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ON M A N I F O L D S  OF P H A S E  C O E X I S T E N C E *  

D.  R u e l l e  

Using a theorem on convex functions due to Israel, it is shown that a point of coexistence 

of n + 1 phases cannot be isolated in the space of interactions, but lies on some "infinite 

dimensional manifold ". 

1. I n t r o d u c t i o n  

A r e m a r k a b l y  effect ive technique has recen t ly  been introduced by R. B. I s r ae l  [1] to prove  the 
exis tence of phase t rans i t ions  in lat t ice s y s t e m s .  As a c o r o l l a r y  to I s r a e l ' s  work we show in this note that 
a point of coexis tence  of at l ea s t  n + 1 phases  cannot be isolated in the space of in terac t ions ,  but i ies  in 
some infinite dimensional  set .  On physical  grounds (Gibbs phase  rule) one would expect  that this set  is a 
"manifold of codimension n".  In p a r t i c u l a r  for  n = 2 one would think that it s e p a r a t e s  local ly  the space  of 
potent ia ls  into two regions ,  at l eas t  fo r  an appropr ia t e  choice of this space of potent ia ls .  We do not prove  
such s t rong resu l t s ,  but what we prove  goes  in the right d i rect ion.  $ 

From a technical point of view we do little else than repeat Israel's arguments with some modifica- 

tions. We shall present the results in the framework of classical statistical mechanics, which we describe 

in Sec. 2. Israel's technique is sketched in Sec. 3. Our new results are in Secs. 4 and 5. 

* This  a r t i c le  appeared  in the Russian original  in a t rans la t ion by Yu. Sukhov. F o r  the English edition, 
P r o f e s s o r  Ruelle has kindly provided the original  text.  The Russian displayed equations and some in- text  
equations have been used.  

t Phys ica l ly  re la ted  resu l t s ,  using totally different  mathemat ica l  techniques,  have been obtained by Pirogov 
and Sinai [2-41; see a lso  [51. 
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The mos t  s t r i k i n g  r e s u l t  (See. 5) is  about  l a t t i ce  g a s e s  with p a i r  i n t e r a c t i o n s .  If a p a i r  potent ia l  is 
p r e s c r i b e d  at  a f in i te  n u m b e r  of s i t e s ,  one can  find an ex tens ion  and a c h e m i c a l  po ten t ia l  for  which there  a re  

two phases  with d i f f e ren t  d e n s i t i e s .  If a p a i r  po ten t i a l  (P0 and a c h e m i c a l  po ten t ia l  /~0 a r e  g iven  for  which 

t he r e  a r e  two p h a s e s  with d i f f e ren t  d e n s i t i e s ,  and if one p r e s c r i b e s  a sma l l  modi f ica t ion  of q0 at a f in i te  

n u m b e r  of s i t e s  one can,  by a s m a l l  modi f i ca t ion  at  the r e m a i n i n g  s i t e s ,  and a s m a l l  change  of the chemica l  
po ten t ia l ,  obta in  a p a i r  i n t e r a c t i o n  with aga in  two p h a s e s  with d i f fe ren t  d e n s i t i e s .  

2 .  E q u i l i b r i u m  S t a t e s  i n  C l a s s i c a l  L a t t i c e  

S t a t i s t i c a l  M e c h a n i c s *  

Let F be a f in i te  set ,  with the d i s c r e t e  topology.  If ~ = ( ~ ) 0 F  z' and a~Z ~, we let  the t r a n s l a t i o n s  of 
Z ~ act  on F z~ by ( ~ ) ~ = ~ + o .  The space  F z~ with the p roduc t  topology is  compac t .  Let  ~ be a n o n e m p t y  
c lo sed  subse t  of F z~ , i n v a r i a n t  u n d e r  the r a. The T a ( r e s t r i c t e d  to ~2) a r e  h o m e o m o r p h i s m s .  F o r  f in i te  

A c Z  ~ , le t  ~A be the image  in F A of the p r o j e c t i o n  of ~ .  W e c a l l  i n t e r a c t i o n  a r ea l  funct ion  ~ o n  
the un ion  of the ~]A such that  �9 v a n i s h e s  on ~z, r is  i n v a r i a n t  u n d e r  t r a n s l a t i o n s  of Z ~' and 

[@[ ~ cardX ;x~"x 

The interactions form a Banach space ~ with norm I" I. 

