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0. Introduction :

The classical theory of stable (or unstable) manifolds for a diffeomor-
phism or flow on a compact manifold holds under certain conditions of hyperbo-
licity 2 . These conditions have been successively removed by Brin and Pesin
[1], and by Pesin [10] , [11], [12] . In the latter work, the existence of a
smooth invariant measure p 1is assumed, and the stable manifolds are shown to
exist almost everywhere with respect to p . The existence of a smooth inva-
riant measure is however not necessary, and it was shown in Ruelle [14] that
there is always an invariant Borel set foliated by stable manifolds which has

Kk
measure 1 with respect to every invariant probability measure ) .

An essential feature of the theory of stable manifolds "almost every-
where" is the use of the multiplicative ergodic theorem sokox) . Under weak con-—

ditions this theorem implies the existence almost surely of the limit

n* 1/2n

1im (T T%) A (0.1)
n 700
for a random matrix product
n = .
T = Tn e T2 T1 .

It is shown in [14] that a small perturbation T Ty 4 §T, , where 6T,

decreases exponentially with k , simply replaces A in (0,1) by another matrix

A' with the same eigenvalues. From this the stable manifold theorem can be

obtained.

In the present paper we consider differentiable maps, rather than diffeo-
morphisms (or semiflows rather than flows). Furthermore we allow Hilbert mani-
folds rather than finite dimensional ones. If certain boundedness conditions

hold, and if the tangent map Tf 1is compact (or more generally satisfies some

*) See in particular the monograph by Hirsch, Pugh, and Shub [4 ], and references given there
to earlier work.

**) A, Fathi, M. Herman and Ch. Yoccoz have obtained similar results in an unpublished
seminar. Such results can also be obtained by Pesin's method (see Katok [5]).

**%¥) Due to Oseledec [9] ; see alsoMillion$&ikov [8] Zaharevi¥ [16], and
Rachimathan 131 .



"discrete spectrum"” condition) one can define local stable and unstable mani-
folds almost everywhere for f . To obtain global stable manifolds (resp. un-
stable manifolds) one has to require that Tf has dense range (resp. is injec-

tive).

Section 7 of this paper indicates how to obtain a large variety of
results on local or global stable or unstable manifolds in finite or infinite
dimensional manifolds under various differentiability and "spectrum" conditions.
In particular, a proof of the claims made in Ruelle and Shub [15] for the finite
dimensional case is obtained. Another application concerns semiflows on an open
subset of a Hilbert space ; the results are described below *). Semiflows on

Hilbert spaces occur as solutions of partial differential equations of evolution,

and we have in mind applications to hydrodynamics turbulence.

The theorems of [15] on maps of finite dimensional manifolds, and those
quoted below on semiflows on Hilbert spaces are typical of many more results
obtainable from Section 7. It would take too much space to state all these

L. k)
results explicitly )

The present paper is largely parallel to the previous paper [14], obtain-
ing analogous results by analogous methods. The differences are however non-

trivial, and necessitate a careful reworking of the arguments.

0.1. Semiglows on Hilbernt space

In this subsection,g; will be a separable real Hilbert space, and M
T
an open subset of gf. A € semiflow (ft) is defined on M , with I > 1,

r .
I =®,0r r=uow. By this we mean that a C map £° . M— M is defined

+t+! ' *okk )
for t >T (some TO > 0) , that ft B & ft°ft , and that

*) Related results for Banach spaces have been obtained by R. Mahé (private communication).

**)Notice that, among other things, we could treat problems of the billiard type, where
differentiability is not assumed everywhere.

*%%) ) denotes the derivative. In view of the continuity requirements with respect to t,
the study of the semiflow (ft) may be replaced by the study of the map fT for some
suitable choice of T > 0 .



(x,t)F——+ftx " th(x) are continuous from M X [T0,+w) to M , and the bound-

ed operators on-é; respectively. We further assume that the set A= N ftM

o
is compact, and that th(x) is a compact operator for x€A, t > T0 . °

o
If r is not integer, a map is C™ if its [r]-th derivative is

e

Holder continuous of exponent r - [r] . For integer r we deviate from
MA L o

standard use in this section, and require only that the r-1 st derivative be

Lipschitz.

In I, II below we state multiplicative ergodic theorems and in IV, V, VII,

stable and unstable manifold theorems.

I. Given an (ft)—invariant Borel function pu : M— R , there is a
Borel set T €M such that ftr crl for t > To,and p(r) = 1 for every (ft)_

invariant probability measure p . If x € I', there are an integer S > 0, reals

p(l) > he. > u(S)) ¢ and finite-codimensional spaces £}= Vil):n...:)ViS) o V§S+1)
such that

lim — log Ipft(x) u” = p(r) if u € V(r)\ V(r+1)

X X

t>o

for r =1, ,S , and
T | t : (S+1)

lim E-log||Df (x) ull<u if uev

tro B =
The functions x+— S , u(l), sresay 3 u(S) . Viz), cee ViS+1) are Borel and
X1— S , u(l), W% B u(S) , codim Viz) 5 wew 5 codim ViS+1) are (ft)—

invariant. [Note : the codimension codim V is the dimension of the orthogonal

complement - )

II. Let the maps ft be injective and let the derivatives th(x) for
x €A be injective 6 F—qié' Given an (ft)—invariant Borel function pu: M— R,
there is a Borel set T < A such that be = for t > TO , and p(F) =1
for every (ft)—invariant probability measure p. If x € T, there are an integer
(1) u(S) S i

S >0, reals y > e

and finite-dimensional spaces



{0} = V(O) c V(l) E wive c:V(S) such that
X X X
- -1 K
lim ¢ log || @£5¢£™%0) ul| = ) i ue V}(cr)\v}({r L

£t

for r=1,...,5 , and

lim inf ¢ 1og |5 (£ 5 tu)| > —u if u g V)
too = X
The functions x+—S , u(l), s v u(s), Vil), s Vis) are Borel and

and x+——S , u(l), sisiE 3§ u(S) , dim Vil), sraner g QAN Vis) are (ft)-invariant.

III. Almost everywhere with respect to every (ft)—invariant probability

measure, the quantities § , u(r) , codim V(r+1) occuring in I are equal to
S, u(r) , dim V(r) in II . This justifies the confusion in notation for S
and u(r) . We have also, for almost all x , Vir+1) n vir) = {0} and
V}({r+1) + Qﬁr) _ {;, (transversality). Furthermore if Gr(x) is the minimum
of the component orthogonal to Vir+1) of a vector u € Vir) with lh'l =
then

lim% log §_ (£'x) = 0.

ttw

It is easy to let u go to == in I and II.

IV. Local stable manifolds

Let ®, A, r be (ft)—invariant Borel functions on I' with ®> 0 ,

A <0, r integer € [0,S] , and

u(r+1) 3% u(r)

(0)

: +
(where we have written = +o u(s L)

L ) . Replacing possibly T by a
smaller set retaining the properties of I one may construct Borel functionms

B>a>0 and Yy >1 on T with the following properties.



(a) 1If x € T the set
V:‘( = {y € M :||xvyl| < a(x) and Hftx—ftyH < B(x)exp t A(x) for allt zTO}

r *
is contained in T and is a finite codimensional C*" submanifold ) of the

X,
ball {y €M : ||x-y|| < a(x)} . For each y € V: , the tangent Tny is

|+ .
V}(,rﬂ). More generally, for every r' € [0,S], the function yv— V}('r D is
i A
of class C™ on Vx :

A
(b) 1If y,zer,t;To,then

1£5y-£52]) < v(x) [ly-z| exp & A

(¢) If x €1, then a(ftx) > B(ftx) 2 Y(ftx)_1 decrase less fast than the

: -Gt
exponential e when tow .

V. Local unstable manifolds

We retain the injectivity assumptions of II. Let @, *, r be (ft)—
invariant Borel functions on T , with ®>0 , » >0, r integer € [0,5] ,

and

u(r+1) u(r)

< A <

(0) + 0

" +
(where we have written = s u(s 1) 1)

. Replacing possibly T by a
smaller set retaining the properties of II, one may construct Borel functions

B > 2 >0 and NYJ >1 on T with the following properties.

(a) If x € T , the set
U= {y€ M:Hx-y”ga(x) and |lf x-f y”g B(x) expl-tA(x)] for all tzTO}

*)
Remember that in this section our definition of c* deviates from standard

use if r 1is integer.



is contained in ? and is a finite dimensional O% submanifold of the ball

{y €M : ||x-y|| < a(x)} . For each y€ '[7':‘{ , the tangent Ty 'D’i is le(rr)
\
More generally, for every r' € [0,S] , the function y—— 'V}(,r ) is of

class C"""—1 on V‘i 8

A

() If y,z €7 _, t 2T, then

€%y - £ %) < oo ||y-2|| expl -t A(x)]

t

(¢) If x €T , then &'(f_tx), g(f_tx-) 5 ?(f— x)—1 decrease less fast than

> ~-®c
the exponential e when t -w.

VI. The manifolds Vi and V:‘c do not in general depend continuously
on x , but the construction implies measurability properties on which we shall
not elaborate.

If p is an (ft)—invariant probability measure such that the charac-

()
u

teristic exponents are almost everywhere nonzero, let

(r(@+1) _ (r(@)
U u

)\<0<3\'<

~

The local stable and unstable manifolds (in the strict sense) Vi‘( 5 Vi inter—

sect transversally at x for (g-almost all x .

Under suitable transversality conditions (for instance if Df(x) has

dense range for all x €M) one can define global stable manifolds.

VII. Global unstable manifolds

With the notation and assumptions of II and V one can choose T such

that, if x €T, the set

WA =ty €M : lim sup ¢ log ||£ "x-f Ty <-2(0))
too t B

v(r)

X

- - - ~ - - 3 . . . .
is contained in T and is the image of by an injective % immersion

tangent to the identity at x .



0.2 Genenral notation

Throughout this paper, ﬁ.denotes a real or complex Hilbert space ;
J .
the distinction is made explicit when needed. T is the transpose or Hermitian
conjugate of a bounded operator T in i}. The space &pq is the q-th

exterior power of 'é-; it consists of the completely antisymmetric elements of

s

the Hilbert space tensor product of q copies of '&. If T 1is a bounded ope-

{ . A . .
rator on ﬁ, ™9 is the bounded operator on ﬁ 1 , restriction of T ®...&T .

We denote by £°  the positive part of a real function f ; for ins-

tance 1og+x = max{0, log x} .



1. A Limit theonem fon products of operatonrns

1.1. Theorem : Let (Tn) 0 be a sequence of bounded operators in ¢, such that
n> J
1lim sup-l log ||T || <O (1.1)
n nll =
n-w

We write

n

T = Tn . T2 T1

For some integer Q >0 we assume that

lim £ Tog [T Y| = » (1.2)
n q
N0
exists if q <Q , and that
) 1 n,A(Q+1) 3
lim sup — log||(T™) I < QQ+1 (1.3)
n—>co
where 21, — £Q+1 are finite. We define U(1)> vae U(S+l) and r(q)

for q=1, ... , Q+1 so that
q
8 u(r(k)) = for q=1,..., Q+l (1.4)

If Q >0 we assume that r(Q) = S, r(Q+l) = S+1 , so that p(r(Q)) >“(r(Q+l)).

