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Zeta-Functions for Expanding Maps and Anosov Flows 

David Ruelle (Bures-sur-Yvette) 

Abstract. Given a real-analytic expanding endomorphism of a compact 
manifold M, a meromorphic zeta function is defined on the complex-valued 
real-analytic functions on M. A zeta function for Anosov flows is shown to be 
meromorphic if the flow and its stable-unstable foliations are real-analytic. 

Introduction 

In a previous note [12] we have defined generalized zeta-functions for diffeo- 
morphisms and flows. These zeta-functions have as their argument a function 
on the manifold rather than a number (cf. [1, 15]). We have indicated certain 
analyticity properties of these zeta-functions in the case of Axiom-A diffeo- 
morphisms or flows. 

More detailed properties of meromorphy are obtained in the present paper, 
on the basis of stronger assumptions. These new assumptions combine hyper- 
bolicity ("Axiom A')  with real-analyticity requirements. We discuss now some 
of the results. 

I. Let M be a real-analytic connected compact manifold, f :  Mw-~M a real 
analytic expanding map, and tp a complex-valued real-analytic function on M. 
Then the series 

ov n n - - 1  

xE fn k= 0 

converges for small lul and extends to a meromorphic function of u in the entire 
complex plane. 

Actually, ~ is also a meromorphic function of tp. The hyperbolicity assumption 
is here that f is expanding, i.e. [](Tf)vl[>OHvt[ with 0>1  for some Riemann 
metric. 

II. Let (f t)  be a real-analytic Anosov f low on a real-analytic manifold such that 
the stable and unstable manifolds form real-analytic foliations. I f  2(7) denotes the 
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prime period of  a periodic orbit 7, the product 

~(s)= H (1-e-~ 'z~) )  
) , p e r i o d i c  

converges for  large Re s and extends to a meromorphic function o f  s in the entire 
complex plane. 

Informat ion  is also obta ined on the growth proper t ies  of ~. II  applies in 
par t icular  to the geodesic flow of  a compac t  manifold  N with constant  negative 
sectional curvature  1. In par t icular  

S~---~ H ~I (1-e-(s+k)z(~)) 
) , p e r i o d i c  k = O  

is meromorphic ,  in agreement  with the results of  Selberg for surfaces of constant  
negative curva ture  [-13]. 

The p roof  of I and II  (more precisely of  Theorems  2 and 3 below) is based on 
T h e o r e m  1 below which is of a more  technical nature. We shall go rather  fast 
over  the p roof  of  Theo rem 2 because P. Cart ier  has now a bet ter  p roof  of a more  
precise result [4]. 

Theorem 1. Let I be a f ini te  set and D = ~ D i the disjoint sum o f  connected open 

sets D i c C u. Let  t be a I • I matrix with entries t o = 0 or 1 and, if  t o = 1, let ~ ~ j : D j ~ D ~ 
be holomorphic and such that clos ~klj Dj is compact in D i. We write 

J.  = { ( i  . . . . .  i . )  e l "  : t i ,  iz . . . . .  ti._, i .  = ti.il = 1 }. 

(a) I f  (i x . . . . .  i . )6J. ,  then ~i.i ot~i, i2o . . . .  ~i ._,i .  has one and only one f i xed  
point z(i ' ..... ~.). 

(b) I f  q9 is complex-valued analytic on D, let 

an=- 2 FI (~(Z(ik . . . . .  i.i .... ik) )" 
( i l  . . . . .  in)~Jn k= 1 

Then the series ~ _l a. u" converges in a neighborhood o f  the origin, and 
. = I  n 

((uq~)=exp f 1 
- a n u"  

n=l n 

extends to a meromorphic function of  u: 

~(ucp) = dl(utP) 

d 2 (U qg) 

where u ~ d 1 (u tp), d 2(u q~) are entire functions. 
There is an open set D' such that c l o s D ' ~ D  and if  ~ is the Banach space of  

complex continuous functions on closD'  which are analytic in D', with the uniform 

The conditions of 11 are satisfied because, if .9 is the universal covering space of N, then the Lie 
group of isometrics of ~ acts transitively on the unit tangent bundle of ~ (see for instance [5] p. 207) 
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norm, then dl , d 2 extend to entire Junctions on ~ satisfying majorizations 

I di(~0)- I I < 11 ~0 II exp [ C(log(ll ~o tl + e)):]. 

