oL’ M 2U+1 1 2l +1 {2 +1
Gil'll'ls'= - —_— Ly(zs’“lj"), Gt?’u’ts' = IM ——-—M,-(zs"“l;"), Fijfr'll':s' == ZM.V ——-E,-(ZS’HZ,:’).
Van 7 2L +1 2j+1 2j+14
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ON MANIFOLDS OF PHASE COEXISTENCE*
D.Ruelle
Using a theorem on convex functions due to Israel, it is shown that a point of coexistence
of n + 1 phases cannot be isolated in the space of interactions, but lies on some "infinite

dimensional manifold".

1. Introduction

A remarkably effective technique has recently been introduced by R. B. Israel {1] to prove the
existence of phase transitions in lattice systems. As a corollary to Israel’s work we show in this note that
a point of coexistence of at least n + 1 phases cannot be isolated in the space of interactions, but lies in
some infinite dimensional set. On physical grounds (Gibbs phase rule) one would expect that this set is a
"manifold of codimension n". In particular for n = 2 one would think that it separates locally the space of
potentials into two regions, at least for an appropriate choice of this space of potentials. We do not prove
such strong results, but what we prove goes in the right direction.

From a technical point of view we do little else than repeat Israel’s arguments with some modifica-
tions. We shall present the results in the framework of classical statistical mechanics, which we describe
in Sec.2. Israel’s technique is sketched in Sec.3. Our new results are in Secs. 4 and 5.

* This article appeared in the Russian original in a translation by Yu. Sukhov. For the English edition,
Professor Ruelle has kindly provided the original text. The Russian displayed equations and some in-text
equations have been used.

T ph sically related results, using totally different mathematical techniques, have been obtained by Pirogov
y y
and Sinai [2-4]; see also [5].
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The most striking result (Sec.5) is about lattice gases with pair interactions. If a pair potential is
prescribed at a finite number of sites, one can find an extension and a chemical potential for which there are
two phases with different densities. If a pair potential ¢ and a chemical potential p_are given for which
there are two phases with different densities, and if one prescribes a small modification of %, at a finite
number of sites one can, by a small modification at the remaining sites, and a small change of the chemical
potential, obtain a pair interaction with again two phases with different densities.

2. Equilibrium States in Classical Lattice

Statistical Mechanics?®

Let F be a finite set, with the discrete topology. If E=(E&)E&F* and a€Z’, we let the translations of
ZY act on FZ by (v°E)s=%s+a The space F? with the product topology is compact. Let @ be a nonempty
closed subset of F?’ | invariant under the 7¢. The 7% (restricted to ) are homeomorphisms. For finite
A=Z | let &p be the image in FA of the projection of 2. We call interaction a real function & on
the union of the &5 such that & vanishes on Qg @ is invariant under translations of ZY and

1
(@] =
;cardX

The interactions form a Banach space % with norm |-},

sup 1@ (x) | < oo,

IxeQy

Let & be the space of real continuous functions on &. It is a Banach space with the uniform norm
I-Il. The dual &* of & consists of the measures on Q; we let I in & be the set of (translation) invariant
probability measures, i.e., of measures ¢ such that 6(4)=0(4-7%) for all 46& and z€Z*. The set I is
convex, and compact with respect to the w* topology on & (vague topology).

If O, we define A.€& by
do® =Y © @),
X

where the sum extends over those X such that 0 is the "middle" element of X [ordering Z” lexicographically,
0 is the element at the position ent[4(card X + 1)] in X]. Other definitions are possible, giving the same
value for 0(Ag) when ¢ € I, The definition chosen here has the virtue that the image of % by ®@—~4, is & ,
and that ||Al=inf {|®|: A=4e}. In particular, if A depends only on the restriction of its argument to some
finite A C ZY, we write A6, , and there exists 4 such that A=Ae, ®(E";)=0 unless X is a translate of
some finite A, and @] = | Ali. It will be a matter of convenience whether one prefers to use interactions

in 9, or continuous functions in &.

