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The "non-commutative ergodic theorem" of Oseledec [4] gives some sort
of spectral theory for random matrix products. The eigenvalues are replaced by
certain characteristic exponents which, in the case of a constant matrix, are
the logarithms of the moduli of the eigenvalues. In the present paper we inves-
tigate the dependence of the characteristic exponents on the data of the problem

and prove analyticity under certain conditionms.

To be more specific, let (Q,p) be a probability space and T a
measurable map Q * () preserving the measure p . Let T : Q" ym(]R) be a

#*
measurable function, with values in the real m X m matrices, such that )

log+||T( Il e L (p)
then

1im % 1ogllt(™ 1) . . . T(m)T(x) ||
n"on

exists p-almost everywhere. This is a theorem of Furstenberg and Kesten r2],
slightly less powerful than that of Oseledec. If p 1s ergodic, the limit 1is

almost everywhere equal to a constant ¥(T,p), and we have

X(T,p) = inf = jp(dx) Logllt(™ ... T(mT(O | (2:1)
n

Actually, X(T,p) is the largest characteristic exponent determined by
(Q,p,T>,T) and we shall for the purposes of this introduction only concern our-

selves with that characteristic exponent.

Suppose that () 1s compact, T continuous and let J be the Banach
space of continuous maps Q" gnGR) (use as norm the sup of the matrix norm).
X

The function y(.,p) defined by (1.1) is upper semi-continuous on J . We can

improve this result to one of real-analyticity of ¥x(.,p) on a neighbor-

*)  log*x= max{0,log x}



hood of T if there is a proper closed convex cone G CR' with apex at the

origin such that
To(x)C c {0} U int C

for all x . This is the prototype of the results of this paper, and it applies
for instance if To is constant*) and has a simple positive eigenvalue strictly
larger than the moduli of the other eigenvalues. Actually it is useful and easy
to consider the more general situation where C depends continuously on x

and one assumes only
T (x) ¢(x) < {0} U int c(mx) U int(-C(mx))

Instead of using the same space R" for each x € () one can, as a further
generalization consider a continuous vector bundle over () (see below for de-
tails). This extension (Theorem 3.1) allows to cover the case where ( 1is a
plece of differentiable manifold, T a diffeomorphism of the manifold mapping
Q) into itself and T , for instance, the tangent map ( T(x) maps the tangent

space to the manifold at x to the tangent space at Tx ).

We shall see that considering the p-th exterior power ’1‘/\p of T
gives information on the sum of the highest p characteristic numbers. (See
Section 4.3). We shall also see that if the matrix T(x) becomes complex,
X(T,p) 1is locally the real part of a complex analytic function of T (Section

4.7 and Proposition 4.8).

The methods of proof of the present paper are inspired by those used

for differentiable dynamical systems (see Section 4.6).

The case of random products of matrices with positive entries is re-

3*
) i.e. To(x) is independent of x .



levant to the statistical mechanics of disordered one-dimensional spin systems.
(One obtains for instance the analyticity of the free energy with respect to
temperature for one-dimensional "spin glasses" with finite range interactions).

On this case see also [67 Corollary 6.23.

An interesting question, not discussed here, 1is that of the nature
of the singularities of X(O,p) . Can discontinuities occur ? This could be

of interest for applications to physics (or ingeneering, etc.).

Let ( be a compact space, E a topological space and T:Er(Q
a continuous surjection. We assume given open sets Na covering () and homeo-

morphisms wa $ ﬂ—l

m =
) Na'* Na xR such that wag (me, gag) and
o S =
U wB (x,u) = (x,8 B(x)u) where x % g B(x) is continuous N N NB'* GL (R).

These data define a continuous vector bundle over which we denote by E or

(E(x))er , where E(x) = ﬂ_lx is a vector space isomorphic to R" . We shall
call norm on E a continuous function ||-|| : EX R such that its restriction

to E(x) 1is a norm for each x . It is clear how to define a continuous or a

Borel measurable subbundle of E .

