’ for I=1.

Then ¢ and the ¢, are bounded uniformly on a neighborhood of  (clos D). There-
fore the ¢, and their derivatives are bounded uniformly on closD. Let (¢,) be a
subsequence converging uniformly on clos D, and let ¢ be its limit. We have

max |@,(z)]=z max |@,(z)|= max |@ z
zsclosDI(pl( )l_ze\[/clole(pl( )l_zeclosDI(pH'l( )I

so that

max |¢(z)|= max [@(z)].

zeclosD zey closD

o0

Since D is connected, ¢ is constant. This shows that ¢ is constant on () ¥'closD.
1=1

Since this is true for all ¢, this intersection consists of a single point 2.2 As a

consequence, the derivative of ¥ tends to 0 when /- 00, so that the eigenvalues
of the derivative of  at Z must be strictly less than 1 in absolute value.

Fredholm Theory

We assume that D is a bounded open subset of €V and that ¥ is holomorphic
from a neighborhood of closD to D. Let #, be the Fréchet space of holomorphic

2 As pointed out to me by D. Mayer, the above proof is essentially to be found in Hervé [8] p. 83.

Another proof that ¢ has only one fixed point, using the index of the map, was indicated to me by
N. Kuiper
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exterior forms of order k on D, 0< k < N. We identify 2 with the space of analytic
functions on D. Consider those we #, such that their coefficients have a continuous
extension to closD; those w form a Banach space #,(D) with the uniform norm.
If pe %,(D), alinear map L, : 8,(D)+> %,(D) is defined by

(L, 0)(2)=0(2) - [N Y)Y (2))] (1)

where /, is the derivative of y at z.

This formula also defines a map s, —> %, (D) which is bounded. Since #, is a
nuclear space ([6], 11, Corollaire p. 56), this map is nuclear of order 0 ([6], 1,
Corollaire 4, p.39 and Corollaire 2, p.61). Composing with the continuous
injection %, (D) —» #,, we see that L, is nuclear of order 0 ([6], I, p. 84 and I, p. 9).
Therefore ([6], 1I, Corollaire 4, p. 18) L, corresponds to a unique Fredholm
kernel, of order 0. In particular

TrL,=)u, det(l—uL)=[](1—uu)

where the u, are the eigenvalues of L, repeated according to multiplicity. The
Fredholm determinant det(1 —uL,) is an entire function of order 0 of u ([6], II,
Théoreéme 4, p. 16).

Lemma 2. With the assumptions of Lemma 1 and definition (1) we have
N
Y (=1 TrL, =o(2).
k=0

If D' is a non-empty open connected subset of D such that y clos D'< D',
L, extends in an obvious manner to a nuclear operator L, of order 0 on %,(D’)
with the same eigenvalues and therefore the same trace. We choose for D' a
polydisk centered at Z. By a suitable linear change of coordinates in C¥ we can
assume that y; is in Jordan normal form consisting of blocks

A e 0
0 1 ¢
0 0 A
with |A]<8<1 and ¢40 arbitrary. It is clear that for sufficiently small ¢, v>0,
the polydisk
D(v)={zeC":|z,— % |<vfork=1,..., N}
is mapped by ¥ into D(6v). With D’ = D(v) we have

(L) (@)= (@) - (N Y ) (@0 (2)]

. ]
—o@)- [y (TT1 LG Hoendlry o
oo [(*4) (Jlf Pt lom [w(z)],) oz +0)]

where p is a suitable C” function with support in {ueC: 8v <|u|<v}. This formula
also defines a nuclear operator L; of order 0 on the Banach space of exterior
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forms of order k with continuous coefficients on closD(v) (L, can be obtained
by composing a continuous operator from the forms with continuous coefficients
on closD(v) to the forms with analytic coefficients on D(§'v), 0<6 <1, and a
nuclear operator from the forms with analytic coefficients on D(6'v) to the forms
with continuous coefficients on closD(v)). Since L, and L, have the same eigen-
values, we have TrL, =TrL, and TrL; can be computed by standard Fredholm
theory (see [7]):

d d

According to the above, we can replace D(v) by D(v/l) for I>1. This amounts to
replacing p({k) by Ip(l{,), hence

v P(C dC /\dC . ,

and in the limit - o0

)d{ nd
TrL= ( [ ———p = [jj‘ (Amc") P@ Tr(A ;).
2 k

Letting now e—»0 we an integrate, finding
N
TrL, = (@) Tr(A ) [T (1= 4) "
k=1

where the 4, are the eigenvalues of . Therefore

@) Tr(A*y)
T ety
hence
N N
Z (—1¥TrL, =e()[det(1—y Z — D) Tr(A )= p(2).