The pressure P® of €I | or the pressure P(A) of A€ , is defined in a standard way, and
P*=P(A4s). The function P:&—R is convex continuous. The (mean) entropy of ¢ € I is denoted by s{(o).
The function s: I ~» R is affine upper semi-continuous =0. One hasa variational principle

P(A)=max(s(c)+0(4)), (1)

ogl
and conversely

s{o)=1inf (P(4)—c(4)).
AgE
The set I, of those ¢ € I which make the right-hand side of (1) maximum, is the set of equilibrium
states for A,

Let V be a Banach space, V* is dual and f: V = R a continuous convex function. We say that ¢ € V*
is f-bounded if there exists ¢ € R suchthat ¢ = f + ¢. We saythat ¢ € V* is tangent tofatx €V
if flz+y)=f(x)+o(y) forall y €V,

The P-bounded elements of & are precisely the invariant probability measures ¢ € I. The elements
0€&* tangent to P at A constitute the set I, of equilibrium states for A. If f is the function & — P?® on 9,
the f-bounded elements of %" are of the form ¥-—o(4wv) with ¢ € I and the elements of % tangent to f at
¢ are of the form ¥—c(4e) with 6€/,4.

The convex compact set I is a Choquet simplex. This means that every ¢ € I is the barycenter of a

* The theory sketched here generalizes the well-known results for lattice gases (see [6]).
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unique measure m; on I, carried by the extremal points of I. The extremal points of I are calledergodic
states, and m, gives the ergodic decomposition of p. Given A€& , let A: I — R be defined hy
A(o) = g(A); the measure m, is then determined by

(2A> =i [ (cardA ZIA °T )] (2)

where A~ means "limit in the sense of Van Hove", for instance A is a cube with side going to infinity.

The set I, of equilibrium states for A is convex, compact, and a Choquet simplex. Its extremal

points are ergodic states, which implies that the unique decomposition of ¢ € I, into extremal points of I,
is the same as the ergodic decomposition of ¢ given by mg-

3. Israel's Theory

Israel’s technique is to approximate invariant states by equilibrium states, using the following
general results on convex functions.

THECREM 1. Let V be a Banach space, f: V — R be convex continuous, and C be a closed convex

cone with apex 0 in V. If o, € V* is f -bounded, X, € Vand € > 0, there is o € V* tangent to f at x with
x €x +C
‘ 0 ’

lz—zfl < —:‘[f(xo) —00 {2} —5{00) ],

and o(y)=0,(y)—ellyll (Vye€C), where we have written s(a,)=inf {f(y)—6,(y): Y€V},

For applications to classical lattice statistical mechanics, we take V=% and f: ®—P% One then
obtains the following lemma and theorem.

LEMMA. Let 4, 4,6& and S<Z'. We define a convex cone
. 1' ) Ay X i Y
Ls= a1 A1+ a4, szxz‘h (Agot™)4-boy (A10T9) Az 1,80, b:6R, b2 > 0, b, =0, if zé8 aﬂd}:bx < oc}.
xEZv x€S

We assume that 4, 4,6&, for some finite AcZ’. Given c.£/, Bé& and & > 0 there exist BE¢B,+%; and 0 € [,
such that

1B-Bull < %[P(Bn —ou(Bo)—s(1)] 3)

and
O(At(Az"Tx) ) —a(4,) G(Az) >OO(A1(A2°T’C) ) —0o (Ax)ﬁo (Az) —3ellAl - |44l

for all x € S,
THEOREM 2. Let A€%. for some finite Ac=Z' , and define a convex cone
%= {aA—t— 2 beA (AoT%) 10, be€ R, by > o,sz< w}.
Y Ad

A. Let o . 6”6/ be such that o,/ (4)¥6,”(4). Given C&€& there exist BE¢C+Z and two equilibrium
states o, 6”€l; such that o’(4)7c” (4).

B. Let o/, o” be equilibrium states for C&& such that 6,'(4)+4,"(4}. Given & > 0, one can choose
& > 0 such that if C’6& and ||C’'—C||<8, there exist B6C'+Z with ||B—C’[|<e¢, and two equilibrium states
o/, 6”€I, with o'(4)F#c”(4).

We indicate, for later use, how Theorem 2 is obtained from the lemma.
Write o,=!/.(6/+06,”). The assumption ¢, (4)0,” (4) implies that

mo, (4% = lim [ (1A 4
- xEA

rx) 2J > g {A).
Choose & > 0 such that

lim [(] Aty Aor")z] > 0o (A): -+ 4e | A

A sloo Py
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We apply the lemma with A1 = A2 = A and S=Z’ (B, will be chosen later}, obtaining B€B+Z and ¢ € I
such that

1B=Bi| < -%[P(Bc) — 6y(Bo)—s(ow)]

p [(IAI"ZA-r‘)g] —s(d)* <0, [(fm-*z A-t")z] — 00 (A)*—3ellAll".

xeA

and

Therefore

mo (&%) = im o[(|A[1 Y dow)'] — o (4> e 4P

xEN

From this follows that there exist ¢’ and ¢” in the support of m; with o'(4)7#¢” (4). Taking Bo = C, we
obtain Assertion A.