If we keep the largest Q eigenvalues (counted with multiplicity) of
T * , and replace the others by 0O , we obtain an operator [Tn* Tn]Q. well
defined if n 1is large enough.
(a) lim ([T™* T%] )1/2‘1 = 1y
n-co Q
exists. Its i (1) ()
2 nonzero eigenvalues are exp u 5 sesmaen oy JCKDH . We denote by
U(l), e 3 U(S) the corresponding eigenspaces.
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(b) Let V(r) be the orthogonal complement of U(l) + o F U(r-l) for
r=1, ... , S+t1 . Then
)

1in % V5@ HTn“H - u(r) if ue€E v(r WD

N
for r=1, ..., S , and

lim sup l-log"Tnuu < u(S+1) if u € V(S+1)

n->w o =
*
Let t(l) > t(z) > be the eigenvalues of (Tn Tn)l/2 repeated

n = n =’

according to multiplicity. If there is a continuous spectrum, its maximum is

considered as an eigenvalue of infinite multiplicity. By (1.2), the limits

q
lim % log T t(p)

n >0 p=1

exist for q = 1,..., Q . Using (1.4) this gives

lim % log t(q) - u(r(q)) 3 1< q<Q (1.5)
n-w - B -
Furthermore, by (1.3), (1.4)
1lim sup-l log t(Q+1) < p(r(Q+l)) (1.6)
now B n =
Let Uir) , for r=1, ... , S, be the space spanned by the eigenvectors of
*
(Tn Tn)l/2 corresponding to the eigenvalues tﬁp) such that
I ® _ (n)
lim 5 log tn = u
n >
U(r) . . ; e . ; (r)
M is unambiguously defined for large n , and has finite dimension m

To prove Theorem 1.1. we follow the approach of Raghunathan [13] (as
we did in [14] for the finite dimensional case). We shall use the following

result.



- 11 -

1.2. Lemma : Let denote the orthogonal complement of

U(S+1)
n

Uél) + s.0 + Ués) . Given 8 > 0 there is K > O such that, for all n,k >0 ,

and 1 <r, ) o < S+1,

max( | (u,u') | €Ut eulT) |l = )= 1)
< K eXP[-n(lu(r')-u(r)|-6)] (1.7)

We first prove (1.7) for r' <r . Equivalently, it suffices to prove

that, if vtr, is the orthogonal projection of u € & U(l) in % Uﬁi; 5
i>r Jut®

then
Wl < Kkl expr-n(u® -0 - 6] (1.8)

It will be convenient to assume & less than all Iu(l)—u(J)| for

*
i#3j, and to write & = &/S . In view of (1.1) there is C > O such that,

for all n ,

*
§
log ”Tn+1” < C+n %
For large n we have thus
1 (r") 5 n+1
vl expl@+) '™ 7= 20 < [l ul|

Il - Il

<
¢ emrc+nd 1. llull e ® + £
1f n 1is so large that C - “(r') + %f < n2 this pives
Iv Lol < llull expr-nGu - =6%



= 19 o=

From this we deduce in particular

k-1
Ml e £l empt=oedd 6 0o D))
bl _j=o
< Klﬂun exp[-n(u(r—l)-u(r)—é*)]
with Kl = {l - exP[—(u(r-l)-u(r)- ﬁfﬂ}_l . Therefore also
k-1
I ol s & lull expl-(asi) @ FD- %))
’ =0
Py (e=t)  Go) (x-2) ., (-1
*p K| expl-n(uw Tt =6)] expl-(n+j) (u —n F Y
j=0

(u(r—Z)_u(r)_ 26*)]

A

K, [ju]| exp[-n

In general

k

R o e o]l expl-n(u 2= o (r-ry5%) 1

*
Since (r-r')s < g , this proves (1.8).

It remains to prove (1.7) with r' > r . Choose unit vectors u € Uér)
' (') o : : (1)
u' € Un+k and let F be the finite dimensional space spanned by all Un 5
Uiii with i, j <8, and u' if r' = S+1 . We take an orthogonal basis
(x )
(ua) of F , containing u , and such that each u 1is in Un @ for some r .
a o

Similarly let (u') be an orthonormal basis of F containing u' , and such
(ré)

n+k

1

for some r

that each ué is in U . The matrix U with elements

(ua, ué) is unitary. We estimate the minors of U using the fact that

. (ré) (r ) .
|(ua, uB)I < K exp[-n(y -u % -5l if ré < ra

|(u ,u')| @ 1 in any case.
a B =



....13_

% =1

We have dim F < 2Q + 1, and we may assume K >1 . In view of U =10 5
this gives
(') (&)
2

I(ua,U'S)| < Q! KQ[exP (Y -u P -208))
: ' .
if rB > ra . In particular

'
[(u,u")| < K' exp[—n(lk(r )—A(r)| -4&")1

with K' = (2Q)! K2Q , &' 2Q6 . This is again of the form (1.7), and completes

the proof of the lemma.

The lemma shows that (Uir)) is a Cauchy sequence for every r .
n>0

From this, and (1.5), part (a) of Theorem 1.1 follows.

We may write U(r) = lim U(r) for r=1, ... , S+1 , and obtain
nse
from (1.7)
1
max{|(u,u')| : u € U(r), u' € U(r ),|]q|=||uﬂ| =1}
n

< K exp[—n(lu(r')‘u(r)l = §)¥1

Therefore, for 0 # u € U(r)

n

loguﬁq—;"TJ (X} 4 25 3 =1, euey St
n

10g“TTr;‘-'[J i B wBs  BE e Ly e i 8

, and sufficiently large n ,

A
=

.

Thus
lim-lﬂlog TnuH = u(r) if 0# u€ U(r) , T <8
nso O -
lim sup %”1og Tnu” §1§S+1) if 0# u€ U(S+1)

n—>o

and part (b) of Theorem 1.1 follows.
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1.3. Remark :

Suppose that 5, has infinite dimension. Instead of taking Q finite, let
(r)

us assume that (1.2) exists for all integers q > O . Define the y and
r(d) by (1.4) for all q >0 . If r(:) takes only a finite number S§+1 of

values, one can apply Theorem 1.1. with that choice of S . Otherwise any finite

choice of S 1is possible, and the spaces U(r) are independent of S for

r S .

A

If r(*) takes infinitely many values, we have thus a natural definition

of U(r) for all integers r > O . Let again V(r) be the orthogonal comple-

ment of U(1)+ srese ¥ U(r_l) , and write V(w) =M V(r) . Let also u(m) = infu(r)
T r
(finite or -«=) . Then
tia & Piog 5% = 25 if ue vy
nse O
()

lim sup l-log”l‘nu” < u(m) if ueyv
e O B

Furthermore, if p(m) = = g
lim (T™* Tn)1/2n - A
n—»o

exists in norm, and is a compact operator.
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2. Multiplicative ergodic theorems

In this section the multiplicative ergodic theorem known for Q x Q
matrices 3 is extended to bounded operators in Hilbert space. In fact Propo-
sition 2.1. below shows that the conditioms (1.1) and (1.2) of Theorem 1l.1l. are
satisfied almost everwhere in a measure-theoretic setting. The conjunction of
Theorem 1.1. and Proposition 2.1. yields a multiplicative ergodic theorem. We

do not state this theorem explicitly, but note its consequences for compact

operators (Corollary 2.2.) and for unitary plus compact operators (Corollary 2.3)

2.1. Proposition : Let (M,Z,0) be a probability space and f : M—— M a mea-

surable map preserving p . We assume g,separable, and let T : M»——»S"—’(g) be
*K )

measurable to the bounded operators, such that

1og || T() || € L t,p)
We write
™ - e Ly) - ... . T(£x)-T(x)

there 1is then F+ c M such that f F+ = F+ , p(F+) =1, and

1lim sup %-log”T(fn_lx)” <0 (2.1)

n—)oo

: + 7 ; . + +
if xeT . Furthermore there are f-invariant functions lq : ' —— RU{—}

such that

.1 A +
lim — log|[(TH"Y|| = L (2:2)
n>e '

if x € rt , for all integers q > O .

*) See Oseledec [9] , Raghunathan [13]
**k) j.e. the inverse images of open sets for the weak (or the strong) operator topo-
logy are measurable.
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(2.1) follows from the integrability of log+|h(-)H and the ergodic
theorem. It suffices to prove (2.2) for q =1, i.e.
lim ~1--1og”’1‘n]| = 2+(X)
n X 1 ¥
n-<o
This is an extension of a theorem of Furstenberg and Kesten [3] ; it follows
immediately from the subadditive ergodic theorem of Kingman [6], [7] . For

convenience the latter theorem is reproduced in the Appendix.

¥
2.2. Conollarny (Multiplicative ergodic theorem for compact operators I) ).

We keep the notation and assumptions of Proposition 2.1., and suppose that

T(x) 1is compact for all x . There is then ' @ M such that frcr , p(r) =1,

and the following properties hold if x € T .

. nk
(a) lim (TX

-0

n.1/2n
i Bt

exists in norm and is a compact operator.

Let expuil) > expuiz) > loidie be the nonzero eigenvalues of Ax . The
uir) are real, the sequence possibly terminates at uis) ; otherwise we write
2 - (1) (2) -

S = (where s = s, may depend on x). Let UX ‘ Ux , ... be the corres
ponding eigenspaces and mir) = dim Uir)
(b) The functions X+— S¢ uir) s mir) are f-invariant. We let Vir) be
the orthogonal complement of Uil) F oiare F Uir-l) for r < s+l . Let also Vi5+1)
be the nullspace of Ax . Then

lim Liflog T0u]| = 4P if ue vy

n X X X X

Ny

for r=1,2, ... (r < s+l) and
. BT o o F (s+1)
1im = 1og|FXu” = —o if u € Vx
n->o

A complement to this multiplicative ergodic thcorem is given in Corollary 3.4.



L

+ . $13% .
Let T and the Qq be as in Proposition 2.1. Write

- : SN WK N
SN = {x €T : lim 5 Rq(x) > N}
q—)m
Then
i %
M (S) < [ edx) Ezq(X)
SN
< | oldw L 1ogllr™| ..

N

When g+~ we have

% Log T (x) 4| > -

because T(x) is compact. Since

1 Agq + 1

7 teelrH™Hl < 1og” fIr) |l € L7y, 0)
we must have p(SN) = 0 for all real N . Writing

F o= B B s b ) e ) (2.3)
om 44

we have thus fTcTl , p(I) =1 . In view of (2.1), (2.2), (2.3), the corollary

follows from Remark 1.3.

2.3. Corollarny (Multiplicative ergodic theorem for unitary plus compact opera-

tors). We keep the notation and assumptions of Proposition 2.1. and let

dim ﬁ = = . For each x we suppose that T(x) is the sum of a unitary and

a compact operator. We assume that T(x) 1is invertible and that

tog* | ()7 € Lt p)

There is then I' <M such that fr T, o(I') =1, and the following properties



_18_

hold if x €T .

. ,nx n1/2n _
(a) 11m('1‘x Tx) = A

>

X

exists in norm, invertible, with Ax - 11 compact.