Let ~ be the space of real continuous functions on ~. It is a Banach space with the uniform norm 

[I.H. The dual ~* of ~ consists of the measures on ~2; we let I in $" be the set of (translation) invariant 

probability measures, i.e., of measures a such that ~(A)=~(Ao~ x) for all A6~ and x~Z ~. The set I is 

convex, and compact witli respect to the w* topology on ~ (vague topology). 

If 0~, we define A| by 

(~) = ~ ' ~  (~x),  Ar 
X 

where  the s u m  ex tends  o v e r  those  X such that 0 is the "middle"  e l e m e n t  of X [o rde r ing  Z u lex icographica! ly ,  
0 is  the e l e m e n t  at  the pos i t ion  e n t [ ~ ( c a r d  X + 1)]  in X] .  Other  def in i t ions  a r e  poss ib l e ,  g iving the s ame  
va lue  for  ~(Ag,) when (r E I. The def in i t ion  chosen  he re  has the v i r t ue  that the image  of ~ by r162 is  ~ , 
and that  ]]AH=inf (lOl: A=Ar In p a r t i c u l a r ,  if A depends  only  on the r e s t r i c t i o n  of i t s  a r g u m e n t  to some 
f in i te  A C Z v, we wr i t e  AeSq , and the re  ex i s t s  r such that  A=Ar O(~i 'x )=0  u n l e s s  X is  a t r a n s l a t e  of 
some f ini te  A, and I cbl = tl A li. It wil l  be a m a t t e r  of conven ience  whe ther  one p r e f e r s  to use  i n t e r a c t i o n s  

in ~, o r  con t inuous  func t ions  in $ .  

The p r e s s u r e  P~ of r , o r  the p r e s s u r e  P ( A )  of A~F , i s  def ined in a s t a n d a r d  way, and 
Pr162  The funct ion  P : ~ - ~ R  is convex  con t inuous .  The (mean) en t ropy  of cr E I i s  denoted by s ( ~ ) .  
The funct ion s: I ~ R  is  aff ine uppe r  s e m i - c o n t i n u o u s  ->0. One has  a v a r i a t i o n a l  p r i n c i p l e  

P (A) = max (s ((~) + ~ (A)), (1) 
o6I 

and c o n v e r s e l y  
s (~) = inf (P (A) -(J (A)). 

A6g 

The se t  I A of those (r E I which make the r i g h t - h a n d  side of (1) m a x i m u m ,  is  the set  of e q u i l  i b  r i u m 

s t a t e s  for  A. 

Let  V be a Banach  space ,  V* is dual and f :  V ~ R a con t inuous  convex funct ion .  We say that  a E V *  

is  f - b o u n d e d  if the re  ex i s t s  c E R such that  ~ - < f  + c. We say that  a e V* is  t a n g e n t  t o f  a t  x E V 
if ](x+y)>~/(x)+g(g) for  al l  y E V. 

The P - b o u n d e d  e l e m e n t s  of $* a r e  p r e c i s e l y  the i n v a r i a n t  p r oba b i l i t y  m e a s u r e s  cr ~ I. The e l e m e n t s  
~ $ *  tangent  to P at A cons t i t u t e  the set  I~ of e q u i l i b r i u m  s t a t e s  for  A. If f is  the funct ion  ~ -~ P~ on ~, 
the f - b o u n d e d  e l e m e n t s  of ~/" a r e  of the f o r m  W-+o(A~) with ~ E I and the e l e m e n t s  of ~ t angen t  to f at 

a r e  of the f o r m  W--,-c~(A~,) with ~ / . ~ .  

The convex  compac t  set  I is  a Choquet  s imp lex .  Th i s  m e a n s  that e v e r y  p E I i s  the b a r y c e n t e r  of a 

* The theory  ske tched  he re  g e n e r a l i z e s  the we l l -known  r e s u l t s  for  l a t t i ce  g a s e s  (see [61). 