Suppose now that 6./, 6,”€l,. Choose 6 > 0 such that if ("6& and [[C’—C|[<6 we have P(C’)—c,(C")~
s(0,) <e’. Taking B0 = C’, we have BE€C’+Z, and (3) gives [|B—C’l|<e, proving Assertion B.

4. Coexistence of Phases

In the above lemma and theorem we could restrict our attention to interactions & such that ®(gp;)=0
when card X > 2 card & (or to corresponding elements of &). Theorem 2 deals with the situation when there
are at least two different equilibrium states. This corresponds physically to the coexistence of at least two
phases. Part B of Theorem 2 shows that an interaction ¥ (or a function C) for which several phases coexist
cannot be isolated: it lies in an "infinite dimensional manifold" of such interactions. One should check that
these interactions are not all "physically equivalent” [&, ¥ are physically equivalent if there exists ¢ € R
such that. 6(4e)=0(4¢)+c for all o € I], and that the "manifold" is not dense. This will be done in the
special case treated in the next section.

The coexistence of at least n + 1 phases can be treated in a similar manner. Let A4,,..., 4.¢&, ,
and let 4 ==Za,-Af, with Zaiz=1. We assume that os , e ,...,00 €I are such that of (4)=0,"(4) =...=
6" (4) holds for no choice of ay, ..., 0,. Defining

1 3 o
O = i1 ZUO(‘s
i=0
we have mo,(A%) —0,(4)*>4ellA|* with some e > 0 independent of @, ..., a,. Let & be the linear space

generated by the 4; and 4,(4-%%), andlet B,&&. By an easy extension of the lemma, there exists BEB,+2
such that

1B—BJl < %{P(Bn s (By)—s(on) ],
and g € IB such that
[6(4- (Aew))—0(A)*—[0o(A (o)) —0s(A)*] | <3ellA

forall a,. ..., a, and all x € ZY, Therefore m.(A%)—o(4)’=el4]? proving that the dimension of I, is at
least n: at least n + 1 phases coexist. Again an interaction for which at least n + 1 phases coexist
cannot be isolated,

5. Lattice Gases with Pair Interactions

We consider a system with F = {0, 1} and Q={0, 1}*". We define A€&, by A(¢) = ¢ (A takes
therefore the values 0 and 1). We shall use "pair" interactions &, such that ® (gPx)=0 if {X| > 2 and
O(EDN 1)) =—pAE), O(EMo ) =p(2)A(E)A(TE) for x # 0. Here ¢ € R and ¢(z)=¢(—z)ER is defined for x # 0.
Notice that

1
(@] =u+—2—2 lp(x)1.

x50

I. Let 06Mc<Z', where M is finite and M = —M, Suppose that a function ¢ M\ {0} >R is given
such that §{(z)=@(—z). Then one can extend ¢ to ¢: Z*\ {0} —~R such that
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Yie@i<e,

and find ¢ such that there are two equilibrium states ¢/ and o” for & satisfying 0’(A) = (A},

. Let p o and ¢, correspond to a pair interaction ¢. We assume that ¢/ and o7 are equilibrium
states for ¢0, and that ¢,”(4)#0,”(4). Given & > 0, there exists & > 0 such that the following holds. Let
0€M<Z', where M is finite, M = —M, Suppose that §: M\ {0} >R satisfies §(z)=¢(~z) and

2 ¥ b ai<.

=eM \ {0}

One can then extend & to ¢: Z*\ {0} ~R and find u such that ¢(z) =¢(—=z), ¢(z)<@.{z) if z¢¥,

L= tol +-;—Z lo(2) — go(2) I<e,

x6M

and there are two equilibrium states ¢’ and o” for the interaction ¢ corresponding to p and ¢ satisfying
o’ (A)#a" (A).
To prove I and II it suffices to imitate the proof of Theorem 2, using the lemma with S=Z"\ ¥.
Notice that
ma (A = lim p ﬂ Al Z (Acrx)(Ao-cv)].
Ao x, yEA,
x—y¢M

6. Discussion

The Assertion I above shows that if a pair interaction 4, has two equilibrium states with different

densities, then close to & there is an infinite dimensional set of pair interactions & which have two equili-
brium states with different densities.