(b) Let Vi(: g be the spectral subspace corresponding to the part of the

spectrum of Log AX in (-e~,p] , where yu belongs to the spectrum. Then

.. A .
lim = 1og|F2ul|= u if ue Vi\ ? vH
n-o B <u

Notice that the assumptions are symmetric with respect to interchange of
*-1 + o+ : - - -
T(-) and T(°) « L8t T mq be as in Proposition 2.1., and T , lq

be the corresponding quantities for T(-)*—1 . Given €>0 , let

st = {x € 1"i : 1lim l-Qi(x) > ¢}
€ q q =

q—)oo
Then
ep(Sg) < [ .pldx) = 2 ¥ (%)
® T ! q
S
€
& f o(dx) = log”(T(X)tl)Aq“
= o
€

When g+~ we have
i—log”(T(x)tl)Aq|L+O

because T(x) is the sum of a unitary and a compact operator. Since

1
5 1ogr()*HM < tog" el € 1h )
we must have p(Sj) =0 . Writing

+ - . R T
Tr=1{x€T NT :1lim—=— 2 (x) = 1lim — ¢ =0
{ a q( ) = q(X) I

- q-e
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we have thus fIr <ol ,p(l') =1

If x €T , we may apply Remark 1.3. with Tn = T(fn_lx) and with
Tn = T(f - x) % . part (a) of the corollary results immediately.

u(1) (S) (-s") (-1)

> esie 2 Y >aie D0Dwie > B D> e > W be the

(r)

n

Let

eigenvalues of log Ax . Let U for r=1,..., S be defined as in the

proof of Theorem 1.1., when Tn = T(fn—lx) . Let Ué_r) for' ¥ = L1, see 5 S

be similarly defined when Tn = T(fnnlx)*_1 . Let also Uio) denote the ortho-
=y _at

gonal complement of Uél) e b Uﬁs) + Ui 1 i s o Ui 9 . Given

— '—
§ > u(S+1) - u( S'-1) there is K > 0 such that, for all n,k >0 , and

(0)

-S' <r, r'<S, the inequality (1.7) holds, where we have written u =0 .

The proof is analogous to that of Lemma 1.2 and left to the reader. In parti-

cular we obtain

Ll
max( | (u,u) [+ uw € 0P L w € vl = ' = 1)
1
< K exp[—n(lu(r )-u(r)l -8)1
where U(r) = lim Uér) . This permits an estimate of the growth of IszuH

>0
for 0 # u € U?r) and the proof of part (b) of the corollary follows.
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3. A condition on sequences o4 operators

We shall formulate in Section 4 a perturbation theorem for products of
operators Tn . For the theorem to hold, the sequence (Tn) will have to
verify stronger conditions than were imposed in Theorem 1.1. We shall refer
to these conditions collectively as (S) . Here we state condition (S) and
show that it holds almost everywhere in a measure-theoretic setting. As a
consequence we obtain a second multiplicative ergodic theorem for compact

operators (Corollary 3.4.).
3.1. Condition (S)

(S1) The assumptions and notation of Theorem 1.1. are retained

. n,m _ . . n,n . : ;
Define T = Tn axere Tm+1 for n > m+l (T is the identity),
and
_ — 1 n,m (s+1)
v {u E'g,. lim sup — log|fr™ > "ul| < o }
n-o

In particular VO = V(S+1). Let (1) 5, e G EéQ), Yo span*gz, where Eé )

is a unit vector in V(r(k)) (r(k) 1 for k=1, ... 5 Q « Write

47 . (k) (k) _ (k) (k)
e oz €8y, e /e

n n—l gn n

(S2) For all n , the codimension of V_is Q , or equivalently
ot A § =

(1) (Q
g v

n n 2

(22

span (See below)

’ “ . ’

= AN, m i = m .
(S3) Let %™ denote the restriction of ™ to Vm . Given ¢ > 0O there

is K > 0 such that

(5+1)

1og”Tn’mH < (n-m) u + ne + K (3.1)
Since, by (S1) , we have
1 B¢ ) (k) (x(k))
lim 5 log T ey - lim — 1og|h N [[| =wu

n-w m=1 n->o
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we may also assume that

N
log T ) _ (N-M) u(r(k))| SN + (3.2)
m=M+1 &
(S4) Given ¢ >0 , there is D >1 such that if
Siven ot Ssuech that i1
Q
g% 5 u(k) Er(xk) + u(Q+1) ; u(Q+1) € Vn

then
|u(k)| < De e™ |jul]]  for k=1, ..., Q+l

Hu(Q+1) I (Q+1)|)

(We write & {u

From Theorem 1.1 (a) we obtain

(1)
o " L

lim % log |Fn 3 R TngéQ)“ =

N0

Q

- 1 dind g o)
Hence 1) (Q)
;
1im% log ||T“go gt € EOQ I = (3.3)
D e e
and

n,m (]-) n,m (Q)
|l I S | o

Z 1
lim = log

N n,m_(1) n,m _(Q)
| oo EE T | i S|
. : : (1) Q) ; .
If a linear combination of Em g devenar 4y Em were 1n Vm , the limit would
be <0 . Therefore gél) + Vm 5 e % g;Q) + Vm are linearly independent

in g,/vm , and the two conditions in (S2) are equivalent.

3.2. Proposition : We keep the notation and assumptions of Proposition 2.1.

Let a measurable f-invariant integer-valued function Q(*) > O be given on

+ .
I . We suppose that for almost all x either Q(x) =0, or Qa(x)(X) 1s
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finite and
QZ(X) - RI(x) < RI(X) if Q(x) = 1
(3.4)

e = 2000 < 200 = 2o 1 AF Q= Q) > 1

Q-1

s + P % 3
There is then recrT such that frer , p(r) =1, and if x € T , condition

(S) holds with T_ = (% ) , Q= Qx) 1, - z;(x) ot = Ly wes 5 GG
;g + .. (r) (r) 5 ;
and finite 2Q+1 > £Q+1(x) . The quantities r(q) , u , V occuring in

gél) ()

Theorem 1.1., the vectors s eee EO , the constants K of (S3) and

De of (S4) can all be chosen to depend measurably on x .

Proposition 2.1. yields (2.1), (2.2). Therefore (1.1), (1.2), (1.3) are

+
satisfied. We have taken 21 s ++- 5 2. equal to QI(x) y -ee 5 2.(x) so that

Q Q
- (1) () :
r(l), ... , r(Q) =S and S sepees g Sl are determined by (1.4) . All
these are f-invariant measurable functions of x . The functions x+— V(r)
are measurable, and xr— gél), erei® iy géQ) may be chosen measurable. It
remains to choose 2Q+1 and u(S+1) finite f-invariant measurable such
ehat D LB ¢ 950, and
u(l) > QI(X) if Q=0
(3.5)
(S+1) _ + o y
u > 2Q+1(x) QQ(x) if Q>0
That this is possible follows from (3.4) . All the assumptions of Theorem
1.1. hold therefore for almost all x , and (S1) 1is thus verified.
Since T™™ at x is TV " at f'x , the space Vm at x 1is vy at
£x y A3i€5E V(S+1) at f"x . The codimension of this space 1is Q(fmx) = Q(x).

This proves (S2).
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For n > 1, define

~n,0
F () = logli™ (||
Theorem A.l. applies and the limit

e i
F(x) = lim —~ Fn(X)
n-

exists for almost all x . By theorem 1.1.(b) and the theorem of Banach-

Steinhaus we have, if Q > 0,

F(x) < &

+
< Q+1(X) - L™

The converse inequality follows from (2.2) with q = Q+1 . Thus
+ + :

F(x) = 2Q+1(x) - QQ(X) if Q>0
+* .

F(x) = Ql(x) if Q=0

In view of (3.5) we have then

u(S+1) > F(x)

so that we may apply Corollary A.2., proving (S3) . Clearly x+— K_

satisfying (3.1), (3.2) can be chosen measurable.

Let Vi(x) be the subspace (of dimension Q) of %} orthogonal to
Vn(x) = Vo(fnx) . A map ¥(x) : Vé(x)'——é-V$(fx) is defined by
T(x)n = ¥(X)n + 7 , L E Vo(fx) . The multiplicative ergodic theorem (for
instance Corollary 2.2.) may be applied to ¥(x) . It shows that, for almost
all x , the limits
%, X ¥ n-1 ¥ ¥
lim — log|| T(£ "x) - ... - T(fx) (x)n|
nso O

exist for all n € Vé(x)
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Write

n
= = +

. el
where x+— £ is measurable to ,X}NVO(X) , and n_ € Vn(x) Y Vn(x)

From the above we know that

T
lim a log“ nnH
n-»«

exists almost everywhere. We have

e Il < 0 - Heol * = IF%™IF ICe™ o Il

m=1

so that, using (S3) and (2.1), we obtain almost everywhere

. 1 (S+1) o il
lim sup ;-logH;n“ < max{y , lim — 1og|hn||}
n->o Tl
This implies
. !
lim = 10glh§g||= lim — 1og|hn”
n-o n-w
or
lIn_l
lim = log LR (3.6)
n->w n
|usta]
We apply (3.6) with TAQ replacing T and gél) Aees A géQ) replacing
g . If nék) denotes the component of gik) orthogonal to Vn , we find that
! 1
lim E-log[det(né ) S SR 4 nﬁQ))l =0 (3.7)

N>

where we have used (3.3) . Given ¢ >0 there is thus DL > 1 such that
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(1) cee nr(lQ))| ; Q e

Idet:(n):1 5

almost everywhere, with x— De measurable. If %3 u=v+w with

v € Vi(x) , W E Vn(x) , We can write

Q
v= 1I u(k)nik)
k=1
with |u(k)| < —EQ—- & ||u]] . Hence the vector
(+1) RIS
u =u- I u gn
k=1

is in Vn(x) , and Hu(Q+1)||§ Deen€“u|| , proving (S4).

3.3. Proposition : Let (S) be satisfied, and define + U
for v =1; sas S , and '\7(0) = {0}. If (u) satisfies T*u =u
— ’ ? > — i 0”450 nn n-1
and )
lim inf 1 log ||u_|| < —U(S+1)
n n
n-
then u, ev . Conversely for every u, € \Y there is such a sequence

7O L gy

(un)n>0 , it is unique and

.1 (r)
lim = 1og” unH = -
n-rw
if eV(r)\V(r'l) , for r=1, ... , S .

A . F
If u ¢ Vm , there is u € Vm with (u,um) # 0 , hence

gk n , mk
0 = lim = log| (u,T un)|
N>

lim sup —rl; 1og|[1"n’mu|| + 1im inf ;11- logl| un”

N> -

A

(s+1)
u

. e 1
+ lim inf — 1og||un”
N

(3.8)

(3.9)
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in contradiction with (3.8). Therefore(3.8) implies uy € V(S) and U € Vﬁ .

Define now ¥m : V:_l———* V; so that ¥mu is the orthogonal pro-

jection of Tmu in V# . In view of (S1) and (S4) ,

Lim < log|| (¥l = L (3.10)

n-e

for gq=1, ... , Q . We have thus

. 1
11m-; 1og|ﬁn||= 0

n-o

lin (YoHfRy1/20 _ ¥
n->o
75

v
where A 1is the restriction of A to

Q

From (3.10) with q = Q we obtain

lim 1og|K¥n)AQH = 10

and therefore

.1 M S|
1im = 1og”(Tn) H

=0
n->o
Since we have also
1 % = =
1im((¥n* 1) (¥n* 1))1/2n _ X 1
n—»oo

K
Theorem 1.1. applies to the sequence (¥n 1) , and (3.9) follows.

3.4. Conollary (Multiplicative ergodic theorem for compact operators II).

With the notation and assumptions of Proposition 2.1. and Corollary 2.2., T

may be chosen such that the following holds if x € T .

(¢) TR L L ST AN € & F (u) satisfies T*u .
= — l1n§)~~—~-~> nn n-—|

and

o 1
lim inf E-loglhnl|# +oo

n-><
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Then u, € U V(r) . Conversely for every u, € U V(r) there is such a
r<s+l r<s+l

sequence u it is unique and
q ( n)nzo R q

lim % loglbn[| = -u(r) i € v(r)\ v(r-l)

n-+e

0

It suffices to take I' as in Proposition 3.2., and apply Proposition 3.3.