Proof of Part (b) of Theorem 1. We revert to the notation of the theorem, and
define an operator %, on %,(D) by

(Z0)D)=0(2) Y (N ))woy(z) if zeD;.

it;=1
If1;;=1,let also &Z,;: %,(D)—%,(D)) be defined by
(Z;,0)(2)= 9@ (N (Y);) (o ,,(2))
for fixed k. The operator %, is nuclear of order 0 and

Tr(Z)= Y Ti(,

. ‘ inin-1 """ iz ilin)
(ir,.sin)edn
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where

(Lo oo Lo L @)D =0(2) - oW, 2@l . W

in- in—1in

T R IR () 0 A}

iniy

Z)’

wol//inilod’itizo t,. 11,.(2) [n (P Qeie+1 """ l//i“_‘i,lz)] (/\k(//'z)((yod/(z))

and we have put Y=y, oy, o---oy, . Comparing with' (1) and using
Lemma 2, we find

N
L= T&g)= 3 n(p Vaiers - Vi1t Zro i) =G

k=0 (i1, .oy in)edn k=

By Fredhoim theory ([7] p. 350), the following series in u:

KD u)l

Z — Tr(#))

n=1 n

has non-vanishing convergence radius, and

exp [— ) %Tr(xg)] —det(1—u.2)).
n=1

Thus Z — a,u" has non-vanishing convergence radius and
n
n=1

expz —a u'= H [det(l —ug)] V""" )
n= 1 =0

The Fredholm determinants in the right-hand side are entire functions of u of
order 0. It is also known ([ 7], Proposition 1, p. 346-347) that these determinants
are entire functions of u.%, on the Banach space #%,(D) ® %,(D) of Fredholm
kernels on #(D). Since the map u¢+r> u.#, is C-linear and continuous from
B(D)=%B,(D) to ,@k(D)'é@%’k(D), the Fredholm determinants are entire functions
of upe (D). More can however be said because # is a space of analytic functions.
We have indeed

L=Y Y@@ )

where (1) is a sequence of complex numbers with exponential decrease, (;) and
(¢,) are bounded sequences in %,(D) and %,(D) respectively ([6], I, Remark 9,
c. p. 63). One can thus estimate the coefficients of det(l1 —u%), finding a bound
A |l@||" n"'* e~ for the absolute value of the coefficient of ™. Therefore

det(1 — Z,)— 1< ll¢] exp[ C(log(ll o]l +€))*] 3

(where loge=1). It is then well-known that the zeros of u—>det(l —u.%,) tend to
infinity exponentially fast. From (2) and (3) the estimates of the theorem are
easily obtained.
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Theorem 2. Let M be a real-analytic connected compact manifold, and f a real
analytic expanding endomorphism of M. This means that for some Riemann metric
there exists 6> 1 such that

ITf)vll 20 vl

for all ve TM.
If ¢ is a complex-valued real-analytic function on M, let

n—1
a,= Y [le(f*x)

xeFixfn k=0

where Fix f"={xeM: f"x=x}. Then the power series
@ 1 n
2 ~a,u
n=1 n
converges in a neighborhood of 0, and

S |
{(up)=exp Y. ;a"u"

n=1

extends to a meromorphic function of u:

_d1(”(P)
e )_dz(u(p)'

If D is an open neighborhood of M in a complexification of M, and % the Banach
space of continuous functions on closD which are analytic in D, with the uniform
norm, then d,, d, extend to entire functions on & satisfying majorizations

d(9)— 1| = | ol exp[ Cllog(llp] +e))*].

For general results on expanding endomorphisms of compact manifolds,
see Shub [14] and Hirsch [9].
In view of published results it is convenient to introduce the space

M={(x,),20: fXp,; =X, for all n20}.

With respect to the metric

1
d((x) V) =Y 77 4G V)

M is a compact metric space. Defining

Fe)=(fx),  mx)=x,

3 More generally one can assume that there exist ¢>0, 6> 1 such that

Tl z et o)

for all n20, ve TM. One can then find a metric for which ¢ = 1 by Mather’s argument (see [ 10])
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we have 7o f=fon The map f is a homeomorphism, with inverse

)=, V.=,

Let X=(xn)eﬁ, 6>0, and define

Wi(8)={YeM:d(f"X,f"Y)<dfor all n=0},

WeS)={YeM:d(f ~"X,f "Y)<dforall n=0}.
Then, for sufficiently small 8,

Wi(d)cn HnX).
Y, ZeWg(s), with Y={(y,), Z=(z,), we find thus

AF XL D)= S g d([ Yoz

k=0

n—1 1
— Z e_kd(ankyO’fn—k ZO)
k=0

o 1
+ _d(y w2 _n)
kg’ﬁk k k

121 1
= — d = .
g L g 400 2= grd(2)
This is part of the following easily proved statement.