In particular u~--~da(uq)), d2(u~o ) are entire functions of order 0 of u; their zeroes 
(arranged by increasing modulus and repeated according to multiplicity) tend to 
infinity exponentially fast. 

Notice first that we can, without changing the problem, replace each D i by a 
bounded set D' i such that clos D'i ~ D~. We may thus assume that the D~ are bounded 
and that each ~'~s is holomorphic from a neighborhood of closD s to D~. Also, 
q~ is continuous on closD, and we shall prove that d 1, d a are entire on ~ where 
is the Banach space of functions continuous on closD, and analytic in D. 

Part (a) of Theorem 1 results from the following lemma applied to D = Di. and 
4 , = 4 % 1  o~ , ,~  o . . . .  ~ , , ._ , ,  . 

Lemma 1. Let D be a bounded connected open subset of ffgn and ~9 be holomorphic 
from a neighborhood of clos D to D. Then 

(~ [~/k clos D 
l=1 

consists of a single point ~. The eigenvalues of the derivative of ~b at ~ are strictly 
less than 1 in absolute value. 

Let tp: D ~--~ be analytic, and define 

~o,= r o ~k / for l ~ l .  

Then ~0 and the ~0 t are bounded uniformly on a neighborhood of ~p (closD). There- 
fore the ~0 z and their derivatives are bounded uniformly on closD. Let (0~) be a 
subsequence converging uniformly on closD, and let ~o be its limit. We have 

max [~(z)]> max [q3t(z)l> maxl0,+,(z)l  
zeclosD z ~  closD zeclos~ 

so that 

max 10(z)l= max 
~ d o s O  z~,olosO Ir 

Since D is connected, 0 is constant. This shows that ~0 is constant on (~ ~ktclosD. 
/=1 

Since this is true for all ~o, this intersection consists of a single point 2.2 As a 
consequence, the derivative of fit tends to 0 when I--, oo, so that the eigenvalues 
of the derivative of ff at ~ must be strictly less than 1 in absolute value. 

Fredholm Theory 
We assume that D is a bounded open subset of ~N and that ~ is holomorphic 
from a neighborhood of closD to D. Let ~ffk be the Fr6chet space of holomorphic 

2 As pointed out to me by D. Mayer, the above proof is essentially to be found in Herv6 [8] p, 83, 
Another  proof that ~ has only one fixed point, using the index of the map, was indicated to me by 
N. Kuiper 
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exterior forms of order k on D, 0 < k < N. We identify Yfo with the space of analytic 
functions on D. Consider those a~ e ~r such that their coefficients have a continuous 
extension to closD; those o~ form a Banach space bSk(D) with the uniform norm. 
If q ~ o ( D ) ,  a linear map Lk: d~k(D ) ~,.~k(D) is defined by 

(LkCO)(z) = q~(z) �9 [(A k $'~) (c.o o $(z))] (1) 

where ~'~ is the derivative of $ at z. 
This formula also defines a map 3/fk~'d~k(D) which is bounded. Since ~ is a 

nuclear space ([6], II, Corollaire p. 56), this map is nuclear of order 0 ([6], II, 
Corollaire4, p. 39 and Corollaire2, p. 61). Composing with the continuous 
injection ~k(D) F - , ~ ,  we see that L k is nuclear of order 0 ([6], I, p. 84 and II, p. 9). 
Therefore ([6], II, Corollaire4, p. 18) L k corresponds to a unique Fredholm 
kernel, of order 0. In particular 

TrLk=~ U i, det(1 --ULk)=[I(1 --uui) 
i i 

where the u i are the eigenvalues of L k repeated according to multiplicity. The 
Fredholm determinant det(1--ULk) is an entire function of order 0 of u ([6], II, 
Th6or6me 4, p. 16). 