As pointed out in Sec.4, we should check that these interactions & are not physically equivalent.
This follows from [7]: pair interactions %, and @ are physically equivalent if and only if By = # and ¢ = ¢-

We should also check that the pair interactions which have two equilibrium states with different
densities do not form a dense set. This results from the convergence of low activity expansions (see, for
instance, [6], Sec.4.2.86).

7. A Heuristic Theory of Phase Transitions

A theory of phase transitions would assert that if exactly n + 1 phases coexist for the interaction €,
then there passes through ¢ a manifold of codimension n of coexistence of n + 1 phases (in an appropriate
space V of interactions). The n + 1 phases at A correspond to elements o , o, ..., a of V¥, which are
all equal to a linear functional w on a subspace X of codimension n of V. The restriction PManx of the
pressure to <I>0 + X has a unique tangent at @0 (Hahn—Banach theorem).

Let Y be a subspace of dimension n of V transversal to X, and B, Bi,..., B.€Y" be the restirictions
Y of o, Qg e vty Olne Following the ideas of Sec.4 one can show that there exist B, Biy ..., B.€Y" arbitrarily close
to Bo, Biy..., Bn, and 6 > 0 and n > 0 such that the following is true:

Assertion., For each & € X there exists y(d) € V such that

1 (P) <% [P(®e+D)—P (Do) ~w(®D) ], @
and n + 1 phases coexist for the interaction & + @ + »(®); more precisely, if &)l < §
P|\(¢D+1-(d.\)+y)>P((D+'\p((D))+Bi, l=0, 1, ceeg (5)
For each & € X we have
1
lim —[P(0,+40)— P(0:)~ w(.0) 1=0, (6)
A0

because PMwx) has a unique tangent at <Ir0. It.is therefore tempting to assume that
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P(0O,+0)—P(D,)~w (D)
o

If that is the case one can choose & and the above function  such that ¥(&) € Y if I ¢l < §. Furthermore
¢ is then unique such that (4), (5) hold, and continuous (this is a sort of implicit function theorem). The image
P({0E€X: [|@l1<8}) is the desired manifold of phase coexistence. One can show that it is tangent to X, and
intersection of manifolds of coexistence of less than n + 1 phases in the expected simplicial configuration.
The details will be given elsewhere.

-0, when Q€X, [Of-0.

Unfortunately, (6) cannot be true in general. In fact for a one-dimensional lattice gas, if two
phases with different densities coexist for a pair potential Py there are finite-range pair potentials arbitrarily
close to @y and for those there is no phase transition. It is not clear at this point if (6) will hold in cases of
some generality, or if the above discussion has only heuristic value.
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SOLUTIONS OF THE BBGKY HIERARCHY.
CLASSICAL STATISTICS

A.K, Vidybida

The BBGKY hierarchy of classical kinetic eduations is regarded as a single abstract
evolution equation in the space of sequences of functions that are integrable with respect
to the momenta and translationally invariant with respect to the coordinates. An
expression is obtained for solving the equations in the form of a number of nonlinear
operators applied to the initial data.

The BBGKY hierarchy of kinetic equations [1] describes the dynamics of infinite statistical systems
and is a chain of coupled integrodifferential equations for the distribution functions. Earlier, in [2], an
expression has been obtained for the solution of the Cauchy problem for the BBGKY hierarchy in the Banach
space of sequences of functions that are integrable with respect to all arguments. A shortcoming of the
expression is that its application to distribution functions that describe a real system, i.e., not more than
bounded with respect to the configuration coordinates, leads to volume divergences in each order in 1/v. The
aim of the present paper is to obtain an expression free of this shortcoming.

In Sec.1, we introduce the space b of sequences of functions that are translationally invariant with
respect to the coordinates [4] and integrable with respect to the momenta, and auxiliary constructions are
performed in it. In Sec.2, we derive an expression for the solution of the Cauchy problem for the case when
the initial condition lies in b. In Secs.3 and 4, this expression is transformed to an "pseudononlinear' form
(see Eq. (13)). This means that the evolution operator, which is linear, is represented in a form in which
each of its orders in 1/v is a nonlinear operator. In Sec.4 arguments in favor of such a representation are
adduced.
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