Fact 1. There are positive numbers < 1, ¢ and y such that the following is true.
Forn=0,

Ad(f*Y,fZ)ySAd(Y,z) if Y, ZeWy),
df"Y,f"Z) S d(Y,Z)  if Y, ZeWp(y).

If d(X,Y)<e, then Wi(y) "Wy (y) consists of a single point, which we denote by
[X,Y]. The map

[+ ] {(x,)eEM xM:d(X,Y)<e}>M
is continuous.

This is the same Fact 1 from which Bowen [2] derives the existence of a Markov
partition. For completeness we also mention that periodic points are dense in M
and that f is topologically transitive. Given N >0 and (x,)e M, we can find arbi-
trarily close to x, a point ye M periodic with respect to f (Shub [14], Theorem 1, g).
Then (fNy,f¥='y,...,»f? 'y, ..) is arbitrarily close to (x,) and periodic.
Topological transitivity follows from the fact that there is a point xeM with
dense orbit for f (Shub [14], Theorem 1, f), then any X en ' x has dense orbit for f.

Notice now that = is a bijection of the periodic points of period p for f to the
periodic points of period p for £ We shall use a method for counting periodic
points of Axiom-A basic sets, which is also applicable to M, and which is due to
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Manning [11]. Given a Markov partition of M, Manning’s formula expresses
card Fix f" as a sum of terms +card Fix 1}, where the 1, are subshifts of finite

type. In fact to each periodic point of 7_ is assoc1ated a perlodlc point of M, and
the formula

card Fix /"= +card Fix 1"

holds over each periodic point X of M. This gives the possibility of computing
a, as a sum of contributions +a,, of the subshifts t,. We consider one subshift 7,

w1th symbol set {S;} and transition matrix (z;)). To each symbol S; is assoc1ated
afinite set {R ;,} of rectangles of the Markov partltlon such that R(S; ) ﬂ R, *8.

If (S; 4z 18 @ point of Fixt}, ie., a periodic sequence of symbols, the point
X eFix f" associated with (S, ) satisfies

XeR(S; ), ... /" XeR(S;,_y)-

This determines X uniquely by expansiveness of f. The point x=nX eFix f" is
then uniquely determined by

X€MR(S; ), ..., [" 7 xemR(S;,_y))-

If the Markov partition has been chosen sufficiently fine, the expanding
character of f permits the construction of connected open sets D, in a com-
plexification of M, such that D;>nR(S) and fD;>closD; when f,;=1. Let
Y;;: D;+—> D, be the map such that f o y;;is the identity on D;. WefmdthatTheoreml
apphes in the present situation (up to replacement of the D, by subsets of CV)
and gives information on the a,,. Since a,=) +a,,, Theorem 2 follows from
Theorem 1.

Theorem 3. Let (f*) be an Anosov flow on the compact manifold M. We suppose
that M, (f*) are real-analytic, and that the (strong) stable and unstable manifolds

form real-analytic foliations of M. If A(y) denotes the prime period of a periodic
orbit y, the function

(=[] (1-es)

yperiodic

defined for large Res extends to a meromorphic function, which is the quotient
d, (s)/d,(s) of two entire functions of order <2 satisfying estimates

ld(s)—1]<e ****  when Res=R
for some a, R>0.

For the proof we rely heavily on Bowen [3].
By definition of an Anosov flow, the vector field defining ( f*) does not vanish
on M. The tangent bundle has a (/) invariant continuous splitting

TM=FE+E*+E°.
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Here E° is 1-dimensional tangent to the flow; furthermore

I(TfYvl|Sce ™ |jv]| for veFE?, t=0,

(TfYv||<ce *|v]| for veE*, t=0

for some Riemann metric, and some ¢, x>0. Given t,>0 we can choose a new
metric such that the above conditions hold with ¢=1 (and suitable x>0) when
t=t,. The (strong) stable and unstable manifolds are respectively tangent to
E* and E*. The center-stable and center-unstable manifolds are respectively
tangent to E*+ E® and E*+ E°.

A symbolic dynamics can be constructed from local cross sections by a finite
number of small open disks in hypersurfaces transverse to the flow (see Bowen [3]
Section 2). We can here choose each A, to be a real-analytic manifold fibered by
disks contained in stable manifolds (contracting fibers).