25 



unique m e a s u r e  mg on I, c a r r i e d  by the e x t r e m a l  points  of I. 
s t a t e s ,  and mp g ives  the e r g o d i c  d e c o m p o s i t i o n  of o. 
A (a)  = (~(A); the m e a s u r e  mp is then d e t e r m i n e d  by 

The e x t r e m a l  points  o f  I a r e  ca l led  e r g o d i e  
Given A e $  , let  A: I - + R  be defined by 

l l 

x6r 

where A/oo means "limit in the sense of Van Hove", for instance A is a cube with side going to infinity. 

The set I a of equilibrium states for A is convex, compact, and a Choquet simplex. Its extremal 

points are ergodic states, which implies that the unique decomposition of ; ~ I A into extrenml points of [A 

is the same as the ergodic decomposition of ~ given by m;" 

3 .  I s r a e l ' s  T h e o r y  

I s r a e l ' s  technique is to a pp rox i m a t e  invar ian t  s t a t es  by equ i l i b r ium s ta tes ,  us ing  the fol lowing 
gene ra l  r e su l t s  on convex funct ions .  

THE ORE M 1. 
cone with apex 0 in V. 

x (~x0 + C  , 

Let V be a Banach space, f: V -~ R be convex continuous, and C be a closed convex 

If a0 ~ V* is f-bounded, x 0 ~ Vand ~ > 0, there is a 0 {V* tangent tof at xwith 

llx-x011 < 1 [ i  (z0) -o0 (x0) - s (o0) ], 
8 

and a(g)>~ao(g)-eJ[gll (vgec) ,  where  we have wr i t t en  s((*0)=inf {/(g)-ao(y): gEV}. 

F o r  appl ica t ions  to c l a s s i c a l  la t t ice  s t a t i s t i ca l  mechan ic s ,  we take V=~ and /: (l>-+P% 
obtains  the fol lowing l e m m a  and t h e o r e m .  

LEMMA. Let  A~, A2egf and S ~ g  ~. We define a convex  cone 

~s  = alAl+a~A~+.--~- xAI(A2 T )-rb_~(Alo'~)A~:a~,a~,b~R,b:~>/O, b~=0 ,  if x ~ S a n d 2 b ~ : ~  
x6Z  xE8 " ~ * 

We a s s u m e  that  A~, A=eg~ fo r  some  finite AcZ' .  Given (~fiI, Beg  and e > 0 the re  exis t  BeBo+.c~, 
such that 

liB--~0il < ~--[P (B0)-~0(B0) -s (0~ ] 

and 
o (A, (A~ov ~) ) - a  (A,) o (A~) >~o (A, (Aao'~ ~) ) -~o (A,) oo (Az) - 3 e  [IA, i[" I[Adl 

Let Ae$~ for some finite hcZ * , and define a convex cone 

and o- ~ I B 

(3) 

forall x ~ S. 

THE ORE M 2. 

One then 

5g =- {aA ~ s b~:A (Ao~X) : a, b::E R, b x > / 0 , s  

�9 x6Z ~ 

A. Let ~0', ~o ''El be such that oo'(A)~ao"(A). Given Ce~ there exist B6C+~ and two equilibrium 

states ~', a"~l~ such that o'(A)~a" (A). 

B. L,~t or, a" be equilibrium states for Ce~ such that oo'(A)veoo"(A). Given s > 0, one can choose 
~- 0', 0 

6 > 0 such that  if C E~' and ][C'--C1[<6, t he re  ex is t  B~C'+~ with [IB-C'[I<e,  and two equ i l i b r ium s ta tes  
a', a"~l~ with c'(A)r 

We indicate, for later use, how Theorem 2 is obtained from the lemma. 