Let T be a homeomorphism of (O . A continuous vector bundle map T
(of E ) over T 1is a continuous map T : E* E such that ToT = 7o and,
if T(x) is the restriction of T to E(x), T(x) : E(x) v E(7x) 1s linear.

Such maps form a Banach space J with respect to the norm

IT|l = max [lTGo ]| (2.1)
X€Q

Different norms on E yield equivalent norms (2.1).

Given T : E® E , one defines readily its adjoint T¥ : E¥ » E¥



where E* 1is the dual of E ; T® is a continuous vector bundle map over T

One defines also TA : EA H EA where EA(x) is the exterior algebra of E(x)
A

T is a continuous vector bundle map over ¢ . If T 1is invertible, its in-

= -1
verse T is a continuous vector bundle map over T

We give now a version of the non-commutative ergodic theorem of Ose-

ledec, which will be useful for our purposes.

2.1 Theorem. Let as above () be a compact space, T : Q*(Q a

continuous map, E a continuous m-dimensional vector bundle over (), and T

a continuous vector bundle map of E over T. Write

Ti = (™ g, .. T(mx) T(x)

and denote by I the set of r-invariant probability measures on () .

There is a Borel subset T of (O such that p(T) =1 for every

p €1, and for each x € (0 the following holds. There is a strictly increasing

sequence of subspaces : 0 = vio) c:vil) E winie c:ViS(X)) = E(x) such that, for
r = 1,_,,,S(X) >

lim = log ||t = W e we v(r)\ (D

n X X X X

n—Yeo
and Xil) < xiZ) < e < XS(X)) ; we may have kil) = - . [The Vir) and
Xir) are uniquely defined with these properties, and independent of the choice

(1) (s(n)) (1) (s(x))

of norm on E 7 . The maps x* s(x) , (VX seeeaVy Y 5 (XX seeeady )
are Borel. Furthermore

1im < log|lT%|| = xiS(X)) (2.2)

e x e

(r)

The Xx are the characteristic exponents of T at x .



2.2 Remarks. (a) If p € I , define

(T, p) = ‘{p(dx) liS(X))

1
lim 1 f plax) loglir?|

N

Then, by a standard subadditivity argument
_ 1 n
¥(T,p) = inf = p(dx) log”TXH
n
so that y(-,p) 1is upper semi-continuous, as noted in the introduction.

(b) One can show that the characteristic exponents of TAp (the

p-th exterior power) are all sums of p different characteristic exponents

xir) of T , where these may be repeated with multiplicity
mir) = dim Vir)- dim Vir_l) . In particular the subspace of E(x)Ap corresponding

to the largest characteristic exponent of 'I‘Ap is spanned by p-vectors corres-

ponding to the largest characteristic exponents of T .

2.3. Proofs.

The non-commutative ergodic theorem as formulated by Oseledec [4]
assumes T and T invertible, and the proof he gives is somewhat complicated.
The principle of a simpler proof, based on a theorem by Furstenberg and Kesten
[2], has been given by Raghunathan rsj. Using Raghunathan's method (unfortunate-
ly unpublished) one obtains readily theorem 2.1, and Remark 2.2 (b). Actually,
the main results of the present paper (Section 3) do not use the full strength
of Theorem 2.1, the theorem of Furstenberg and Kesten, in the form 2.2, being

sufficient.



The main result of this paper is the following.

3.1. Theorem. Let () be a compact space, T a homeomorphism of ( ,

E a continuous m-dimensional vector bundle over (), and J the Banach space

of continuous vector bundle maps T : E* E over r , with the norm (2.1).

Let @ be the open subset of J consisting of those T such that

for each x ¢ (0 there is a proper closed convex cone C(x) C E(x) for which

c(x) U (-c(x)) depends continuously on x , and

TC(x) C {oTx} U int C(mx) U int(-C(Tx))
[c(x) has its apex at the origine o of E(x)].