Lemma 2. With the assumptions of Lemma 1 and definition (1) we have 
N 

( -  1)kTrLk=q~(~). 
k=0  

If D' is a non-empty open connected subset of D such that r clos D ' cD ' ,  
L, extends in an obvious manner to a nuclear operator E k of order 0 on ~k(D') 
with the same eigenvalues and therefore the same trace. We choose for D' a 
polydisk centered at ~. By a suitable linear change of coordinates in ~N we can 
assume that $'~ is in Jordan normal form consisting of blocks 

with 121<0<1 and e~O arbitrary. It is clear that for sufficiently small e, v>O, 
the polydisk 

D(v)= {zeCtN: tZk--~k[ <V for k = 1 . . . . .  N} 

is mapped by r into D(Ov). With D'=D(v)we have 

(Ek ~)(~)= ~(z). [(A k r o r 

~L-'/~k + ~k- [r 

where p is a suitable C oo function with support in {u~r  : Ov < [u[ < v}. This formula 
also defines a nuclear operator/A~ of order 0 on the Banach space of exterior 
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forms of order  k with cont inuous  coefficients on closD(v) (E' k can be obtained 
by composing a cont inuous opera tor  f rom the forms with cont inuous coefficients 
on closD(v) to the forms with analytic coefficients on D(O'v), 0 < 0 ' < 1 ,  and a 
nuclear opera tor  from the forms with analytic coefficients on D(O' v) to the forms 
with cont inuous coefficients on closD(v)). Since E k and E' k have the same eigen- 
values, we have TrEk=TrE~, and TrE' k can be computed  by standard Fredholm 
theory (see [7]): 

T " " = [ l ~ [ f  P(~k) d~k/Xd(k ~ ~o(~+QTr(AkO'+~). 
rCk \d=~tJ~k+#k_[O(~+O]k] 

According to the above, we can replace D(v) by D(v/l) for I> 1. This amounts  to 
replacing P((k) by lp(l#k), hence 

T "" (~I  P(~k) d(kAd:k ) ' )  
rCk = "k= ,~ r -- l[O( ~ + r ~]k ~0(~ + r Tr(A k O~ +r 

and in the limit l--, oe 

r r C s  [ 1~1 f p((k)d~kA-d~k q~(~) Tr(Ak O'e). 
\~ '2/  ~k- [0 ; (0L f 

Letting now e ~ 0  we an integrate, finding 

N 

TrE~ = ~o(~) Tr(A k ~ ' )  [ I  (1 - 2k) -1 
k=1 

where the 2 k are the eigenvalues of ~"z. Therefore  

~o(~) Tr(Ak O'~) 
TrLk = det(1 - ~k'~) 

hence 

N N 

( - 1) k TrL k = qo(~) [det(1 - O;)] -~ ~ ( - 1) k Tr( Ak 0~-)= r 
k = O  k = O  

Proof of Part (b) of Theorem 1. We revert to the nota t ion of the theorem, and 
define an opera tor  ~k  on ~k(D) by 

(~kCO)(Z)=~O(Z) ~ (Ak(Oij)'z)(O~oO,~(z)) if zeDj. 
i : t ~ l = l  

If tij= 1, let also &,eji: Mk(Di)~Mk(Dj) be defined by 

(~j,~o)(z) = ~o(z)(A ~(00'~)(o~ o q,,~(z)) 

for fixed k. The opera tor  ~~ k is nuclear of  order  0 and 

Tr(Se2) = 2 Tr(~ei.,._, ... ~i~,, ~,,,.) 
(i~ . . . . .  i n ) e d n  
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where 