Write oo=V,(ao'+oo"). The assumption oo'(A)r (A) implies that 

A/~ L', x6A 

Choose a > 0 such that 

x 2 
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We apply  the I e m m a  with A~ 
such that  

and 

Therefore 

= A 2 = A and S = Z  ~ (Bo wiI1 be chosen  la ter ) ,  obtaining B~Bo+C~ and a ~ I~ 

lIB-B011 < t-!-[P(er o0(B0)-~ (~o)] 
E 

a [ (  ,A,- '  Z A.v ~ )21 - ( s (A)  ~ ~<(s,~ [ f l A ] - ' Z  A . ~ ) ' ] -  oo (A)"-3e HA H', 
x6A x6A 

ma(.4~) = lira ~[(IAI-X ~ A~ a(A)~ > e/tAlt ' .  
~.zo~ L\ xex 

F r o m  this fol lows that  the re  ex i s t  or' and ~" in the suppor t  of m a with o ' ( A ) ~ o "  (A). Taking B 0 = C, we 
obtain A s s e r t i o n  A. 

s(~0)<r-. 
Suppose now that o0, a~ ~c. Choose 6 > 0 such that if C '~"  and ]IC'-CII<6 we have P(C')-oo(C')- 

Taking B ~ = C ' ,  we have B~C'+.~, and (3) g ives  ]IB-C'!I<e, prov ing  A s s e r t i o n  B. 

4 .  Coexistence of Phases 

In the above lemma and theorem we could restrict our attention to interactions 4D such that $(~['x)=0 

when card X > 2 card ~- (or to corresponding elements of ~). Theorem 2 deals with the situation when there 

are at least two different equilibrium states. This corresponds physically to the coexistence of at least two 

phases. Part B of Theorem 2 shows that an interaction ~0 (or a function C) for which several phases coexist 

cannot be isolated: it lies in an "infinite dimensional manifold" of such interactions. One should check that 

these interactions are not all "physically equivalent" [r �9 are physically equivalent if there exists c E R 

such that o(A~)=o(Av)+c for all a ~ I], and that the "manifold" is not dense. This will be done in the 

special case treated in the next section. 

The coexistence of at least n + 1 phases can be treated in a similar rammer. Let A~,..., A~6~ , 

and let A = Z a ~ A "  with 2 a ~ = ' l .  We a s s u m e  that  ~o (~ oo('),. (~'~" (~ . . ,oo u~ a r e  such that oo (A)=oo(~)(A) = . . . - -  

o,("~(A) holds  f o r  no choice  of a~ . . . . .  a n. Defining 
n 

1 y3 (o 
O0 ~ ~ 6 o  , 

n + t  r 
i ~ o  

we have m~o(Az)-oo(A)~>~4eljA][ * with some e > 0 independent  of a~ . . . . .  a~ .  Let ~q~ be the l i n e a r  space  
g e n e r a t e d  by the A~ and A~(A~ov~), and let  Bfi~'. By an e a s y  extens ion  of the l e m m a ,  the re  ex i s t s  BOBo+~ 
such that  

IIB-Bo!I < ~ [p (80)-00 (B0)-~ (~0) ], 
8 

and ~ ~ I B such that 

I~(A. (Ao~)) -~(A)~-[~0 (A (Ao~ ~) ) -~,(A)~] J <3~ IIA II ~ 

for all a I ..... a u and all x ~ Z v. Therefore m~(A~-)-a(A)2~eNAII ~', proving that the dimension of I B is at 

least n: at least n + 1 phases coexist. Again an interaction for which at least n + 1 phases coexist 

cannot  be i so la ted .  

5.  L a t t i c e  G a s e s  w i t h  P a i r  I n t e r a c t i o n s  

We c o n s i d e r a  s y s t e m w i t h  F = {0,  1} and ~)={0, i} z~. We define AC~0 ~ by A(~ )=~0  (A takes  
t h e r e f o r e  the va lues  0 and 1).  We shal l  use  "pa i r "  i n t e rac t ions  ~, such that O(~r 'x )=0  if [XI > 2 and 
O ( ~  ~0~)=-~A(~), O(~i'~o.~)=~(x)A(~)A(V~) f o r  x r 0. Here  p ~ R and (p (x)=~( -x)ER is defined fo r  x r 0. 
Notice that  

+ i  
IOl=~ ~ f Z  Ir 

x=r 

I .  Le t  O~M~Z ~, where  M is finite and M = - M .  Suppose that  a function r M \ { O } ~ R  is given 
such that r (z) = r  ( -x )  . Then one can extend q" to q~: Z"\{O}-~R such that  
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Z l~(x)1< ~, 

and find ]~ such that  the re  a r e  two equ i l i b r ium s t a t e s  ~ '  and g" f o r  r sa t i s fy ing  ~ ' ( A )  = g ' ( A ) .  