Then for every p € I , the function x(.,p) is real analytic on #

Notice that § 1is in general not dense in I [counterexample : take

() reduced to a point and T the rotation by g in iRZJ .

Our proof will be based on use of the implicit function theorem.
Another method of proof is given below (Theorem 4.8). Explicit forms for y(-,p)
and its derivatives will be indicated in Section 4.1. We start with two propo-

sitions which are of interest in their own right.

3.2. Proposition.

(a) If T e€#® , there is a unique T-invariant vector subbundle F

of E such that for each x

F(x) c c(x) U (-c(x))

Furthermore F(x) 1s one-dimensional and depends continuously on x and T.




(b) A subbundle F¥ of E¥ 1is similarly defined with respect to

3*

T and the cones

c*¥(x) = fn e Ex)* : (M,E) 20 for all £ ¢ ¢(x)}

(e) 1IE T € P , there exist a neighborhood & of T , «a <1 and

C such that for all n 20, and x € ()

IIt®nll < co [IT El (3.1)

whenever T ¢ @ and F,n are unit vectors respectively in F(x) and orthogo-

nal to F*(x)

Let ' be the set of pairs (x,e) where x €0, ¢ =+ C(x) and
let f7'(x,¢) = (1%, Te) . By considering bundles and bundle maps over (' and
7' instead of ( and ¢ , one reduces the proof of the proposition to the

case when C(x) depends continuously on x and TC(x) C {OTx} U int C(x)

We may then choose a belonging to the interior of C(x) , depending

continuously on x , and such that UaXH =1,

The convex compact set

n {n, € c(x)¥* : (1, aX) =1}
XEN

in the topological vector space ] E(x)# is mapped into itself continuously

x€eN
by T'
T¥n
' =
@)y = )
Ty y
It has therefore a fixed point (a*) by Leray-Schauder (notice that x ® a:
x

is not a priori continuous).

Taking b* = a¥/[la*|| we have
x x' %%



* p# / |l¥*p* || = b*
™ T™X X

Notice that, since b: € T*C(TX)* , there is € >0 independent of x such

that the ball of radius € centered at bi is contained in C(x)¥* . Dually

to the existence of (bz) , one proves the existence of (bx) such that

bxe c(x) and

™ / |lItb_|I
X X
Define now

K(x) = ({e ¢ E(x)
and

e = 12/ I,

= b
X

(b:,g) =0 and b +EE€ c(x)}

if £ € E(x)

Since TC(x) C int C(x) U {OTX} and since the ball of radius ¢ centered at

b: is contained in C(x)¥* ,

there is @ < 1 such that

T"K(x) < oK(Tx) (3.2)

for all x . Therefore we have

lim diam T""K(x) = O

ne

exponentially fast and uniformly in x . This implies that T C(7 'x) tends

to the half line along bx and that
T'a
=1
lim T X =b (3.3)
N HTna o H *
T X

uniformly in x . Therefore

If T 1is allowed t
a is continuous with respec

of (3.3) 1is uniform on that

x bX is continuous.

o vary in a small open set @® Wwe can assume that
t to (x,T) € Q x 6 , and that the convergence

set. Therefore bX is continuous with respect to
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(x,T) e 0 XP .

If F(x) 1is the one-dimensional space spanned by bx , the subbundle
F clearly satisfies part (a) of the Proposition. Part (b) follows from part

(a), noting that
T c*(mx) C‘(Ox} U int c¥(x)

Finally, (3.1) follows from (3.2), proving part (c) of the proposition.

3.3. Proposition. The continuous sections of the bundle of one-dimen-

sional subspaces of E (resp. E¥) form in a natural manner a real analytic

Banach manifold ¢ (resp. Q*) .

The map T+ F (resp. T = F¥) defined by Proposition 3.2 is real

analytic P ¢ (resp. P~ ¢

The real analytic structure on G > qf is described in Bourbaki [11

(§15, first footnote).