(~,~ ... ~,~,, ~,,~ ~ ) (z ) :~o(z ) .  q,(r176 . . . . .  q~(O,,,2 ... O , . _ , , z ) ,  

(A ~ (O~.,);,, ,2... ~,.-, ,  z).-. (A~(~',o_, ,o);), 

] ~oo?, ,~  2 . . . . .  O ,~_ , ,~ (z )=  q ~ ( O ' k ' k + , - ' - r 1 7 6  ( A k r 1 7 6 1 7 6  
= 

and we have put r 1 6 2 1 6 2  i2o . . . .  r  Comparing with'O) and using 
Lemma 2, we find 

N 

)-" ( -  1)k Tr(s y' f l  q~(qlikik+, ... ~Oi,_,inzu ...... i,))=a . 
k = O  (i l  . . . . .  in)'~Jn k = l  

By Fredholm theory ([7] p. 350), the following series in u: 

oo u n  

. ~  n Tr(~2) 

has non-vanishing convergence radius, and 

exp i_- ~ l n [  oo U. Tr(~7,)]=det(l_U~k). 

Thus ~ _1 a. u" has non-vanishing convergence radius and 
n = l  ~/ 

exp a,,u = [ ]  [det(l "~ 1)k+l - " - u ~ D ] -  �9 (2) 
n = l  ?/ k=O 

The Fredholm determinants in the right-hand side are entire functions of u of 
order 0. It is also known ([7], Proposition 1, p. 346-347) that these determinants 
are entire functions of u~s k on the Banach space .~k(D)'@~k(D) of Fredholm 
kernels on ~(D). Since the map uq~H,u~ k is ~:-linear and continuous from 
M(D) = 9~o(D ) to ~r the Fredholm determinants are entire functions 
of u q~ e ~(D). More can however be said because ~ is a space of analytic functions. 
We have indeed 

s = E,~, ~,;| �9 ~o,) 
i 

where (2i) is a sequence of complex numbers with exponential decrease, (~;) and 
(qQ are bounded sequences in &k(D)' and ,~k(D) respectively ([6], II, Remark 9, 
c. p. 63). One can thus estimate the coefficients of det(1 -UGh'k), finding a bound 
A II q~ II" n "/2 e-A"2 for the absolute value of the coefficient of u". Therefore 

Ide t (1-  5ek)--1} < I1~011 exp[C(log(l)~oll +e)) 2] (3) 

(where log e =  1). It is then well-known that the zeros of u r--,det(1- u~k) tend to 
infinity exponentially fast. From (2) and (3) the estimates of the theorem are 
easily obtained. 
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T h e o r e m  2. Let M be a real-analytic connected compact manifold, and f a real 
analytic expanding endomorphism of M. This means that for some Riemann metric 3 
there exists 0 > 1 such that 

II( Tf)vll >=O IIvll 

.for all ve TM. 
I f  q~ is a complex-valued real-analytic function on M, let 

n--1  

a.= E H q~(f kx) 
x e F i x f  n k = O  

where Fix f "  = {x ~ M: f~ x = x}. Then the power series 

1 

converges in a neighborhood of 0, and 

((u~o)=exp ~ I u" 
n=l-n an 

extends to a meromorphic function of u: 

~(u (p) = dl (u qg) 

dz(u ~0 ) " 

I f  D is an open neighborhood of M in a complexification of M, and ~ the Banach 
space of continuous functions on closD which are analytic in D, with the uniform 
norm, then dr, d z extend to entire functions on ~ satisfying majorizations 

fdi(q~)- If < II~PJI exp[C(log(tl~ptJ + e))2]. 

For general results on expanding endomorphisms of compact manifolds, 
see Shub [14] and Hirsch [9]. 