I I .  Le t  p 0 and (k 0, correspond~ to a p a i r  in te rac t ion  r We a s s u m e  that  a~ and ~ '  a r e  equ i l i b r ium 
s ta tes  f o r  ~0' and that  (~o (A)#oo'(A). Given e > 0 ,  t he re  ex i s t s  6 > 0 such that  the following holds .  Let  
0~M~Z ", where  M is  f ini te ,  M = --M. Suppose that  ~: M \ { 0 } - ~ R  sa t i s f i e s  ~(x)=r and 

i 
y ~ ,  [r  

One can then extend ~ to (p: Z ~ \ { 0 } ~ R  and find p such  that  ~(x)=qD(-x),  ~(z)<~o(X) if x~M, 

:c0M 

and the re  a r e  two equ i l i b r ium s ta tes  a '  and a" f o r  the in te rac t ion  4. c o r r e s p o n d i n g  to ~ and ~. sa t i s fy ing  
o'(A) #(~"(A). 

To p rove  I and H it suf f ices  to imi ta te  the p roof  of T h e o r e m  2, us ing the l e m m a  with S=Z~\ . 'u  
Notice that 

m ' ) (A)~= l impI [A[ -~  2 (A~176 
x, y6.A., 

x--y~ M 

6 .  D i s c u s s i o n  

The A s s e r t i o n  I above  shows that  if a p a i r  in te rac t ion  r has  two equ i l i b r ium s ta tes  with d i f ferent  
dens i t i e s ,  then c lose  to 60 the re  is an infinite d imens iona l  set  of p a i r  i n t e r ac t ions  ~ which have two equ i l i -  
b r i u m  s ta tes  with d i f fe ren t  dens i t i e s .  

As pointed out in Sec.  4, we should check  that  these  i n t e r ac t ions  r a r e  not phys i ca l ly  equivalent .  
Th i s  fol tows f r o m  [7}: p a i r  i n t e r ac t i ons  ~0 and r a r e  phys i ca l l y  equivalent  if and only  if P0 = ~' and ~0 = ~" 

We should a l so  check  that  the p a i r  i n t e r ac t ions  which have two equ i l i b r ium s t a t e s  with d i f fe ren t  
dens i t i e s  do not f o r m  a dense  set .  This  r e s u l t s  f r o m  the c o n v e r g e n c e  of low ac t iv i ty  expans ions  (see, f o r  
ins tance ,  [6], S e c . 4 . 2 . 6 ) .  

7 .  A H e u r i s t i c  T h e o r y  o f  P h a s e  T r a n s i t i o n s  

A t h e o r y  of phase  t r a n s i t i ons  would a s s e r t  that  if exac t ly  n + 1 phase s  coex i s t  fo r  the in te rac t ion  4:o, 
then t he re  p a s s e s  th rough  ~0 a mani fo ld  of cod imens ion  n of coex i s t ence  of n + 1 phase s  (in an app ro p r i a t e  
space  V of in te rac t ions ) .  The n + 1 p h a s e s  at r c o r r e s p o n d  to e l e m e n t s  ~0' a l '  ' "  % of V*,  which a r e  
all  equal to a l i nea r  funct ional  w on a subspace  X of cod imens ion  n of V. The r e s t r i c t i o n  P~r of the 
p r e s s u r e  to ~ + X has  a unique tangent  at  ~0 (Ha lm-Banach  t h e o r e m ) .  