3.5. Multiplicative ergodic theorems with nespect to g1

We place ourselves again in the situation of Proposition 3.1., but assume
now that f has a measurable inverse. (If this condition is not satisfied, the
dynamical system can be extended so that f is replaced by an invertible f ).

: + % -1 1 R . §
Since we have log Ih o f (')||€ L~ we may formulate multiplicative ergodic

- x -
theorems where f 1is replaced by f b and T by T of 1

Let

R ~n,Aq
DNC R iiz —~ logl(T ™|

* - *
X) ¥ wew o T CE 1x) . Since (Tz) = ?h , we have

* -

where Eh =T (f
X n

fox

.1 n, Aq .1 ~n Aq
2 (x) = lim = Log|l(TH™ | = 1im = 10glT"_ ||
& noeo 1 * ne £%

The functions £ and Eq are almost everywhere f-invariant and therefore

p(r)

almost everywhere equal. Therefore the '"characteristic exponents" , and
the "multiplicities" dim U(r) are almost everywhere the same for f_1 ,
e |
T of as for £ 5 T
(-r) > : : (r)
the eigenspace corresponding to the eigenvalue exp U

Denote by UX

of the operator



- 28 -

where we assume r < r(Q) < r(Q+l) . Define

8 @ L egleilyl

(-r)

F caare F U

for r=1,2, ... , so that codim V(r+1) = dim V(-r) . We show now that, almost

everywhere,

y (D) g (1) fo} (3.11)

/4
y() | ) é, . (3.12)

Let E be the set of x such that V(r+l) n V(—r) # {0} . Given a nonvanishing
(r+1) 5 (1)

Uy € Vv there is, by Proposition 3.3., a unique sequence (un)
such that T(f_nx)u = u and
n n-1
o _ ()
11m-H logl| un“ <-u
n->o
Furthermore,
e g n (r+1)
lim — logH’I‘X uOH <
n-w

Given 6>0 , let E_ be the subset of E consisting of those x such that

n

Il < lhog Il exp n(-u) +) (3.13)

1f U, € V(r+1) n V(—r) , and
0 X X

I ull < flall exp nguP4s) (3.14)

if wevTD v e tave ™uevED v ¢ xefME
* x i3 £x £x B

(3.13) 1implies thus

all < 112 ull exp n(-u® +6) (3.15)

Therefore (3.14), (3.15) vyields u(r) - u(r+1) < 26 if x € En nfereE

n °



= 99

(r) _ u(r+1) < 268

Since p(En negt En)ﬂp(E) when n->« , we have U almost

everywhere on E . Since & 1is arbitrary, this gives p(E) = O . We have

proved (3.11) ; (3.12) follows from codim V(r+1) = dim V(_r)

Defining
+
§(x) = (_r)min || component of u orthogonal to Vir 1)“
u€Vx :|h|F1
we have for almost all x
. 1 k
lim — log §(f'x) =0 _ (3.16)

ki K

For k —++» , this results from (S4) . Using the invertible maps

; Vir+1)l| V(r+1).L

£x one obtains (3.16) for k>t »

¥(x)
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4. A perturbation theorem :

be a sequence of bounded operators in % such

4.1. Theorem : Let (Tn)n>0

that condition (S) holds.

Let n >0 be given, and for T' = (T') , write
0 ns0
[[T'-T|| = sup||T'-T Il e3nn (4.1)
n n
n
and T'" = T;- TOR Té'Ti . There are then constants § ,A>0, BE > 1

(for any € > 0) with the following properties.

1f |h'—T||§ § , then

1im L 1oglfT™M||= & for q=1, ... , Q (4.2)
nseo q
. 1 +1
lim sup — 1og||(T'n)A(Q )Ilg 2Q+1 (4.3)
n->«o

and (S) holds for (T;) . When Q > 0 we write

tim(fz™" T'“]Q)l/2r1 = A

n-e Q

and let P(r)(T') denote the orthogonal projection of A 6 corresponding to

the eigenvalue exp u(r) . Writing also P(S+1)(T') =1 - % P(r)(T') we
have .

e 2@ < B, expn wPho (4.4.2)
for r=1, ... , S+1 , and

fe™* e anll<s expn "y (4.4.b)

for ¥ =1, vis 5 8§« TE (T;) is like (T;) , with [|T"-T|[< 6 , then
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HP(r)(T') = P(r)(T")H Az -T" || (4.5)
= . 3 - d‘t’
If N > 0 , the sequence T(N) (Tn+N)n>O again satisfies the condition
(S) . For any prescribed ® > 0 , the corresponding constants 5_1 , A, B

€
g ; . NG
may be chosen to increase with N less fast than the exponential e .

Let 0 < pn' < and define
Aq Al ~ Aq AQp 3nn'
R FY = mug EUS = B ™
n
Assuming IF'-T||§ const., (S1) implies the existence of Eq > 0 such that

"a - 7 < -] | (5-6)

Using this and the replacements Tn,T;»———+ T:

q,T;Aq we see that the proof
of (4.2) reduces to the case q = 1 , and the proof of (4.3) to the case Q = 0.
(The reader will check that condition (S) is verified by ™4 yith Q=1 or

Q=0)

We have thus to prove

lim l-log ' ®|| = u(l) (4.7)
n—+oon
if Q>0 , and
11w sup L 1og || TP j<u'? (4.8)
nseo O B

if Q=0.

Proof of (4.8)

Taking Q = 0 in (S3) we see that, given € >0 , there is M such

that

17| < expl (a-m) 1P+ 2ne ] (4.9)
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if n>M . We define ™" 1ike ™™ | If we write T; = Tn + (T; - Tn) s
N,M . N-M .
expand T in 2 terms, and use (4.1) and (4.9) we find
N, M B (1) n(-3n+2€)
[lr* ™ | <exp 2Ne + T (exp +|T'-T]| e )
n=M+1

Hence, if € <n ,

lim sup % log HT'N”

N <o
< lim sup < log “T‘N’M||§ u(l) + 2¢

N>
and from this (4.8) follows.

We shall use later the following consequence of our proof :

q
lim sup E%E 1og]|(T'n’m)Aq“ < 3 u(r(k)) (4.10)

n->o

which holds for all m 20 , and 1 <q ZQ+l .
Proof of (4.7)
We let now Q >0 . If we find u € g, such that

lim %-1og|]T'nu” u(l)

>

nv

we have

(1)

lim inf l—log”T'nH >
w0 N

Together with (4.8) this yields (4.7) . Therefore (4.7) follows from Proposi-

tion 4.2. below (with M =0, K =1).

Using (4.6) we conclude that (4.2) and (4.3) hold provided

[l -]

A

min 6 /E (4.11)
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where 6q corresponds to 61 in the replacement of T by M
4.2.
4.2. Proposition : There exists § >0 such that

lim %-log HT'n’M dl > u(r(K))

Nn-—>co

provided M >0, 1 <K <Q, |[T'-T|k 8, and 11€U§ with

Q ) 4
Ko (5 @ (B, @D

and max |u

max

in Proposition

\
|u(k, I}'

j<K K<k<Q+1

We shall prove for later use a result somewhat stronger than the above

proposition.

Given u Eg , M> 0 , we write

nv

™0

0, M .

LB ), @D

n n n

T

j=1
where u(Q+1) €V
n n

We have, using (S4) with Dn =D,

Q+1
Iu(k)l < t(k) I (k)| + D§ e =2nn 5 I (J)l
n = n .
j=1
o Q1
lu(k)l > t(k) Iu(k)l - D5 e 2nn 5 | (J)I
n = n n-1 1 .2
j=1
for k=1, ... , Q, and
Q+1)_ . (Q+1) ~2mn ¥ ()
Iun T |<D<S jil In_ll

: k
We shall estimate the Iué )I under the assumption that

(Va > M) max Iu(J)l < max Iu(k)l
J<J b k>J

(4.12)

(4.13)

(4.14)

(4.15)
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for some fixed J . Notice in particular that

K

g
A
~

M

Instead of using (3.1) one may express (S3) by

1og| 7" £ (m) D) 4

with e(n) decreasing towards O when n->w
If k>J we write

N
n

(k)

X (x() _ (@),

exp (u

Taking €= n/2 1in (3.2) we find

n-1 . n

n DT g (W g™ (4
m=M+ " m=M+1 7

n
exp[(n—l-M)u(r(J))+(n-1)e(n—l)] / t;k)* < ce™ (4.
m=M+1 B

ol Gy (£(3))

n tY /exp[ (n-M)u o ] < ce™ (4
m=M+1 B

(x(9)) (£ ] L™ (4

expl(n-1-M)u +(n-1)e(n-1) ]/exp[ (n-M)

where C 1is independent of J,j,k,M,n (with j,k >J , 0 <M <n).

From (4.12) we obtain

(k) (k)*, (k) -2nn (&)
|un | < £ lun_1| + D§e (Q+1) m?xlun_1| (4.
for k=J, ... , Q. From (4.14) we get
(Q+1) _ (Q+1) -2nn (i)
Iun T u "y | < D§ e (Q+1) m?x|un_1| : (4
. (3) .
£ UM max[uM | and n > M we claim that

if u €U (4.

n e(n) (4.

16)

17)

.18)

19)

.20)

«21)

22)

.23)
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n n
|U(k)l < 1 " 1 e cnale'm”)-uM (4.24)
" = m=M+1 o m=M+1
for k=J, , Q, and
n
|U£Q+1)l < eXP[(n-M)u(r(J))+ne(n)]- i (1+(Q+1)cnale'm”).UM (4.25)

=M+1

Clearly (4.24) and (4.25) hold for n = M . Inserting (4.24),(4.25) and
(4.15) in the right-hand side of (4.22) , and using (4.18), (4.19) we reproduce

(4.24) . On the other hand, from (4.23) we get

N 3
+1 AN, M ~N, -2 (i)
I P e R i (CE I P TR]

n=M+1

Using (4.17), (4.24), (4.25), (4.15), (4.20) and (4.21) yields

[0l D] < exp( wFI s Nem+9)

N
N 5 n-1 -
x [Uy + = (Q+l) CDs e L (1+(Q+1)CDS e n)-UM]
n=M+1 m=M+1

which reproduces (4.25) . This proves (4.24) and (4.25).

We choose

_ 1 - g 5
1 - (@D T (1-e”™) (4.26)
m=1

§

In this way (Q+1)CD61 <1, and

_aly (IH(@r1)CDs e M) e e

m (1-e ™) sl

m=1
(4.27)

< 1 (1--e'_nn)_2 = 1

= n=1 (Q#1)CDs,



w: B =

Therefore (4.24) and (4.25) give

n n
W< e om0 1 ™y (4.28)
R VS B V|
for k=J, , Q , and
(Q+1) (r(2)) ; -m
|u | < Cc. expl(n-M)y +ne(m)]- 1 (1-e "MU, (4.29)
n =1 4 M
m=M+1
We define now J to be the largest integer such that (4.15) holds. If
' (1, _ () _ g
J < Q we may choose M'> M such that IUM' I = maxluM, | = UM' . Inserting
- - J

then (4.28), (4.29) with M replaced by M',and (4.18), (4.19) into (4.13) we get

IU(J)I > t(J) Iu(J)
n = n n-1
n-1

n
- (Q+1)CCDs e g ) g (1—e_mn)'|ué{)|

o1 ™ el

for n >M' . Using (4.27) gives

n-1 n-1
b2 - T O
m=M"+1 m=M+1
which implies, by induction,
n n
P11 D ae™ - WD) (4.30)
T om=M'+1 m=M"+1 :

In view of (4.28), (4.29), we have

lim sup %-log”T'n’Mu“ < u(r(J))

n -»>w
for all J . On the other hand (4.30) and (S4) yield
1lim inf l—loglh'n’Mu|l > v(r(J))
e O -

if J < Q . We have thus
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lim & log”T'n’Mu” = u(r(J)) if J<Q
H4e n =

(4.31)

(s+1)
M

lim sup % IOQIT'H’Mu“ < if J = Q+l

n->x

Proposition 4.2 follows from (4.16) and (4.31).