In view of published results it is convenient to introduce the space 

m = {(x.).~o:fX.+ 1 = x .  for all n>0}.  

With respect to the metric 

1 
d((x.), (y.))= d(x., y.) 

M is a compact metric space. Defining 

f ( x . )  = (fx.) ,  n(x.) = x o 

3 M o r e  general ly  one  can  assume that  there exist  c > O, 0 > 1 such that  

II(Tf")vll >__cO" Ilvll 

for all n >= O, v e T M .  One can  then find a metric  for which  c = 1 by Mather 's  a r g u m e n t  (see [ 10]) 
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we have n o f = f o  n. The map f is a homeomorphism, with inverse 

f - l (x .)=(y,) ,  y , = x , +  1. 

Let X=(x, )eM,  fi>0, and define 

W~(6) = { Y~M: d( f "x , f "  Y) < 6 for all n>  0}, 

W~(6)={YeM: d ( f - " X , f - " Y ) < 6  for all n>0}.  

Then, for sufficiently small 6, 

W~(~)c rc-l(rcX). 

If Y,, Z~W~:(6), with Y=(y,), Z =(z) ,  we find thus 

1 
( f  Yk,f zk) d(f"Y,,f"Z)=k~=o~d " , 

n--1  1 
"V dt f"-k . 4On-k 7. ~" 

= / ,  ~ x~, Y O ' J  O) 
k = O  v 

1 ~ 1 d 1 
=~h-~0 t=0 0 L  ~T (Yl, Zl)=o-~d(Y,,Z) �9 

This is part of the following easily proved statement. 

Fact 1. There are positive numbers 2 < 1, e and ~ such that the following is true. 
For n>O, 

d(f"Y,,f"Z)<2"d(Y, Z) if Y, ZEW}(y), 

d(f-"Y,,f-"z)<2"dtY,,Z) if Y,Z~W](~). 

I f  d(X, Y)<=e, then W~c(y)nW~(7) consists of a single point, which we denote by 
[X, Y]. The map 

[ ' ,  "]" {(x, y)~M • M: d(X, Y)<__e}~M 

is continuous. 

This is the same Fact 1 from which Bowen [2] derives the existence of a Markov 
partition. For completeness we also mention that periodic poi__nts are dense in M 
and that f i s  topologically transitive. Given N > 0  and (x,)~M, we can find arbi- 
trarily close to x N a point y~M periodic with respect to f (Shub [14], Theorem 1, g). 
Then (fNy, fN- ly ,  v-a .... y , f  y .... ) is arbitrarily close to (x,) and periodic. 
Topological transitivity follows from the fact that there is a point x~M with 
dense orbit for f (Shub [ 14], Theorem 1, f), then any X e re-1 x has dense orbit for 

Notice now that n is a bijection of the periodic points of period p for f to the 
periodic points of period p for f We shall use a method for counting periodic 
points of Axiom-A basic sets, which is also applicable to M, and which is due to 
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Manning [11]. Given a Markov partition of M, Manning's formula expresses 
c a r d F i x f  ~ as a sum of terms +cardFixr~,  where the z are subshifts of finite 
type. In fact to each periodic point of z is associated a periodic point of M, and 
the formula 

card Fix f "  = ~, + card Fix z~ 
~t 

B 

holds over each periodic point X of M. This gives the possibility of computing 
a. as a sum of contributions _ a~, of the subshifts r~. We consider one subshift r~, 
with symbol set {S~} and transition matrix (t~r). To each symbol Si is associated 
a finite set {R(0t} of rectangles of the Markov partition, such that R(Si) = ~ R(o ~ 4:fJ. 

1 
F "  n If (S,R))~7 is a point of ix ~ ,  i.e., a periodic sequence of symbols, the point 

X ~ Fix f "  associated with (S,k)) satisfies 

XeR(S ,o )  ) . . . . .  f . - 1  X~R(S . ._ I ) ) .  