For G e ¢ and G sufficiently close to F we can define

GTG € G by
(8,6) () = T(a(r  x))

IE Fo is the subbundle corresponding to To€ © 1in Proposition 3.2 (a), we

have eT Fo N Fo , and there are neighborhoods @®& of To in ® and u of
0

Fo in @ such that (T,G) - BTF is real analytic : & x U= (G . Furthermore

#*
the tangent map ) tF eT : tF (4 tF ¢ has spectral radius <1 [actually
o o o o

(3.1) shows that the spectral radius of t_ 6, 1is <a ]. Therefore
o o

t 8 - id is invertible and there is, by the implicit function theorem (see

FO TO

#) To avoid confusion we use t to denote tangents to ( .



o TT o

17§ 5.6.7), a function e real analytic in a neighborhood of L with values

in @ such that m(To) = F  and GTm(T) = o(T)

In view of Proposition 3.2, these conditions imply that m(T) = F ,

and thus that T¥ F 1is real analytic., Similarly T - F¥ is real analytic.

3.4. Proof of the theorem.

Let T € P and let ao(x) . aﬁ(x) respectively by unit vectors in

the bundles F_, Fg of Proposition 3.2 (a) and (b).
Define
" g O B
fn(T) fﬁ(dx) = 10g|(a°(7 %) 5 T ao(x))l
From Proposition 3.2 and the definition of y(T,p) (Remark 2.2) we obtain

lim £ (T) = y(T,p) (3.4)
N =

uniformly for T in some neighborhood of To . The function fn has a deriva-

tive
(a*(1'%), Tn_kUTk_lao(x))

MB

= 1
ern(T)] (u) iJ/p(dx) .

=1 (a¥ (%), T"a (x))
o (o]

and therefore, again by Proposition 3.2,

Lim [Dfn(T)T (v) =‘/;(dx) (a*(Tx), Ua(x))

e (a¥*(qx),Ta(x))

where 0 # a(x) € F(x) , 0 # a*(x) ¢ Fx) . Clearly, the normalization of
a, a* 1is without importance. The limit (3.5) is again uniform in a neighbor-

hood of To , therefore (3.4) yields

(a*(71x), Ua(x))
(a*(Tx),Ta(x))

[Dx(T,p) ] (U) = p(dx)
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We shall now see that the map

(T,0) P [x n (a*(rx), Ua(x)) J
(a*(7x), Ta(x))

is real analytic in T,U and linear in U from P X J to C(Q) [the real
continuous functions on () ] . It suffices to verify this locally with respect
to x . Now since T = F,F* are real analytic by Proposition 3.3, we can take
locally T + a(x) , a*(x) real analytic (with values in continuous sections of
E,E¥ ) and we have proved what we announced. From (3.6) we find thus that

T * Dy(T,p) 1is real analytic (with values in the dual of J ). Therefore, fi-

nally, T* y(T,p) is real analytic on p .

4. Remarks_and_complements

4.1. Expressions for (T,p) and its derivatives.

From Remark 2.2 (a), we have

lITa(x) |

¥(T,p0) =[ p(dx) —
[ llaC) ||

if 0# a(x) € F(x) , If 0 # a*(x) € F¥(x) we have also, according to (3.6),

(a*(gx), Ua(x))
(a*(rx), Ta(x))

[Dy(T,0) ] () =}/p(dx)

Let

(a*( 'rkx) 5 oty a(x))

ey, T altn))

ck(U,V) =

_ (a*(Tkx), Ua(Tk-lx)) 5 (a*(1x), Va(x))
(a*(1%%), Ta(r 1x)) (a*(mx), Ta(x))

then
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[02%(T, )1 W,¥) = Z e, (W,0) + ¢ (v,0)]
k=1

The easy proof is left to the reader (proceed as for (3.6)) . Higher derivatives

can be computed similarly.