Proof of (4.4a)

Tbeorem 1.1. now applies with (T;) replacing (Tn) . Therefore if 1y 1is
in the range of P(r)(T') ,and u# 0, (4.31) shows that r(J) =r . In parti-

cular (4.28) and (4.29), with M = 0 , prove (4.4.a).
Proof of (4.5)

Let K <Q , with r(K+l) = r(K) +1 , and define

Ve = £0 e 8,: lim sup ;E_[a log”r'“’mu” < u(r(K)+1)}

n>o

Let T'™™ denote the restriction of T'™™ to Vé . If ueV', (4.31) implies

that J > K . Therefore, by (4.28), (4.29) , (S4) , one can take ¢'(n) decrea-

sing towards O when n-»« , such that

log”'f"n’m” < (n-m) U(r(J))+ ne'(n)
(4.32)
< (n-m) pEEO, o @)
s (1) (X) : 2
Proposition 4.2. shows that EM 5 e EM are linearly independent
modulo VQ . We also know that Theorem 1.1. applies with (T' ) replacing

n+M o0

(Tn) ; the p(r) remain the same. In particular by taking q = K+1 in (4.10)

we see that codim Vﬁ = K . Therefore there exist numbers Akj such that

K
(k) _ (1) ' -
i Akj EM € VM for k =K+l ; .o 5 Q - (4.33)

Similarly, if u € VM , there exist numbers Aj such that
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L@ _
j

[

(1) '
Ay By EVy (4.34)

In view of Proposition 4.2. we have

50y il 2 TSP

s <

for k=K+1 , ..., Q, and j=1, ... , K. Given any u 6-5» we may write

e E(k) ¢ o@D e (@D € V_ where Iu(k)l <Dgen8”“” by (54)

n n =

Using (4.33), (4.34) one finds

u

SRR
pe g v ) K (K)o (4.35)
. n n
i=1
with
VPl < @2 b ™l for j=1, ...,k
; : Q
because V(J) = u(J) + % u(k) Ak. + A. . Therefore also
k=K+1 .
D] < @re3)
so that (4.35) holds with
V] <t for § =1, ..., K+l . (4.36)

We may assume that we have chosen ' » and Dé > D , independent of K
€ = ¢

and T' (subject to K < Q, ||T'"-T| < &)
Let now 0 < a <1, and define

(@) Eéj) i % L (K+1)

1

N~ =R

i

K+1) (J)I 1 lv(K"'l)I} .

: v( € Vé and max|v

ik

For u € !  we write
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()

n

V(K+1)
n

™% =

II.M =

o g

1
+ =
1 o

]

The inequalities (4.12), (4.13), (4.14) are replaced by

. K+1
(k) (k) (k =2 @G
v <kl & |+ prer & 3 v
j=1
K+1 "
|v(k)| > ¢ () Iv(k)| _D's' & 2PN IV(J)l
n = n n-1 ol n-1
j=1
K+1 i
IV(K+1) = T' V(K+1)l <D'(S' —Znn > IV(J)|
n n n-l = s n-1
i=1
where we have written D' = DA , and we assume
-1 < @', [IT'-T]| < 8, [|T-T] 5 8" (4.37)
(We shall fix &' < & later). We estimate the |v§k)| in much the same way

in the proof of Proposition 4.2. We have mostly

as we estimated the |u§k)|

to replace Q by K, (83) by (4.32), and (S4) by (4.35), (4.36) . We let

here J be the largest integer such that

(¥n) max |V§J)| < maxlvik)|
i T k>J
(in particular J < K) . We retain the definition of tik)* and choose C'> C

such that (4.18), (4.19), (4.20), (4.21) hold with «k, e(n) replaced by

k' , €'(n) . Finally we take

1

“ -mn. 2
= e L (e =l (4.38)

m=1

5'

and obtain

(r (1) u(r(K))

o 1 n
lim inf — log ||{T'"" u|| > >

when u € V and (4.37) holds.
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Therefore if u 1s in the range of P(r(K+1))(T") + e P(r(Q+1))(T")
we have u ¢V , i.e.,

(j)l < IV(K+1)|

max |v
X

and since (P(l)(T') + ... + P(r(K))(T'))v(K+1) = 0 we have
”(P(l) (T') + 5.+ P(r(K))(T'))(P(r(K+1))(T") L +P(r(Q+1))(T"))”§ K(),D'

where we have used (4.36) with n=0, j =K+1 , ¢ = n . Let us write
pro=p Wy + e pEED ooy 2 p Mgy o pEED) iy 1 view

of (4.37) we may write

2" (12" < KaD' = KB ||
Interchanging T' and T" yields
lera-py || < Sjjor-r]
so that
el < 2 K fjzr-rm
Therefore
HP(r)(T')—P(r)(T")“ <4 %gl||T'—T"|| (4.39)

for r=1, ... , r(Q =S . This proves (4.5)
Proof of (4.4.b)

Let PM be the orthogonal projection on V:} where VM is defined in

Section 3.1., and let PM(T') be the corresponding projection where T is

replaced by T'
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An easy modification of Proposition 4.2. (see the proof of (4.5)) yields

that, if 0 <a <1,

1im £ 1ogl1"™ M| o3

n—>c°

@D ey @) |5 o@D

and max |u
i<Q

Therefore, if u is in the range of 1 - PM(T') , then u ¢ UM , and (S4) yields
M
Iyl < a0, MSlall

hence

-, ¥ ”T'—TII Mg
|| By (1P (T NIl < 5 @, e

Taking ¢ < %ﬂ we may use in this formula n' =n - 2¢ instead of n . We may

thus replace ||T'-T| by

; 3n(n-2¢) -6M
sup”T; -Tn” sy < ”T'—TII e ¢

n>M

so that
1 ' ~5M
2, (=B, (e || < Clr'-T]| e -

For sufficiently small ||T'—TH there exist thus isometries UM 2 Vﬁb——+ gr

with range PM(T')gy such that

-5M
0Pyl < c*lr*=Tl| e

F Vv * :
We write T =P T P g ¥r =y T'U and obtain
n n n n-l n n n n-l
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_ . -4M¢
[¥:-¥ || < e |jT*-T]| e :
Therefore also
V. ogy—=1 V*-1 3M
-t el e
Vk—1 V. o%x-1 :
We may thus apply Theorem 4.1. to the sequences (Tn )y (T; ) and obtain

(4.4.b) as a consequence of (4.4.a) (with new choices of & and Be )

Proof that (S) holds for (T&) :

From the above we obtain also

”¥,n Eél)A...A¥'n géQ)|l_

lim = log 0
1
m gl B

This corresponds to (3.7) with (Tn) replaced by (T;) , and implies therefore
that (T;) satisfies (S4) . In the proof of (4.4.a) we have noted that (S1)
holds for (T;) and in the proof of (4.5) we have obtained (S.2), (S.3). There-
fore (T;) again satisfies (8)

. =1
Estimates of § s A, Be for T(N)

Eél) (Q

If we replace (T) by (T _..) and s wee s Eg by

0 n>0 n+N
(1) Q . : 2
EN g e gN in Proposition 4.2., we may in the proof make the replacements

n>0 ’

e (n) — (1+§)e(n+N) , Ci—>r CelwI , Dr— DeNn . Then, according to (4.26), 611

AT o 3 2 ]
lle2Nn . If we use TAq instead of T we have Sqlh» qu e Nn .

Y
eBN(n n') . Therefore min 6q/Eq ,which

is replaced by §
For Eq , see (4.6), we may take Eq-+ E

is the choice of & wused in the proof of (4.2), (4.3) (see (4.11)) is multi-
e-N(3n-n ) " e-3Nn )

plied by

Let ®> O be given. In the proof of (4.4.a) we may choose B , according
€

to (4.28), (4.29), (3.2) and (S4) , so that BE s B€ eNGD. Similarly for (4.4.b).
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In the proof of (4.5) we may make the replacements C'—> C'eNn A
D' —— D! eNn. Hence by (4.38), (4.39), 6'—1 —> 6'—1 e2Nn , A — A e3Nn .
. 3 ; =1 -1 3Nn
Since we choose & 1less than min § /E and §' , we may take & +——> § ‘e .

q
(The replacements of n by n' or ¢ <n in the proof of (4.4.b) do not change

this) .

If 0 < @ < 3n , we have

n¢"
supl['-_|| &< [I7'-1]

n

7 - -1 N®
We may thus use (/3 instead of n and arrange that 8 1 5 K 5 Beu-——* § 1 e 5
A eNUy , Be eNQH when Ti——+—T(N) . Therefore 6—1 5 Ay Be may be chosen to

increase with N 1less fast than e
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5. Local stable manifolds :

From now on 45, will be separable. For R > 0 , we write
B(R) = {u € 9,: [[u” <R} , and let B(R) be the closure of B(R) . We say that

ks 0

a map is of class if its derivatives up to order I, are Holder conti-

nuous of exponent § ; c*% panifolds are defined in the obvious way.

5.1. Theorem : Let (M,zr,p) be a probability space, and f : M—— M a measurable

map preserving p.For each xeM , let Fx : (B(1),0) — (5,0) be defined, and

write F' =F © ,.. o F_°oF . We assume that F is differentiable, with
—_— X% fn-lx £ X x

1
derivative T(x) at O , that T(*) is measurable, and that log+ “T(')” €L (M, p).

Let an integer-valued f-invariant measurable function Q > O be given. Then

u(l) > p(2)> ... and r(l), ... , r(Q+l) are defined for almost all x , such
that

q

.
2w T _gin Logog | @) (5.1)
n X
=1 n-co
*

for. gq = 1; wae 5 @+l ) . We assume that Q and the real f-invariant measu-

rable function ) < O are so chosen that

(r(Q+1)) (r(Q)
M < A <€

{5.2)
almost everywhere. (We let u(r(O)) = 4o p(r(Q+1)) may be -« ).
We consider three cases.
5 j& is real ; F_ is ko © s x— ||F_|| is measurable and
=t X — x" r,0

+
[ oldx) log[|FAL£’e < +w

for some r>1, oc¢€ (0,17 .

See Proposition 2.1.
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o

9 7 {; is real ; F is C ; xr—> ”FJlr is measurable and
AN

[ p(dx) 1og+ “FJ]g < tow

for all

in

Qo v

IIT.

is complex ; Fx is holomorphic in B(1l) ; x._+||FA|1 is measurable

and

[ edx) log+||F)J|1 < +w

Let ®& > O . Under the above conditions there is a measurable set T c M

such that fre T , or) =1, and there are measurable functions B>a > 0 on

r with the following properties.

(a) If x € r the set

ni(x)

Vi = {u € B(a(x)) : HF; ufl < B(x) e for all n> 0]}

L (E@+D)
X

. ; — s A
is a submanifold of B(a(x)) , tangent at 0 to . The manifold P

is respectively ck» 8 , C° or holomorphic in the cases I., II., III.