This determines X uniquely by expansiveness of f. The point x = n X ~ F i x f "  is 
then uniquely determined by 

x~nR(S,o))  . . . . .  f n - i  x~nR(Si(,_l)).  

If the Markov partition has been chosen sufficiently fine, the expanding 
character of f permits the construction of connected open sets D i in a com- 
plexification of M, such that Di~nR(Si)  and fDi~c losD r when t i j=l .  Let 
ff~r: Dr ~-~ D~ be the map such that f o ff~r is the identity on D r. We find that Theorem 1 
applies in the present situation (up to replacement of the Di by subsets of C n) 
and gives information on the a~,. Since a,=~q-a~. ,  Theorem2 follows from 
Theorem 1. 

Theorem 3. Let (ft)  be an Anosov f low on the compact manifold M. We suppose 
that M, (ft) are real-analytic, and that the (strong) stable and unstable manifolds 
form real-analytic foliations of  M. I f  2(7) denotes the prime period of a periodic 
orbit 7, the function 

if(s)-- 1~ (1-e-~x(~)) 
) , pe r iod ic  

defined for large Re s extends to a meromorphic function, which is the quotient 
d I (s)/d2(s) of two entire functions of order < 2 satisfying estimates 

[di(s)-l[<=e -aRes when R e s > R  

for some ~, R > O. 

For the proof we rely heavily on Bowen [-3]. 
By definition of an Anosov flow, the vector field defining (ft) does not vanish 

on M. The tangent bundle has a ( f )  invariant continuous splitting 

T M =  ES + EU + E ~ 
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Here E ~ is 1-dimensional tangent to the flow; furthermore 

II(Tf)vll < c e - " '  llv[I 

[l(Tf-')vll ~ ce-" '  I[vll 

for v6E ~, t>O, 

for vsE", t>O 

for some Riemann metric, and some c, x>0 .  Given to>0 we can choose a new 
metric such that the above conditions hold with c = 1 (and suitable K > 0) when 
t > t  o. The (strong) stable and unstable manifolds are respectively tangent to 
E ~ and E ". The center-stable and center-unstable manifolds are respectively 
tangent to E s + E ~ and E" + E ~ 

A symbolic dynamics can be constructed from local cross sections by a finite 
number of small open disks in hypersurfaces transverse to the flow (see Bowen [-3] 
Section 2). We can here choose each A~ to be a real-analytic manifold fibered by 
disks contained in stable manifolds (contracting fibers). 

Let x6Ai, and suppose that y = f t x E A j  with e 1 < t < e  2 (some fixed small e~, 
e2>0). Then t is a real-analytic function of x :  t=)~A~Aj(X ) defined on an open 
subset of A r 

Let S be a finite symbol set, (tr162 a "transition" matrix indexed by S • S with 
entries 0 and 1, and z the shift on the space 

A = {(~m)m~zESZ: tr162 = 1 for all m}. 

Suppose that to each ~ES a disk A(~)~ {Ai} is associated. Then, under appropriate 
conditions, for each ~=(~m)m~zEA there is exactly one point 7t~eA(r and a 

sequence (tm)m~ z of real numbers such that e~ <tm--tm_ 1 <e 2 and ftmx~A(~m). 
[In particular, symbolic dynamics corresponds to a bijection S~{Ai} ,  but we 
need to consider a more general situation.] If ~ F i x z ' ,  the (ft) orbit 7 through 
~(r is periodic, and the quantity 

n - I  

2(~) = ~ 2:4(r162 ~ +,)(uvk _~) (4) 
k=O 

is a multiple of the prime period 2(7) of this orbit. 
Bowen ([3], Section 5) constructs a finite number of shifts ~, with properties 

as above, and integers 1(~) such that 

~-~(- 1 I(=)+a e-Sa=(r ) Z n Z - = Z e-S~(')" (5) 
n = l  ~_EKan 7periodic 

Here K, ,  is the set of points ~ of prime period n for the shift ~,, and 2(~) the 
expression (4) for this shift. The series in (5) converge for sufficiently large Re s. 
We have thus (for large Re s) 