4.2. Proposition. If T € J, a necessary and sufficient condition

for T ¢ P is that E and E¥ respectively have T- and T¥-invariant conti-

nuous one-dimensional subbundles F and F' such that F(x) and F¥(x) are

not orthogonal for any x € (), and there exist g <1 and C real such that

Iyl < ca™ |IT]| (4.1)

whenever £, m are unit vectors respectively in F(x) and orthogonal to

F¥(x) ,n20,x€Q.

We have already shown that (4.1) holds if T € P (Proposition 3.2
(¢)) . It remains to prove that (4.1) implies T ¢ P . Let F,m be the compo-

nents of ( ¢ E respectively along F and orthogonal to F¥ ; assume F£ # O

and define
n-1 i)
n(c) = % m
k=0 [IT"¢||
which is a convex function of m/l[ll . Then, if n 1is chosen such that
a < C_l/n 3
™| IInll
n(T¢) = n(g) + = -
[lr el le]l
“ [Inll
<n(f) - (1-Ca) — < ()
gl

and we can take

c(x) U [-cx)T = {0X3 U f¢c € E(x) : n(g) <1}



= T

4.3. Exterior powers,

Define
1)
Xp(T,p) = lim - }Pp(dx) log ”(Tn)AP”
n X
n~Ve

Then, according to the Remark 2.2 (6), (T,p) 1is the integral with respect
XP p P

to p , of the sum of the largest p different characteristic exponents lir)
of T , counted with multiplicity mir) = dim vir) - dim Vir_l). We may thus

(p)

apply Theorem 3.1 to prove analyticity of T = y (T,p) if T"Pep . Here
P y Xp p

P(p) consists of those bundle maps T(p) : EAP‘* EAp over T such that for
each x ¢ () there is a proper closed convex cone C(p)(x) c E(x)™?  for which
C(p)(x) U (-c(x)) depends continuously on x , and

() 4(p)

? () < fo_1 U int ¢P(r) y tae(cP)(ro))

The following result reduces to Proposition 4.2 when p =1

4.4. Proposition. If T € J, a necessary and sufficient condition
(p)

A
for T pg P is the following.

There are continuous T-invariant subbundles E+, E of E with

dim E+ =p , dim E =mp, and E = E+ e‘C’E_ and there exist g <1 and A

real such that

% || < aa®|irg, || (4.2)

whenever £ € are unit vectors in E+(x), E (x) respectively, n 20,

X €Q.

In view of Proposition 4.2, the condition TAp € P(p)

is equivalent
A
to (4.1) with T replaced by T P . We shall prove the equivalence with (4.2)

using the same ¢ . First notice that we can (without changing ¢ ) assume that



o

the norm on E 1is Euclidean. By diagonalizing (T™* 1" one can find orthogonal
n s =
unit vectors £;,...,E € E(x) and Npsevosfy € E(r x) such that T B = M

where a, 2 8, & oo za . If n 1is such that Aa" <1, (4.2) means that

n
gl,...,Ep € E+(x) s € E (x) and ap+1 < (Ag )ap . On the other hand,

? gp+1"
if n 1is such that Can <1, (4.1) holds for TP  when the one-dimensional

bundle is that generated by El N voe A gp , and

n
ajay- - ap—l ap+l < (Ca ) al...ap

Therefore, for sufficiently large n , (4.2) is the same as (4.1) applied to

P .

4.5. Corollary. (a) The set $¥ of those T ¢ J such that property

(Hp) holds is open in J , and E+(x) , E (x) depend continuously on

,T) P
(x €0 X 5

(b) If To € P , one can choose g <1 , A real and a neighborhood
P

& of T, such that (4.2) holds uniformly for (x,T) € Q x©6 .

Let E+, E be continuous T-invariant subbundles of E , with

dim E+ =p, dimE =m-p, and E E+ €@ E . Suppose that g, , B, are such

x

that B < B, > B+ >0, and if n =20

It || <8 g%le |l 1f £ €E_ (4.3)

A

”fﬁuzhikﬂ if E €E,

Then (W) holds with A =B/, a= 8 /g" . Thus, 1f T' is sufficlently

close to T , there will be T'-invariant subbundles EL close to E+ and it

is readily seen that inequalities corresponding to (4.3) will hold with constants



= 1B =

Bl 3 BL close to B+ > By - This is true in particular for hyperbolic splittings

of E , i.e. when one can take g <1 < B, - Those T for which E has a

hyperbolic splitting thus form an open subset of J .