Let xeA;, and suppose that y=f'xeA; with ¢, <t<e, (some fixed small ¢,
€,>0). Then ¢ is a real-analytic function of x:t=4, , (x) defined on an open
subset of 4.

Let S be a finite symbol set, (z.) a “transition” matrix indexed by S x S with
entries 0 and 1, and 7 the shift on the space

A={&,)nz€S": ty, .. =1forall m}.

Suppose that to each £ S a disk A(£)e{A,} is associated. Then, under appropriate
conditions, for each {=(¢,), z€4 there is exactly one point n{e A({,) and a
sequence (t,), g of real numbers such that ¢ <t,—t, | <e, and f™xeA(E,).
[In particular, symbolic dynamics corresponds to a bijection S—{A4,}, but we
need to consider a more general situation.] If {eFix 1", the (f*) orbit y through
n(£) is periodic, and the quantity

1

A= ni Ag@raen(® ™9 )
k=

0

is a multiple of the prime period A(y) of this orbit.
Bowen ([3], Section 5) constructs a finite number of shifts 7, with properties
as above, and integers l(a) such that

Z(_l)l(a)+li% Z e~sla(§)= Z eASZ.(y)' (5)

n=1" feKan yperiodic

Here K,, is the set of points £ of prime period n for the shift z,, and A,(&) the

expression (4) for this shift. The series in (5) converge for sufficiently large Res.
We have thus (for large Re s)

()= ] (1-emi)

yperiodic

=exp [— ) Z—l‘e""“”’]

yperiodic m=1 m
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=exp [— i %Z(_ i@+t Z Y e -‘mslm(;)]

éeKm.
Y Z(_ IV Z 2. exp [—s . A‘A(ék)A({ki»l)(naT{:é)]. (6)
{elera k=0

The set on which the shift 7, acts is
A, =& Dmez €Sty .. =1 forall m}.

Given an integer N20 there is a set A4, y consisting of sequences (1,,),,.z of
elements of
Sun={&) _nensn€S) N it,, . =1for —-NSn<N-1}

and a homeomorphism h, y of 4, onto A, y so that
(ha,Né)m=(€m—N’ ém—N+1’ e £m+N)'

The transition matrix ¢, y of A, yis easily constructed. Wehave h, yot, =1, yoh,
where 7,  is the shift on 4, . For sufficiently large N, the sets

RC = {na ° ha:I{Jﬂ ﬂ = (nm)meleAa,N and ’10 = g}

with {e S, , have arbitrarily small diameters. If {=({,) _y <, < y We write A({)=A(S,),
and o

A= 2400y a e V)-
Then (6) becomes

© 1 n—1
()=expY(— Y L T exp [—s Y iy (o h;l{lo(ra,N)"l'])] .
o n=1" yeFix(ra, o k=0

For each (€S, , choose x,€R,; then x,€ 4({) and the intersection of A(() with
the (local) center-unstable manifold through X, is a real-analytic manifold C(().

If the ({,, {;) matrix element of ¢, N is equal to 1, a real-analytic map f, , of a
neighborhood of x, in C({,) to C(Cl) is defined by

y=flytoz

where ¢, <t<g,, and f*yeA((,), and f*y, z belong to the same contracting fiber
of A({,). We can assume that the metric on M is such that

Tf ol Se ™ |vll for veE" t2¢,.

Use now on T, C({) the metric obtained by projection along E? of the metric in E¥.
It is then clear that for sufficiently large N, ch;cf is a contraction.

From this contracting property and compactness arguments we find that,
if N has been chosen sufficiently large, for each (€S, y there is an open disk D, ina
complexification of C({) such that

(a) The projection of R, on C({) along contracting fibers is contained in D,.

(b) 1 is defined on D,nC (¢) and extends to an analytic function /1 onD,.
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(c) If the (', {) matrix element of t_ , is equal to 1, f,7! is defined on D, n C({)
N (44 4

and extends to a holomorphic map ¢,.,: D, — D,. such that clos(y,., D) is compact
in D,..
v

Theorem 1 applies thus in the present situation with I=S§, , t=t,, and

@=exp(—si)onD,.

On the other hand

n—1
I AR ]
=0

neFix(te, 0)" k

= Z l—l(p(lllikikn d,in—linZ(Cl,n-,Cn))

€y ln)edn k=1

where we have used the fact that 4, is constant on a contracting fiber. Comparing
with (7) we see that Theorem 3 follows from Theorem 1.
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