~(s)= I~ (1-e-~a(~)) 
"/periodic 

= e x p [ -  ~ ~ 1 ] - -  e - m s ' ~ ( ~ )  

7periodic m= 1 m 
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[ ~= 1 ~ _  ~1 ~ e ] 
=exp _1 ~-  (__  1 ) / ( = ) + i n = i n _  r = .  -msZ=(_~) 

1)1(~' 2 Z s k = e x p , ( - -  exp -- 2A~k)A(~,+,)(rC.Z.~_) . (6) 
a r = l  ~ ' ~, k 

The set on which the shift z. acts is 

A .=  {(~.,).,~zE(S.)Z: t~r = 1 for all m}. 

Given an integer N > 0  there is a set A,, u consisting of sequences (qm)m~Z of 
elements of 

S~, N = {(~n)_N<n<Nf=(Se)2N+I : t.e.r = 1 for - N  <_ n < _ N -  1} 

and a homeomorphism h~,u of A. onto A~,s so that 

(h, ,N~_)m=(~m-N, ~ra N + I  . . . . .  ~m+N)" 

The transition matrix t ,  N ofA~, N is easily constructed. We have h~, N o z = z~, N o h,, N 
where %,N is the shift on A,, N. For  sufficiently large N, the sets 

h.,u q__ . q__ = (qm)meze  Act, N and q0 = ~} R~={zr~o -1 . 
with ~ e S N have arbitrarily small diameters. If ~ = (~.) _ ~ ~, ~ ~ we write A (~) = A (~o), 
and 

/~(Y) = )~ A(Eo) A(~,)(Y)" 

Then (6) becomes 

h - l o ( z  N) kq) . (7) ~ ( s ) = e x p ~ ' ( -  1) t(~) ~ exp - s  ~ 2~k(rc ~o ~,N , _ 
n = 1 n r /eFix(~ ,  N) n k = O 

For each (sS~, u choose x ~ R E ;  then x ~ A ( ( )  and the intersection of A(() with 
the (local) center-unstable manifold through x~ is a real-analytic manifold C(O. 

If the ((o, (1) matrix element of t~, u is equal to 1, a real-analytic map f;oE1 of a 
neighborhood of X~o in C((o) to C((1) is defined by 

y~-~fty~---.z 

where q < t < e  2, and f t y e A ( ~ l ) ,  and f ry ,  z belong to the same contracting fiber 
of A ((1). We can assume that the metric on M is such that 

I[(Tf-t)vll _-<e -K' Ilvll for veE", t > q .  

Use now on T~ C(0 the metric obtained by projection along E ~ of the metric in El. 
It is then clear that for sufficiently large N, Tf~o-~] is a contraction. 

From this contracting property and compactness arguments we find that, 
if N has been chosen sufficiently large, for each ~ S ~ ,  N there is an open disk De in a 
complexification of  C(() such that 

(a) The projection of R~ on C(() along contracting fibers is contained in D c 
(b) 2; is defined on D E n C(() and extends to an analytic function ~E on D E. 
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(c) If the ((', ~) matrix element of t~,s is equal to 1, f;,~l is defined on D; c~ C(0 
and extends to a holomorphic map ~,~: D E ~ D r such that clos (ff~,~D;) is compact 
in D r.  

Theorem 1 applies thus in the present situation with I = S , .  N, t=t~, N and 
r = e x p ( -  s)~;) on D;. 

On the other hand 

n - - 1  

~ e F i x ( ~ , N )  n k = 0 

(~l . . . . .  ~ . ) e J .  k = l  

where we have used the fact that 2~ is constant on a contracting fiber. Comparing 
with (7) we see that Theorem 3 follows from Theorem 1. 
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