Hyperbolic splittings have been studied mostly when () 1is a differen-
tiable manifold or part of it, T a diffeomorphism, and T = Tr the tangent to

the diffeomorphism. See in particular Smale [7], Moser [37].

4.7. Complex matrices.

Let (Q, T be as before, and E a continuous complex vector bundle

(¥

over () . The continuous complex vector bundle maps (of EG) over T form a

complex Banach space 3& : 'Tf E¢ has complex dimension m' , there is an under-
lying structure of m-dimensional real bundle E on Em , where m = 2m' . The

space 3& , considered as real Banach space becomes then a closed subspace of
the space J of real vector bundle maps of E over r . We define Pﬁ to con-
sist of those T ¢ 3& such that EG and E; respectively have T- and T¥*-
invariant continuous one-dimensional complex subbundles F and F¥ such that

F(x) and F¥(x) are not orthogonal for any x € () and there exist @ <1 and

C real such that
It®n!l < ca™ |IT ]|

whenever &,y are unit vectors respectively in F(x) and orthogonal to

) , 20, nien.

Corollary 4.5 applies to the present situation with p = 2 and

E, E are complex subbundles when T ¢ 3& . In particular F& is open in

If T ¢ 3& then the largest two characteristic exponents of T , con-

sidered as element of ¥ , are equal. Thus, with the notation of section 4.3,



nf

¥(T,p) = XZ(T,p)

In particular X("p) is real analytic on PE for the structure of

real Banach space on p& . We have however the following more precise result.

4.8. Proposition. The function x(-,p) *R on Fh is locally the

real part of a complex analytic function.

Let indeed T € Pe and let ao(x), az(x) respectively be unit vec-

3
tors in the complex bundles F0 and Fo in the definition of P& . Define

n n
(ag(T x),T ao(x))

1
£ (T) = x(T_,p) +¥fp(dx) = log
n ° . (aX( %) ,Tgao(x))

Using Corollary 4.5, we find € >0 such that (a:(Tnx), Tnao(x)) # 0 for all

n and Te€6={T¢€dy: |T-T0| < ¢ } . Clearly

[ (a:(T§>, Tnao(x))
T *{xP

n Tl
(a§(¢ X, Toao(x))

is holomorphic from & to the complex continuous functions on Q and the same

is therefore true of

(a*(x), Tnao(x))

T"[x‘*log = =
(a*(r'x), T a (%))
o oo

provided the log is defined by continuity with the value 0 for T = To . There-

fore fn is holomorphic on @ .

We have

|(a*(Tnx), ™a (x)) |
(o] o

1
Re £ (T) = X(T_,p) +[p(dx) L F0g
" ® ® !(a:(Tnx), Tzao(x))l
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From the definitions and Corollary 4.5 we obtain

lim Re f (T) = x(T,p)
n~?e B

uniformly for T 1in some neighborhood - say 6 - of T . To conclude the proof
o
of the proposition it suffices to show that the fn tend to a limit uniformly

in ® . Equivalently it suffices to prove this for the derivatives Dfn :

n n-k k-1
(a:(w %)y ‘T UT ao(x))

N 1 o
[pg_(1) 1w -[p(dx) = =

k=1 (a:(Tnx), Tnao(x))

This follows readily from Corollary 4.5.

Suppose T is a measure preserving map of the probability space ((Q,p).
The various theorems of this paper have analogs where functions in Lm(p) occur
instead of continuous functions on () . This is because of the canonical isomor-
phism of the C¥-algebra L:(p) with the algebra of complex continuous functions

on its spectrum. We leave the details to the reader.
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