(b) If )' : M—— R is f-invariant measurable and satisfies

u(r(Q+1)) (xr(Q)

< A<

there exists vy > 1 measurable on T such that, if u,v evi , then

P2 u = F2 v < v [Juv]| ™0

A

This applies in particular to A' = \..

(c) If x€ T, then a(fo), B(fo), Y(fo)n1 decrease less fast than the

exponential e_N@) when N>« .,

We first study the case I. with r = 1 . By Proposition 2.1., we may take
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rcM such that frcr , po(I') =1, and (5.1), (5.2) hold on T . We further

assume that, if x €T,

=0 (5.3)

W | +
lim E—log ”F
,0

n-ow fn—lx 1
This is possible by the ergodic theorem, and implies

lim = 1og” R || =0 :
nseo O

n-1

The assumptions of Theorem 1.1. hold thus with Tn =T(f "x) and Q = Q(x) .

Ll(r(Q+1))

If necessary we modify the definition of to make it finite ; we

X (r(Q+1))

replace thus the original by a larger f-invariant function

+ : 3 i Sils
u(s 1) < A,A' . With this notation, Proposition 3.2. shows that we may

 (T@+1)
X

X r——
assume (S) to hold for all x € T' . Notice that the linear space

in part (a) of the Theorem is, in the notation of Section 3.1., VO = V(S+1)

We are now in position to apply the perturbation theorem 4.1. We choose
n in this theorem satisfying 0 < 4n < -8X . (We write A,)A', ... , instead
of A(x), 2'(x), ... ). Using (5.3) we may then write

G=supflF .|l exp(-nn-01) < +o
n £ R 16

3

(5.4)
[ R exp[n(62+3n)-61] < G
£ X

1,8

We also define e> 0 by

u(S+1) (5.5)

e = min(A,\"') -

With these choices, let &§,A > O and Ek > 1 be as in Theorem 4.1. We can

make § smaller such that

AS < 1/V2 (5.6)
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and then define «a, B, Y satisfying
o = R/B B

0<pg< 1 , ce® < s | (5.7)

The functions x+— &, A, BE may be assumed measurable as follows from their
(essentially) explicit construction in the proof of Theorem 4.1. Therefore also
X— 0,B8,Y may be assumed measurable. We prove case I. r =1, of Theorem

5.1. with the above choices of T, a, B, Y -
If 0<R< 1 we write

A

Y (R) = {u € B(1) : ”Fi ul| <R e™ for O v}

A
j=]
A

(5.8)

S(R) = {u € B(1) : “FZ ul| < R e™ for all n > 0}

v

Taking k> 1 such that kB <1, G'(KB)e <6, we show now that

= 1
B(a) n $°() n {ue 1«3 T . uf| < ge™ for all n > v)

(5.9)

B n & (x8) N (Fj()'1 v
Vv

(V; is defined in Section 3.1.) . Let indeed u € s¥ (kB) N (I."\;{)—1 Vv . The

bounded operators

1
Vi n-1
Tn j dt DF - (t FX u) if n<v
0 £ X
LR s
Tn Tn if n>v

are such that
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T =T'+ ... . T'lu =Flu if n<ov
1 X =
and using (5.8), (5.4), we have
- 3nn
ffT'-T|| = SEPIIT,',"T,,II e

A

sup |[DF . ”6 («8)® exp[(n-1) 92+3nn] < 6 (kp)®
n<v £ Tk B

A
(2]

5 . y g S+
Therefore Theorem 4.1. applies. In particular u 1is in the range of P( 1)(T').

From (4.4a) and (5.5). We get thus
Il < B, €™ [lul]

for all v and all u € S”(xB) N (F)\:)_IV\) . Since o = g/B_, the right-hand
side of (5.9) is thus contained in the left-hand side. The converse inclusion is
immediate.

Let DV be the set defined by (5.9) . Since the boundary of SY(kg) is

disjoint from Sv(B) , and hence from DY , we conclude from (5.9) that p"

.= - : 1 .
is open and closed in B(a) N (F:) - Vv . In fact DY is a C submanifold of
B(s® . To see this it suffices to show that if v € DV the range of DF:(V)

together with Vv span 5& (transversality). Writing

" n-1
Tn Dan-lx(Fx v) if n

A
<

we have |[I'-T|| < § and the transversality condition is that the range of gy

together with Vv span %}. If u 1is a nontrivial linear combination of

gél), s agr i géQ) if follows from Proposition 4.2. that T'u £ Vv. This implies

transversality because V has codimension Q by (S2). Furthermore, the
e the

(8+1)

v . : s ;
tangent space to DY at v 1s the range of P (r') , a fact which we shall
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use later.

Let now u,v € D’ or u,v € B(a) N S(B) = Vi (in the latter case, write
v = ®) ., The bounded operators
. n-1 n-1
T' = [ dt DF (t F. "u+(l-t) F_ "v) if n <v
n n—-1 4 X =
0 f p 4
T' = T if n>v
n n
are such that
(R = M. e Y (= R - g - .
T' (u-v) Tn 255 Tl(u v) qu va if n <v
and we have
lz*-T|| < ¢
. .. (s+1) ,..,
Therefore Theorem 4.1. applies, and u-v 1is in the range of P (T') . From
(4.4.a), (5.5) and (5.7) we get thus
1
HF:u - F:v” < Be exp n(u(S+1)+e) “u-v“ <y enll|u—vH (5.10)
which proves part (b) of the Theorem.
From (4.5) we obtain
S+1 S+1 S+1
1 -2 (1) vy | = [} @S (@12 D (1)) - |
(5.11)
A6”u—v” - (sinw)llu-v”
where we have written A8 = sin ¢ with 0 < ¥ < %— by (5.6). This implies
+ +
-2 G (1)) v || £ eanwy [P () @ | (5.12)
Define ¢ : [V(S+1) N B(a)] x [V(S+l)l N B(a)] — B(a) by
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+ u

.
o+,

u
1 2
@(ul,uz) = 7;-VQ - Hu2

Let ¢(u1,uq) 5 ¢(v1,v2) €D or B(a) N S(B) . Then (5.11) yields

luyll 5 llvyll < Aéa  and, by (5.12) ,
-1 WL WY AT
(ean 7 [luy v, | ¢ 2w, I - —Hvdiv 1
TN 2 w2,
< WhHluy B - V2 11w, P12 v, 1P fluyv,

|l Hvzlll

o+ [|uy-v, |
V& -(A&a) L2
§Hu2 - V2” tan ¢y + ”ul - V1“
so that
=1
luy=v, || ((tan w) ~ - tan ¥) < Hul-v1|l (5.13)

where (tan w)—l - tan Y > 0 since 0 < Y < %— . Since D’ is a C1 submanifold

v V(S+1) (s+1)L

of B(a) , <I>_1D is the graph of a C1 functionwv NB(a) —>V N B(a)

with derivative bounded uniformly with respect to v .

Let ¢ be the limit of a subsequence of (qy) converging on a countable

+ =
(5+1) N B(a) . The subsequence then converges everywhere and the

dense subset of V
limit ¢ 1is Lipschitz. Since  ¢(graph qy) =D c B(a) N §)(B) we have
®(graph @) < B(a) N S(B) . The converse inclusion follows from (5.13) applied

to B(a) N S(B) . Therefore
¢ (graph @) = B(a) N S(B) =
and, by uniqueness of ¢ ,

lim w\) =

V >

everywhere on V(S+1) n B(a) .
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Let u,v € D’ and define bounded operators TI'1 = DF n-1 (F:—lu) A
£ X
T = DF ¢ ly) if n<v and
n n-1 X =
f X
T" = T™ = T if n>v
n n n

Then ||T'-T|| ,|"-T||< 6 . and, using (5.10),

B Mt

fn-lx “e X X

ITy-Tall < [IDF

-1 0
Ye e(n )e)\”u_vll

if n <V , hence
IT'-1"f| < 6¥ [lu-v] ®

Therefore (4.5) gives
IIP(S+1)(T|)_P(S+1)(T||) “ gAGYe ”u_v”9 (5.14)

(S+1)(T') P(S+1)(T") are the tangent spaces to D’ at

where the ranges of P "

u and v , as remarked earlier.

A
When v-=w , let u tend to 1 € Vx . Then the range of P(S+1) (T') tends
to the range of P(S+1) (T) where
i‘ = DF (Fn_lﬁ) for all n
n fn-lx X ’

This is because of (4.5) and the fact that ”T'—i‘” +0 when v-=e (use (5.3)).

If @(ul,uz) = u , the derivative of (prv at u , is
2 2
J& Hlu, |l T (uy,Qu) -1 (u,y,Q8)
£}—t+ ——— QE - ll - W R e Sa Qu1
a v avhlu, I o

-1
where Q = —(1+P(S+1)(T) - P(S+1) (T')) (l—P(S+1)(T')) and (5.14) shows that this
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derivative is HOlder continuous with respect to up s uniformly with respect to

v . In particular

llo” (i, +8) - @ (u)) = De’(upell

1
1+6
= ||f 4t [Dmv(u1+t€) = D¢y(u1)]€” < const. || £]|
0
If A(ul) is the limit of D\’(ul) when v |
1+6
”D@1+€) = m(ul) & A(ul)gH < const. || ]|
so that A(ul) is the derivative of ¢ at up - This derivative is Holder
A
continuous of exponent 6 . We have also shown that the tangent space to Vx at

(S+1) ('I‘)

i is the range of P . In particular the tangent at O is the range of

P(S+1)(T) 5 Ll V0 = V(S+1) . This concludes the proof of (a) 1in case I.,

E=1. g
From Theorem 4.1. and (5.6) it follows that we may assume 6—1 and Q
N g NGD " .

at f x to increase less fast than e when Noe« . In view of (5.4), G

; ® 2
increases less fast than eN provided we take n<® . Therefore, by (5.7), we

can take B—l to 1ncrease less fast than eZNtm/e and a_l less fast than
eN&X2/9+1) . Changing ® , this proves (c) in case I., r =1
A, %6 ; :
We prove that Vx is of class C by induction on r for r> 1

Let léx : B(1) ®£_+§@b be the CE,'l,e map defined by
i«‘x(u,v) = (F,u,DF_(u)v)

The results obtained for (Fx) can now be applied to (¥x) . In particular S(g)

is replaced by %(%) c&@ 5, Since we have shown that the tangent space to

(5+1) A

B(a) M S(R) at G 1is the range of P (T) the condition

2

(w,v) € ¥ and u® +||v|f < % (5.15)
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means u € §(X) n S(g) , and v 1is tangent to S(g) at u and sufficiently

1,6

small. The set defined by (5.15) is Cgﬁ by induction, therefore B(a") n S(g)

is C‘g"e if o' <3 . We may thus choose I ioks: B such that Theorem 5.1. holds

in case I. for general r .

In the case II. we may make a choice Pr I Br of T, a, B for
A N N
every r > 1 and some fixed 6 € (0,1] (for instance 6 = 7) . We assume, as

we may, that @< ]A] . It then follows from (c) that, if x € Fr , there exists

S

v > 0 such that
By (x) et < ar(t”x) :

r

Thus ﬁ; maps Vl (1.e: V; defined with and 31) into the C+

> P |
manifold ¥ (i.e. V)  defined with o  and g ). Since F’ is C™
A r r X
f'x,r £ x
and satisfies a transversality condition which we shall presently discuss,

is also C . The transversality requirement is that, if @ € Vi 1 the
s

%3

A
Xy

A v
range of D?;(ﬁ) , together with the tangent to Vfo at Fxﬁ , span “@H

v

)

Let infz DFrrqﬂFz—lﬁ),then the condition is that the range of T together
£
with
~ ) ~ +
V ={uc€ 5,: lim sup<% log||Tn’vuI|5 u(S 1)}
y) e =

span ﬁ; . This follows from (4.2) and the fact that ‘Vv has codimension Q .