Le t  Y be a subspace  of d imens ion  n of V t r a n s v e r s a l  to X, and ~o, ~ t , . . . ,  ~.~Y" be the r e s t r i c t i o n s  
Y of no, col . . . .  , c~,. Fol lowing the ideas  of Sec.  4 one can show that  the re  ex i s t  ~,  ~ , . . . ,  ~,~Y" a r b i t r a r i l y  c lo se  
to ~0, ~t . . . .  ,~ , ,  and 5 > 0 and n > 0 such that  the fol lowing is  t rue :  

Asse r t i on .  F o r  each  4 ~ X the re  ex i s t s  r162  ( V such that 

11r (0)II < ~ [ P ( r  -P(Oo)-W(~) 1, (4) 

and n + I p h a s e s  coex i s t  f o r  the in t e rac t ion  (~0 + �9 + $ ( r  m o r e  p r e c i s e l y ,  if Jl r < 6 

P~,(r162 i=O,t . . . . .  n. (5) 

F o r  each  r E X we have 

because  P~'(r has  a unique tangent  at  50" 

lira ~--[P ((I)o+~(I)) -- P ((I)o) -- w (~(I)) ] =0,  

It. is t h e r e f o r e  tempt ing  to a s s u m e  tha t  

(6) 
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P(o0+o)-p(o0)-w(r 
0, when O~X, ]LON-~0. 

[lr 

If that is the case one can choose 6 and the above function ~ such that r  ~ Y if ]l ~ II < 5. Fur thermore  
~' is then unique such that (4), (5) hold, and continuous (this is a sor t  of implicit  function theorem).  The image 
,({@OX:HOI[<6}) is the desi red manifold of phase coexistence.  One can show that it is tangent to X, and 
intersect ion of manifolds of coexistence of less  than n + 1 phases in the expected simplicial configuration. 
The details will be given elsewhere.  

Unfortunately, (6) cannot be true in general .  In fact for a one-dimensional lattice gas, if two 
phases with different densit ies coexist  for a pair  potential (P0' there are  f ini te-range pair  potentials a rb i t ra r i ly  
close to ~0' and for  those there is no phase transi t ion.  It is not c lea r  at this point if (6) wilt hold in cases  of 
some general i ty,  or  if the above discussion has only heurist ic  value. 
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S O L U T I O N S  OF T H E  B B G K Y  H I E R A R C H Y .  

CLASSICAL STATISTICS 

A . K .  V i d y b i d a  

The BBGKY h ie ra rchy  of c lass ica l  kinetic equations is regarded as a single abs t rac t  
evolution equation in the space of sequences of functions that are  integrable with respec t  
to the momenta and t rans la t iona l ly invar ian t  with respec t  to the coordinates.  An 
expression is obtained for  solving the equations in the fo rm of a number of nonlinear 
opera tors  applied to the initial data. 

The BBGKY h ie ra rchy  of kinetic equations [1] descr ibes  the dynamics of infinite stat ist ical  sys tems 
and is a chain of coupled integrodifferential  equations for the distribution functions. Ear l i e r ,  in [2], an 
expression has been obtained for the solution of the Cauchy problem for the BBGKY hie ra rchy  in the Banaeh 
space of sequences of functions that are  integrable with respect  to all arguments .  A shortcoming of the 
expression is that its application to distribution functions that descr ibe a real system, i . e . ,  not more than 
bounded with respect  to the configuration coordinates ,  leads to volume divergences in each order  in 1/v. The 
a im of the present  paper  is to obtain an expression free of this shortcoming.  

In Sec. 1, we introduce the space b of sequences of functions that are  t ranslat ional ly invariant with 
respect  to the coordinates  [4] and integrable with respect  to the momenta, and auxil iary construct ions are  
per formed in it. In Sec. 2, we derive an expression for the solution of the Cauchy problem for the case when 
the initial condition lies in b. In Secs. 3 and 4, this expression is t ransformed to an "pseudononlinear" fo rm 
(see Eq. (13)). This means that the evolution operator ,  which is l inear,  is represented in a fo rm in which 
each of its o rde r s  in 1/v is a nonlinear opera tor .  In Sec.4 arguments  in favor of such a representat ion are 
adduced. 
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