Let now TI_ = n Fr , then wa i and p(Fm) =1 . The C° wversion
r= 1 i~
of our theorem is obtained if we take for o,B the restriction of aps By

to r =T

In case III. our assumption implies
+
Ip(dx) log “Fxllé < +oo

where ‘|'Hé is the C2 norm on a ball of radius < 1 . In view of case 1I.
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A
of the Theorem a Cl’1 manifold Vx can be defined. It is a limit of holomor-

phic manifolds D’ defined by (5.9), and therefore it is holomorphic.

5.2. Conollary : Keeping the notation of Theorem 5.1. we let (5.1) hold for

* * * .
q=1, ... , max(Q,Q )+1 and assume 1r(Q +1) = r(Q*)+1 where Q >0 1is an

. . . 3 5 2 =1
integer-valued f-invariant measurable function. Write Tn = DF - (F: u) for
A f X

*
u€ Vx , X €T , and denote by V (u) the null space of

w13 faDE 2D 1/2n
AQ* ii:([T T ]Q*)

I Q* =Q, V*(u) is the tangent space to Vi at u . At the expense of

replacing o, B, I' by o¥, 8%, ™ with the same general properties in the
A A
definition of Vx , we may assume that the functionm v* . Vx;——+ Grassmannian
> > r-1,6 © . A s
of is respectively C* , C or holomorphic on Vx in cases I.,II.,

IIT.

: *
Notice that Q may be smaller or larger than Q . When Q* = Q the
Corollary has been proved in the course of the demonstration of Theorem 5.1. In

general we have to go back to that demonstration and adapt it. If Q* > Q we

%
may have to modify the definition of u(r(Q kL) (instead of u(r(Q)+1)) to

make it finite. In case I. , r = 1 , the proof for Q¥ = Q is based on (5.14)

and extends immediately to general Q* . For r> 1, let the real f-invariant
w1

’ * .
measurable function A satisfy

* *
u(r(Q )+1) - x* - u(r(Q ))

Let a C/E”-l’e map ¥'x : B(1) @5»-—-—» 5@'&/ be defined by

A=

¥‘x(u,v) = (Fu, e DF_(u)v) .

. * 1 .
We may apply Theorem 5.1. to (¥x) (we obtain (A-) )+ € L by going to sub-

sets of I' ) and the Corollary results immediately.
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5.3. Remarks : (a) One could give a version of Theorem 5.1. for a single sequence
(F(n)) of Cr"e maps (5(1),0) — (i;gO) satisfying conditions corresponding

to (5.1); (5.2); (5:3) and (8)-

(b) Assuming further measurability properties of X +—— F. would imply
measurability properties of x+—— l{‘{ . Such properties follow from the fact
that ‘.{; is the limit, as vi+— o , of the connected component D’ of 0
¢ = DR |
in B(a) N (Fx) V\)

(c) Property speaking ‘)}‘{ is a local stable manifold when Q 1is so

u(r(Q))

chosen that 0 .

nv
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6. Local unstable manifolds

6.1. Theonem : Let (M,5,p) be a probability space, and f : M—— M a

measurable map preserving p. For each x € M , let ?x : (B(1),0)—— (g;o)

be defined. We assume that ?; is differentiable, with derivative T(x)* at

0 , that T(*) is measurable, and that logle(')” € Ll(M,p) . Let an integer-—
2
u(l) b u( )>

valued f-invariant measurable function Q > O be given. Then

and r(l), ..., r(Q+l) are defined for almost all x , such that

q
: wFE) 2y % Log| (TH™]|
k=1 N>

for ¢ =1, ... , Q+l . We assume that Q and the real f-invariant measurable

function ) > O are so chosen that

u(r(Q+1)) & 5 U(r(Q))

almost everywhere. (We let u(r(O)) = 4o 3 u(r(Q+1)) may be - )

We consider three cases.

P 5, is real ; ¥ is c%0% x:———q-“?Jl is measurable and
———= Tx = I,0

[ p(dx) log+ H§Q|£,e < +o
for some I > 1, 0 € (0,1]

o«

II.§, is real ; F_ is C 5 X P——%»”%;'L is measurable and

x_.

+ ~
[ p(dx) log HFXIIr < tow
wm

>
1L g,is complex ; F; is holomorphic in B(1l) ; xv——»llﬁ;nl is measur-

able and
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+
f 0w tog” lEJl, < +=

n
=

Let (® > 0 . Under the above conditions there is a measurable set T

22
\Y
o

such that fTc T s p(?§ = 1 , and there are measurable functions E >

on T with the following properties.

(a) If x € T the set

A ~ -
V; = {uo €'§(E(x)): El(un)n?-0 with anxun+1==un and Hunllé B(x)e nA(x)} (6.1)

is a submanifold of B(a(x)) , tangent at O to Gﬁr(Q)) , and (un) is uniquely
determined by uy - The manifold vi is respectively craf , ¢® or holomorphic
in the cases I., IIL., III.

(b) If A' : M—— R is f-invariant measurable and satisfies

@) o @)

there exists 7 >1 measurable on T such that, i£ (un), (Vn) satisfy
i 5 N = X
F u =u , F Vs ™Y ;IlunlL an|| < B(x) e f s, €V s then

n n+l n n n+
£% £ x

=]
>~
~
®
~
<Y

b -v || < 360 [lugvll ™™

This applies in particular to A' =1 .

(¢) If x € ?, then E(fo) , %Kfo), ?ffo)_l decrease less fast than the

~

. -N&
exponential e e when N = .

* * * 2 ~
6.2. Conollarny : Let Q > 0 satisfy r(Q +1) = r(Q )+1 . Write Tn = DE .54 (un)
- S - f X

for Uy € Vi , (un) as in (6.1), x € T , and denote by v*(uo) the (Q*—

dimensional) range of

e T W
Q s Q*
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* . I
If @ =Q; V*(uo) is the tangent space to Vy 3t uy - At the expense of
. ~S ~ ~o '\’* ~* '\.* " . X
replacing o, B, T by o, B, T with the same general properties in the
definition of Vi , we may assume that uy— v*(uo) is respectively 05:1,0’

~

i , or holomorphic on Ux in cases I., II., III.

The proofs of Theorem 6.1. and Corollary 6.2. are parallel to the proofs
of 5.1. and 5.2. The idea is to replace Fx by %;1 and T(x) by T(x)*—1
(with some caution because the inverses %;1 5 T(x)*_1 may not be well defined).
The changes are easy, if Proposition 3.3. is used as multiplicative ergodic
theo;em, and if (4.4.b) is used instead of (4.4.a). To obtain the existence of
the limit qf)r——+ @ one uses the fact that the intersections of translates of
(S+1)(T)

the range of P with

gV = {(un) " -ni(x)

Iun||§ B(x) e for 0 <mn <v }

have diameters which tend to zero when v-~ . [Taking uys Vo in such an
2 . *
intersection, one constructs (Té) such that (T'Y) (%)— K)) = uy -~ Vg and

applies (4.5), (4.4.a) to get

(S+1)

llugmvg Il (-8 fIT-1* b < [P @) vy |

IS @y @y, -l g lly, v I+ iz e P an|

(S+1) <£3y % B

A

28 (x) Be exp(~v (A(x)—u

u(S+1)

where we have assumed € < A(X) - ] . Further details are left to the

reader.

The remarks 5.3. have obvious counterparts for unstable manifolds.
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7. Applications

We show here how the results of sections 5 and 6 can be applied to Hilbert
bundle maps and flows. This will lead to the definition of stable and unstable
manifolds for differentiable maps and flows in Hilbert manifolds. We indicate
the arguments in discussive manner, rather than stating lengthy theorems. The
results on finite dimensional manifolds given in Ruelle and Shub [15] and those

on semiflows in Hilbert space of Section 0.1. follow as special cases.

7.1. Hilbent bundles

Let M be a separable metrizable space and f : M)—— M a continuous
map. Let w : E—— M be a continuous bundle of separable Hilbert spaces over
M . For simplicity we assume that the fiber has constant dimension. Finally let
T : E—— E be a continuous bundle map over f . We indicate how to adapt the
previous '"abstract" theory to the present "topological' situation and deal

simultaneously with all f-invariant probability measures on M .

First, we may trivialize the bundle E by using a countable Borel parti-

tion (Mi) of M, and maps Xg n—lMir————+ Mi X g, . We may assume that

X5 and Xi have norm < 2 . Let us write %(x) = Xj T(x) x;1 if x € Mi

and fx € Mj , and Tz = T(fn_lx) s TAX) ¢ E e %(x) . Then

. 1 1 2
lim [E 10g||T:u“ - ;-lole: Xiu”] =0

nN-—>co

From this it is clear that questions about T acting on E are simply related

o

to questions about T  acting on M x f;.

. . +
We assume that the set A = n f'M is compact. Consider the set T

n>0
of those x € M for which there is an f-ergodic probability measure Py such

that
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1 ° k
lim = I w(fx) = px((o) (7:1)
n->x k:]_

for all continuous functions @ : M—— R , and

S | n
11m~; 10g||(T K )Aq“

n-»o fx

.1
- Mg [1og ||(T‘y‘)"“|| o, (dy) (7.2)
= inf = [log H(T;:)Aq“px (dy)

. + . + +
for all integers k>0, q> 0 . Then T is a Borel set, fI' T , and

0(F+) = 1 for every f-invariant Borel probability measure ¢ on M .

The set of x € M for which there is an ergodic B satisfying (7.1),
(7.2) is Borel, and fP+ c F+ . Since the support of any f-invariant probability
measure p 1is contained in A , it remains to show that p(r+n A) =1 for
every f-invariant probability measure p on A . We have thus reduced the
problem to the case of a compact space. For that case p(F+) =1 1is proved in

Appendix D of [14]

Proposition 2.1. is satisfied with T chosen as above, and the multi-
plicative ergodic theorems 2.2., 2.3. also have a topological version, where T

is Borel and p(I') =1 for every invariant probability measure o

Similarly for Proposition 3.2., provided Q 1is chosen Borel; the vectors

(1) (Q

go s muse EO , and K DE now are Borel functions of x . Corollary

3.4. holds with T Borel.

-

In the topological version of the local stable manifold theorem 5.1. (and

*
5.2), 2, 2", Q (and Q) are assumed to be Borel, with
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o (r(@+1)) (r(Q)

< (A and A') < y

* ok %
on a Borel set of invariant measure 1 . Then, T, a, B, Yy (and T , a , B )
may be taken Borel. Similarly for the local unstable manifold theorem 6.1. (and

6.2).

7.2. Tangent bundle to a Hilbert manigold

Let M be a 8' Hilbert manifold, real or complex, Hausdorff and with a
countable basis of open sets. (For instance M may be an open subset of a
separable Hilbert space, or a finite-dimensional manifold with countable basis
of open sets). Let f : M—— M be a differentiable map. Then T™ 1is a conti-
nuous bundle of Hilbert spaces, Tf a continuous bundle map over f , and the
remarks of Section 7.1. apply *) . In particular one obtains a topological

version of the multiplicative ergodic theorems of Sections 2 and 3 .

We shall now discuss stable and unstable manifold theorems, where the
stable and unstable manifolds are subsets of M (rather than TM) . We assume
that M is a C° manifold and consider a ¢k map £ : M—— M ("case I"
of Sections 5 and 6). One can handle similarly the ¢” case, the holomorphic

case, and the real analytic case (by using local holomorphic extensions) .

Let again A = N £ be compact. Define a metric d on M by a
n>0
Hilbert norm ||-|k on TxM depending continuously on x . We may suppose that
for some continuous e(*) > O , a continuous map (x,u)r— wx(u) of

T, MEe(:)) = {(x,u) : xEM, ueTHM ,||u|k <e(x)} to M is defined with

the following properties.

(a) w‘ is a Cfﬁe diffeomorphism from the i (x)-ball TXM(L(X)) £o
v € M : d(x,y) < 2} with Dmx(O) = id”"lill'
(b) ||Dwa and llTw;ln are bounded uniformly for x € A (i.e. wx’ w;

*
) It may be desirable to replace the Hilbert topology on M by some other
separable metrizable topology.
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are uniformly Lipschitz).

-1

(c) wax

fwxll is bounded uniformly for x € A .
r,0

2

We may thus write FX = g—lw;i fwxg where ¢ denotes multiplication
by a sufficiently small scalar, and apply case I of Theorem 5.1. In particular

for suitable o', B', the local stable manifold

Vi ={y € M : d(x,y) < a'(x) and

d(fnx,fny) < B'(x) enk(x) for all n > 0}

will be a C'AI;"6 submanifold of {y € M : d(x,y) < o'(x)} if x € T , where

fTeT , and o(T) =1 for every invariant probability measure )

A differential global stable manifold can be defined if the operators
Tf(x) have dense range. We shall discuss below in more details the case of
global unstable manifolds.

. . ~ N _
To study local unstable manifolds, we write M = {(xn)nZO EM .fxn+1— X

~

for all n > 0} , and define ¥ : M—>M, 7:M:— M by ?(xn) = (xn+1) >
(xn) = X, 8o that foy = ?o?ﬁl . The definition of A implies that, if

X = (xn) € M we have X €A for all n >0 . Therefore M is compact metri-

2

zable ; f and % are continuous.

Furthermore the map 7 induces a bijection of T-invariant probability
measures to f-invariant probability measures. We have a Hilbert bundle over

¥ with fiber E;; M over X , and a continuous bundle map

~ _ -1 -1 X
Fx = £ wa fwxlg. I?k?QbM(l)F——+ TF; M

where (wx) and ¢ satisfy the same assumptions as above. We shall apply the
topological version of Theorem 6.1. with M, ¥ replacing M, f . Notice that

for almost all X (with respect to any f-invariant probability measure p),
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the characteristic exponents and multiplicities which occur at X for unstable
manifolds are the same which occur at nx for stable manifolds (see Section
3.5). In view of Theorem 6.1., there is a Borel set T <M such that TT<T ,

and p(T) = 1 for every I-invariant probability measure on  , and there

~,

are Borel functions &' > B' > O such that the local unstable manifold

NA_ ; ~y .
Vg —{yo €EM: d(xo,yo) <a (x) and a(yn)n>O with

(7:3)
B e_nl(§)}

fyn+1 = ¥ and d(xn,yn) < B

is a c5*® submanifold of {y eM: d(x,y) <a' X}

7.3. Global unstable manifolds

We retain the assumptions of Section 7.2. and further assume that TXf

* *
is injective for all x € A . We have here T;,f:(Tx E) ¥ oewn * (Txlf) = (Tx fn)
n+k n ¥ k * Bz : 3 n
and T_ tu © (T £) (T £) . Let Q>0 be an T-invariant integer-
£ % *n *o0 =~

~

valued Borel function on M . Given an T-ergodic measure p on M , we let

~+

Fp consist of those X € M satisfying the following properties.

(a) for all continuous functions @ : M— TR

n
o | Kk~
lim = I oTX) = o
N> k=1
(b) for q=1, ..., Q(X) , and all integers k >0,

.1 . 1 ~
lim — 10g”(1%kV)AqH= 1nf;;j10g“(l§)AqH o (dy)

n-»co X n

(c¢) for all integers k > O,

lim sup 1 IOR”(TEk )A(Q+l)“ < e 1 f lUﬁ”(Tg)A(Q+I)H D
n = n Y
now fF ¥ n .

: ~+ ~+ i -
Notice that T Fp = Fp (to check (b) use the injectivity of Txf and

Theorem 1.1). We define
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T ={Fel : (S) 1is satisfied}

=9 %
where Tn = (x. - (TX £) - X.ll) with the notation of Section 7.1. It follows

n
readily that ?N = T'p

Let now X = (xn) ET , y= (Yn) €M, and
lim sup 3 log d(x_,y.) < -2 (X)
n n2’n
N>

2 ~ . ~ ~~. -n™
Since o'(f'x) , B'(f x) decrease less fast than e = when noo , we have

yHE'U)‘ for sufficiently large n (we have taken ® < A(x)) . By application

i

of Theorem 4.1. we get Ty € Fp and therefore y € Fp

Writing T=u 'f"p , we have IT =T , and p(?') =1 for every T-
invariant probability measure on M (see Section 7.1). If X € 'Fp the "global

*
unstable manifold" )

A

Wy = {yy €M : 3y = (yn) €M with
lim sup 2 log d(x_,y ) < -2 (X)}
n n’’n
N0
is given by
wy= u £V
* n>0 'fm’;{'

and is therefore an immersed C‘]-:"e manifold < r

If f restricted to A is injective, 7 identifies ™ to A , and
A ; T T8 :
(l~ is the image of V,i, by an injective C immersion I?i tangent to the

*k

identity at X, )

If Tx f 1is compact when x € A , one may replace (b), (c) in the

definition of T by
P

*) Pro[l)erlv speaking, the global unstable manifold corresponds to the case where
u(l (Q+1) . One can then also write

~ . . |
~ = : = a 5 " N, )
[JX ly, €M v (_vn) cM with lllll‘l Sup lor d(x Yo < 0l

" : . . 5 o
¥*¥YyThis 1s aeain true in the 0 raco (aascu) and tha W ~ .

Aae A Fhansam o F
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(b') For all integers q >0 , k >0,

L % 1 ~
lim — log”(Tfkﬁ)Aq“ = inf = Ilog“(T;)AqH o (dy)
n-e fx n

One can then again show that X € F; implies wé;c:?; (use Corollary 6.2. with

*
with arbitrarily large Q )

7.4. The case 04§ non-vanishing characteristic exponents

Let p be an f-invariant probability measure on M such that the

characteristic exponents u(r) are almost everywhere nonzero. We may assume
that
BT 5 5 e P g OO
~ ~~, " +1

(the argument x or mx 1is omitted, U(r(O)) = 4o and u(r(Q ) may
be - »). We construct then local stable and unstable manifolds (in the strict
sense) Vi and E% . From section 3.5. it follows that for p-almost all

A e .
X , codim U~~=dim Mi and VAN R Mi intersect transversally at X .

TX X TX X -
Furthermore the "angle of intersection" of v and 04 at %'?k?

nfx E%
cannot tend to zero exponentially when k->it» (see (3.16)).
If u(l) < 0 almost everywhere with respect to the f-ergodic measure p

then p 1is carried by an attracting periodic orbit. (The proof is the same

as in finite dimension, see [14]).

7.5. Flows

The results discussed for iterates of a map f extend easily to a semi-

flow (ft) . To generalize the situation of Section 7.2., it suffices to

t>0

add to (a) , (b), (c) the new condition

(d) ||Txft” is bounded uniformly for x €A, t € [0,1]
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If (d) holds, the conditions of exponential decrease of ||Tftu“ s
d(ftx,fty) or d(xt,yt) hold for all real t >0 if and only if they hold
for integer t . One is thus reduced to the study of a map. The case where

£% is defined only for t > TO >0 is dealt with similarly.

The more general situation of Section 7.1. can be treated in the same

manner.
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Appendix
A.1. Theorem (Subadditive ergodic theorem).

(M,%,p) denotes a probability space, and f : M—— M a measurable

map preserving o

Let (F.) be a sequence of measurable functions Mr—— RU {-»}

_— n’ n>0

satisfying the conditions

(a) integrability : F) € L Y, 0)
i m
(b) subadditivity : Fm+n < Fm + Fn f a.e.

Then there exists a f-invariant measurable function F : M—— R {-=}

siich that P € LI(M,p) >

lim g =7 a.e. (A.1)
n n
n-o
and
Lin [ F_(0) p(dx) = inf = [ F (x) p(dx) = [F(x) p(dn) (A.2)

This is one version of Kingsman's theorem (see [7] Theorem 1.8). Kingman's
subadditive ergodic theorem now has rather simple proofs (see for instance

Derriennic [2])

A.2. Conoflary : Keeping the notation and assumptions of Theorem A.l., let

G > F be an f-invariant measurable finite-valued function. For every e>0

there 1is Ke measurable finite-valued such that

F__o £7(x) g (n-m) 6(x) +me +K (%)

for almost all x , and m < n

i
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It suffices to treat the case where G+ € Ll(M,p) . Define G (%)
n
Gn(x) = max {Fn(x), n G(x)} . Theorem A.l. holds with (Gn) instead of (F )
n
and G 1instead of F . It suffices therefore to prove the corollary with

F =G finite-valued.

Define Fi(x) = Fl(x) and, for n >2,

B - mex DB HE, £7(x) ]

The sequence (F;) again satisfies the conditions of Theorem A.l., hence

1lim l-F' = JI

il Tay
exists almost everywhere. Since Fo < F; , we have F < F' . We shall prove
that F = F' . To do this we may assume that f has a measurable inverse (this

can be achieved by a canonical extension of the dynamical system M,2,p0,0)) .

The functions Fn o £ 1 satisfy the conditions of Theorem A.1, with f replaced

=1

by £ , and it is clear that
.1 -n
lim—=F_ o £ = F (A.3)
n n
N>

(by (A.2) the left and the right hand side have the same integral on every

invariant set).

Let o >0 and B > O be given. In view of (A.1), (A.3), there exist

A, £ >0 and a set A such that p(A) >1-8 , and x € A implies

— F (x)
m
< F(x) +A for all m

1 -m
[—n- Fm o ¥ (X)
= Fm(X) l

[ < F(x) + a for m> ¢
1 -m [
E Fm o f (X) z
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Assume n > 22 . We have

1

lpw=2ir+r o 0™ ")

for some m depending on x , O <m< n . Thus, for x€ AN £ A 5

2

= Fn(x) < F(x) + o+ = A
If n > %? , this implies

1

= F;(X) < F(x) + 2

when x belongs to the set A N f_nA , of measure > 1-2g8 . Therefore

F' <F + 20 on a set of measure > 1 - 238 , and since o ,R are arbitrary,
F' < F almost everywhere :
e g
lim — F = F a.e.
n n

>0

Given & > O we can thus find N measurable such that, for almost all x ,

% Fn(x) > F(x) - % s %-F;(x) < F(x) + %

if n > N(x) . There is therefore K.E measurable such that, for all n ,

1

£
Fn(x) > n F(x) - n cia E—Ke(x)
Fl() > nF() +n§+ %-Ké(x)

hence

F oo fx <Fl(x) -F ()< (am F(x) + ne +K (%)

for almost all x , proving the corollary.
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